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Abstract. We give the characterization of the unit group of FqSL(2,Z5), where Fq is a

finite field with q = pk elements for prime p > 5, and SL(2,Z5) denotes the special linear
group of 2× 2 matrices having determinant 1 over the cyclic group Z5.
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1. Introduction

Let U(FG) denote the unit group of the group algebra FG over the finite field F

and the finite group G. For elementary definitions and results related to group

rings, we refer to [17]. The units of the group rings are very important from an

application point of view. As an application of the units of group rings, Hurley

suggested the construction of convolutional codes from units in group rings (see [6]).

The correspondence between a group ring and a ring of matrices was proposed in [5].

For the other applications of units, see [8], [10], [12], [20].

A great deal of research has been carried out in the direction of deducing the

structure of the unit group of group algebras FG. For instance, in [16], the case study

is done when G is an abelian group of finite order. Articles [1], [4], [11], [9], and [14]

provide the structure of the unit groups U(FG) for some of the dihedral groups G.

For the alternating group A4, the structure of U(FA4) for the finite field F has been

discussed in [3], [18]. For some nonabelian groups of small order, a characterization of

the unit groups of their group algebras has been given in [13], [19], and [21]. Further,

for the circulant matrices, unit groups of their group algebras have been discussed

in [10], [20]. Maheshwari and Sharma (see [8]) gave the characterization of the unit
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group of the group algebra FqSL(2,Z3), where q = pk, p > 5 and SL(2,Z3) is the

group of 2 × 2 matrices having determinant 1 over the field Z3. Further, the unit

groups of the semisimple group algebras of non-metabelian groups up to order 72

have been discussed in [15]. The paper [15] completes the study of the unit groups

of semisimple group algebras of all the groups up to order 72.

The main motive of this paper is to characterize the unit group U(FqSL(2,Z5))

of FqSL(2,Z5), where q = pk and p > 5. To characterize the unit group

U(FqSL(2,Z5)), we utilize the results of [2] and [12] to obtain all the simple compo-

nents (or Wedderburn decomposition) of FqSL(2,Z5). Then it is straightforward to

deduce the unit group from the knowledge of Wedderburn decomposition.

The rest of the paper is organized as follows. Section 2 sheds light on the basic

definitions and known results required in our work. We present our main result in

Section 3. Section 4 concludes the paper.

2. Preliminaries

Let e denote the exponent of G, ζ be the primitive eth root of unity, F be a finite

field and J(FG) be the Jacobson radical of the group algebra FG. On the lines of [2],

let us denote

IF = {n : ζ 7→ ζn is an automorphism of F(ζ) over F}.

Since the Galois group Gal(F(ζ),F) is a cyclic group, for any τ ∈ Gal(F(ζ),F), there

exists some s which is invertible modulo e such that τ(ζ) = ζs. In other words,

IF is a subgroup of the multiplicative group Z
∗

e (the group of integers which are

invertible modulo e). For any p-regular element g ∈ G, i.e. an element whose order

is not divisible by p, let the sum of all the conjugates of g be denoted by γg, and the

cyclotomic F class of γg be denoted by

S(γg) = {γgn : n ∈ IF }.

Now let us recall two results from [2]. The first one relates the number of cyclotomic F

classes with the number of simple components of FG/J(FG) and the second one is

about the cardinality of any cyclotomic F class in G.

Theorem 2.1. The number of simple components of FG/J(FG) and the number

of cyclotomic F classes in G are equal.

Theorem 2.2. Let ζ be defined as above and j be the number of cyclotomic F

classes in G. If Ki, 1 6 i 6 j, are the simple components of the center of FG/J(FG)
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and Si, 1 6 i 6 j, are the cyclotomic F classes in G, then |Si| = [Ki : F] for each i,

after the suitable ordering of the indexes.

In order to determine the unit group of the group algebra FqSL(2,Z5), we need to

determine its Wedderburn decomposition, i.e. the simple components of FqSL(2,Z5).

From prior knowledge, we can always guarantee that Fq is one of its simple compo-

nents.

Lemma 2.1 ([17], Corollary 2.5.4). Let M be a semisimple module and M =
⊕

i∈I

Mi be its decomposition as a direct sum of simple modules. If N is a submodule

of M , then there exists a subset J of I such that N ∼=
⊕

i∈J

Mi.

In the view of the above lemma, it is easy to deduce that Fq is one of the simple

components of FqSL(2,Z5). The next theorem tells us about the elements of the

multiplicative group IF .

Theorem 2.3 ([7], Theorem 2.21). Let F be a finite field with prime power order q.

If e is such that gcd(e, q) = 1, ζ is the primitive eth root of unity and z is the order

of q modulo e, then we have

IF = {1, q, q2, . . . , qz−1} mod e.

To this end, let us now recall a result which will be helpful in the determination

of the commutative simple components of the group algebra FqG.

Theorem 2.4 ([17], Proposition 3.6.11). If RG is a semisimple group algebra,

then

RG ∼= R(G/G′)⊕∆(G,G′),

where G′ is the commutator subgroup of G, R(G/G′) is the sum of all commutative

simple components of RG, and ∆(G,G′) is the sum of all others.

Let us end this section by recalling a generalized version of the above Theorem 2.4.

This result would be very crucial in obtaining the Wedderburn decomposition of the

group algebra FqSL(2,Z5).

Theorem 2.5 ([17], Proposition 3.6.7). Let RG be a semisimple group algebra

and H be a normal subgroup of G. Then

RG ∼= R(G/H)⊕∆(G,H),

where ∆(G,H) is a left ideal of RG generated by the set {h− 1: h ∈ H}.
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3. Unit group of FqSL(2,Z5)

In this section, we give the characterization of the unit group of group algebra

FqSL(2,Z5) for p > 5. If Fq is a finite field of order q = pk, then the order of

SL(n,Fq) is given by

1

q − 1
(qn − 1)(qn − q) . . . (qn − qn−1).

In our case, G = SL(2,Z5) and hence |G| = 120. Since p > 5 and it does not divide

the order of |G|, J(FqG) is 0 by the well known Maschke’s theorem (see [17]). This

means that the group algebra FqSL(2,Z5) is semisimple for p > 5.

In order to deduce the unit group of the group algebra FqSL(2,Z5), let us first

discuss the structure of the conjugacy classes of G. It can be verified that G has 9

conjugacy classes. Let us denote these classes by [gi], 1 6 i 6 9, where for each i, gi

(defined below) represent the representative of the ith conjugacy class. To be more

precise, we have:

(1) g1 =

[

1 0

0 1

]

, g2 =

[

4 0

0 4

]

.

Moreover, g1, and g2 are the only elements in their conjugacy classes. Also, |g1| = 1,

and |g2| = 2.

(2) g3 =

[

0 4

1 3

]

, g4 =

[

0 3

3 3

]

,

and both have 12 elements in their conjugacy classes. Also, |g3| = |g4| = 10.

(3) g5 =

[

0 4

1 2

]

, g6 =

[

0 3

3 2

]

,

and both have 12 elements in their conjugacy classes. Also, |g5| = |g6| = 5.

(4) g7 =

[

0 4

1 4

]

, g8 =

[

0 4

1 1

]

,

and both have 20 elements in their conjugacy classes. Also, |g7| = 3 and |g8| = 6.

(5) g9 =

[

3 0

0 2

]

,

and it has 30 elements in its conjugacy class. Moreover, |g9| = 4.
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From the above description, it is clear that the exponent of G is 60. Also, note

that the derived subgroup G′ of G is G. To this end, let us now discuss our main

result on the Wedderburn decomposition of the group algebra FqSL(2,Z5) for p > 5.

Theorem 3.1. The Wedderburn decomposition of FqSL(2,Z5) for p > 5,

where Fq is a finite field having q = pk elements, is as follows:

Conditions on k and p Wedderburn decomposition

k is even and p > 5 arbitrary

or Fq ⊕M2(Fq)
2 ⊕M3(Fq)

2 ⊕M4(Fq)
2 ⊕M5(Fq)⊕M6(Fq)

k is odd and q ≡ ±1 mod 5

k is odd
Fq ⊕M4(Fq)

2 ⊕M5(Fq)⊕M6(Fq)⊕M2(Fq2)⊕M3(Fq2)
q ≡ ±2 mod 5

P r o o f. Since we know that FqG is semisimple, its Wedderburn decomposition

is given by

FqG ∼=

j
⊕

t=1

Mnt
(Ft),

where for each t, Ft is a finite extension of F, nt > 1 and G = SL(2,Z5). From

the above isomorphism, the Wedderburn decomposition of FqG can be determined,

provided n′

ts and F
′

ts are known for each 1 6 t 6 j. So, for this, by utilizing

Lemma 2.1 and re-ordering the indexes (if required), one can obtain

(3.1) FqG ∼= Fq

j−1
⊕

t=1

Mnt
(Ft).

For any odd prime greater than 5, with the usage of the Chinese remainder theorem, it

can be easily seen that q = pk ≡ 1 mod 60, whenever k is a multiple of 4. Therefore,

for this case, we can verify that |S(γg)| = 1 for each g ∈ G. Hence, (3.1), and

Theorems 2.1, 2.2 imply that

(3.2) FqG ∼= Fq

8
⊕

t=1

Mnt
(Fq).

Further, apply the dimesion formula to (3.2) to obtain

119 =

8
∑

t=1

n2

t , nt > 1 ∀ t.
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Moreover, use the fact that G′ = SL(2,Z5) and Theorem 2.4 in (3.2) to deduce that

(3.3) FqG ∼= Fq

8
⊕

t=1

Mnt
(Fq) with 119 =

8
∑

t=1

n2

t , nt > 2 ∀ t.

The above equation provides 7 possibilities for the possible choices of n′

ts, namely

(2, 2, 2, 2, 2, 3, 3, 9), (2, 2, 2, 2, 2, 5, 5, 7), (2, 2, 2, 2, 3, 3, 6, 7), (2, 2, 2, 3, 3, 3, 4, 8),

(2, 2, 2, 4, 4, 5, 5, 5), (2, 2, 3, 3, 4, 4, 5, 6) and (3, 3, 3, 3, 3, 3, 4, 7).

In order to uniquely determine the Wedderburn decomposition of the group algebra

FqG, let us consider the subgroup H of G generated by

[

4 0

0 4

]

. It can be observed

that H is a normal subgroup of G with G/H ∼= A5, where A5 is the group of all even

permutations of degree 5. To this end, let us recall from [12], Theorem 4.1, that for

q ≡ ±1 mod 5, we have

(3.4) FqA5
∼= Fq ⊕M3(Fq)

2 ⊕M4(Fq)⊕M5(Fq).

Therefore, by combining equations (3.3), (3.4) and Theorem 2.5, we conclude that

(2, 2, 3, 3, 4, 4, 5, 6) is the only possibility for n′

ts which means that

(3.5) FqG ∼= Fq ⊕M2(Fq)
2 ⊕M3(Fq)

2 ⊕M4(Fq)
2 ⊕M5(Fq)⊕M6(Fq).

Now we move on to the possibility that k is a multiple of 2 but not of 4. In this case,

we have

pk ≡ 1 mod 3, pk ≡ 1 mod 4, pk ≡ ±1 mod 5.

We discuss the above possibility in the following two cases:

(a) pk ≡ 1 mod 3, pk ≡ 1 mod 4, pk ≡ 1 mod 5.

(b) pk ≡ 1 mod 3, pk ≡ 1 mod 4, pk ≡ −1 mod 5.

For part (a), we have pk ≡ 1 mod 60. Therefore, the Wedderburn decomposition

in this case is exactly same as given in (3.5).

For part (b), employ the Chinese remainder theorem to obtain

q = pk ≡ 49 mod 60.

In this case, for any g ∈ G, we have

IF = {1, 49} which means S(γg) = {γg, γg49}.
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It can be verified that in this case, |S(γg)| = 1 for each g ∈ G. Hence, the Wedderburn

decomposition is exactly same as given in (3.5).

The next possibility is when k is odd and it is discussed in the following 8 cases.

Case 1 : p ≡ 1 mod 3, p ≡ 1 mod 4, and p ≡ ±1 mod 5. This means pk ≡ 1 mod 60

or pk ≡ 49 mod 60. For both of these possibilities, it can be verified that S(γg) = {γg}

for each g ∈ G. Hence, the Wedderburn decomposition is given by (3.5).

Case 2 : p ≡ 1 mod 3, p ≡ 1 mod 4, and p ≡ ±2 mod 5. For this case, we get

pk ≡ 1 mod 12, pk ≡ 2 mod 5 or pk ≡ 1 mod 12, pk ≡ 3 mod 5 which further implies

that

pk ≡ 37 mod 60, or pk ≡ 13 mod 60.

For both of these possibilities, we have IF = {1, 13, 37, 49} which means that

S(γg1) = {γg1}, S(γg2) = {γg2}, S(γg3) = {γg3 , γg4}, S(γg5) = {γg5 , γg6},

S(γg7) = {γg7}, S(γg8) = {γg8}, S(γg9) = {γg9}.

Therefore, (3.1) and Theorems 2.1, 2.2 imply that

FqG ∼= Fq

4
⊕

t=1

Mnt
(Fq)

6
⊕

t=5

Mnt
(Fq2).

To this end, let us now apply the dimension formula in the above to get

119 =
4

∑

t=1

n2

t + 2n2

5
+ 2n2

6
, nt > 1 ∀ t.

Now employ Theorem 2.4 and G′ = SL(2,Z5) to further obtain that

(3.6) FqG ∼= Fq

4
⊕

t=1

Mnt
(Fq)

6
⊕

t=5

Mnt
(Fq2) with 119 =

4
∑

t=1

n2

t+2n2

5
+2n2

6
, nt > 2 ∀ t.

Again, from Theorem 4.1 in [12], we know that for q ≡ ±2 mod 5 we have

(3.7) FqA5
∼= Fq ⊕M3(Fq2)⊕M4(Fq)⊕M5(Fq).

Combining (3.6), (3.7) and Theorem 2.5, we get

FqG ∼= Fq ⊕M4(Fq)⊕M5(Fq)

2
⊕

t=1

Mnt
(Fq)⊕M3(Fq2)⊕Mn3

(Fq2)

with

60 =

2
∑

t=1

n2

t + 2n2

3
, nt > 2 ∀ t.
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The above equation leaves us with the only choice (4, 6, 2). Therefore, we have

(3.8) FqG ∼= Fq ⊕M4(Fq)
2 ⊕M5(Fq)⊕M6(Fq)⊕M2(Fq2)⊕M3(Fq2).

Case 3 : p ≡ 1 mod 3, p ≡ −1 mod 4, and p ≡ ±1 mod 5. For this case, we have

pk ≡ 31 mod 60 or pk ≡ 19 mod 60. This means that

IF = {1, 31}, or IF = {1, 19}.

For both of these possibilities, it can be verified that S(γg) = {γg} for each g ∈ G.

Therefore, the required Wedderburn decomposition is given by (3.5).

Case 4 : p ≡ 1 mod 3, p ≡ −1 mod 4, and p ≡ ±2 mod 5. For this case, we have

pk ≡ 7 mod 60 or pk ≡ 43 mod 60, which means that

IF = {1, 7, 43, 49}.

So, we can see that this case is similar to Case 2 which means the Wedderburn

decomposition is given by (3.8).

Case 5 : p ≡ −1 mod 3, p ≡ 1 mod 4, and p ≡ ±1 mod 5. Here, we have pk ≡

41 mod 60 or pk ≡ 29 mod 60. This means that

IF = {1, 41}, or IF = {1, 29}.

For both of these possibilities, it can be verified that S(γg) = {γg} for each g ∈ G.

Therefore, the Wedderburn decomposition is given by (3.5).

Case 6 : p ≡ −1 mod 3, p ≡ 1 mod 4, and p ≡ ±2 mod 5. For this case, we get

pk ≡ 17 mod 60 or pk ≡ 53 mod 60, which means that

IF = {1, 17, 49, 53},

and one can verify that for this case, the Wedderburn decomposition is given by (3.8).

Case 7 : p ≡ −1 mod 3, p ≡ −1 mod 4, and p ≡ ±1 mod 5. Here, we have pk ≡

11 mod 60 or pk ≡ 59 mod 60. This means that

IF = {1, 11}, or IF = {1, 59}.

For both of these possibilities, it can be verified that S(γg) = {γg} for each g ∈ G.

Therefore, the Wedderburn decomposition is given by (3.5).

Case 8 : p ≡ −1 mod 3, p ≡ −1 mod 4, and p ≡ ±2 mod 5. For this case, we get

pk ≡ 47 mod 60 or pk ≡ 23 mod 60. For both of these possibilities, we have

IF = {1, 23, 47, 49},

and one can verify that the Wedderburn decomposition in this case is given by (3.8).

This completes the proof. �
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Corollary 3.1. The unit group of FqSL(2,Z5), when p > 5, where Fq is a finite

field having q = pk elements, is isomorphic to:

Conditions on k and p unit group

k is even and p > 5 arbitrary

or F
∗

q ⊕GL2(Fq)
2 ⊕GL3(Fq)

2 ⊕GL4(Fq)
2 ⊕GL5(Fq)⊕GL6(Fq)

k is odd and q ≡ ±1 mod 5

k is odd
F
∗

q ⊕GL4(Fq)
2 ⊕GL5(Fq)⊕GL6(Fq)⊕GL2(Fq2)⊕GL3(Fq2)

q ≡ ±2 mod 5

where GLn(Fq) denotes the group of all n× n invertible matrices over the field Fq.

4. Discussion

We have obtained the unit group of the semisimple group algebra FqSL(2,Z5) for

p > 5. The approach used in this paper for obtaining the Wedderburn decomposition

is suitable for almost all the groups up to order 120 (at least) having two or more

nontrivial normal subgroups unlike the symmetric group S5.

A c k n ow l e d gm e n t. The authors are extremely thankful to both the editor

and reviewer for their valuable suggestions and comments which improved the overall

quality of the paper.
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