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Abstract. This paper presents several sufficient conditions for the existence of at least
one classical solution to impulsive fractional differential equations with a p-Laplacian and
Dirichlet boundary conditions. Our technical approach is based on variational methods.
Some recent results are extended and improved. Moreover, a concrete example of an appli-
cation is presented.
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1. Introduction

We consider the impulsive fractional differential equation with a p-Laplacian and

Dirichlet boundary conditions

(Pf )











Dα
T−

Φp(
cDα

0+u(t)) + |u(t)|p−2u(t) = f(t, u(t)), t 6= tj , t ∈ (0, T ),

∆(Dα−1
T−

Φp(
cDα

0+u))(tj) = Ij(u(tj)),

u(0) = u(T ) = 0,

where α ∈ (1/p, 1], p > 1, Φp(s) = |s|p−2s (s 6= 0), Dα
T−
is the right Riemann-

Liouville fractional derivative of order α, cDα
0+ is the left Caputo fractional deriva-

tive of order α, Dα−1
T−

= D
−(1−α)
T−

is the right Riemann-Liouville fractional integral
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of order 1− α,

∆(Dα−1
T−

Φp(
cDα

0+u))(tj) = Dα−1
T−

Φp(
cDα

0+u)(t
+
j )−Dα−1

T−
Φp(

cDα
0+u)(t

−
j ),

Dα−1
T−

Φp(
cDα

0+u)(t
+
j ) = lim

t→t+
j

Dα−1
T−

Φp(
cDα

0+u)(t),

Dα−1
T−

Φp(
cDα

0+u)(t
−
j ) = lim

t→t−
j

Dα−1
T−

Φp(
cDα

0+u)(t),

f : [0, T ]×R → R is an L1-Carathéodory function, 0 = t0 < t1 < . . . < tm < tm+1 = T ,

and Ij : R → R, j = 1, . . . ,m, are Lipschitz continuous functions having Lipschitz

constants Lj > 0, i.e., |Ij(x2) − Ij(x1)| 6 Lj |x2 − x1|p−1 for every x1, x2 ∈ R, and

with Ij(0) = 0.

Fractional calculus is a generalization of classical derivatives and integrals to an

arbitrary (noninteger) order. It represents a powerful tool in applied mathematics

to deal with a myriad of problems from different fields such as physics, mechanics,

electricity, control theory, rheology, signal and image processing, aerodynamics, etc.;

for details, see [15], [26], [28], [33] and the references therein. Recently, the existence

of solutions to boundary value problems for fractional differential equations (FDEs)

has been studied in many papers and we refer the reader to the papers [13], [17],

[20], [21], [22], [29] and the references therein for some recent contributions. For

example, in [13], Chen and Tang studied the existence and multiplicity of solutions

to the fractional boundary value problem

{ d

dt

(1

2
0D

−β
t (u′(t)) +

1

2
tD

−β
T (u′(t))

)

+ λ∇F (t, u(t)) = 0, a.e. t ∈ [0, T ],

u(0) = u(T ) = 0,

where T > 0, λ > 0, 0 6 β < 1, 0D
−β
t and tD

−β
T are the left and right Riemann-

Liouville fractional integrals of order β, respectively, F : [0, T ]× R
N → R is a given

function, ∇F (t, x) is the gradient of F in x, and F (t, ·) is superquadratic, asymp-
totically quadratic, or subquadratic. Using the Avery-Peterson fixed point theorem,

Guo and Zhang (see [21]) provided sufficient conditions for the existence of multi-

ple positive solutions to the boundary value problem in which the nonlinear terms

contain the derivatives of order up to i











cDαu(t) + f(t, u(t), u′(t), . . . , u(i)(t)) = 0, 0 < t < 1,

u(0) = u′(0) = . . . = u(i−1)(0) = u(i+1)(0) = . . . = u(n−1)(0) = 0,

u(i)(1) = 0,

where n− 1 < α 6 n is a real number, n > 2 is a natural number, and α− i > 1 for

0 6 i 6 n− 1. The function f(t, x0, . . . , xi) may be singular at t = 0.
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Nonlinear boundary value problems involving the p-Laplacian arise from a variety

of physical problems. They are used in non-Newtonian fluids, reaction-diffusion

problems, flow through porous media, and petroleum extraction (see, e.g., [8], [9],

[16], [30], [39]). Recently, several researchers have studied nonlinear problems of this

type using different approaches.

The theory of impulsive differential equations provides a general framework for the

mathematical modeling of many real-world phenomena; see, for instance, [12], [14].

Indeed, many dynamical systems have an impulsive behavior due to abrupt changes

at certain instants during the evolution process. Impulsive differential equations

are basic tools for studying these phenomena, see [2], [3], [4], [5], [6]. In relation

to the variational approach to impulsive differential equations, we refer to the pa-

pers [36], [31]. See also the papers [18], [7], [32].

To the best of our knowledge, there are few results on the existence and multiplicity

of solutions to impulsive fractional boundary value problems with a p-Laplacian. For

details, see [11], [19], [25], [37], [38], [40] and the references therein. For example,

Wang et al. (see [38]) used a variant fountain theorem to prove the existence of

infinitely many nontrivial large or small energy solutions to problem (Pf ). Zhao and

Tang (see [40]) employed critical point theory and variational methods to study the

existence and multiplicity of solutions to (Pf ).

Motivated by the above discussion, in the present paper we study the existence

of at least one nontrivial classical solution to problem (Pf ) under an assumption on

the asymptotic behavior of the nonlinear function F at zero (see Theorem 3.1). In

Theorem 3.2, we present an application of Theorem 3.1. We also give some detailed

remarks about our results. As a special case of our result, we obtain Theorem 4.3

for the case where f does not depend upon t. We end the paper with an example to

illustrate our results.

2. Preliminaries

We are going to prove the existence of at least one nontrivial classical solution to

problem (Pf ). Essential to our approach is the following version of Ricceri’s varia-

tional principle (see [35], Theorem 2.1) as given by Bonanno and Molica Bisci in [10].

Theorem 2.1. Let X be a reflexive real Banach space and let Φ,Ψ: X → R

be two Gâteaux differentiable functionals such that Φ is sequentially weakly lower

semicontinuous, strongly continuous, and coercive in X , and Ψ is sequentially weakly

upper semicontinuous in X . Let Iλ be the functional Iλ := Φ − λΨ, λ ∈ R, and for
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every r > inf
X

Φ, let ϕ be the function

ϕ(r) := inf
u∈Φ−1(−∞,r)

supv∈Φ−1(−∞,r)Ψ(v)−Ψ(u)

r − Φ(u)
.

Then, for every r > inf
X

Φ and every λ ∈ (0, 1/ϕ(r)), the restriction of the func-

tional Iλ to Φ
−1(−∞, r) admits a global minimum, which is a critical point (precisely,

a local minimum) of Iλ in X .

We refer the interested reader to the papers [1], [17], [23], [24] in which Theorem 2.1

has been successfully used to prove the existence of at least one nontrivial solution

to boundary value problems.

Next, we introduce several basic definitions, notations, lemmas, and propositions

that will be used in the remainder of this paper. Let AC[a, b] be the space of abso-

lutely continuous functions on [a, b] and Γ(α) be the usual Gamma function given by

Γ(α) =

∫ ∞

0

zα−1e−z dz.

Definition 2.2 ([27]). Let f be a function defined on [a, b] and 0 < α 6 1. The

left and right Riemann-Liouville fractional integrals of f of order α are defined by

D−α
a+ f(t) =

1

Γ(α)

∫ t

a

(t− s)α−1f(s) ds, t ∈ [a, b],

D−α
b− f(t) =

1

Γ(α)

∫ b

t

(s− t)α−1f(s) ds, t ∈ [a, b],

provided the right-hand sides are defined pointwise on [a, b].

Definition 2.3 ([27]). Let f be a function defined on [a, b] and 0 < α 6 1. The

left and right Riemann-Liouville fractional derivatives of f of order α are defined by

Dα
a+f(t) =

d

dt
Dα−1

a+ f(t) =
1

Γ(1− α)

d

dt

∫ t

a

(t− s)−αf(s) ds, t ∈ [a, b],

Dα
b−f(t) = − d

dt
Dα−1

b− f(t) = − 1

Γ(1− α)

d

dt

∫ b

t

(s− t)−αf(s) ds, t ∈ [a, b].

Definition 2.4 ([27]). Let f ∈ AC([a, b],R) and 0 < α 6 1. The left and right

Caputo fractional derivatives of f of order α are defined by

cDα
a+f(t) = Dα−1

a+ f ′(t) =
1

Γ(1− α)

∫ t

a

(t− s)−αf ′(s) ds, t ∈ [a, b],

cDα
b−f

′(t) = −Dα−1
b− f ′(t) = − 1

Γ(1− α)

∫ b

t

(s− t)−αf ′(s) ds, t ∈ [a, b].

In particular, if α = 1, we have cD1
a+f(t) = f ′(t) and cD1

b−f(t) = −f ′(t).
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Let C∞
0 ([0, T ],R) be the set of all functions u ∈ C∞([0, T ],R) with u(a) = u(b) = 0

and the norm ‖u‖∞ = max
t∈[a,b]

|u(t)|. Denote the norm of the space Lp([0, T ],R) for

1 6 p < ∞ by

‖u‖Lp =

(
∫ b

a

|u(s)|p ds
)1/p

.

Definition 2.5. Let 0 < α 6 1 and 1 < p < ∞. The fractional derivative
space Eα,p

0 is defined as the closure of C∞
0 ([0, T ],R), that is,

Eα,p
0 = C∞

0 ([0, T ],R)

with respect to the norm

(2.1) ‖u‖Eα,p

0
=

(
∫ T

0

|cDα
0+u(t)|p dt+

∫ T

0

|u(t)|p dt
)1/p

for every u ∈ Eα,p
0 .

R em a r k 2.6. Note that the fractional derivative space Eα,p
0 is the space of

functions u ∈ Lp([0, T ],R) having an α-order Caputo fractional derivative cDα
t u ∈

Lp([0, T ],R) and u(0) = u(T ) = 0. From [27], Proposition 3.1, we know that for

0 < α 6 1, the space Eα,p
0 is a reflexive and separable Banach space.

The following lemma addresses the boundedness of the Caputo fractional integral

operators from the space Lp([a, b],R) into itself where 1 < p < ∞.

Lemma 2.7 ([41]). Let 0 < α 6 1 and 1 < p < ∞. For any u ∈ Eα,p
0 , we have

(2.2) ‖u‖Lp 6
Tα

Γ(α+ 1)
‖cDα

0+u‖Lp .

In addition, for 1/p < α 6 1 and 1/p+ 1/q = 1, we have

(2.3) ‖u‖∞ 6 k‖cDα
0+u‖Lp where k =

Tα−1/2

Γ(α)(αq − q + 1)1/q
.

R em a r k 2.8. In view of Lemma 2.7, it is easy to see that the norm in Eα,p
0

defined by (2.1) is equivalent to the norm

(2.4) ‖u‖α,p =

(
∫ T

0

|cDα
0+u(t)|p dt

)1/p

.

Lemma 2.9 ([41], Proposition 3.3). Let 1/p < α 6 1. If the sequence {uk}
converges weakly to u in Eα,p

0 , i.e., uk ⇀ u, then uk → u in C([0, T ],R), i.e.,

‖u− uk‖∞ → 0 as k → ∞.
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Definition 2.10. A function

u ∈
{

u ∈ AC[0, T ] :

(
∫ tj+1

tj

|cDα
0+u(t)|p + |u(t)|p) dt

)

< ∞, j = 1, 2, . . . ,m

}

,

where
cDα

0+u(t) =
1

Γ(1− α)

∫ t

tj

u′(s) ds

(t− s)α
,

if t ∈ (tj , tj+1), is called a classical solution of BVP (P
f ) if u satisfies (Pf) and the

limits Dα−1
T−

Φp(
cDα

0+u)(t
+
j ) and Dα−1

T−
Φp(

cDα
0+u)(t

−
j ) exist.

Definition 2.11. By a weak solution of the BVP (Pf ), we mean a function

u ∈ Eα,p
0 such that

∫ T

0

|cDα
0+u(t)|p−2(cDα

0+u(t))(
cDα

0+v(t)) dt+

∫ T

0

|u(t)|p−2u(t)v(t) dt

+
m
∑

j=1

Ij(u(tj))v(tj)−
∫ T

0

f(t, u(t))v(t) dt = 0

for every v ∈ Eα,p
0 .

The following lemma establishes the relationship between a classical solution and

a weak solution of problem (Pf ).

Lemma 2.12 ([40], Proposition 2.6). If u ∈ Eα,p
0 is a weak solution of BVP (Pf ),

then u is a classical solution of BVP (Pf ).

3. Main results

In this section, we formulate our main results on the existence of at least one weak

solution to problem (Pf ) and then invoke Lemma 2.12 to conclude that we have the

existence of a classical solution. Let

F (t, ξ) =

∫ ξ

0

f(t, x) dx ∀ (t, ξ) ∈ [0, T ]× R.

We will assume throughout that

(H) 1 > Lkp, where L =
m
∑

j=1

Lj and k is given in Lemma 2.7.

Theorem 3.1. Assume that

(S) sup
θ>0

θp
∫ T

0 max
|x|6θ

F (t, x) dt
>

pkp

1− Lkp
.

Then, problem (Pf ) admits at least one classical solution in Eα,p
0 .
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P r o o f. Our aim is to apply Theorem 2.1 to problem (Pf), so let X = Eα,p
0 .

We introduce the functionals Φ and Ψ for u ∈ X given by

(3.1) Φ(u) =
1

p
‖u‖p

Eα,p

0

+

m
∑

j=1

∫ u(tj)

0

Ij(s) ds

and

(3.2) Ψ(u) =

∫ T

0

F (t, u(t)) dt,

and we set

I(u) = Φ(u)−Ψ(u).

First we wish to prove that the functionals Φ and Ψ satisfy the conditions required

in Theorem 2.1. Since X is compactly embedded in C0([0, T ]),R), it is well known

that Ψ is a Gâteaux differentiable functional whose Gâteaux derivative at the point

u ∈ X is the functional Ψ′(u) ∈ X∗ given by

Ψ′(u)(v) =

∫ T

0

f(t, u(t))v(t) dt for every v ∈ X,

and that Ψ is sequentially weakly upper semicontinuous. Moreover, Φ is a Gâteaux

differentiable functional whose Gâteaux derivative at the point u ∈ X is the func-

tional Φ′(u) ∈ X∗ given by

Φ′(u)(v) =

∫ T

0

|cDα
0+u(t)|p−2(cDα

0+u(t))(
cDα

0+v(t)) dt

+

∫ T

0

|u(t)|p−2u(t)v(t) dt+

m
∑

j=1

Ij(u(tj))v(tj) for every v ∈ X.

By its definition, we see that Φ is sequentially weakly lower semicontinuous and

strongly continuous. Now since −Lj|ξ|p−1 6 Ij(ξ) 6 Lj |ξ|p−1 for every ξ ∈ R,

j = 1, . . . , n,

−Lj

p
|u(tj)|p 6

∫ u(tj)

0

Ij(s) ds 6
Lj

p
|u(tj)|p.

In view of (2.3), for every u ∈ X , we have

Φ(u) =
1

p
‖u‖p

Eα,p

0

+

m
∑

j=1

∫ u(tj)

0

Ij(s) ds 6
1

p
‖u‖p

Eα,p

0

+
1

p
kpL‖cDα

0+u‖
p
Lp

6
1

p
‖u‖p

Eα,p

0

+
1

p
kpL‖u‖pα,p 6

1

p
(1 + Lkp)‖u‖p

Eα,p

0

.
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Similarly,

Φ(u) >
1

p
(1 − Lkp)‖u‖p

Eα,p

0

,

so

(3.3)
1

p
(1− Lkp)‖u‖p

Eα,p

0

6 Φ(u) 6
1

p
(1 + Lkp)‖u‖p

Eα,p

0

.

From condition (H) and the first inequality in (3.3), it follows that lim
‖u‖→∞

Φ(u) = ∞,

that is, Φ is coercive.

From condition (S), there exists θ̄ > 0 such that

(3.4)
θ̄p

∫ T

0 max|x|6θ̄ F (t, x) dt
>

pkp

1− Lkp
.

Take

r =
1− Lkp

pkp
θ̄p.

In view of (2.3), (3.1), and (3.3), for every r > 0, we have

Φ−1(−∞, r) = {u ∈ X : Φ(u) < r}

⊆
{

u ∈ X : ‖u‖pα,p 6
pr

1− Lkp

}

⊆
{

u ∈ X :
1

kp
‖u‖p∞ 6

pr

1− Lkp

}

= {u ∈ X : ‖u‖p∞ 6 θ̄p},

from which it follows that

sup
Φ(u)<r

Ψ(u) 6

∫ T

0

max
|x|6θ̄

F (t, x) dt.

By considering the above computations, since 0 ∈ Φ−1(−∞, r) and Φ(0) = Ψ(0) = 0,

we see that

ϕ(r) = inf
u∈Φ−1(−∞,r)

supu∈Φ−1(−∞,r)Ψ(u)−Ψ(u)

r − Φ(u)

6
supu∈Φ−1(−∞,r) Ψ(u)

r
6

pkp

1− Lkp

∫ T

0
max|x|6θ̄ F (t, x) dt

θ̄p
.

Thus,

(3.5) ϕ(r) 6
pkp

1− LTkp

∫ T

0
max|x|6θ̄ F (t, x) dt

θ̄p
.

Consequently, in view of (3.4) and (3.5), ϕ(r) < 1. Hence, since 1 ∈ (0, 1/ϕ(r)),

Theorem 2.1 ensures that the functional I admits at least one critical point (local

minimum) ũ ∈ Φ−1(−∞, r). Then, taking into account the fact that the weak solu-

tions of problem (Pf ) are exactly the critical points of the functional I, and applying

Lemma 2.12, we have the desired conclusion. �

102



We note that Theorem 3.1 can be used to ensure the existence of at least one weak

solution to the parametric version of the problem

(Pfλ)











Dα
T−

Φp(
cDα

0+u(t)) + |u(t)|p−2u(t) = λf(t, u(t)), t 6= tj , t ∈ (0, T ),

∆(Dα−1
T−

Φp(
cDα

0+u))(tj) = Ij(u(tj)),

u(0) = u(T ) = 0,

where λ is a positive parameter. More precisely, we have the following existence

result.

Theorem 3.2. For every λ small enough, i.e.,

λ ∈
(

0,
1− Lkp

pkp
sup
θ>0

θp
∫ T

0
max|x|6θ F (t, x) dt

)

,

problem (Pfλ) admits at least one classical solution uλ ∈ Eα,p
0 .

P r o o f. Fix λ as in the conclusion of the theorem. Then condition (S) in

Theorem 3.1 is satisfied with F replaced by λF . The conclusion then follows from

Theorem 3.1. �

4. Discussion of the main results

In this section we discuss some implications of the above theorems. In Theorem 3.2

we looked for the critical points of the functional Iλ naturally associated with prob-

lem (Pfλ). We note that, in general, Iλ can be unbounded. For example, in the case

where f(ξ) = 1+ |ξ|γ−pξp−1 for every ξ ∈ R with γ > p, for any fixed u ∈ Eα,p
0 \ {0}

and ι ∈ R, we see that

Iλ(ιu) = Φ(ιu)−λ

∫ T

0

F (t, ιu(t)) dt6 ιp
1 + Lkp

p
−λιkT ‖u‖α,p−λ

ιγ

γ
kγT ‖u‖γα,p →−∞

as ι → ∞. Therefore, the condition (I2) in [34], Theorem 2.2 is not satisfied. Hence,
we can not use direct minimization to find critical points of the functional Iλ.

We wish to point out that the energy functional Iλ associated with problem (P
f
λ)

is not coercive. In fact, if F (ξ) = |ξ|s with s ∈ (p,∞) for every ξ ∈ R, then for any

fixed u ∈ Eα,p
0 \ {0} and ι ∈ R, we have

Iλ(ιu) = Φ(ιu)− λ

∫ T

0

F (t, ιu(t)) dt 6 ιp
1 + Lkp

p
− λιsksT ‖u‖sα,p → −∞

as ι → −∞.
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R em a r k 4.1. If in Theorem 3.1, the function f(t, x) > 0 for a.e. (t, x) ∈
[0, T ]× R, then condition (S) takes the simpler form

(Sλ) sup
θ>0

θp
∫ T

0
F (t, θ) dt

>
pkp

1− Lkp
.

Moreover, if

lim sup
θ→∞

θp
∫ T

0 F (t, θ) dt
>

pkp

1− Lkp
,

then condition (Sλ) automatically holds.

R em a r k 4.2. If for fixed θ̄ > 0,

θ̄p
∫ T

0
max|x|6θ̄ F (t, x) dt

>
pkp

1− Lkp
,

then the conclusion of Theorem 3.2 holds with ‖uλ‖∞ 6 θ̄ being the guaranteed

classical solution in Eα,p
0 .

If in Theorem 3.2, we have f(t, 0) 6= 0 for a.e. t ∈ [0, T ], then the solution obtained

is clearly nontrivial. On the other hand, the nontriviality of the solution can be

achieved even in the case f(t, 0) = 0 for a.e. t ∈ [0, T ] by requiring an additional

condition at zero, namely, that there are a nonempty open set D ⊆ (0, T ) and a set

B ⊂ D of positive Lebesgue measure such that

lim sup
ξ→0+

ess inft∈B F (t, ξ)

|ξ|p = ∞ and lim inf
ξ→0+

ess inft∈D F (t, ξ)

|ξ|p > −∞.

To see this, let 0 < λ̄ < λ∗ where

λ∗ =
1− Lkp

pkp
sup
θ>0

θp
∫ T

0 max|x|6θ F (t, x) dt
.

Then, there exists θ̄ > 0 such that

pkp

1− Lkp
λ̄ <

θ̄p
∫ T

0 max|x|6θ̄ F (t, x) dt
.

By Theorem 2.1, for every λ ∈ (0, λ̄) there exists a critical point of Iλ such that

uλ ∈ Φ−1(−∞, rλ) where

rλ =
1− Lkp

pkp
θ̄p.
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In particular, uλ is a global minimum of the restriction of Iλ to Φ−1(−∞, rλ). To

show that the function uλ cannot be trivial, we will show that

(4.1) lim sup
‖u‖→0+

Ψ(u)

Φ(u)
= ∞.

Due to our assumptions at zero, we can fix a sequence {ξn} ⊂ R
+ converging to zero

and two constants ζ and κ with ζ > 0 such that

lim
n→∞

ess inft∈B F (t, ξn)

|ξn|p
= ∞ and ess inf

t∈D
F (t, ξ) > κ|ξ|p

for ξ ∈ [0, ζ]. Now, fix a set C ⊂ B of positive measure and a function v ∈ Eα,p
0

such that:

(i) v(t) ∈ [0, 1] for every t ∈ [0, T ];

(ii) v(t) = 1 for every t ∈ C;

(iii) v(t) = 0 for every t ∈ (0, T ) \D.
Fix Y > 0 and consider a positive number η with

Y <
ηmeas(C) + κ

∫

D\C
|v(t)|p dt

(1 + Lkp)p−1‖v‖pα,p
.

Then, there exists n0 ∈ N such that ξn < ζ and

ess inf
t∈B

F (t, ξn) > η|ξn|p for n > n0.

Now, using the fact that 0 6 ξnv(t) < ζ for n large enough, by (3.3), we have

Ψ(ξnv)

Φ(ξnv)
=

∫

C F (t, ξn) dt+
∫

D\C F (t, ξnv(t)) dt

Φ(ξnv)
>

ηmeas(C) + κ
∫

D\C |v(t)|p dt
(1 + Lkp)p−1‖v‖pα,p

> Y.

Since Y can be taken arbitrarily large,

lim
k→∞

Ψ(ξnv)

Φ(ξnv)
= ∞,

from which (4.1) clearly follows. Hence, there exists a sequence {wn} ⊂ Eα,p
0 strongly

converging to zero with wn ∈ Φ−1(−∞, r) and

Iλ(wn) = Φ(wn)− λΨ(wn) < 0.
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Since uλ is a global minimum of the restriction of Iλ to Φ
−1(−∞, r), we conclude that

(4.2) Iλ(uλ) < 0,

and so uλ is nontrivial. From (4.2) we can easily observe that the map

(4.3) (0, λ∗) ∋ λ 7→ Iλ(uλ)

is negative. We claim that

(4.4) lim
λ→0+

‖uλ‖α,p = 0.

To see this, consider the fact that Φ is coercive and for λ ∈ (0, λ∗), the solution uλ ∈
Φ−1(−∞, r), and there exists a positive constant L such that ‖uλ‖∞ 6 L for every
λ ∈ (0, λ∗). It is then easy to see that there exists a positive constantM such that

(4.5)

∣

∣

∣

∣

∫ T

0

f(t, uλ(t))uλ(t) dt

∣

∣

∣

∣

6 M‖uλ‖α,p 6 ML

for every λ ∈ (0, λ∗). Since uλ is a critical point of Iλ, we have I
′
λ(uλ)(v) = 0 for

any v ∈ X and every λ ∈ (0, λ∗). In particular I ′λ(uλ)(uλ) = 0; that is,

(4.6) Φ′(uλ)(uλ) = λ

∫ T

0

f(t, uλ(t))uλ(t) dt

for every λ ∈ (0, λ∗). Then, since

0 6 (1− Lkp)‖uλ‖pα,p 6 Φ′(uλ)(uλ),

from (4.6) we see that

0 6 (1− Lkp)‖uλ‖pα,p 6 Φ′(uλ)(uλ) 6 λ

∫ T

0

f(t, uλ(t))uλ(t) dt

for any λ ∈ (0, λ∗). Letting λ → 0+, (4.5) implies that (4.4) holds. Hence,

(4.7) lim
λ→0+

‖uλ‖∞ = 0.

Finally, we wish to show that the map

λ 7→ Iλ(uλ)

is strictly decreasing in (0, λ∗). To do this, first note that for any u ∈ Eα,p
0 ,

(4.8) Iλ(u) = λ
(Φ(u)

λ
−Ψ(u)

)

.
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Now, fix 0 < λ1 < λ2 < λ∗ and let uλ1
and uλ2

be the global minima of the

functional Iλi
restricted to Φ(−∞, r) for i = 1, 2. Let

mλi
=

(Φ(uλi
)

λi
−Ψ(uλi

)
)

= inf
v∈Φ−1(−∞,r)

(Φ(v)

λi
−Ψ(v)

)

for i = 1, 2.

Clearly, (4.3) together with (4.8) and the fact that λ > 0 implies

(4.9) mλi
< 0 for i = 1, 2.

Moreover,

(4.10) mλ2
6 mλ1

,

since 0 < λ1 < λ2. Then, by considering (4.8)–(4.10), we see that

Iλ2
(uλ2

) = λ2mλ2
6 λ2mλ1

< λ1mλ1
= Iλ1

(uλ1
),

so the map λ 7→ Iλ(uλ) is strictly decreasing in λ ∈ (0, λ∗). Since λ < λ∗ is arbitrary,

λ 7→ Iλ(uλ) is strictly decreasing in (0, λ
∗). Theorem 3.2 above is a bifurcation result

in the sense that the pair (0, 0) belongs to the closure of the set

{(uλ, λ) ∈ Eα,p
0 × (0,∞) : uλ is a nontrivial classical solution of (P

f
λ)}

in Eα,p
0 × R. In order to see this, recall from above that

‖uλ‖α,p → 0 as λ → 0.

Hence, there exist two sequences {ui
j}, i = 1, 2, in Eα,p

0 and λ1, λ2 ∈ R
+ such that

λi → 0+ and ‖ui
j‖α,p → 0

as j → ∞ for i = 1, 2. Moreover, due to the fact that, as shown above, the map

(0, λ∗) ∋ λ 7→ Iλ(uλ) is strictly decreasing, for every λ1, λ2 ∈ (0, λ∗) with λ1 6= λ2,

the solutions uλ1
and uλ2

are different.

If f is non-negative, then the solution obtained in Theorem 3.2 is non-negative.

To see this, let u0 be a nontrivial classical solution of problem (P
f
λ). Assume, for the

sake of a contradiction, that the set A = {t ∈ (0, T ] : u0(t) < 0} is nonempty and of
positive measure. Set v(t) = min{0, u0(t)} for all t ∈ [0, T ]. Clearly, v ∈ Eα,p

0 and

∫ T

0

|cDα
0+u0(t)|p−2(cDα

0+u0(t))(
cDα

0+v(t)) dt+

∫ T

0

|u0(t)|p−2u0(t)v(t) dt

+

m
∑

j=1

Ij(u0(tj))v(tj)− λ

∫ T

0

f(t, u0(t))v(t) dt = 0.
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Thus,

0 6 (1− Lkp)‖u0‖pA 6

∫ T

0

|cDα
0+u0(t)|p dt+

∫ T

0

|u0(t)|p dt+
m
∑

j=1

Ij(u0(tj))(u0(tj)

= λ

∫ T

0

f(t, u0(t))u0(t) dt 6 0.

Hence, since Lkp < 1, u0 = 0 in A, and this is a contradiction.
The final theorem in this paper is concerned with a particular case of our results,

namely, where f(t, u) is independent of t.

Theorem 4.3. Let f : R → R be a non-negative continuous function, F (ξ) =
∫ ξ

0 f(s) ds for all ξ ∈ R, and assume that

lim
ξ→0+

F (ξ)

ξp
= ∞.

Then, for each

λ ∈ Λ =
(

0,
1− Lkp

pkp
sup
θ>0

θp

F (θ)

)

,

the problem











Dα
T−

Φp(
cDα

0+u(t)) + |u(t)|p−2u(t) = λf(u(t)), t 6= tj , t ∈ (0, T ),

∆(Dα−1
T−

Φp(
cDα

0+u))(tj) = Ij(u(tj)),

u(0) = u(T ) = 0

admits at least one nontrivial classical solution uλ ∈ Eα,p
0 such that

lim
λ→0+

‖uλ‖α,p = 0.

In addition, the function

λ → 1

p
‖u‖pα,p −

m
∑

j=1

∫ u(tj)

0

Ij(s) ds− λ

∫ T

0

F (u(t)) dt

is negative and strictly decreasing in Λ.

As a special case of Theorem 4.3 with p = 2, we have the following result.

Corollary 4.4. Let f : R → R be a non-negative continuous function, set F (ξ) =
∫ ξ

0
f(s) ds for all ξ ∈ R, and assume that

lim
ξ→0+

F (ξ)

ξ2
= ∞.
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Then, for each

λ ∈ Λ =
(

0,
1− Lk2

pk2
sup
θ>0

θ2

F (θ)

)

, where k =
Tα−1/2

Γ(α)(2α − 1)1/2
,

the problem











Dα
T−

(cDα
0+u(t)) + u(t) = λf(u(t)), t 6= tj , t ∈ (0, T ),

∆(Dα−1
T−

(cDα
0+u))(tj) = Ij(u(tj)),

u(0) = u(T ) = 0

admits at least one nontrivial classical solution uλ ∈ Eα,2
0 such that

lim
λ→0+

‖uλ‖α,2 = 0

and the real function

λ → 1

2
‖u‖2α,2 −

m
∑

j=1

∫ u(tj)

0

Ij(s) ds− λ

∫ T

0

F (u(t)) dt

is negative and strictly decreasing in Λ.

We conclude this paper with an example to illustrate our results.

E x am p l e 4.5. Consider the problem

(4.11)



















D
2/3
T−

Φ5/3(
cD

2/3
0+ u(t)) + |u(t)|u(t) = λf(u(t)), t 6= 1

2 , t ∈ (0, 1),

∆(D
−1/3
T−

Φ5/3(
cD

2/3
0+ u))(t1) =

Γ5/3(23 )

2 3
√
36

|u(12 )|2/3,

u(0) = u(1) = 0,

where f(ξ) = 3ξ2 for all ξ ∈ R. Here, α = 2
3 , p = 5

3 , T = 1, F (ξ) = ξ3, and a direct

computation shows

k =
5
√
36

Γ(23 )
.

All conditions of Theorem 4.3 are satisfied and Λ = (0,∞), so for each λ ∈ (0,∞),

problem (4.11) admits at least one nontrivial classical solution uλ ∈ E
2/3,5/3
0 such

that lim
λ→0+

‖uλ‖2/3,5/3 = 0, and the function

λ → 3

5
‖u‖5/32/3,5/3 −

Γ5/3(23 )

2 3
√
36

∫ u(1/2)

0

|s|2/3 ds− λ

∫ 1

0

F (u(t)) dt

is negative and strictly decreasing in (0,∞).
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