
Mathematica Bohemica

Aissa Boukarou; Kaddour Guerbati; Khaled Zennir
On the radius of spatial analyticity for the higher order nonlinear dispersive equation

Mathematica Bohemica, Vol. 147 (2022), No. 1, 19–32

Persistent URL: http://dml.cz/dmlcz/149596

Terms of use:
© Institute of Mathematics AS CR, 2022

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized
documents strictly for personal use. Each copy of any part of this document must contain these
Terms of use.

This document has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz

http://dml.cz/dmlcz/149596
http://dml.cz


147 (2022) MATHEMATICA BOHEMICA No. 1, 19–32

ON THE RADIUS OF SPATIAL ANALYTICITY FOR THE HIGHER

ORDER NONLINEAR DISPERSIVE EQUATION

Aissa Boukarou, Kaddour Guerbati, Ghardaia,

Khaled Zennir, Ar-Rass

Received May 22, 2020. Published online March 16, 2021.
Communicated by Ondřej Kreml

Abstract. In this work, using bilinear estimates in Bourgain type spaces, we prove the
local existence of a solution to a higher order nonlinear dispersive equation on the line for
analytic initial data u0. The analytic initial data can be extended as holomorphic func-
tions in a strip around the x-axis. By Gevrey approximate conservation law, we prove the
existence of the global solutions, which improve earlier results of Z. Zhang, Z. Liu, M. Sun,
S. Li, (2019).
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1. Introduction

In this paper we consider a higher order nonlinear dispersive equation:

(1.1)

{
∂tu+ λ1∂

7
xu+ λ2∂

5
xu+ λ3∂

3
xu+ λ4∂xu+ u∂xu = 0, (x, t) ∈ R2,

u(x, 0) = u0(x),

where λ1 6= 0, λ2, λ3, λ4 are real numbers. For more details to the higher order

nonlinear dispersive equation which arises in the study of water waves with surface

tension and arises as mathematical models for the weakly nonlinear propagation of

long waves, see [15] and [8].

Well-posedness of the Cauchy problem for the higher order nonlinear dispersive

equation in (1.1) has been studied by Zhang et al. (see [15]) in Sobolev spaces. By

using the Fourier restriction norm, the authors showed that (1.1) is locally well-posed
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in Hs(R) for s > − 5
8 and global well-posedness for s = 0. In [4] it has been shown

that the Cauchy problem for fifth-order Kadomtsev-Petviashvili I equation is locally

well-posed in Gδ,s1,s2 for s1, s2 > 0, see also [3], [2].

The main novelty in this paper is the study of the question of global well-posedness

for initial data u0(x) that is analytic on the line and can be extended as holomorphic

functions in a strip around the x-axis. A class of analytic functions suitable for our

analysis is the analytic Gevrey class Gδ,s(R) introduced in [6], which is defined as

(1.2) Gδ,s(R) = {u0 ∈ L2(R) : ‖u0‖Gδ,s(R) < ∞},

where

‖u0‖
2
Gδ,s(R) =

∫

R

e2δ|ξ|〈ξ〉2s|û0(ξ)|
2 dξ

for s ∈ R, δ > 0 and 〈·〉 := (1 + |·|). If δ = 0, the space Gδ,s coincides with the

standard Sobolev space Hs.

We note the following embedding property of the Gevrey spaces: for all 0 < δ′ < δ

and s, s′ ∈ R we have

(1.3) Gδ,s(R) ⊂ Gδ′,s′(R), i.e. ‖u0‖Gδ′,s′(R) 6 cs,s′,δ,δ′‖u0‖Gδ,s(R).

The interest in these spaces is due to the following fact, for which a discussion can

be found in [9].

Proposition 1.1 (Paley-Wiener theorem). Let δ > 0, s ∈ R. Then f ∈ Gδ,s if

and only if it is the restriction to the real line of a function F which is holomorphic

in the strip

{x+ iy : x, y ∈ R, |y| < δ}

and satisfies

sup
|y|<δ

‖F (x+ iy)‖Hs
x
< ∞.

In the view of the Paley-Wiener theorem, it is natural to take initial data in Gδ,s

and obtain a better understanding of the behavior of solution as we try to extend it

to be global in time. It means that given u0 ∈ Gδ,s for some initial radius δ > 0 we

want to estimate the behavior of the radius of analyticity δ(T ) as time T goes to ∞.

This is our second novelty and main goal in this paper.

Theorem 1.2. Assume that λ1λ2 < 0 and λ3 > 0, let δ > 0 and s > − 5
8 . Then

for any u0 ∈ Gδ,s there exists T = T (‖u0‖Gδ,s) > 0 and a unique solution u of (1.1)

on the time interval (0, T ) such that

u ∈ C([0, T ], Gδ,s).
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Moreover, the solution depends continuously on the data u0. Here we have

(1.4) T =
c0

(1 + ‖u0‖Gδ,s)β

for some constants c0 > 0 and β > 1 depending only on s. Furthermore, the

solution u satisfies the bound

(1.5) ‖u‖XT
δ,s,b

6 2C‖u0‖Gδ,s ,
1

2
< b < 1

with a constant C > 0 depending only on s and b.

Thus, this result shows that for local-in-time the radius of analyticity remains

constant. Our next main result for the higher order nonlinear dispersive equation

yields an estimate on how the width of the strip of the radius of the spatial analyticity

decay with time.

Theorem 1.3. Let s > − 5
8 and δ0 > 0, and assume u0 ∈ Gδ0,s. Then the solution

given by Theorem 1.2 extends globally in time and for any T ′ > 0 we have

u ∈ C([0, T ′], Gδ(T ′),s) with δ(T ′) = min{δ0, C1T
′−(8/5+σ0)},

where σ0 > 0 can be taken arbitrarily small and C1 > 0 is a constant depending

on u0, δ0, s and σ0.

The method used here for proving lower bounds on the radius of analyticity was

introduced in [12] in the context of the 1D Dirac-Klein-Gordon equations. It was

applied to the modified Kawahara equation (see [10]) and the non-periodic KdV

equation in [11] improving an earlier result of Bona et al. (see [1]), to the dispersion-

generalized periodic KdV equation in [7] and to the quartic generalized KdV equation

on the line in [13].

The rest of the paper is organized as follows. In Section 2, we define the function

spaces, linear estimates and bilinear estimates. In Section 3 we prove Theorem 1.2 us-

ing the bilinear estimate and the linear estimate together with contraction mapping

principle. Section 4 proves the existence of a fundamental approximate conserva-

tion law. In the final section, Theorem 1.3 will be proven, using the approximate

conservation law.
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2. Preliminary estimates and function spaces

Function spaces. Now we introduce the Bourgain space Xs,b(R
2) = Xs,b asso-

ciated to the higher order nonlinear dispersive equation with respect to the norm

(2.1) ‖u‖Xs,b
=

(∫

R2

〈τ − ϕ(ξ)〉2b〈ξ〉2s|û(ξ, τ)|2 dξ dτ

)1/2

,

where ϕ(ξ) = λ1ξ
7 − λ2ξ

5 + λ3ξ
3 − λ4ξ.

In addition, we also need the Grevey-Bourgain space, denoted Xδ,s,b(R
2) = Xδ,s,b,

defined by

(2.2) ‖u‖Xδ,s,b
= ‖Au‖Xs,b

=

(∫

R2

e2δ|ξ|〈τ − ϕ(ξ)〉2b〈ξ〉2s|û(ξ, τ)|2 dξ dτ

)1/2

,

where

(2.3) Âu
x
(ξ, t) = eδ|ξ|ûx(ξ, t).

For δ = 0, the space X0,s,b coincides with the Bourgain spaces Xs,b .

Finally, we will need the restrictions of Xs,b and Xδ,s,b to a time slab R× (0, T ),

T > 0. These spaces are denoted by XT
s,b and XT

δ,s,b, respectively, and are Banach

spaces when equipped with the norms

‖u‖XT
s,b

= inf{‖v‖Xs,b
: v = u on R× (0, T )},

‖u‖XT
δ,s,b

= inf{‖v‖Xδ,s,b
: v = u on R× (0, T )}.

Linear and bilinear estimates. To prove our main results we have a need of

some multilinear estimate in the analytic Gevrey-Bourgain spaces. Note that the

spaces Xδ,s,b are continuously embedded in C(R, Gδ,s(R)) provided that b > 1
2 . We

start with the following useful lemma.

Lemma 2.1. Let b > 1
2 , s ∈ R and δ > 0. Then Xδ,s,b ⊂ C(R, Gδ,s(R)) and

(2.4) sup
t∈R

‖u(t)‖Gδ,s 6 C‖u(t)‖Xδ,s,b
,

where C depends only on b.
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P r o o f. First, we observe that the operator A satisfies

(2.5) ‖u‖Xδ,s,b
= ‖Au‖Xs,b

and ‖u‖Gδ,s = ‖Au‖Hs ,

where Xs,b is introduced in [15]. We observe that Au belongs to C(R, Hs) and for

some C > 0 we have

(2.6) ‖Au‖C(R,Hs) 6 C‖Au‖Xs,b
.

Thus, it follows that u ∈ C([0, T ], Gδ,s) and

(2.7) ‖u‖C(R,Gδ,s) 6 C‖u‖Xδ,s,b
.

�

Lemma 2.2. Let s ∈ R, δ > 0 and − 1
2 < b 6 b′ < 1

2 . Then for any T > 0 we

have

(2.8) ‖u‖XT
δ,s,b

6 CT b′−b‖u‖XT
δ,s,b′

,

where C depends only on b and b′.

Lemma 2.3. Let s ∈ R, δ > 0, − 1
2 < b < 1

2 and T > 0. Then for any time

interval I ⊂ [0, T ] we have

(2.9) ‖χI(t)u‖Xδ,s,b
6 C‖u‖XT

δ,s,b
,

where χI(t) is the characteristic function of I and C depends only on b.

P r o o f. The proofs of Lemma 2.2 and Lemma 2.3 for δ = 0 can be found in

Section 2.6 of [14] and in Lemma 3.1 of [5], respectively. These inequalities clearly

remain valid for δ > 0, as one merely has to replace u by Au. �

Next, consider the linear Cauchy problem for given F = ∂xu
2 and u0,

(2.10)

{
∂tu+ λ1∂

7
xu+ λ2∂

5
xu+ λ3∂

3
xu+ λ4∂xu = F,

u(x, 0) = u0(x).

By Duhamel’s principle the solution can be then written as

(2.11) u(t) = S(t)u0 −
1

2

∫ t

0

S(t− t′)(F (t′)) dt′,

where

S(t)u0 =

∫

R

ei(xξ+tϕ(ξ))û0(ξ) dξ.
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Lemma 2.4. Let s ∈ R, 1
2 < b 6 1, δ > 0 and 0 < T 6 1. There is a constant

C > 0 depending only on b such that

‖S(t)u0‖XT
δ,s,b

6 C‖u0‖Gδ,s ,(2.12)
∥∥∥∥
∫ t

0

S(t− t′)F (t′) dt′
∥∥∥∥
XT

δ,s,b

6 C‖F‖XT
δ,s,b−1

.(2.13)

P r o o f. The proofs of (2.12) and (2.13) for δ = 0 can be found in Lemmas 5.1, 5.2

of [15], respectively. These inequalities clearly remain valid for δ > 0, as one merely

has to replace u0 by Au0, F by AF . �

The author in [15] assumed λ1, λ2 < 0, λ3 > 0 to prove the bilinear estimate in

Sobolev spaces Hs. In this paper we used the bilinear estimate in Sobolev spaces Hs

and the operator A in order to prove bilinear estimate in analytic Gevrey spaces Gδ,s.

Lemma 2.5. Assume that λ1λ2 < 0 and λ3 > 0. Let b′ be close enough to 1
2

satisfying b′ > 1
2 . For b >

1
2 , δ > 0 and s > − 5

8 we have

(2.14) ‖∂x(u1u2)‖Xδ,s,b′−1
6 C‖u1‖Xδ,s,b

‖u2‖Xδ,s,b
.

P r o o f. We observe, by considering the operator A in (2.3), that

eδ|ξ|û1u2 = (2π)−2eδ|ξ|û1 ∗ û2

6 (2π)−2

∫

R2

eδ|ξ−η1|û1(ξ − η1, τ − ̺1)e
δ|η1|û2(η1, ̺1) dη1 d̺1

= ̂(Au1Au2),

since δ|ξ| 6 δ|ξ − η1|+ δ|η2|. Thus, we have

‖∂x(u1u2)‖Xδ,s,b′−1
6 ‖∂x(Au1Au2)‖Xs,b′−1

.

Thanks to Lemma 4.1 in [15], we have

‖∂x(Au1Au2)‖Xs,b′−1
6 C‖Au1‖Xs,b

‖Au2‖Xs,b
= C‖u1‖Xδ,s,b

‖u2‖Xδ,s,b
.

�

24



3. Proof of Theorem 1.2

Existence of solution. Fix δ > 0, s > 5
8 , and u0 ∈ Gδ,s. To construct the local

solution u to (1.1), we proceed by an iteration argument in the space XT
δ,s,b. Let

{u(n)}∞n=0 be the sequence defined by

{
∂tu

(0) + λ1∂
7
xu

(0) + λ2∂
5
xu

(0) + λ3∂
3
xu

(0) + λ4∂xu
(0) = 0,

u(0)(0) = u0,

and for n ∈ {1, 2, . . .} by

{
∂tu

(n) + λ1∂
7
xu

(n) + λ2∂
5
xu

(n) + λ3∂
3
xu

(n) + λ4∂xu
(n) = − 1

2∂x(u
(n−1)u(n−1)),

u(n)(0) = u0.

Based on the comments preceding Lemma 2.4, we may write

u(0)(x, t) = S(t)u0(x),

u(n)(x, t) = S(t)u0(x)−
1

2

∫ t

0

S(t− t′)∂x(u
(n−1)(x, t′)u(n−1)(x, t′)) dt′.

It then follows from Lemmas 2.2, 2.5 and 2.4 that

(3.1) ‖u(0)‖XT
δ,s,b

6 C‖u0‖Gδ,s ,

‖u(n)‖XT
δ,s,b

6 C‖u0‖Gδ,s + CT b′−b‖∂x(u
(n−1)u(n−1))‖XT

δ,s,b′−1

6 C‖u0‖Gδ,s + CT b′−b‖u(n−1)‖2XT
δ,s,b

with 1
2 < b < b′ < 1. By induction, it follows that

(3.2) ‖u(n)‖XT
δ,s,b

6 2C‖u0‖Gδ,s

for all n if T ∈ (0, 1] is chosen so small that

(3.3) T 6
1

(8C2‖u0‖Gδ,s)1/(b′−b)
.

Using Lemma 2.5 together with (3.2) and (3.1) in that order, we therefore get

‖u(n) − u(n−1)‖XT
δ,s,b

6 CT b′−b‖∂x(u
(n−1)u(n−1) − u(n−2)u(n−2))‖XT

δ,s,b′−1

6 CT b′−b(‖u(n−1)‖XT
δ,s,b

+ ‖u(n−2)‖XT
δ,s,b

)

× ‖u(n−1) − u(n−2)‖XT
δ,s,b

6
1

2
‖u(n−1) − u(n−2)‖XT

δ,s,b
.
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It follows that the sequence converges to a solution u verifying the bound (3.2).

Continuous dependence on the initial data. Now assume that u and v are so-

lutions to the Cauchy problem (1.1) for initial data u0 and v0, respectively. Then sim-

ilarly as above, again with the same choice of T and for any T ′ such that 0 < T ′ < T ,

we have

‖u− v‖XT ′

δ,s,b
6 C‖u0 − v0‖Gδ,s +

1

2
‖u− v‖XT ′

δ,s,b

provided thus ‖u0−v0‖Gδ,s is sufficiently small. This proves continuous dependence.

The uniqueness. Uniqueness of the solution in C([0, T ], Gδ,s) can be proved by

the following standard argument. Suppose that u, v ∈ C([0, T ], Gδ,s) are solutions

to (1.1) with u(·, 0) = v(·, 0) in Gδ,s. Setting w = u − v, we see that w solves the

Cauchy problem

∂tw + λ1∂
7
xw + λ2∂

5
xw + λ3∂

3
x + λ4∂xw +

1

2
∂xw(u + v) = 0, w(0) = 0.

Multiplying both sides by w and integrating in space yield

w∂tw + λ1w∂
7
xw + λ2w∂

5
xw + λ3w∂

3
x + λ4w∂xw +

1

2
w∂xw(u + v) = 0.

Thus, we have

(3.4)
1

2

d

dt
‖w(t, ·)‖2L2 =

1

2

d

dt

∫

R

w2(t, x) dx =

∫

R

w(t, x)∂tw(t, x) dx

= −
1

2

∫

R

w(t, x)∂x(u
2 − v2) dx = 0

since we have
∫

R

w(t, x)∂7
xw(t, x) dx =

∫

R

w(t, x)∂5
xw(t, x) dx =

∫

R

w(t, x)∂3
xw(t, x) dx

=

∫

R

w(t, x)∂xw(t, x) dx = 0.

We may here assume that w and its all spatial derivatives decay to zero as |x| → ∞

(see the argument in [11], page 10). Thanks to equation (3.4) we have

d

dt
‖w(t, ·)‖2L2 = −

∫

R

w(t, x)∂x(u
2 − v2) dx = −

∫

R

w(t, x)∂x(f(t, x)w(t, x)) dx,

where f = u+ v. Integrating the last integral by parts we obtain

d

dt
‖w(t, ·)‖2L2 =

∫

R

∂xf(t, x)w
2(t, x) dx,
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from which we deduce the inequality

(3.5)
∣∣∣ d
dt

‖w(t, ·)‖2L2

∣∣∣ = ‖∂xf‖L∞‖w(t)‖2L2 .

Since u, v ∈ C([0, T ], Gδ,s), we have that u and v are continuous in t on the compact

set [0, T ] and are Gδ,s in x. Thus, we can conclude that

(3.6) ‖∂xf‖L∞ 6 c < ∞.

Therefore, from (3.5) and (3.6) we obtain the differential inequality

∣∣∣ d
dt

‖w(t, ·)‖2L2

∣∣∣ 6 c‖w(t)‖2L2 , 0 6 t 6 T.

Solving it gives

(3.7) ‖w(t)‖2L2 6 ec‖w(0)‖2L2 , 0 6 t 6 T.

Since ‖w(0)‖2L2 = 0, from (3.7) we obtain that w(t) = 0, 0 6 t 6 T or u = v.

4. Approximate conservation law

Our goal in this section is to establish an approximate conservation law for a

solution to (1.1) based on the conservation of the L2(R) norm of solutions of the

equation. Explicitly, we aim at proving Theorem 4.1.

Theorem 4.1. Let κ ∈ [0, 5
8 ) and T be as in Theorem 1.2. There exist b ∈ (12 , 1)

and C > 0 such that for any δ > 0 and any solution u ∈ XT
δ,0,b to the Cauchy

problem (1.1) on the time interval [0, T ], we have the estimate

(4.1) sup
t∈[0,T ]

‖u(t)‖2Gδ,0 6 ‖u(0)‖2Gδ,0 + Cδκ‖u‖3XT
δ,0,b

.

Moreover, we have

(4.2) sup
t∈[0,T ]

‖u(t)‖2Gδ,0 6 ‖u(0)‖2Gδ,0 + Cδκ‖u(0)‖3Gδ,0.

For the proof of Theorem 4.1 we require the following preliminary estimate.

Lemma 4.2. Given κ ∈ [0, 5
8 ), there exist b ∈ (12 , 1) and C > 0 such that for all

T > 0 and u ∈ Xδ,0,b we have

(4.3) ‖G‖X0,b−1
6 Cδκ‖u‖2Xδ,0,b

,

where G = 1
2∂x((Au)

2 −A(u)2) and the operator A is given by (2.3).
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P r o o f. Let G = 1
2∂x((Au)

2 −A(u)2).Then

‖G‖X0,b−1
=

1

2

∥∥∥∥
ξ

〈τ − ϕ(ξ)〉1−b

∫

R2

(eδ|ξ1|û(ξ1, τ1)e
δ|ξ−ξ1|û(ξ − ξ1, τ − τ1)

− eδ|ξ|û(ξ1, τ1)û(ξ − ξ1, τ − τ1)) dξ1 dτ1

∥∥∥∥
L2

ξ,τ

=
1

2

∥∥∥∥
ξ

〈τ − ϕ(ξ)〉1−b

∫

R2

(eδ|ξ1|eδ|ξ−ξ1| − eδ|ξ|)û(ξ1, τ1)

× û(ξ − ξ1, τ − τ1) dξ1 dτ1

∥∥∥∥
L2

ξ,τ

.

Using this and the following estimate (see [11])

eδ|α|eδ|β| − eδ|α+β| 6 (2δmin(|α|, |β|))θeδ|α|eδ|β|, θ ∈ [0, 1],

and

min(|ξ1|, |ξ − ξ1|) 6 2
〈ξ1〉〈ξ − ξ1〉

〈ξ〉
.

For κ ∈ [0, 5
8 ) ⊂ [0, 1] one can see that

‖G‖X0,b−1
6

1

2

∥∥∥∥
ξ

〈τ − ϕ(ξ)〉1−b

∫

R2

(2δmin(|ξ1|, |ξ − ξ1|))
κ

× eδ|ξ1|eδ|ξ−ξ1|û(ξ1, τ1)û(ξ − ξ1, τ − τ1) dξ1 dτ1

∥∥∥∥
L2

ξ,τ

6
1

2
(2δ)κ

∥∥∥∥
ξ〈ξ〉−κ

〈τ − ϕ(ξ)〉1−b

∫

R2

eδ|ξ1|〈ξ1〉
κû(ξ1, τ1)

× eδ|ξ−ξ1|〈ξ − ξ1〉
κû(ξ − ξ1, τ − τ1) dξ1 dτ1

∥∥∥∥
L2

ξ,τ

.

Now by taking s = −κ ∈ (− 5
8 , 0] we obtain

‖G‖X0,b−1
6

1

2
(2δ)κ

∥∥∥∥
ξ〈ξ〉s

〈τ − ϕ(ξ)〉1−b

∫

R2

eδ|ξ1|û(ξ1, τ1)

〈ξ1〉s

×
eδ|ξ−ξ1|û(ξ − ξ1, τ − τ1)

〈ξ − ξ1〉s
dξ1 dτ1

∥∥∥∥
L2

ξ,τ

.

Setting v = Au and f(τ, ξ) = 〈τ − ϕ(ξ)〉bv̂(τ, ξ) we have eδ|ξ|û(τ, ξ) = v̂(τ, ξ) =

f(τ, ξ)〈τ − ϕ(ξ)〉−b and therefore we can write

‖G‖X0,b−1
6

1

2
(2δ)κ

∥∥∥∥
ξ〈ξ〉s

〈τ − ϕ(ξ)〉1−b

∫

R2

f(ξ1, τ1)

〈ξ1〉s〈τ1 − ϕ(ξ1)〉b

×
f(ξ − ξ1, τ − τ1)

〈ξ − ξ1〉s〈τ − τ1 − ϕ(ξ − ξ1)〉b
dξ1 dτ1

∥∥∥∥
L2

ξ,τ

.
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By Remark 9 in [11] we get

‖G‖X0,b−1
6 Cδκ‖f‖2L2

ξ,τ
= Cδκ‖v‖2X0,b

= Cδκ‖u‖2Xδ,0,b
,

and the result is proven. �

Now we prove Theorem 4.1.

P r o o f of Theorem 4.1. Let V (t, x) = Au(t, x), which is real-valued since the

multiplier A is even and u is real-valued. Applying A to (1.1) we obtain

(4.4) ∂tV + λ1∂
7
xV + λ2∂

5
xV + λ3∂

3
xV + λ4∂xV + V ∂xV = G,

where

G =
1

2
∂x((Au)

2 −A(u)2).

Multiplying (4.4) by V and integrating in space we obtain
∫

R

V ∂tV dx+ λ1

∫

R

V ∂7
xV dx+ λ2

∫

R

V ∂5
xV dx+ λ3

∫

R

V ∂3
xV dx

+ λ4

∫

R

V ∂xV dx+

∫

R

V 2∂xV dx =

∫

R

V Gdx.

By noticing that ∂j
xV (x, t) → 0 as |x| → ∞ (see [11]) we can use integration by parts

obtaining
1

2

d

dt

∫

R

V 2 dx =

∫

R

V Gdx.

Now integrating the last equality with respect to t ∈ [0, T ] we obtain
∫

R

V 2(T, x) dx =

∫

R

V 2(0, x) dx+ 2

∣∣∣∣
∫

R2

χ[0,T ](t)V Gdxdt

∣∣∣∣.

Thus,

‖u(T )‖2Gδ,0 = ‖u(0)‖2Gδ,0 + 2

∣∣∣∣
∫

R2

χ[0,T ](t)V Gdxdt

∣∣∣∣.

We now use Plancherel, Hölder, Lemmas 2.3, 4.2 and the fact that 1 − b < b since

b > 1
2 and we obtain∣∣∣∣

∫

R2

χ[0,T ](t)V Gdxdt

∣∣∣∣ 6 ‖χ[0,T ](t)V ‖X0,1−b
‖χ[0,T ](t)G‖X0,b−1

(4.5)

6 ‖V ‖XT
0,1−b

‖G‖XT
0,b−1

6 Cδκ‖u‖3XT
δ,0,b

.

Finally, by using condition (3.2) we conclude that

sup
t∈[0,T ]

‖u(t)‖2Gδ,0 6 ‖u(0)‖2Gδ,0 + Cδκ‖u(0)‖3Gδ,0.

The proof is now complete. �
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5. Proof of Theorem 1.3

Fix δ0 > 0, s > − 5
8 , κ ∈ (0, 58 ), and u0 ∈ Gδ0,s. It suffices to prove that the

solution u to (1.1) satisfies

u ∈ C([0, T ′], Gδ(T ′),s),

where

δ(T ′) = min{δ0, C1T
′−1/κ}

for all T ′ > 0, and C1 > 0 is a constant depending on u0, δ0, s, and κ. By Theo-

rem 1.2, there is a maximal time T ∗ = T ∗(u0, δ0, s) ∈ (0,∞] such that

u ∈ C([0, T ∗], Gδ0,s).

If T ∗ = ∞, we are done. If T ∗ < ∞, as we assume henceforth, it remains to prove

(5.1) u ∈ C([0, T ′], GC1T
′−1/κ,s) for all T ′ > T ∗.

The case s = 0. Fix T ′ > T ∗ and we will show that for δ > 0 sufficiently small

(5.2) sup
t∈[0,T ′]

‖u(t)‖2Gδ,0 6 2‖u(0)‖2Gδ0,0 .

To prove this, we will use repeatedly Theorems 1.2 and 4.1 with the time step

(5.3) T =
c0

(1 + 2‖u(0)‖Gδ0,0)β
.

The smallness conditions on δ will be

(5.4) δ 6 δ0 and
2T ′

T
Cδκ23/2‖u(0)‖Gδ0,0 6 1,

where C > 0 is the constant in Theorems 4.1. Proceeding by induction, we will verify

that

sup
t∈[0,nT ]

‖u(t)‖2Gδ,0 6 ‖u(0)‖2Gδ,0 + nCδκ23/2‖u(0)‖3Gδ0,0 ,(5.5)

sup
t∈[0,nT ]

‖u(t)‖2Gδ,0 6 2‖u(0)‖2Gδ0,0(5.6)

for n ∈ {1, . . . ,m+ 1}, where m ∈ N is chosen so that T ′ ∈ [mT, (m+ 1)T ). This m

does exist, since by Theorem 1.2 and the definition of T ∗, we have

T <
c0

(1 + ‖u(0)‖Gδ0,0)β
< T ∗, hence T < T ′.
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In the first step, we cover the interval [0, T ], and by Theorem 4.1, we have

sup
t∈[0,T ]

‖u(t)‖2Gδ,0 6 ‖u(0)‖2Gδ,0 + Cδκ‖u(0)‖3Gδ,0 6 ‖u(0)‖2Gδ,0 + Cδκ‖u(0)‖3Gδ0,0 ,

where we used that ‖u(0)‖Gδ,0 6 ‖u(0)‖Gδ0,0 , since δ 6 δ0. This verifies (5.5)

for n = 1 and now, (5.6) follows using again ‖u(0)‖Gδ,0 6 ‖u(0)‖Gδ0,0 as well

as Cδκ‖u(0)‖Gδ0,0 6 1. Next, assuming that (5.5) and (5.6) hold for some

n ∈ {1, . . . ,m}, we will prove that they hold for n+ 1. We estimate

sup
t∈[nT,(n+1)T ]

‖u(t)‖2Gδ,0 6 ‖u(nT )‖2Gδ,0 + Cδκ‖u(nT )‖3Gδ,0

6 ‖u(nT )‖2Gδ,0 + Cδκ23/2‖u(0)‖3Gδ0,0

6 ‖u(0)‖2Gδ,0 + nCδκ23/2‖u(0)‖3Gδ0,0 + Cδκ23/2‖u(0)‖3Gδ0,0 ,

verifying (5.5) with n replaced by n+ 1. To get (5.6) with n replaced by n+ 1, it is

then enough to have

(n+ 1)Cδκ23/2‖u(0)‖Gδ0,0 6 1,

but this holds by (5.4), since n + 1 6 m + 1 6 T ′/T + 1 < 2T ′/T . Finally, condi-

tion (5.4) is satisfied for δ ∈ (0, δ0) such that

2T ′

T
Cδκ23/2‖u(0)‖Gδ0,0 = 1.

Thus, δ = C1T
′−1/κ, where C1 = (c0/C25/2‖u(0)‖Gδ0,0(1 + 2‖u(0)‖Gδ0,0)

β)1/κ.

The general case. For general s, we use the embedding (1.3) to get u0 ∈ Gδ0,s ⊂

Gδ0/2,0. The case s = 0 already being proved, we know that there is a T1 > 0 such

that

u ∈ C([0, T1), G
δ0/2,0)

and

u ∈ C([0, T ′], G2σT ′−1/κ,0) for T ′
> T1,

where σ > 0 depends on u0, δ0 and κ. Applying again embedding (1.3), we now

conclude that

u ∈ C([0, T1), G
δ0/4,s)

and

u ∈ C([0, T ′], GσT ′−1/κ,s) for T ′ > T1,

and these together imply (5.1). The proof of Theorem 1.3 is now completed. �
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