
Zpravodaj Československého sdružení uživatelů TeXu

Hans Hagen
LuaTeX version 1.0.0

Zpravodaj Československého sdružení uživatelů TeXu, Vol. 28 (2018), No. 1-4, 38–42

Persistent URL: http://dml.cz/dmlcz/150105

Terms of use:
© Československé sdružení uživatelů TeXu, 2018

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized
documents strictly for personal use. Each copy of any part of this document must contain
these Terms of use.

This document has been digitized, optimized for electronic delivery
and stamped with digital signature within the project DML-CZ:
The Czech Digital Mathematics Library http://dml.cz

http://dml.cz/dmlcz/150105
http://dml.cz


LuaTEX version 1.0.0
Hans Hagen

After ten years of development, the first stable version of the LuaTEX engine
was released at the 10th International ConTEXt Meeting 2016. The article
describes the beginnings, the development, and the future of LuaTEX.
Keywords: Lua, LuaTEX, ConTEXt

The release

After some ten years of development and testing, on September 9, 2016, we
released LuaTEX 1.0.0! It happened at the tenth meeting of the ConTEXt users
and developers group in the Netherlands.

Instead of staying below one and ending up with versions like 0.99.1234, we
decided that the moment was there to show the TEX audience that LuaTEX is
stable enough to lose its beta status. Although functionality has evolved and
sometimes been replaced, we have been using LuaTEX ourselves in production
right from the start. Of course there are bugs and for sure we will fix them.

Our main objective was and still is to provide a variant of TEX that permits
user extensions without the need to adapt the inner workings. We did add a

38 doi: 10.5300/2018-1-4/38



few things here and there but they mostly relate to opening up the inner parts
and/or the wish to influence some hard-coded behaviour. Via Lua we managed
to support modern functionality without bloating the code or adding more and
more dependencies on foreign code. In the process, a stable and flexible MetaPost
library became part of the engine.

The functionality as present now will stay. We might open up some more
parts, we will stepwise clean up the code base while staying as close as possible
to the Knuthian original, we will try to document bits and pieces. We might also
experiment a bit with better isolation of the backend, and simplify some internals.
For that we can use the experimental version but if we diverge too much we may
need to give that another name.

We want to thank all those who have tested the betas and helped to make
LuaTEX better.
Hans Hagen
Hartmut Henkel
Taco Hoekwater
Luigi Scarso

The past
Originally we planned to release the first version a few years ago but our ambitions
didn’t work out well with that schedule so we finally took a decade to get there.
For the record it is good to summarize what happened during those years.

• Around 2005, after we talked a bit about extending TEX in a flexible way
and Hartmut added the Lua scripting language to pdfTEX as an experiment.
This add-on was inspired by the Lua extension to the Scite editor that I
(still) use.

• At that time one could query counter registers and box dimensions and
print strings to the TEX input buffer.

• The Oriental TEX project then made it possible to go forward and come
up with a complete interface. For this, Taco converted the code base from
Pascal to C, quite an impressive effort.

• We spent more than a year intensively discussing, testing and implementing
the interface between TEX and Lua. Many binaries and lots of test code
were flying between Taco and my machine as we progressed and decided
what directions to go. These were really interesting times.

• In successive years, we polished things and extended bits and pieces and
in recent years we cleaned up interfaces, polished some code, filled in gaps
and reached the point where we were more or less satisfied.

• The core is still traditional TEX, but has been extended with pdfTEX protru-
sion and expansion (reworked) and directional features from Aleph (cleaned

39



up). We did add some extensions (in ε-TEX fashion) but removed most of
the ones that we inherited from pdfTEX because Lua could do better.

• The backend and extension interfaces are now mostly separated and al-
though we don’t expect to add more backends, it makes the code somewhat
cleaner because all kinds of pdf-related issues are no longer mixed with
front-end mechanisms.

• The font subsystem is no longer limited to 8-bit fonts. It must be noted
that, for instance, OpenType support is done in Lua, which provides a
lot of flexibility. This also serves as an example of extensibility. A small
TEX core, independent of libraries, was definitely an objective and it works
out well.

• The (rewritten but compatible) hyphenation machinery can use runtime
loaded (and extended) patterns. There are a few extensions and, of course,
one can revert to Lua for more.

• Already at an early stage, hyphenation, ligaturing and kerning were sepa-
rated, which was one step in adding callbacks to nearly every stage in the
typesetting process.

• Math supports wide (more than 8-bit) characters too so that one can
implement Unicode math easily. The machinery has OpenType math code
paths because there are some fundamental differences with traditional TEX
math fonts.

• Although the kpse library is still the default interface to the file system,
all in- and output can be controlled and intercepted, for instance for input
filtering or re-encoding on the fly.

• The token scanner has been opened up so that one can write (simple)
parsers. Experimental interception code didn’t prove to be useful, so that
interface has been dropped. We kept it simple and efficient.

• During callbacks related to the node lists, individual nodes can be accessed
and manipulated at will. Of course, one needs to know a bit about the inter-
nals and not mess up the lists to the extent that TEX will choke on it: things
that ‘can’t happen’ now can. Most of the original documentation of the
code by Don Knuth still applies (which was another objective) but of course
directional support and such go beyond that. And it’s surprisingly fast.

• Images and reusable boxes are now native nodes; they travel through the
system as special kinds of rules instead of whatsits with dimensions. Users
can define their own rule types too.

There is more to say but much has been reported already in articles in this and
other journals. In the ConTEXt distribution, there are four documents describing
aspects of the development and choices we have made (mkiv.pdf, hybrid.pdf,
about.pdf and still.pdf) and we keep writing (onandon.pdf). One thing will
hopefully be clear by now: the choice of Lua was a good one.

40



The future

The project is driven by ConTEXt users and ConTEXt development, which is
why we found it proper to release version one at the tenth meeting. Right from
the start, ConTEXt supported LuaTEX and this means that most mechanisms
have been tested in production. There is some risk in this as users then are
always forced to update the binary with the macros, but the ConTEXt garden
provides easy ways to deal with this. In fact, most users switched to the new
engine pretty soon after we started rewriting ConTEXt. We greatly appreciate
their patience with us.

Raw performance of LuaTEX is of course less than 8-bit pdfTEX but in practice
and on modern machines LuaTEX behaves well. In fact, many mechanisms, like
native xml handling and MetaPost processing, are way faster in ConTEXt MkIV
then in the now frozen MkII version. Given the fact that we’re using Unicode
and more complex fonts, one can safely assume that in ConTEXt, the overhead
due to delegation to Lua has no real drawbacks.

We will continue development, but functionality will stay stable within ver-
sions. The code will be further streamlined and documented. We deliberately
postponed some cleanup till after version one. And, of course, bugs will be fixed.
We hope to stepwise improve the manual too. So what will the future bring?

• So far, we have managed to avoid extensions beyond those needed as part
of the opening up. We stick close to Don Knuth’s concepts so that existing
documentation still conceptually applies. We keep our promise of not adding
to the core. But we might open up (make configurable) some of the remaining
hard-coded properties.

• Some node lists can use a bit of (non-critical) cleanup, for instance passive
nodes, localpar nodes, and other leftovers. Maybe we should add missing
left/right skips.

• We can optimize some callback resolution (more direct) so that we can gain
a little performance.

• Inheritance of attributes needs checking and maybe we need to permit some
more explicit settings.

• We will move some more code to the api file and plan to update the global
pdf and Lua states consistently (there are some leftovers from the early
days). Some C macros can probably go away.

• We can possibly minimize some return values of Lua functions and only
return nil when we expect multiple calls in line. This might be more efficient.
We plan to look into Lua 5.3 but we might well conclude that it’s better
to stick with 5.2.

• We have to figure out a way to deal with literals in virtual characters. This
relates to font switching in the result.

41



• Maybe we will reorganize some code, so that documentation is easier. We
hope to continue to stick close to what Don Knuth documents.

• We can clean up and isolate the backend a bit more. We could also add a
few more options to delegate actions to Lua and we should get rid of some
historic pdf artifacts.

Of course, we have some ideas of what to do next but these don’t need an
extension to the engine because we can use Lua for that.

In that perspective, it is tempting to think of a (lean and mean) LuaTEX
variant for ConTEXt: one close to the traditional core with many hooks and a
minimal number of dependencies on libraries and such. In a ConTEXt setup,
a user only needs LuaTEX because all (workflow) related scripts are written in
Lua and if additional functionality (like graphic conversions) is needed, it can
easily be provided by external programs.

We will not touch the stable version unless it concerns bug fixes and/or simple
extensions, but we will keep exposing ConTEXt users to the experimental branch
(as we do now). Of course users of other macro packages can pick up binaries
from the compile farm that has been set up by Mojca and friends.

So . . . be prepared.

Verze 1.0.0 stroje LuaTEX

Po deseti letech vývoje byla na jubilejním desátém Mezinárodním setkání uživatelů
ConTEXtu v roce 2016 vydána první stabilní verze TEXového stroje LuaTEX.
Článek popisuje začátky, vývoj a budoucnost LuaTEXu.

Klíčová slova: Lua, LuaTEX, ConTEXt

Hans Hagen, pragma@wxs.nl

Poznámka redakce: Začátkem roku 2019 dojde k vydání verze 1.1.0 stroje LuaTEX.
Tato verze bude součástí distribuce TEX Live 2019. Změny od verze 1.0.0 zahrnují
přechod z verze 5.2 jazyka Lua na verzi 5.3, náhradu knihovny poppler pro čtení
pdf dokumentů za knihovnu pplib a podporu procesorové architektury arm.

42


