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POROUS MEDIA EQUATION ON LOCALLY
FINITE GRAPHS

Li Ma

Abstract. In this paper, we consider two typical problems on a locally
finite connected graph. The first one is to study the Bochner formula for the
Laplacian operator on a locally finite connected graph. The other one is to
obtain global nontrivial nonnegative solution to porous-media equation via the
use of Aronson-Benilan argument. We use the curvature dimension condition
to give a characterization two point graph. We also give a porous-media
equation criterion about stochastic completeness of the graph. There is not
much work in the direction of the study of nonlinear heat equations on locally
finite connected graphs.

1. Introduction

In this paper, we study some typical problems related to heat equations and
porous-media equation on a locally finite connected graph. We do believe that
the study of nonlinear heat equations on locally finite connected graphs is an
important subject as this happens in Riemannian geometry. After some thinking,
we immediately realize that the Sobolev type inequality on graphs [3] plays a
key role in such a research. However, Sobolev type inequality on graphs is not
a topic of this paper. We first study the Bochner formula for the Laplacian
operator on a locally finite connected graph. Our Bochner formula is new and
should be useful in the study of eigenvalue estimates of the Laplacian operators
on graphs. Similar but different form of Bochner formula has been formulated in
[1] and [5]. Once we have the Bochner formula, we may use it to study the global
behavior of the bounded solution to the heat equation on the graph. The Bochner
formula is of independent interest. The last question under our consideration of
this paper is to obtain global positive solution to porous-media equation via the
use of Aronson-Benilan argument [6]. This is a hard question since we may not
have the Sobolev compactness imbedding theorem and it is not easy to obtain

2020 Mathematics Subject Classification: primary 05C50; secondary 58J35, 53Cxx, 35Jxx,
68R10.

Key words and phrases: Bochner formula, heat equation, global solution, stochastic complete-
ness, porous-media equation, McKean type estimate.

The research is partially supported by the National Natural Science Foundation of China No.
11771124 and a research grant from USTB, China.

Received August 2, 2019, revised March 2022. Editor G. Teschl.
DOI: 10.5817/AM2022-3-177

http://www.emis.de/journals/AM/
http://dx.doi.org/10.5817/AM2022-3-177


178 LI MA

the global solution from the exhaustion domain method. We can overcome this
difficulty by using the Aronson-Benilan type estimate of the bounded solutions to
the Porous-media equation. We also give a porous-media equation criterion about
stochastic completeness of the graph. Our main results are the Bochner formula
(7), Theorem 3 and Theorem 4 below. Theorem 3 may not be new and we include
proof here for completeness. The curvature dimension condition is important in
Theorem 3 in Section 3.

Here is the plan of the paper. In Section 2, we introduce the working spaces
and the Laplace operator on them. Since we shall use the distance function in
the curvature dimension condition, we give some useful comments about the
the relation between stochastically complete and mean curvature. We study the
maximum principle for both heat equation and the porous media equation. In
Section 3, we obtain the Bochner formula for heat equation and we also give
a characterization of the two point graph. In Section 4, we consider the locally
bounded global solution to the porous-media equation. Some comments about
McKean type results are in Section 5.

2. The Maximum principles

We start by recalling some definitions and the maximum principle for the
bounded solution to heat equation. Let G = (V (G), E(G)) be an infinite, locally
finite, connected graph without loops or multiple edges where V = V (G) is the set
of vertices of G and E = E(G) is the set of edges. We still write x ∈ G when x is a
vertex of G. We use the notation x ∼ y to indicate the edge connects the vertex x
to its neighbor vertex y. We equip V with the symmetric weight µxy ≥ 0 associated
to the edge x ∼ y such that µxy > 0 for each edge x ∼ y and

∑
x∼y µxy > 0 is

finite for each x ∈ V . Let dx =
∑
x∼y µxy > 0. We always assume that µxy = µyx

for each edge x ∼ y which make edges be unoriented. We call such a graph the
short name the weighted graph.

As in [7], we let m be a measure on V with full support (i.e., m is a map
m : V → (0,∞)). Then, (V,m) is a measure space. We define the space of all square
summable functions on G,

l2(V,m) = {f : V → R;
∑
x∈V

m(x)f(x)2 <∞}

with the inner product

(f, g) =
∑
x∈V

m(x)f(x)g(x) .

Define on l2(V,m) the Laplacian operator for the function f ,

(1) ∆f(x) = 1
m(x)

∑
x∼y

µxy
(
f(y)− f(x)

)
.

and the norm of the gradient of the function f by

|∇f |2(x) = 1
m(x)

∑
x∼y

µxy(f(y)− f(x))2 .
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Note that (
∆f(x)

)2 ≤ dx
m(x) |∇f |

2(x) .

We now consider the case when m(x) = dx for all x ∈ G. Recall that it is showed
in Theorem 2.5 in [14] that on such G the heat kernel pt(x, y) always exists and
when

∑
y∈V pt(x, y) = 1 for any x ∈ V , G = (V,E) is called stochastically complete.

We now recall the definition of mean curvature of a metric sphere. Fix x0 ∈ G and
let r(x) = d(x, x0). Let

d+(x) =
∑

{y∼x;r(y)=r(x)+1}

µxy

and

d−(x) =
∑

{y∼x;r(y)=r(x)−1}

µxy

be the sums of weights of vertices which are in the distances r(x)± 1. Define the
mean curvature H(x) of the sphere of radius r(x) to x0 by

H(x) = ∆r(x) = 1
dx

∑
x∼y

µxy
(
r(y)− r(x)

)
.

It can be verified that

H(x) = d+(x)− d−(x)
dx

.

We remark that under the assumption that there exists some x0 ∈ G and a constant
C ≥ 0 such that H(x) ≤ C on V , G is stochastically complete (see Theorem 25 in
[7] and see also [14]). As noticed by the the unknown referee that this result also
works well when we consider the more general definition of the Laplacian defined
in (1) on V ,

∆f(x) = 1
m(x)

∑
x∼y

µxy
(
f(y)− f(x)

)
for arbitrary m : V → (0,∞) and

∑
x∼y µxy = m(x). Then we have the following

maximum principle ([7], [11], [13]).

Theorem 1. Assume that G is stochastically complete. Let u0(x) be any bounded
function on G. Then any bounded solution u(t, x) to the heat equation

ut = ∆u

with initial data u(0) = u0 satisfies

sup
G
|u(t, x)| ≤ sup

G
|u0(x)|

for every t ≥ 0.
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The proof of the result above is standard. By Theorem 1 we can derive the
uniqueness of bounded solution to the heat equation on V . In fact the claim follows
by considering differences of bounded solutions with same initial condition. Actually
we can extend the maximum principle to positive solution to the porous media
type equation
(2) ut = ∆ log u , in (0,∞)× V
with the bounded non-negative initial data u0. In fact we have the following result,
which improve our previous version as pointed out by the unknown referee.

Theorem 2. On the weighted graph G = (V,E), the following two conditions are
equivalent.

(1) G is stochastically complete.
(2) Any positive bounded solution v : V × [0,∞) → (0,∞) to vt ≤ ∆ log v

satisfies
(3) sup

G×[0,∞)
v(t, x) = sup

G
v0(x)

for every t ≥ 0.

Proof. We first consider (1) ⇒ (2). By considering v(t,x)
supG v0(x) and rescaling the

time variable, we may assume supG v0(x) = 1. Set u(t, x) = log v(t, x) and u0(x) =
log v0(x) ≤ 0. Then u satisfies that
(4) euut ≤ ∆u.
Let w = u+. Applying the Kato inequality [11] (and the proof given there for
m(x) = dx works well for the Laplacian (1)) we have

ewwt ≤ ∆w .
Let f =

∫∞
0 e−twdt. Then we have

∆f =
∫ ∞

0
e−t∆wdt ≥

∫ ∞
0

e−t(ew)t dt = −1 +
∫ ∞

0
e−tew dt

and the right term is

−1 +
∫ ∞

0
e−tew dt =

∫ ∞
0

e−t(ew − 1) dt ≥ f .

Stochastic completeness of G and boundedness and non-negativity of f imply that
f = 0 on V . Then we have w = 0 and u ≤ 0, which implies (3).

We then consider (2)⇒ (1). We argue by contradiction. The stochastic incom-
pleteness of G (see Theorem 3.1 in [14] or Theorem 25 in [7]) implies that for some
λ < 0 and some nontrivial positive bounded w such that

−e−1∆w = λw .

Let u = e−λtw − ptw. Then u is a nontrivial non-negative bounded solution to
ut = e−1∆u ≥ 0 with the initial data u0(x) = 0. We may assume that u ≤ 1, which
implies that eu ≤ e. Then we have

euut ≤ ∆u .
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Let v = eu. We have vt ≤ ∆ log v and v(x, 0) = e0 = 1 < supG×[0,∞) v(t, x), which
gives a contradiction. Thus we have the desired result. �

The maximum principle above gives us a comparison lemma for the porous
media equation (2). We shall use this fact in Section 5.

3. Bochner formula for heat equation and a characterization
of two point graph

In this section we let m(x) = dx for the locally finite graph. The main results
in this section are the Bochner type formula and a characterization of two point
graph.

We introduce the Bochner formula and the curvature dimension condition
following the method of Bakry-Emery (see [9]). We define

Γ(f, g) = 1
2{∆(fg)(x)− f(x)∆g(x)− g(x)∆f(x)}

and

Γ2(f, g) = 1
2{∆Γ(fg)(x)− Γ(f,∆g)(x)− Γ(g,∆f)(x)} .

Then, by direct computation,

∆f2(x) = 2f(x)∆f(x) + |∇f |2(x) ,

Γ(f, g)(x) = 1
2dx

∑
y∼x

µxy
(
f(y)− f(x)

)(
g(y)− g(x)

)
,

Γ(f, f)(x) = 1
2 |∇f |

2(x) ,

Γ2(f, f)(x) = 1
4 |D

2f |2(x)− 1
2 |∇f |

2(x) + 1
2(∆f)2(x) ,(5)

where we have defined

(6) |D2f |2(x) := 1
dx

∑
y∼x

µxy
dy

∑
z∼y

µyz|f(x)− 2f(y) + f(z)|2 .

We define

(∇f,∇∆f)(x) = 1
dx

∑
y∼x

µxy
(
f(y)− f(x)

)(
∆f(y)−∆f(x)

)
.

We now compute the Bochner formula for the function f .

−∆|∇f |2(x) = −|D2f |2(x)+ 2
dx

∑
y∼x

µxy
dy

∑
z∼y

µyz
(
f(x)−2f(y)+f(z)

)
(f(x)−f(y).

Set
I = 2

dx

∑
y∼x

µxy
dy

∑
z∼y

µyz
(
f(x)− 2f(y) + f(z)

)(
f(x)− f(y)

)
.
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Note that

I = 2|∇f |2(x) + 2
dx

∑
y∼x

µxy
(
f(x)− f(y)∆f(y)

)
= 2|∇f |2(x) + 2

dx

∑
y∼x

µxy
(
f(x)− f(y)

(
∆f(y)

−∆f(x)
)

+ ∆f(x) 2
dx

∑
y∼x

µxy
(
f(x)− f(y)

)
= 2|∇f |2(x) + 2|∆f |2(x)− 2(∇f,∇∆f)(x) .

Then we have the following Bochner formula.

Assertion: On the locally finite, connected graph G = (V (G), E(G)), which may
be an infinite set without loops or multiple edges, for any function f on G, we have
the Bochner formula
(7) −∆|∇f |2(x) = −|D2f |2(x) + 2|∇f |2(x) + 2|∆f |2(x)− 2(∇f,∇∆f)(x) .

We now consider the bounded solution f(t, x) = Pt(f0) to the heat equation
ft = ∆f

with initial data f0 on the locally finite connected graph G = (V,E). Recall that
(8) (∂t −∆)f2(t, x) = −|∇f |2(t, x) ≤ 0 .
Using the maximum principle for the stochastic complete, locally finite, connected
graph, we have

f2(t, x) ≤ sup
V
f2(0, x) ,

which may be useful for other purpose. Since f(t, x) is uniformly bounded in t, we
know that there exists tj →∞ such that

f(tj , x)→ f∞(x)
for each x ∈ G, and limtj→∞ |∇f(tj , x)|2 → 0, which implies that f∞(x) = const.

Using (7) we get that

(9) (∂t −∆)
(1

2 |∇f |
2(t, x)

)
= −1

2 |D
2f |2(t, x) + |∇f |2(x) + |∆f |2(t, x) .

We believe that this formula is useful in the study of Schrodinger type equations
on graphs.

In the rest of this section, we give a characterization of two point graph as below.
Assume now on G the curvature dimension condition that for any f : V → R,

(10) Γ2(f, f)(x) ≥ 1
m

(∆f)2(x) + k

2 |∇f |
2(x) ,

for some uniform constants m > 0 and k ∈ R. One example of such graph is the
two point graph G = (V (G), E(G)) with V = {x, y}. Note that

∆f(x) = f(y)− f(x) , |∇f |2(x) = (f(y)− f(x))2 ,
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and |D2f |2(x) = 4|f(y)− f(x)|2. Then

Γ2(f, f) = (f(y)− f(x))2

and then the condition (10) above is

(f(y)− f(x)2 ≥ 1
m

(f(y)− f(x))2 + k

2 (f(y)− f(x))2 ,

which is in turn equivalent to 1 ≥ 1
m + k

2 for m > 0, i.e., k ≤ 2(1− 1
m ).

We have the following result.

Theorem 3. Let G be a locally finite connected graph. Assume (10) is true for
k ≥ 2− 2/m. Moreover, we assume that the vertex measure equals the degree dx.
Then the graph has at most two vertices.

Proof. To prove this conclusion, we fix p ∈ G and let f(x) = d(x, p). Note that

∆f(p) = 1 = |∇f |2(p) ,

and then
Γ2(f, f)(p) = 1

4 |D
2f(p)|2 .

Applying the curvature dimension condition to the function f we have
1
4 |D

2f(p)|2 ≥ 1
m

+ k

2 .

From the definition relation (6) we also have the estimate that
1
4 |D

2f(p)|2 ≤ 1 .

Then we have
1
m

+ k

2 ≤ 1.

By our assumption we know that
1
m

+ k

2 = 1

which in turn gives us that
1
4 |D

2f(p)|2 = 1 .

This then implies the point p has at most one neighbor point. This then completes
the proof of Theorem 3. �

4. Global solution to the porous-media equation

Given any positive bounded function u0 : V → R+ bounded below by a positive
constant. We consider the global existence of the positive solution u(t, x) to the
porous-media equation

(11) ut = ∆ log u , in (0,∞)× V

with the initial data u(0) = u0.
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Take any connected finite subgraph Ω ⊂ V . We may first consider (11) in
(0,∞) × Ω with initial data and boundary condition u0. Let f = 1

2 log u. Then
u = e2f and it satisfies the equivalent problem

(12) ef (ef )t = ∆f , in (0,∞)× V .

Actually we can get the local in time solution uΩ to (11) (respectively fΩ =
1
2 log uΩ to (12)) in (0, T )× Ω (for some T > 0) by using the discrete Morse flow
method [12].

For N > 1 an integer and any T > 0, let

h = T/N , tn = nh , n = 0, 1, 2, . . . , N .

Assume that we have constructed fj ∈ L2(Ω), 0 ≤ j ≤ n − 1, and fn−1 is a
minimizer of the functional

In−1(f) = 1
2h

∫
Ω
|ef − efn−2 |2 dx+ 1

2

∫
Ω
|∇f |2 dx

on the space H = {f ∈ L2(Ω) | f − f0 = 0 on ∂Ω}. Note that H is a closed convex
subset of L2(Ω). Define

In(f) = 1
2h

∫
Ω
|ef − efn−1 |2 dx+ 1

2

∫
Ω
|∇f |2 dx

on H. It is clear that the infimum is finite and by applying the Poincaré inequality
to f − f0 (see [3]), any minimizing sequence is bounded in H. Then, since Ω is
finite, we know that the minimizing sequence is uniformly bounded on Ω and by
extracting a subsequence, we may assume that the minimizing sequence converges
on Ω to a limit and we conclude that In has a minimizer fn in H which satisfies

1
h

(
ef − efn−1

)
ef = ∆f

along with the uniform energy bound

(13) 1
2h

∫
Ω
|efn − efn−1 |2 dx+ 1

2

∫
Ω
|∇fn|2 dx ≤

1
2

∫
Ω
|∇fn−1|2 dx ≤ C .

We remark that f can not be a constant provided fn−1 is nontrivial.
We define fN (t) ∈ L2 for t ∈ [0, T ] such that, for n = 1, . . . , N ,

fN (t) = fn, t ∈ [tn−1, tn] .

We further define, for n = 1, . . . , N ,

∂te
fN (t) = 1

h
(efn − efn−1) , t ∈ [tn−1, tn] .

Then fN satisfies
efN∂te

fN (t) = ∆fN
in Ω× (0, T ). Note that the energy bound (13) implies that∫ T

0

∫
Ω
|∂t(efN )|2 + sup

t

∫
Ω
|∇fN |2 dx ≤ 5C.
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We may use the Poincare inequality [3] that

λ1(Ω)
∫

Ω
u2 ≤

∫ ∫
Ω
|∇u|2

for u = fN − f0 to get the uniform L2(Ω) bound of {fN}. Taking a subsequence of
{fN} that converges in L∞t H, one obtains a limit f ∈ L∞t H that satisfies

ef∂te
f = ∆f

in distribution sense in the domain Ω× (0, T ). Since ∆f is bounded, we know ∂te
f

is well-defined and the equation holds point-wise. Applying the maximum principle
we know that e2f is uniformly bounded by both the initial data and the boundary
data.

To get the globally defined solution, we need the linear upper bound for uΩ = e2f

and we follow a well-known argument due to Aronson and Benilan [6].
Let λ > 1. Define

wλ(t, x) = λuΩ(λ−1t, x) .
Then wλ(t, x) satisfies (11) in (0, T )×Ω with the initial data and boundary condition
λu0(x), which is bigger than u0(x). By using the comparison principle we know
that

wλ(t, x) > uΩ(t, x) in (0, T )× Ω .

Set

vλ(t, x) = wλ(t, x)− uΩ(t, x) .

Then
∂

∂λ
vλ(t, x) ≥ 0 , in (0, T )× Ω ,

or equivalently ut ≤ t−1u for u = uΩ, which by integration, implies that uΩ(t, x) ≤
C(1 + t) where C > 0 is a constant depending only on u0. Hence we can extend
the global solution uΩ(t, x). Take Ω = Ωj where V =

⋃
Ωj , Ωj ⊂ Ωj+1 are

exhaustion finite subgraphs of V . Then we get a sequence of solutions {uj} defined
on Ωj × (0,∞). By taking diagonal subsequence we can get a sub-convergence
sequence on any finite subset of V , still denoted by {uj} and a global (locally
bounded) positive solution u(t, x) of (11) with the initial data u0 such that

u(t, x) = lim
j→∞

uj(t, x) ,

locally in (0,∞)× V .
In summary, we then have proven the result below.

Theorem 4. For any bounded positive function u0 : V → R+ bounded below by
a positive constant, there exists a global nontrivial positive solution to (11) with
initial data u0.

The uniqueness question to (11) is an interesting (may be very difficult) problem
and it may be considered by using the maximum principle. We leave it open to
interested readers.
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5. McKean type eigenvalue estimate

We now study the McKean type eigenvalue estimate for the principal eigenvalue
λ1 of the Lapalacian operator defined in [10] on the locally finite graph. We recall
the definition below. Let λ1(R) be the first eigenvalue of the Laplacian operator
defined on the ball BR(x0) with Dirichlet boundary condition on the boundary
∂BR(x0). Then the sequence (λ1(R)) is a decreasing sequence in R and the principal
eigenvalue λ1 = limR→∞ λ1(R) is well-defined. It is not hard to see that λ1 does
not depend on the based point x0. Recall that for any finite subset Ω ⊂ G, we
define Ωc the complement set of Ω in G. We let µ(Ω) =

∫
Ω 1 =

∑
x∈Ω dx and define

the measure of the edge boundary ∂Ω by

µ(∂Ω) = |∂Ω| =
∑

ξ=xy∈E(G),x∈Ω,y∈Ωc
µxy .

It can be directly verify [3] that for any f in the finite set Ω,

(14)
∫

Ω
∆f =

∑
x∈Ω

∑
y∈Ωc

(f(y)− f(x))µxy .

We also recall the general integration by part formula. Let Ω ⊂ V be a finite subset
of V . Define

U1(Ω) = {y ∈ V ; dist(y,Ω) ≤ 1}.

Theorem 5. For any function f, h, we have

(15)
∫

Ω
(∆f, h) = −1

2
∑

x,y∈U1(Ω)

µxy∇xyf∇xyh

where ∇xyf = f(y)− f(x).

Note that the right hand side of (15) can be written as

= −1
2
∑
x,y∈Ω

µxy∇xyf∇xyh+
∑

x∈Ω,y∈Ωc
µxyh(x)∇xyf .

We recall the definition of the Cheeger constant h(µ) [3] based at x0 defined by

h(µ) = inf
Ω⊂V ;x0∈Ω,µ(Ω)≤ 1

2µ(V )

|∂Ω|
µ(Ω) .

Then as in the Riemannian geometry case we have

λ1 ≥
h(µ)2

2 .

The following result is about McKean type result such that the constant a in
Theorem 6 below may depend on the base point x0.

Theorem 6. Assume that H(x) ≥ a > 0 for some x0 and some positive constant
a. Then λ1 ≥ a2/2.
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Proof. Take f(x) = r(x) = d(x, x0) in (14) on any finite set Ω containing x0.
Then using H(x) ≥ a we know that

∫
ΩH(x) ≥ aµ(Ω) and right side is equals to

µ(∂Ω), which implies that

µ(∂Ω) =
∫

Ω
H(x) ≥ aµ(Ω) .

Hence h(µ) ≥ a, which implies our conclusion.
�
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