Somayeh Karimzadeh; Javad Moghaderi On *n*-submodules and *G*.*n*-submodules

Czechoslovak Mathematical Journal, Vol. 73 (2023), No. 1, 245-262

Persistent URL: http://dml.cz/dmlcz/151515

Terms of use:

© Institute of Mathematics AS CR, 2023

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these *Terms of use*.

This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project *DML-CZ: The Czech Digital Mathematics Library* http://dml.cz

ON n-SUBMODULES AND G.n-SUBMODULES

SOMAYEH KARIMZADEH, Rafsanjan, JAVAD MOGHADERI, Bandar Abbas

Received March 5, 2022. Published online December 12, 2022.

Abstract. We investigate some properties of n-submodules. More precisely, we find a necessary and sufficient condition for every proper submodule of a module to be an n-submodule. Also, we show that if M is a finitely generated R-module and $\sqrt{\operatorname{Ann}_R(M)}$ is a prime ideal of R, then M has n-submodule. Moreover, we define the notion of G.n-submodule, which is a generalization of the notion of n-submodule. We find some characterizations of G.n-submodules and we examine the way the aforementioned notions are related to each other.

Keywords: n-ideal; n-submodule; primary submodule

MSC 2020: 13C13, 16D10

1. INTRODUCTION AND PRELIMINARIES

Throughout this paper, R denotes a commutative ring with identity, and all modules are unitary. The concept of prime ideal is important in commutative algebra. As defined by Mohamadian in [12], an r-ideal of R is a proper ideal I with the property that $a, b \in R$, $ab \in I$ and $\operatorname{ann}_M(a) = 0$ imply $b \in I$. Tekir et al. in [14] defined n-ideals and determined some of their properties. According to their results, any n-ideal is an r-ideal.

In module theory, prime submodules are defined similar to prime ideals in ring theory and play an important role. Koc and Tekir in [7] defined *r*-submodules, while Tekir et al. in [14] defined *n*-submodules. Ahmadi and Moghaderi in [1] found some fundamental characteristics of *n*-submodules. For example, each *n*-submodule is also an *r*-submodule. Also, if $(N : M) \subseteq \sqrt{\operatorname{Ann}(M)}$ for a submodule *N* of *M*, then *N* is a primary submodule if and only if it is an *n*-submodule.

DOI: 10.21136/CMJ.2022.0094-22

In this paper, we find some additional properties of n-submodules and define the concept of G.n-submodule. We prove that

n-submodule \Rightarrow G.n-submodule \Rightarrow r-submodule.

Also, \mathbb{N} , \mathbb{Z} , and \mathbb{Q} denote the set of natural numbers, the ring of integers, and the field of rational numbers, respectively. If N is an R-submodule of M, the *annihilator* of the R-module $\frac{M}{N}$ is defined to be $\operatorname{Ann}_R(\frac{M}{N}) = \{N : R M\} = \{r \in R : rM \subseteq N\}$. Furthermore, the *annihilator* of M, denoted by $\operatorname{Ann}_R(M)$, is $(0 :_R M)$. Suppose that Iis an ideal of R. We define the *radical* of I by $\sqrt{I} = \{a \in R : a^n \in I \text{ for some } n \in \mathbb{N}\}$.

A proper submodule N of M is called *prime (primary)* if $rm \in N$ for $r \in R$ and $m \in M$ implies that either $m \in N$ or $r \in (N :_R M)$ $(r^n \in (N :_R M)$ for some $n \in \mathbb{N})$, see [3], [8], [10], [11], and [13].

An *R*-module *M* is said to be a *multiplication module* if for each submodule *N* of *M*, there exists an ideal *I* of *R* such that N = IM. Equivalently, *M* is a multiplication module if and only if $N = (N :_R M)M$ for each submodule *N* of *M*. We refer the reader to [4] and [5] for more details.

The concepts of *n*-ideal and *n*-submodule were introduced in [14]. A proper ideal I of R is said to be an *n*-ideal if the condition $ab \in I$ with $a \notin \sqrt{0}$ for every $a, b \in R$ implies $b \in I$. Also, a proper submodule N of M is called an *n*-submodule if for $a \in R$ and $m \in M$, $am \in N$ and $a \notin \sqrt{\operatorname{Ann}_R(M)}$ imply $m \in N$.

In Section 2, we investigate some properties of *n*-submodules. We find a necessary and sufficient condition for every proper submodule of a module to be an *n*-submodule. Also, we show that if M is a finitely generated R-module and $\sqrt{\operatorname{Ann}_R(M)}$ is a prime ideal of R, then M has an *n*-submodule.

In Section 3, we define the notion of G.n-submodule. We show that any n-submodule is an G.n-submodule, and that any G.n-submodule is an r-submodule. Also, we find some characterizations of this new notion.

2. *n*-submodules

Let M be a module over a commutative ring R. Recall that a proper submodule N of M is said to be an n-submodule if for $a \in R$ and $m \in M$, $am \in N$ and $a \notin \sqrt{\operatorname{Ann}_R(M)}$ imply $m \in N$.

Theorem 2.1. Let M be a torsion-free R-module, and N be a proper submodule of M. Then, the following statements are equivalent.

(1) N is an *n*-submodule of M.

(2) $aN = N \cap aM$ for every $a \in R - \sqrt{\operatorname{Ann}_R(M)}$.

(3) $N = (N :_M a)$ for every $a \in R - \sqrt{\operatorname{Ann}_R(M)}$.

Proof. (1) \Rightarrow (2) It is clear that $aN \subseteq N \cap aM$. If $am \in N \cap aM$, where $a \in R - \sqrt{\operatorname{Ann}_R(M)}$ and $m \in M$, then $m \in N$. So, $aN = N \cap aM$.

 $(2) \Rightarrow (3)$ We know that $N \subseteq (N :_M a)$. If $m \in (N :_M a)$, then $am \in N$. So, $am \in N \cap aM = aN$. Now, since M is torsion-free, $m \in N$. Hence, $N = (N :_M a)$.

(3) \Rightarrow (1) If $am \in N$ with $a \in R - \sqrt{\operatorname{Ann}_R(M)}$ and $m \in M$, then $m \in (N :_M a) = N$.

Proposition 2.1. Let M be an R-module and N be an n-submodule of M. Then,

$$N = (0:_M \operatorname{Ann}_R(N))$$
 or $\sqrt{\operatorname{Ann}_R(N)} = \sqrt{\operatorname{Ann}_R(M)}.$

Proof. Let $\sqrt{\operatorname{Ann}_R(N)} \neq \sqrt{\operatorname{Ann}_R(M)}$. It is clear that $N \subseteq (0:_M \operatorname{Ann}_R(N))$. Since $\sqrt{\operatorname{Ann}_R(M)} \subset \sqrt{\operatorname{Ann}_R(N)}$, there exists some a in $\sqrt{\operatorname{Ann}_R(N)} - \sqrt{\operatorname{Ann}_R(M)}$. Hence, a $k \in \mathbb{N}$ can be found such that $a^k \in \operatorname{Ann}_R(N)$. Let $m \in (0:_M \operatorname{Ann}_R(N))$. Then, $a^k m = 0 \in N$. Since N is an n-submodule and $a^k \notin \sqrt{\operatorname{Ann}_R(M)}$, $m \in N$. So, $N = (0:_M \operatorname{Ann}_R(N))$.

Proposition 2.2. Let N be a proper submodule of a torsion-free R-module M. If aN = N for any $a \in R - \sqrt{\operatorname{Ann}_R(M)}$, then N is an n-submodule.

Proof. Let aN = N for any $a \in R - \sqrt{\operatorname{Ann}_R(M)}$. Assume that $am \in N$ for $a \in R - \sqrt{\operatorname{Ann}_R(M)}$ and $m \in M$. Hence, $am \in aN$ by the hypothesis. Then, since M is torsion-free, $m \in N$ and, therefore, N is an n-submodule.

Proposition 2.3. Let N be an n-submodule of an R-module M, and S be a nonempty subset of R. Then $(N:_M S)$ equals M, or it is an n-submodule.

Proof. Let $(N :_M S)$ be a proper submodule of M. Also, suppose that $am \in (N :_M S)$ for $a \in R - \sqrt{\operatorname{Ann}_R(M)}$ and $m \in M$. Then, $aSm \subseteq N$ and thus $Sm \subseteq N$, because N is an n-submodule. Therefore, $m \in (N :_M S)$ and, consequently, $(N :_M S)$ is an n-submodule.

Corollary 2.1. Let N be an n-submodule of an R-module M and S be a nonempty subset of R. Then, $S \not\subseteq (N :_R M)$ if and only if $(N :_M S)$ is an n-submodule.

 $Proof. \Rightarrow$) This follows from Proposition 2.3.

⇐) Since $(N :_M S)$ is an *n*-submodule of M, $(N :_M S)$ is a proper submodule of M. Therefore, $SM \notin N$. Thus, $S \notin (N :_R M)$.

Proposition 2.4 ([1], Proposition 2.3 (i)). If N is an n-submodule of M, then $(N:_R M) \subseteq \sqrt{\operatorname{Ann}_R(M)}$.

Theorem 2.2 ([1], Theorem 2.22). Let N be a submodule of M such that $(N:_R M) \subseteq \sqrt{\operatorname{Ann}_R(M)}$. Then, the following statements are equivalent.

(1) N is an n-submodule.

(2) N is a primary submodule of M.

Corollary 2.2. Let M be an R-module. Suppose that L is an n-submodule of M and that K is a primary submodule of M. If $K \subseteq L$, then K is an n-submodule of M.

By using the fact that every irreducible submodule of a Noetherian module is a primary submodule (see [6], Proposition 1-17), we obtain the following corollary.

Corollary 2.3. Let M be a Noetherian R-module and N be an irreducible submodule of M such that $(N :_R M) \subseteq \sqrt{\operatorname{Ann}_R(M)}$. Then, N is an n-submodule of M.

Proposition 2.5. If N is a primary R-submodule of M such that $(N :_R M)$ is maximal in the set of all n-ideals, then N is an n-submodule of M.

Proof. Let $am \in N$ for $a \in R$ and $m \in M$, where $a \notin \sqrt{\operatorname{Ann}_R(M)}$. By [14], Theorem 2.11, $\sqrt{0} = \sqrt{(N:_R M)}$. So, $(N:_R M) \subseteq \sqrt{(N:_R M)} = \sqrt{0} \subseteq \sqrt{\operatorname{Ann}_R(M)}$. Therefore, by Theorem 2.2, N is an n-submodule of M.

Lemma 2.1. Let M be an R-module. If M has an n-submodule, then $\sqrt{\operatorname{Ann}_R(M)}$ is a prime ideal.

Proof. Let N be an n-submodule of M. Then, by Proposition 2.4, $(N:_R M) \subseteq \sqrt{\operatorname{Ann}_R(M)}$. Since $\operatorname{Ann}_R(M) \subseteq (N:_R M)$, we conclude that $\sqrt{(N:_R M)} = \sqrt{\operatorname{Ann}_R(M)}$. By Theorem 2.2, N is a primary submodule. So, $\sqrt{(N:_R M)}$ is a prime ideal of R. Therefore, $\sqrt{\operatorname{Ann}_R(M)}$ is a prime ideal of R.

Proposition 2.6. Let M be a finitely generated R-module. Then, M has an n-submodule if and only if $\sqrt{\operatorname{Ann}_R(M)}$ is a prime ideal of R.

Proof. ⇒) By Lemma 2.1, $\sqrt{\operatorname{Ann}_R(M)}$ is a prime ideal of R. ⇐) Let $\sqrt{\operatorname{Ann}_R(M)}$ be a prime ideal of R. Put

 $\mathfrak{A} = \{L: L \text{ is a submodule of } M, (L:M) \subseteq \sqrt{\operatorname{Ann}_R(M)} \}.$

Since $0 \in \mathfrak{A}$, we find that $\mathfrak{A} \neq \emptyset$. Moreover, since M is finitely generated, by using Zorn's lemma we find a maximal element K of \mathfrak{A} . Now, we show that K is an

n-submodule of M. Suppose that $rm \in K$ for some $r \in R$ and $m \notin K$. Since K is a maximal element of \mathfrak{A} , $(K + \langle m \rangle : M) \notin \sqrt{\operatorname{Ann}_R(M)}$. For $a \in (K + \langle m \rangle : M) - \sqrt{\operatorname{Ann}_R(M)}$ we obtain $aM \subseteq K + \langle m \rangle$. This implies $raM \subseteq K + \langle rm \rangle \subseteq K$. So, $ra \in (K : M) \subseteq \sqrt{\operatorname{Ann}_R(M)}$. Since $\sqrt{\operatorname{Ann}_R(M)}$ is a prime ideal of R and $a \notin \sqrt{\operatorname{Ann}_R(M)}$, $r \in \sqrt{\operatorname{Ann}_R(M)}$. Therefore, K is an n-submodule.

Note that an *r*-submodule is a proper submodule N of M if for $a \in R, m \in M$, and whenever $am \in N$ with $\operatorname{ann}_M(a) = 0$, then $m \in N$, see [7].

Theorem 2.3. Let M be an R-module. Then, the following statements are equivalent.

- (1) $\langle 0 \rangle$ is an *n*-submodule.
- (2) $\langle 0 \rangle$ is a primary submodule.
- (3) $Z(M) = \sqrt{\operatorname{Ann}_R(M)}$.
- (4) Every r-submodule is an n-submodule.

Proof. It is clear that $(1) \Leftrightarrow (2) \Leftrightarrow (3)$.

(3) \Rightarrow (4) Let N be an r-submodule and $am \in N$ for $a \in R - \sqrt{\operatorname{Ann}_R(M)}$. Since $Z(M) = \sqrt{\operatorname{Ann}_R(M)}$, $\operatorname{ann}_M(a) = 0$. Hence, $m \in N$. Therefore, N is an n-submodule.

 $(4) \Rightarrow (1)$ Since $\langle 0 \rangle$ is an *r*-submodule, it is an *n*-submodule.

By [1], Proposition 2.21 and Theorem 2.3 ((3) \Rightarrow (4)), we obtain the following corollary.

Corollary 2.4. Let M be an R-module such that $Z(M) = \sqrt{\operatorname{Ann}_R(M)}$. Then, the notions of r-submodule and n-submodule coincide.

Corollary 2.5. Let M be a torsion-free R-module. Then, the notions of r-submodule and n-submodule coincide.

Proposition 2.7. In a finitely generated *R*-module, every *n*-submodule is contained in a maximal *n*-submodule.

Lemma 2.2. Let R be an integral domain. Then, T(M) = M or T(M) is an *n*-submodule.

Proof. Let $T(M) \neq M$ and $am \in T(M)$ for $a \in R - \sqrt{\operatorname{Ann}_R(M)}$ and $m \in M$. Then, there exists $0 \neq b \in R$ such that bam = 0. Therefore, $m \in T(M)$.

Remember that a nonempty subset S of R is multiplicatively closed precisely when $ab \in S$ for any $a, b \in S$. Assume M is an R-module and S is a multiplicatively closed subset of R. The fraction module at S is thus denoted by M_S . It is worth noting that M_S is both an R_S -module and an R-module. Let $f: M \to M_S$ be the natural homomorphism with f(m) = m/1 as its definition. If L is a submodule of M_S , then $f^{-1}(L)$ is always a submodule of M, which is known as the L^c of L contraction.

Theorem 2.4. Let M be an R-module and S be a multiplicative closed subset of R. If $\langle 0 \rangle$ is an n-submodule of M, then the kernel of $\varphi \colon M \to M_S$ is either $\langle 0 \rangle$ or M.

Proof. Suppose that there exists $0 \neq y \in \ker(\varphi)$. Then, there exists $s \in S$ such that sy = 0. Since $\langle 0 \rangle$ is an *n*-submodule and $0 \neq y$, $s \in S \cap \sqrt{\operatorname{Ann}_R(M)}$. Therefore, $M_S = 0$ and $\ker(\varphi) = M$.

Corollary 2.6. Let M be a finitely generated R-module. Then, $\langle 0 \rangle$ is an n-submodule of M if and only if the kernel of $\varphi \colon M \to M_S$ is either $\langle 0 \rangle$ or M for every multiplicative closed subset S of R.

Proof. By [1], Lemma 2.32 and Theorem 2.4, the proof is straightforward. \Box

Theorem 2.5. Let M be a finitely generated R-module, S be a multiplicative closed subset of R, and $\langle 0 \rangle$ be an n-submodule. If L is an n-submodule of M_S , then L^c is an n-submodule of M.

Proof. Let $rm \in L^c$ for $r \notin \sqrt{\operatorname{Ann}_R(M)}$ and $m \in M$. Assume that $\frac{r}{1} \in \sqrt{\operatorname{Ann}_{R_S}(M_S)}$. Then, there exists $n \in \mathbb{N}$ such that $\left(\frac{r}{1}\right)^n \in \operatorname{Ann}_{R_S}(M_S)$. Since M is a finitely generated R-module, there exists $s \in S$ such that $sr^n M = \langle 0 \rangle$. Since $\langle 0 \rangle$ is an n-submodule and $r^n \notin \sqrt{\operatorname{Ann}_R(M)}$, $s \in \sqrt{\operatorname{Ann}_R(M)}$. Therefore, $M_S = \langle 0 \rangle$, which is a contradiction. Hence, $\frac{r}{1} \notin \sqrt{\operatorname{Ann}_{R_S}(M_S)}$. We conclude that $\frac{r}{1}\frac{m}{1} \in L$ and $\frac{m}{1} \in L$. So, $m \in L^c$ and L^c is an n-submodule of M.

Proposition 2.8. Let M be an R-module, S be a multiplicative closed subset of R, and L be a submodule of M_S . If L^c is an n-submodule of M, then L is an n-submodule of M_S .

Proof. Let $\frac{r}{s_1} \frac{m}{s_2} \in L$ for $\frac{r}{s_1} \notin \sqrt{\operatorname{Ann}_{R_S}(M_S)}$ and $\frac{m}{s_2} \in M_S$. It is clear that $r \notin \sqrt{\operatorname{Ann}_R(M)}$. Since $rm \in L^c$ and L^c is an *n*-submodule of M, $\frac{m}{s_2} \in L$. Hence, L is an *n*-submodule of M_S .

Proposition 2.9. Let M_1 and M_2 be *R*-modules, $\sqrt{\operatorname{Ann}_R(M_1)} = \sqrt{\operatorname{Ann}_R(M_2)}$ and $M = M_1 \times M_2$.

- (1) If L_1 is an *n*-submodule of M_1 , then $L_1 \times M_2$ is an *n*-submodule of M.
- (2) If L_1 is an *n*-submodule of M_1 and L_2 is an *n*-submodule of M_2 , then $L_1 \times L_2$ is an *n*-submodule of M.

Proof. (1) Suppose that $r(m_1, m_2) \in L_1 \times M_2$, where $r \notin \sqrt{\operatorname{Ann}_R(M_1 \times M_2)}$ for $r \in R$ and $(m_1, m_2) \in M_1 \times M_2$. Since

$$\sqrt{\operatorname{Ann}_R(M_1)} = \sqrt{\operatorname{Ann}_R(M_2)} = \sqrt{\operatorname{Ann}_R(M_1) \cap \operatorname{Ann}_R(M_2)} = \sqrt{\operatorname{Ann}_R(M_1 \times M_2)},$$

we find that $r \notin \sqrt{\operatorname{Ann}_R(M_1)}$. It follows that $m_1 \in L_1$. So, $(m_1, m_2) \in L_1 \times M_2$. (2) The proof is similar to that of part (1).

In [9], Macdonald introduced the notion of secondary module. Recall that a nonzero *R*-module *M* is said to be *secondary* if for every $a \in R$, the endomorphism of *M* given by the multiplication by *a* is either surjective or nilpotent.

Lemma 2.3. If every proper submodule of M is an n-submodule, then M is a secondary R-module.

Proof. Assume that $r \in R$ and that $\varphi_r \colon M \to M$ is defined by $\varphi_r(m) = rm$. If φ_r is not surjective, then $\operatorname{Im}(\varphi_r) \neq M$. So, there exists $m \in M - \operatorname{Im}(\varphi_r)$. Thus, $\varphi_r(m) = rm \in \operatorname{Im}(\varphi_r)$. Since $\operatorname{Im}(\varphi_r)$ is an *n*-submodule, $r \in \sqrt{\operatorname{Ann}_R(M)}$. This implies that φ_r is nilpotent.

Proposition 2.10. Let M be an R-module and $\sqrt{\operatorname{Ann}_R(M)}$ be a finitely generated ideal of R. If every proper submodule of M is an n-submodule, then every ascending chain of its cyclic submodules stops.

Proof. Let $Rm_1 \subset Rm_2 \subset Rm_3 \subset \ldots \subset Rm_k \subset \ldots$ be a chain of cyclic submodules of M. Then

$$m_1 = r_2 m_2 = r_2 r_3 m_3 = \ldots = r_2 \ldots r_k m_k = \ldots$$

for $r_1, r_2, \ldots \in R$. Since Rm_i is an *n*-submodule, $r_i \in \sqrt{\operatorname{Ann}_R(M)}$. On the other hand, since $\sqrt{\operatorname{Ann}_R(M)}$ is a finitely generated ideal of R, we conclude the existence of $n \in \mathbb{N}$ such that $(\sqrt{\operatorname{Ann}_R(M)})^n \subseteq \operatorname{Ann}_R(M)$. So, $m_1 = r_2 \ldots r_n r_{n+1} m_{n+1} = 0$. It follows that $m_i = 0$ for all $i \in \mathbb{N}$, which is a contradiction. Therefore, every ascending chain of cyclic submodules of M stops.

Corollary 2.7. Let M be an R-module and $\sqrt{\operatorname{Ann}_R(M)}$ be a finitely generated ideal of R. Every proper submodule of M is an n-submodule if and only if every ascending chain of cyclic submodules of M stops, and M is a secondary R-module.

 $Proof. \Rightarrow$) This follows from Lemma 2.3 and Proposition 2.10.

 \Leftarrow) By [1], Proposition 2.39, the proof is straightforward.

Corollary 2.8. Let R be a Noetherian ring and M be a finitely generated R-module. If M is a secondary R-module, then every proper submodule of M is an n-submodule.

Proposition 2.11. Let M be an R-module. Then, the following statements are equivalent.

- (1) Every proper submodule of M is an n-submodule.
- (2) Every proper cyclic submodule of M is an n-submodule.

Proof. (1) \Rightarrow (2) This is clear.

 $(2) \Rightarrow (1)$ Assume that K is a proper submodule of M, and that $rm \in K$ for $m \in M$ and $r \in R - \sqrt{\operatorname{Ann}_R(M)}$. Then, there exists $k \in K$ such that $rm \in Rk$. Since Rk is an n-submodule, $m \in Rk \subseteq K$. Thus, K is an n-submodule.

Proposition 2.12. Let M be a finitely generated R-module. Then, the following statements are equivalent.

- (1) Every proper submodule of M is an n-submodule.
- (2) $\sqrt{\operatorname{Ann}_R(M)}$ is a maximal ideal of R.

Proof. (1) \Rightarrow (2) Since M is a finitely generated R-module, M has a maximal submodule N. So, $(N :_R M)$ is a maximal ideal of R. By Proposition 2.4, $(N :_R M) \subseteq \sqrt{\operatorname{Ann}_R(M)}$. Therefore, $\sqrt{\operatorname{Ann}_R(M)}$ is a maximal ideal of R.

 $(2) \Rightarrow (1)$ Let $\sqrt{\operatorname{Ann}_R(M)}$ be a maximal ideal of R and N be a proper submodule of M. Suppose that $rm \in N$, where $r \in R - \sqrt{\operatorname{Ann}_R(M)}$ and $m \in M$. Since $\sqrt{\operatorname{Ann}_R(M)}$ is a maximal ideal of R, $\operatorname{Ann}_R(M) + \langle r \rangle = R$. Hence, there exist $s \in \operatorname{Ann}_R(M)$ and $t \in R$ such that s + tr = 1. So, $m = sm + trm = trm \in N$. It follows that N is an n-submodule.

Corollary 2.9. Let $Ann_R(M)$ be a maximal ideal of R. Then, every proper submodule of M is an n-submodule.

Corollary 2.10. Let M be a vector space. Then, every proper submodule of M is an n-submodule.

Theorem 2.6. Let M be an R-module. Every proper submodule of M is an n-submodule if and only if for every submodule N of M and for every $a \in R - \sqrt{\operatorname{Ann}_R(M)}$, aN = N holds.

Proof. \Rightarrow) Suppose that every proper submodule of M is an n-submodule, and $a \in R - \sqrt{\operatorname{Ann}_R(M)}$. We show that aM = M. If $aM \neq M$, then aM is an n-submodule. Since $am \in aM$ for all $m \in M$, $m \in aM$ and so aM = M, which is a contradiction. Similarly, it can be shown that aN = N for every submodule N of M.

 \Leftarrow) Let N be a proper submodule of M, and $am \in N$ for $a \in R$ and $m \in M$, where $a \notin \sqrt{\operatorname{Ann}_R(M)}$. Since Rm = a(Rm), there exists $r \in R$ such that m = ram. It follows that $m \in N$.

An *R*-module *M* is called a *comultiplication module* if for every submodule *N* of *M*, there exists an ideal *I* of *R* such that $N = (0:_M I)$, or equivalently, $N = (0:_M \operatorname{Ann}_R(N))$, see [2].

Proposition 2.13. Let M be a comultiplication module and

$$\sqrt{\operatorname{Ann}_R(M)} = \operatorname{Ann}_R(M).$$

If M has an n-submodule, then the following statements are true.

(1) Every n-submodule is maximal.

(2) $\langle 0 \rangle$ is an *n*-submodule.

(3) M is a simple module.

Proof. (1) Let N be an n-submodule and K be a proper submodule of M such that $N \subseteq K$. Then, $\operatorname{Ann}_R(M) \subset \operatorname{Ann}_R(K)$. So, there exists some a in $\operatorname{Ann}_R(K) - \sqrt{\operatorname{Ann}_R(M)}$. Suppose that $k \in K$. Then, $ak = 0 \in N$ and so, $k \in N$. Therefore, N is a maximal submodule of M.

(2) Let N be an n-submodule of M. By (1), N is a maximal submodule of M. So, $(N:_R M)$ is a maximal ideal of R. Hence, $\sqrt{\operatorname{Ann}_R(M)}$ is a maximal ideal of R. It follows that $\langle 0 \rangle$ is an n-submodule.

(3) By (1) and (2), $\langle 0 \rangle$ is a maximal submodule of M. Therefore, M is simple. \Box

Proposition 2.14. Suppose that N_1, N_2, \ldots, N_n are primary submodules of M such that the radicals $\sqrt{(N_i :_R M)}$ are not comparable. Then, $\bigcap_{i=1}^n N_i$ is an *n*-submodule if and only if N_i is an *n*-submodule for each $i \in \{1, 2, \ldots, n\}$.

Proof. ⇒) Let $am \in N_k$ for $a \in R$ and $m \in M$, where $a \notin \sqrt{\operatorname{Ann}_R(M)}$ and $1 \leqslant k \leqslant n$. Since the radicals $\sqrt{(N_i :_R M)}$ are not comparable, there exists some r in $\bigcap_{i=1, i \neq k}^n \sqrt{(N_i :_R M)} - \sqrt{(N_k :_R M)}$. So, there exists $t \in \mathbb{N}$ such that $r^t am \in \bigcap_{i=1}^n N_i$. It follows that $r^t m \in N_k$ for some k. Thus, $m \in N_k$.

 \Leftarrow) This follows from [1], Proposition 2.3 (ii).

253

Theorem 2.7. Let $\{P_{\alpha}\}_{\alpha \in I}$ be a family of prime submodules of M. If $\bigcap_{\alpha \in I} P_{\alpha}$ is an *n*-submodule, then $\bigcap_{\alpha \in I} P_{\alpha}$ is a prime submodule.

Proof. Let $am \in \bigcap_{\alpha \in I} P_{\alpha}$, where $a \in R$ and $m \in M$. If $a \notin \left(\bigcap_{\alpha \in I} P_{\alpha} : M\right)$, then $a \notin \sqrt{\operatorname{Ann}_{R}(M)}$. Since $\bigcap_{\alpha \in I} P_{\alpha}$ is an *n*-submodule, $m \in \bigcap_{\alpha \in I} P_{\alpha}$. It follows that $\bigcap_{\alpha \in I} P_{\alpha}$ is a prime submodule.

Theorem 2.8. Let $\{P_{\alpha}\}_{\alpha \in I}$ be a family of primary submodules of M. If $\bigcap_{\alpha \in I} P_{\alpha}$ is an *n*-submodule, then $\bigcap_{\alpha \in I} P_{\alpha}$ is a primary submodule.

Proof. Let $am \in \bigcap_{\alpha \in I} P_{\alpha}$, where $a \in R$ and $m \in M$. If $a \notin \sqrt{\left(\bigcap_{\alpha \in I} P_{\alpha} : M\right)}$, then $a \notin \sqrt{\operatorname{Ann}_{R}(M)}$. Since $\bigcap_{\alpha \in I} P_{\alpha}$ is an *n*-submodule, $m \in \bigcap_{\alpha \in I} P_{\alpha}$. It follows that $\bigcap_{\alpha \in I} P_{\alpha}$ is a primary submodule.

Lemma 2.4. Let M be a finitely generated R-module and N be an n-submodule. Then, rad(N) is an n-submodule if and only if rad(N) is a prime submodule.

 $Proof. \Rightarrow$ By Theorem 2.7, rad(N) is a prime submodule.

⇐) Suppose that $am \in \operatorname{rad}(N)$, where $a \notin \sqrt{\operatorname{Ann}_R(M)}$ and $m \in M$. Since N is an n-submodule, by Proposition 2.4, $(N :_R M) \subseteq \sqrt{\operatorname{Ann}_R(M)}$. This implies that $\sqrt{(N :_R M)} = \sqrt{\operatorname{Ann}_R(M)}$. Since $(\operatorname{rad}(N) : M) = \sqrt{(N :_R M)} = \sqrt{\operatorname{Ann}_R(M)}$, $m \in \operatorname{rad}(N)$. Hence, $\operatorname{rad}(N)$ is an n-submodule.

Proposition 2.15. Let M and K be R-modules such that $M \subseteq K$ and $\sqrt{\operatorname{Ann}_R(M)} = \sqrt{\operatorname{Ann}_R(K)}$. If N is an n-submodule of M, then there exists an n-submodule L of K such that $N = L \cap M$.

Proof. Put

$$\mathfrak{A} = \{T \colon T \leqslant K \text{ and } T \cap M = N\}.$$

Since $N \in \mathfrak{A}$, \mathfrak{A} is not empty. By using Zorn's lemma, we find a maximal element L of \mathfrak{A} . Now, we show that L is an n-submodule of K. Suppose that $rk \in L$ for some $r \in R - \sqrt{\operatorname{Ann}_R(K)}$ and $k \in K$. Assume that $k \notin L$. Since L is a maximal element of \mathfrak{A} , $(L + \langle k \rangle) \cap M \nsubseteq N$. So, there exist $l \in L$, $m \in M - N$ and $s \in R$ such that l + sk = m. Since $rl + rsk = rm \in N$ and $r \notin \sqrt{\operatorname{Ann}_R(M)}$, $m \in N$, which is a contradiction. Therefore, L is an n-submodule.

Proposition 2.16. Let N be an n-submodule, and L be a prime submodule of an R-module M such that $(L:_R M) \subseteq \sqrt{\operatorname{Ann}_R(M)}$. Then, $N \cap L$ is an n-submodule.

Lemma 2.5. Let M be an R-module. Suppose that K is an n-submodule of M, L is a primary submodule of M, and $K \notin L$. Then, $K \cap L$ is an n-submodule of M if and only if $(L :_R M) \subseteq \sqrt{\operatorname{Ann}_R(M)}$.

Proof. Let $K \cap L$ be an *n*-submodule of M. Since $K \not\subseteq L$, there exists some k in K - L. Assume that $r \in (L :_R M) - \sqrt{\operatorname{Ann}_R(M)}$. Then, $rk \in K \cap L$ and since $K \cap L$ is an *n*-submodule, $k \in K \cap L \subseteq L$, which is a contradiction. So, $(L :_R M) \subseteq \sqrt{\operatorname{Ann}_R(M)}$. Now, for the converse, let $(L :_R M) \subseteq \sqrt{\operatorname{Ann}_R(M)}$. By Theorem 2.2, L is an *n*-submodule. By [1], Proposition 2.3 (ii), $K \cap L$ is an *n*-submodule of M.

Proposition 2.17. Let N be an n-submodule and L be an r-submodule of an R-module M. Then, $N \cap L$ is an r-submodule.

Proposition 2.18. If $\langle 0 \rangle$ is the only *r*-submodule of an *R*-module *M*, then $\langle 0 \rangle$ is an *n*-submodule.

Proof. Let rm = 0 for $r \in R - \sqrt{\operatorname{Ann}_R(M)}$ and $m \in M$. Then, $r \notin \operatorname{Ann}_R(M)$ and hence by [7], Corollary 1, $\operatorname{Ann}_M(r) = \langle 0 \rangle$. Since $\langle 0 \rangle$ is an *r*-submodule, it follows that m = 0. Therefore, $\langle 0 \rangle$ is an *n*-submodule.

Proposition 2.19. Let M be an R-module, and S be a multiplicative closed subset of R such that $R - \sqrt{\operatorname{Ann}_R(M)} \subseteq S$. If S^* is an S-closed subset of M and N is a submodule of M such that $N \cap S^* = \emptyset$, then there exists an n-submodule L of M such that $N \subseteq L$ and $L \cap S^* = \emptyset$.

Proof. Put $\Omega = \{L: N \subseteq L \leq M; L \cap S^* = \emptyset\}$. Since $N \in \Omega$, Ω is a nonempty set and by Zorn's lemma, it has a maximal element like L. Since $L \cap S^* = \emptyset$, L is a proper submodule of M. Assume that L is not an n-submodule. Then, there exist $r \in R - \sqrt{\operatorname{Ann}_R(M)}$ and $m \in M - L$ such that $rm \in L$. Since L is maximal in Ω and $L \subsetneq (L :_M r)$, we deduce that $(L :_M r) \notin \Omega$. So, there exists $y \in S^*$ such that $ry \in L$. Now, since S^* is S-closed and $r \in S$, $ry \in L \cap S^*$, which is contradiction. Therefore, L is an n-submodule.

Proposition 2.20. Let N be a submodule of an R-submodule of M. Then, N is an n-submodule of M if and only if N[x] is an n-submodule of M[x].

Proof. Let N be an n-submodule of M. By [1], Proposition 2.41, N[x] is an n-submodule of M[x]. Now, let N[x] be an n-submodule of M[x] and $rm \in N$ for $r \in R - \sqrt{\operatorname{Ann}_R(M)}$ and $m \in M$. Then, $rm \in N[x]$ and since N[x] is an n-submodule, $m \in N[x]$. Therefore, $m \in N$ and so, N is an n-submodule.

Proposition 2.21. Suppose that $R = R_1 \times R_2 \times \ldots \times R_n$ and $M = M_1 \times M_2 \times \ldots \times M_n$, where M_i is a nonzero R_i -module for $1 \le i \le n$ and $n \ge 2$. Then, M has no *n*-submodules.

Proof. Assume that N is an n-submodule of M. Since $N \neq M$, there exists j, $1 \leq j \leq n$, such that $(0, \ldots, 0, \underbrace{m}_{j\text{th}}, 0, \ldots, 0) \in M - N$. Then,

$$(1,\ldots,1,\underbrace{0}_{j\text{th}},1,\ldots,1)(0,\ldots,0,\underbrace{m}_{j\text{th}},0,\ldots,0) \in N.$$

So, $(1, \ldots, 1, \underbrace{0}_{j\text{th}}, 1, \ldots, 1) \in R - \sqrt{\operatorname{Ann}_R(M)}$ and since N is an n-submodule, $(0, \ldots, 0, \underbrace{m}_{j\text{th}}, 0, \ldots, 0) \in N$, which is a contradiction.

Let M be a module over a commutative ring R, and N be a proper submodule of M. We say that N has the *star property* if $a \in R$, $m \in M$, $am \in N$ and $a \notin \operatorname{Ann}_R(M)$ imply $m \in N$.

Proposition 2.22. Let N be a submodule of an R-module M that has the star property. Then, N is an n-submodule.

Proposition 2.23. Let N be a submodule of an R-module M that has the star property. Then, $(N :_R M) = \operatorname{Ann}_R(M)$.

Proof. Assume that $(N :_R M) \not\subseteq \operatorname{Ann}_R(M)$. Then, there exists $r \in (N :_R M)$ such that $r \notin \operatorname{Ann}_R(M)$. Thus, $rM \subseteq N$ and since N is an n-submodule, we conclude that N = M, a contradiction. Hence, $(N :_R M) \subseteq \operatorname{Ann}_R(M)$. We have $\operatorname{Ann}_R(M) \subseteq (N :_R M)$. So, $(N :_R M) = \operatorname{Ann}_R(M)$.

Lemma 2.6. Let N be a submodule of an R-module M that has the star property. Then, N is a prime submodule.

Proof. The proof is straightforward.

Lemma 2.7. Let N be a submodule of an R-module M that has the star property. Then, $Ann_R(M)$ is a prime ideal.

Proof. By Proposition 2.23, $(N :_R M) = \operatorname{Ann}_R(M)$ and by Lemma 2.6, N is a prime submodule. Therefore, $(N :_R M)$ is a prime ideal. Hence, $\operatorname{Ann}_R(M)$ is a prime ideal.

Lemma 2.8. Let N be a submodule of an R-module M that has the star property. If K is an n-submodule, then the following statements are true.

- (1) For every $a \in R$ and $m \in M$, $am \in K$ and $a \notin \operatorname{Ann}_R(M)$ imply $m \in K$.
- (2) K is a prime submodule.
- (3) $(K:M) = \operatorname{Ann}_R(M).$

3. Generalization of *n*-submodules

In this section, we introduce a new class of submodules, namely, the class of G.n-submodules. The notion of G.n-submodule is a generalization of the notion of n-submodule. We present some characterizations of G.n-submodules, and we examine the way the aforementioned notions are related to each other.

Definition 3.1. Let M be a module over a commutative ring R. A proper submodule N of M is said to be a generalization of n-submodule (G.n-submodule) if for $a \in R$ and $m \in M$, $am \in N$ and $a \notin \sqrt{\operatorname{Ann}_R(N)}$ imply $m \in N$.

Example 3.1.

- (1) Suppose that R is a ring that has only one prime ideal. Then, every proper submodule of the R-module R is a G.n-submodule.
- (2) As a \mathbb{Z} -module, \mathbb{Z}_6 does not have any *G.n*-submodules.
- (3) In \mathbb{Z}_4 as a \mathbb{Z} -module, $\langle \overline{2} \rangle$ is a *G.n*-submodule.
- (4) In $\mathbb{Z}_4 \bigoplus \mathbb{Z}$ as a \mathbb{Z} -module, $\langle \overline{2} \rangle \bigoplus \langle 0 \rangle$ is a *G.n*-submodule.

Proposition 3.1. Every *n*-submodule is a *G*.*n*-submodule.

It is clear that in general, a G.n-submodule is not necessarily an n-submodule, see Example 3.1 (4).

Lemma 3.1. In a torsion-free R-module, the notions of n-submodule and G.n-submodule coincide.

Lemma 3.2. Let M be an R-module, and 0 be an n-submodule. Then, the notions of n-submodule and G.n-submodule coincide.

Proof. Let N be a G.n-submodule and $am \in N$ for $a \in R$ and $m \in M$ with $a \notin \sqrt{\operatorname{Ann}_R(M)}$. If $a \notin \sqrt{\operatorname{Ann}_R(N)}$, then $m \in N$. If $a \in \sqrt{\operatorname{Ann}_R(N)}$, then there exists $k \in \mathbb{N}$ such that $a^k \in \operatorname{Ann}_R(N)$. So, $a^{k+1}m = 0$. Since 0 is an n-submodule, m = 0. Therefore, $m \in N$. This implies that N is an n-submodule.

Theorem 3.1. Let M be an R-module, and N be a proper submodule of M. Then, the following statements are equivalent.

- (1) N is a G.n-submodule of M.
- (2) $N = (N :_M a)$ for every $a \notin \sqrt{\operatorname{Ann}_R(N)}$.
- (3) For any ideal I of R and any submodule K of M, $IK \subseteq N$ with $I \not\subseteq \sqrt{\operatorname{Ann}_R(N)}$ implies $K \subseteq N$.

Proof. (1) \Rightarrow (2) Let N be a G.n-submodule of M. For every $a \in R$, the inclusion $N \subseteq (N :_M a)$ always holds. Let $a \notin \sqrt{\operatorname{Ann}_R(N)}$ and $m \in (N :_M a)$. Then, $am \in N$. Since N is a G.n-submodule, we conclude that $m \in N$ and thus, $N = (N :_M a)$.

(2) \Rightarrow (3) Suppose that $IK \subseteq N$ for an ideal I of R and a submodule K of M, where $I \not\subseteq \sqrt{\operatorname{Ann}_R(N)}$. Since $I \not\subseteq \sqrt{\operatorname{Ann}_R(N)}$, there exists $a \in I$ such that $a \notin \sqrt{\operatorname{Ann}_R(N)}$. Then, $aK \subseteq N$ and so $K \subseteq (N :_M a) = N$, by (2).

 $(3) \Rightarrow (1)$ Let $am \in N$ for $a \in R$ and $m \in M$, where $a \notin \sqrt{\operatorname{Ann}_R(N)}$. To complete the proof of the desired result, it is sufficient to take I := Ra and K := Rm.

Proposition 3.2.

- (1) If N is a G.n-submodule of M, then $(N :_R M) \subseteq \sqrt{\operatorname{Ann}_R(N)}$.
- (2) If N is a G.n-submodule of M, then $(N:_R M) \subseteq \sqrt{\operatorname{Ann}_R(M)}$.
- (3) Let $\{N_i\}_{i \in I}$ be a nonempty set of G.n-submodules of an R-module M. Then, $\bigcap_{i \in I} N_i$ is a G.n-submodule.
- (4) Let {N_i}_{i∈I} be a finite chain of G.n-submodules of a finitely generated R-module M. Then, U_{i∈I} N_i is a G.n-submodule of M.

Proof. (1) Assume that N is a G.n-submodule, but $(N :_R M) \not\subseteq \sqrt{\operatorname{Ann}_R(N)}$. Then, there exists $r \in (N :_R M)$ such that $r \notin \sqrt{\operatorname{Ann}_R(N)}$. Thus, $rM \subseteq N$ and since N is a G.n-submodule, we conclude that N = M, a contradiction. Hence, $(N :_R M) \subseteq \sqrt{\operatorname{Ann}_R(N)}$.

(2) By (1), $(N :_R M) \subseteq \sqrt{\operatorname{Ann}_R(N)}$. Let $r \in (N :_R M)$. Then, $rM \subseteq N$. Since N is a G.n-submodule, $r \in \sqrt{\operatorname{Ann}_R(N)}$. Therefore, there exists $k \in \mathbb{N}$ such that $r^k \in \operatorname{Ann}_R(N)$. Hence, $r^{(k+1)}M = 0$. This implies that $r \in \sqrt{\operatorname{Ann}_R(M)}$.

(3) Let $rm \in \bigcap_{i \in I} N_i$ for $r \in R$ and $m \in M - \bigcap_{i \in I} N_i$. Then $m \notin N_j$ for some $j \in I$. Since N_j is a *G.n*-submodule of *M*, we obtain $r \in \sqrt{\operatorname{Ann}_R N_j} \subseteq \sqrt{\operatorname{Ann}_R (\bigcap_{i \in I} N_i)}$. So, $\bigcap_{i \in I} N_i$ is a *G.n*-submodule. (4) Let $rm \in \bigcup_{i \in I} N_i$ for $r \in R$ and $m \in M - \bigcup_{i \in I} N_i$. Then, $m \notin N_i$ for any $i \in I$. Since N_i is a *G.n*-submodule for any $i \in I$, we conclude that $r \in \sqrt{\operatorname{Ann}_R(N_i)}$ and thus, the fact that I is a finite set implies $r \in \sqrt{\operatorname{Ann}_R(\bigcup_{i \in I} N_i)}$. Therefore, $\bigcup_{i \in I} N_i$ is a *G.n*-submodule.

Proposition 3.3. Let K and L be submodules of M, and I be an ideal of R such that $I \not\subseteq \sqrt{\operatorname{Ann}_R(K)} \cup \sqrt{\operatorname{Ann}_R(L)}$. Then, the following statements are true.

- (1) If K and L are G.n-submodules of M with IK = IL, then K = L.
- (2) If IK is a G.n-submodule of M, then IK = K.

Proof. (1) Since K is a G.n-submodule and $IL \subseteq K$, Theorem 3.1 shows that $L \subseteq K$. Likewise, $K \subseteq L$.

(2) Since IK is a G.n-submodule and $IK \subseteq IK$, we conclude that $K \subseteq IK$. This completes the proof.

By Lemma 3.1, the next lemmas provide a useful characterization of modules that have G.n-submodules.

Lemma 3.3. Let M be a torsion-free R-module. Then, the zero submodule is a G.n-submodule of M.

Lemma 3.4. Let M be a multiplication R-module.

- (1) If M is torsion-free, then the zero submodule is the only G.n-submodule of M.
- (2) If $\operatorname{Ann}_R(M)$ is a radical ideal, then the zero submodule is the only G.n-submodule of M.

Proposition 3.4. Let N be a proper submodule of M. Then, N is a G.n-submodule if and only if for every $m \in M$, $(N :_R m) = R$ or $(N :_R m) \subseteq \sqrt{\operatorname{Ann}_R(N)}$.

Proof. Assume that N is a G.n-submodule. If $(N :_R m) \not\subseteq \sqrt{\operatorname{Ann}_R(N)}$, then there exists $r \in (N :_R m) - \sqrt{\operatorname{Ann}_R(N)}$. So, $rm \in N$, where $r \notin \sqrt{\operatorname{Ann}_R(N)}$. Since N is a G.n-submodule, then $m \in N$. Hence, $(N :_R m) = R$. Conversely, let $rm \in N$ for $r \in R$ and $m \in M$, where $r \notin \sqrt{\operatorname{Ann}_R(N)}$. Then, $r \in (N :_R m) - \sqrt{\operatorname{Ann}_R(N)}$. By the assumption, $(N :_R m)$ and therefore, $m \in N$.

Corollary 3.1. Let N be a proper submodule of M. Then, N is a G.n-submodule if and only if for every $m \in M - N$, $(N :_R m) \subseteq \sqrt{\operatorname{Ann}_R(N)}$.

Recall that $r \in R$ is said to be a zero divisor of an *R*-module *M* if there exists a nonzero element $m \in M$ such that rm = 0. **Theorem 3.2.** Let M be an R-module and N be a submodule of M. Then, N is a G.n-submodule if and only if every zero divisor of the R-module $\frac{M}{N}$ is in $\sqrt{\operatorname{Ann}_R(N)}$.

Proof. Let N be a G.n-submodule and r be a zero divisor of $\frac{M}{N}$. Then, there exists $m \in M - N$ such that $rm \in N$. Since N is a G.n-submodule, $r \in \sqrt{\operatorname{Ann}_R(N)}$. For the converse, assume that $rm \in N$ for $r \in R$ and $m \in M$, where $m \notin N$. Then, r is a zero divisor of $\frac{M}{N}$ and thus $r \in \sqrt{\operatorname{Ann}_R(N)}$.

Proposition 3.5. A prime submodule N of M is a G.n-submodule if and only if $(N :_R M) \subseteq \sqrt{\operatorname{Ann}_R(N)}$.

Proof. Suppose that N is a prime submodule of M. If N is a G.n-submodule, then by Proposition 3.2(1), $(N:_R M) \subseteq \sqrt{\operatorname{Ann}_R(N)}$. For the converse, assume that $(N:_R M) \subseteq \sqrt{\operatorname{Ann}_R(N)}$. Now, we show that N is a G.n-submodule. Let $am \in N$ and $a \notin \sqrt{\operatorname{Ann}_R(N)}$ for $a \in R$ and $m \in M$. Since N is a prime submodule and $a \notin (N:_R M)$, we find that $m \in N$ and thus N is a G.n-submodule.

Lemma 3.5. Let N be a G.n-submodule of an R-module M such that $(N :_R M) = \sqrt{\operatorname{Ann}_R(N)}$. Then, N is a prime submodule.

Proof. The proof is straightforward.

Proposition 3.6. Every *G.n*-submodule is an *r*-submodule.

Proof. Let N be a G.n-submodule of M, and $am \in N$ for some $a \in R$ and $m \in M$, with $\operatorname{ann}_M(a) = 0$. Assume that $a \in \sqrt{\operatorname{Ann}_R(N)}$. Then, there exists $n \in \mathbb{N}$ such that $a^n N = 0$. Choose the smallest positive integer n such that $a^n N = 0$. Then, $a^{n-1}N \neq 0$. Since $a(a^{n-1}N) = a^n N = 0, a^{n-1}N \subseteq \operatorname{ann}_M(a) = 0$ and so, $a^{n-1}N = 0$, which is a contradiction. Thus, $a \notin \sqrt{\operatorname{Ann}_R(N)}$. Since N is a G.n-submodule and $am \in N$, we conclude that $m \in N$. Hence, N is an r-submodule of M. \Box

Lemma 3.6. Let M and N be R-modules such that $N \subseteq M$. If L is a G.n-submodule of N and N is a G.n-submodule of M, then L is a G.n-submodule of M.

Proof. Let $am \in L$ for $a \in R - \sqrt{\operatorname{Ann}_R(L)}$ and $m \in M$. Since N is a G.n-submodule of M and $\sqrt{\operatorname{Ann}_R(N)} \subseteq \sqrt{\operatorname{Ann}_R(L)}$, then $m \in N$. Since L is a G.n-submodule of N and $m \in N$, then $m \in L$.

Proposition 3.7. Suppose that $R = R_1 \times R_2 \times \ldots \times R_n$ and $M = M_1 \times M_2 \times \ldots \times M_n$, where M_i is a nonzero R_i -module for $1 \leq i \leq n$. If N is a G.n-submodule of M, then there exists $j, 1 \leq j \leq n$, such that $N = N_1 \times N_2 \times \ldots \times N_n$, N_j is a G.n-submodule and for any i with $i \neq j$, $N_i = 0$. Proof. Assume that N is a G.n-submodule. Since $N \neq M$, there exists j, $1 \leq j \leq n$, such that $(0, \ldots, 0, \underbrace{m}_{j\text{th}}, 0, \ldots, 0) \in M - N$. Then,

$$(1,\ldots,1,\underbrace{0}_{j\text{th}},1,\ldots,1)(0,\ldots,0,\underbrace{m}_{j\text{th}},0,\ldots,0) \in N.$$

So, $(1, \ldots, 1, \underbrace{0}_{j\text{th}}, 1, \ldots, 1) \in \sqrt{\operatorname{Ann}_R(N)}$. This implies that $N = 0 \times \ldots \times 0 \times \underbrace{K}_{j\text{th}} \times 0 \times \ldots \times 0$, where K is a submodule of M_j . We have $\operatorname{Ann}_R(N) = R_1 \times \ldots \times R_{j-1} \times \operatorname{Ann}_{R_j}(K) \times R_{j+1} \times \ldots \times R_n$. Assume that $am \in K$ for $a \in R_j - \sqrt{\operatorname{Ann}_{R_j}(K)}$ and $m \in M_j$. Since $(0, \ldots, 0, \underbrace{a}_{j\text{th}}, 0, \ldots, 0)(0, \ldots, 0, \underbrace{m}_{j\text{th}}, 0, \ldots, 0) \in N$, $(0, \ldots, 0, \underbrace{m}_{j\text{th}}, 0, \ldots, 0) \in N$. It follows that $m \in K$. Hence, K is a G.n-submodule of M_j . \Box

Proposition 3.8. Let M be an R-module. If N is a G.n-submodule of M such that $(N :_R M) \neq \operatorname{Ann}_R(N)$, then $(N :_M \operatorname{Ann}_R(N)^k)$ is a G.n-submodule of M for $k \in \mathbb{N}$.

Proof. We have $(\operatorname{Ann}_R(N))^{k+1} \subseteq \operatorname{Ann}_R((N :_M (\operatorname{Ann}_R(N))^k)) \subseteq \operatorname{Ann}_R(N).$ Let $am \in (N :_M (\operatorname{Ann}_R(N))^k)$ for $a \in R$ and $m \in M$, with

$$a \notin \sqrt{\operatorname{Ann}_R((N:_M (\operatorname{Ann}_R(N))^k)))}.$$

Then, $a(\operatorname{Ann}_R(N))^k m \subseteq N$ and since N is a G.n-submodule, $(\operatorname{Ann}_R(N))^k m \subseteq N$. Hence, $m \in (N :_M (\operatorname{Ann}_R(N))^k)$.

Proposition 3.9. Let M be an R-module and R be an Artinian ring. If every proper submodule of M is a G.n-submodule, then every ascending chain of its cyclic submodules stops.

Proof. Let $Rm_1 \subset Rm_2 \subset Rm_3 \subset \ldots \subset Rm_k \subset \ldots$ be a chain of cyclic submodules of M. Then

$$m_1 = r_2 m_2 = r_2 r_3 m_3 = \ldots = r_2 \ldots r_k m_k = \ldots,$$

for $r_1, r_2, \ldots \in R$. Since Rm_i is a G.n-submodule, $r_i \in \sqrt{\operatorname{Ann}_R(m_{i-1})}$. On the other hand, since $\sqrt{\operatorname{Ann}_R(m_i)} \subseteq \sqrt{\operatorname{Ann}_R(m_{i-1})}$, we conclude the existence of $n \in \mathbb{N}$ such that $\sqrt{\operatorname{Ann}_R(m_i)} = \sqrt{\operatorname{Ann}_R(m_n)}$ for all $n \leq i$. So, $m_1 = r_2 \ldots r_n r_{n+1} m_{n+1} = 0$. It follows that $m_i = 0$ for all $i \in \mathbb{N}$, which is a contradiction. Therefore, every ascending chain of cyclic submodules of M stops.

Acknowledgement. The authors would like to thank the referee for his or her helpful recommendations that enhanced the presentation of this paper.

References

- [1] M. Ahmadi, J. Moghaderi: n-submodules. Iran. J. Math. Sci. Inform. 17 (2022), 177–190. Zb. MR doi
- [2] H. Ansari-Toroghy, F. Farshadifar: The dual notion of multiplication modules. Taiwanese J. Math. 11 (2007), 1189-1201. zbl MR doi
- [3] M. F. Atiyah, I. G. Macdonald: An Introduction to Commutative Algebra. Addision-Wesley, Reading, 1969. zbl MR zbl MR doi
- [4] A. Barnard: Multiplication modules. J. Algebra 71 (1981), 174–178.
- [5] Z. A. El-Bast, P. F. Smith: Multiplication modules. Commun. Algebra 16 (1988), 755-779. zbl MR doi
- [6] N. Khalid Abdullah: Irreducible submoduls and strongly irreducible submodules. Tikrit J. Pure Sci. 17 (2012), 219-224.
- [7] S. Koc, Ü. Tekir: r-submodules and sr-submodules. Turk. J. Math. 42 (2018). 1863-1876.
- [8] C. Lu: Prime submodules of modules. Comment. Math. Univ. St. Pauli 33 (1984), 61–69. zbl MR

zbl MR doi

MR do

MR

 \mathbf{zbl}

- [9] I. G. Macdonald: Secondary representation of modules over a commutative ring. Convegno di Algebra Commutativa. Symposia Mathematica 11. Academic Press, London, 1973, pp. 23-43. zbl MR
- [10] R. L. McCasland, M. E. Moore: Prime submodules. Commun. Algebra 20 (1992), 1803-1817. zbl MR doi
- [11] R. L. McCasland, M. E. Moore, P. F. Smith: On the spectrum of a module over commutative ring. Commun. Algebra 25 (1997), 79–103. $_{\rm zbl}$
- [12] R. Mohamadian: r-ideals in commutative rings. Turk. J. Math. 39 (2015), 733–749.
- [13] M. E. Moore, S. J. Smith: Prime and radical submodules of modules over commutative rings. Commun. Algebra 30 (2002), 5037-5064. zbl MR doi
- [14] U. Tekir, S. Koc, K. H. Oral: n-ideals of commutative rings. Filomat 31 (2017), 2933-2941. zbl MR doi

Authors' addresses: Somayeh Karimzadeh (corresponding author), Vali-e-Asr University of Rafsanjan, Imam Khomeini Square, P. O. Box 7718897111, Rafsanjan, Iran, e-mail: karimzadeh@vru.ac.ir; Javad Moghaderi, University of Hormozgan, Minab Road, 7916193145, Bandar Abbas, Iran, e-mail: j.moghaderi@hormozgan.ac.ir.