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Abstract. We investigate some properties of n-submodules. More precisely, we find
a necessary and sufficient condition for every proper submodule of a module to be an
n-submodule. Also, we show that if M is a finitely generated R-module and

√

AnnR(M)
is a prime ideal of R, then M has n-submodule. Moreover, we define the notion of
G.n-submodule, which is a generalization of the notion of n-submodule. We find some
characterizations of G.n-submodules and we examine the way the aforementioned notions
are related to each other.
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1. Introduction and preliminaries

Throughout this paper, R denotes a commutative ring with identity, and all mod-

ules are unitary. The concept of prime ideal is important in commutative algebra. As

defined by Mohamadian in [12], an r-ideal of R is a proper ideal I with the property

that a, b ∈ R, ab ∈ I and annM (a) = 0 imply b ∈ I. Tekir et al. in [14] defined

n-ideals and determined some of their properties. According to their results, any

n-ideal is an r-ideal.

In module theory, prime submodules are defined similar to prime ideals in ring

theory and play an important role. Koc and Tekir in [7] defined r-submodules, while

Tekir et al. in [14] defined n-submodules. Ahmadi and Moghaderi in [1] found some

fundamental characteristics of n-submodules. For example, each n-submodule is also

an r-submodule. Also, if (N : M) ⊆
√

Ann(M) for a submodule N of M , then N is

a primary submodule if and only if it is an n-submodule.
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In this paper, we find some additional properties of n-submodules and define the

concept of G.n-submodule. We prove that

n-submodule⇒ G.n-submodule⇒ r-submodule.

Also, N, Z, and Q denote the set of natural numbers, the ring of integers, and the field
of rational numbers, respectively. If N is an R-submodule of M , the annihilator of

the R-module M
N
is defined to be AnnR

(
M
N

)
= (N :R M) = {r ∈ R : rM ⊆ N}. Fur-

thermore, the annihilator of M , denoted by AnnR(M), is (0 :R M). Suppose that I

is an ideal of R. We define the radical of I by
√
I = {a ∈ R : an ∈ I for some n ∈ N}.

A proper submodule N of M is called prime (primary) if rm ∈ N for r ∈ R and

m ∈ M implies that either m ∈ N or r ∈ (N :R M) (rn ∈ (N :R M) for some n ∈ N),
see [3], [8], [10], [11], and [13].

An R-module M is said to be a multiplication module if for each submodule N

of M , there exists an ideal I of R such that N = IM . Equivalently, M is a multi-

plication module if and only if N = (N :R M)M for each submodule N of M . We

refer the reader to [4] and [5] for more details.

The concepts of n-ideal and n-submodule were introduced in [14]. A proper ideal I

of R is said to be an n-ideal if the condition ab ∈ I with a /∈
√
0 for every a, b ∈ R

implies b ∈ I. Also, a proper submodule N of M is called an n-submodule if for

a ∈ R and m ∈ M , am ∈ N and a /∈
√

AnnR(M) imply m ∈ N .

In Section 2, we investigate some properties of n-submodules. We find a nec-

essary and sufficient condition for every proper submodule of a module to be an

n-submodule. Also, we show that if M is a finitely generated R-module and
√

AnnR(M) is a prime ideal of R, then M has an n-submodule.

In Section 3, we define the notion of G.n-submodule. We show that any

n-submodule is an G.n-submodule, and that any G.n-submodule is an r-submodule.

Also, we find some characterizations of this new notion.

2. n-submodules

LetM be a module over a commutative ring R. Recall that a proper submodule N

of M is said to be an n-submodule if for a ∈ R and m ∈ M , am ∈ N and a /∈
√

AnnR(M) imply m ∈ N .

Theorem 2.1. Let M be a torsion-free R-module, and N be a proper submodule

of M . Then, the following statements are equivalent.

(1) N is an n-submodule of M .

(2) aN = N ∩ aM for every a ∈ R−
√

AnnR(M).

(3) N = (N :M a) for every a ∈ R−
√

AnnR(M).
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P r o o f. (1) ⇒ (2) It is clear that aN ⊆ N ∩ aM . If am ∈ N ∩ aM , where

a ∈ R−
√

AnnR(M) and m ∈ M , then m ∈ N . So, aN = N ∩ aM .

(2) ⇒ (3) We know that N ⊆ (N :M a). If m ∈ (N :M a), then am ∈ N . So,

am ∈ N ∩ aM = aN . Now, since M is torsion-free, m ∈ N . Hence, N = (N :M a).

(3) ⇒ (1) If am ∈ N with a ∈ R −
√

AnnR(M) and m ∈ M , then m ∈
(N :M a) = N . �

Proposition 2.1. LetM be an R-module and N be an n-submodule ofM . Then,

N = (0 :M AnnR(N)) or
√

AnnR(N) =
√

AnnR(M).

P r o o f. Let
√

AnnR(N) 6=
√

AnnR(M). It is clear that N ⊆ (0 :M AnnR(N)).

Since
√

AnnR(M) ⊂
√

AnnR(N), there exists some a in
√

AnnR(N)−
√

AnnR(M).

Hence, a k ∈ N can be found such that ak ∈ AnnR(N). Let m ∈ (0 :M AnnR(N)).

Then, akm = 0 ∈ N . Since N is an n-submodule and ak /∈
√

AnnR(M), m ∈ N .

So, N = (0 :M AnnR(N)). �

Proposition 2.2. Let N be a proper submodule of a torsion-free R-module M .

If aN = N for any a ∈ R−
√

AnnR(M), then N is an n-submodule.

P r o o f. Let aN = N for any a ∈ R −
√

AnnR(M). Assume that am ∈ N for

a ∈ R −
√

AnnR(M) and m ∈ M . Hence, am ∈ aN by the hypothesis. Then,

since M is torsion-free, m ∈ N and, therefore, N is an n-submodule. �

Proposition 2.3. Let N be an n-submodule of an R-module M , and S be

a nonempty subset of R. Then (N :M S) equals M , or it is an n-submodule.

P r o o f. Let (N :M S) be a proper submodule of M . Also, suppose that am ∈
(N :M S) for a ∈ R−

√

AnnR(M) and m ∈ M . Then, aSm ⊆ N and thus Sm ⊆ N ,

becauseN is an n-submodule. Therefore,m ∈ (N :M S) and, consequently, (N :M S)

is an n-submodule. �

Corollary 2.1. Let N be an n-submodule of an R-moduleM and S be a nonemp-

ty subset of R. Then, S * (N :R M) if and only if (N :M S) is an n-submodule.

P r o o f. ⇒) This follows from Proposition 2.3.
⇐) Since (N :M S) is an n-submodule of M , (N :M S) is a proper submodule

of M . Therefore, SM * N . Thus, S * (N :R M). �
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Proposition 2.4 ([1], Proposition 2.3 (i)). If N is an n-submodule of M , then

(N :R M) ⊆
√

AnnR(M).

Theorem 2.2 ([1], Theorem 2.22). Let N be a submodule of M such that

(N :R M) ⊆
√

AnnR(M). Then, the following statements are equivalent.

(1) N is an n-submodule.

(2) N is a primary submodule of M .

Corollary 2.2. LetM be an R-module. Suppose that L is an n-submodule ofM

and thatK is a primary submodule ofM . If K ⊆ L, thenK is an n-submodule ofM .

By using the fact that every irreducible submodule of a Noetherian module is

a primary submodule (see [6], Proposition 1–17), we obtain the following corollary.

Corollary 2.3. Let M be a Noetherian R-module and N be an irreducible sub-

module ofM such that (N :R M) ⊆
√

AnnR(M). Then, N is an n-submodule ofM .

Proposition 2.5. If N is a primary R-submodule of M such that (N :R M) is

maximal in the set of all n-ideals, then N is an n-submodule of M .

P r o o f. Let am ∈ N for a ∈ R andm ∈ M , where a /∈
√

AnnR(M). By [14], The-

orem 2.11,
√
0 =

√

(N :R M). So, (N :R M) ⊆
√

(N :R M) =
√
0 ⊆

√

AnnR(M).

Therefore, by Theorem 2.2, N is an n-submodule of M . �

Lemma 2.1. Let M be an R-module. IfM has an n-submodule, then
√

AnnR(M)

is a prime ideal.

P r o o f. Let N be an n-submodule of M . Then, by Proposition 2.4, (N :R M) ⊆
√

AnnR(M). Since AnnR(M) ⊆ (N :R M), we conclude that
√

(N :R M) =
√

AnnR(M). By Theorem 2.2, N is a primary submodule. So,
√

(N :R M) is

a prime ideal of R. Therefore,
√

AnnR(M) is a prime ideal of R. �

Proposition 2.6. Let M be a finitely generated R-module. Then, M has an

n-submodule if and only if
√

AnnR(M) is a prime ideal of R.

P r o o f. ⇒) By Lemma 2.1,
√

AnnR(M) is a prime ideal of R.

⇐) Let
√

AnnR(M) be a prime ideal of R. Put

A = {L : L is a submodule of M, (L : M) ⊆
√

AnnR(M)}.

Since 0 ∈ A, we find that A 6= ∅. Moreover, since M is finitely generated, by using

Zorn’s lemma we find a maximal element K of A. Now, we show that K is an
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n-submodule of M . Suppose that rm ∈ K for some r ∈ R and m /∈ K. Since K is

a maximal element of A, (K + 〈m〉 : M) *
√

AnnR(M). For a ∈ (K + 〈m〉 : M) −
√

AnnR(M) we obtain aM ⊆ K + 〈m〉. This implies raM ⊆ K + 〈rm〉 ⊆ K.

So, ra ∈ (K : M) ⊆
√

AnnR(M). Since
√

AnnR(M) is a prime ideal of R and

a /∈
√

AnnR(M), r ∈
√

AnnR(M). Therefore, K is an n-submodule. �

Note that an r-submodule is a proper submodule N of M if for a ∈ R, m ∈ M ,

and whenever am ∈ N with annM (a) = 0, then m ∈ N , see [7].

Theorem 2.3. Let M be an R-module. Then, the following statements are

equivalent.

(1) 〈0〉 is an n-submodule.

(2) 〈0〉 is a primary submodule.
(3) Z(M) =

√

AnnR(M).

(4) Every r-submodule is an n-submodule.

P r o o f. It is clear that (1) ⇔ (2) ⇔ (3).

(3) ⇒ (4) Let N be an r-submodule and am ∈ N for a ∈ R −
√

AnnR(M).

Since Z(M) =
√

AnnR(M), annM (a) = 0. Hence, m ∈ N . Therefore, N is an

n-submodule.

(4) ⇒ (1) Since 〈0〉 is an r-submodule, it is an n-submodule. �

By [1], Proposition 2.21 and Theorem 2.3 ((3) ⇒ (4)), we obtain the following

corollary.

Corollary 2.4. Let M be an R-module such that Z(M) =
√

AnnR(M). Then,

the notions of r-submodule and n-submodule coincide.

Corollary 2.5. Let M be a torsion-free R-module. Then, the notions of

r-submodule and n-submodule coincide.

Proposition 2.7. In a finitely generated R-module, every n-submodule is con-

tained in a maximal n-submodule.

Lemma 2.2. Let R be an integral domain. Then, T (M) = M or T (M) is an

n-submodule.

P r o o f. Let T (M) 6= M and am ∈ T (M) for a ∈ R −
√

AnnR(M) and m ∈ M .

Then, there exists 0 6= b ∈ R such that bam = 0. Therefore, m ∈ T (M). �
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Remember that a nonempty subset S of R is multiplicatively closed precisely when

ab ∈ S for any a, b ∈ S. AssumeM is an R-module and S is a multiplicatively closed

subset of R. The fraction module at S is thus denoted by MS . It is worth noting

that MS is both an RS-module and an R-module. Let f : M → MS be the natural

homomorphism with f(m) = m/1 as its definition. If L is a submodule of MS , then

f−1(L) is always a submodule of M , which is known as the Lc of L contraction.

Theorem 2.4. Let M be an R-module and S be a multiplicative closed subset

of R. If 〈0〉 is an n-submodule of M , then the kernel of ϕ : M → MS is either 〈0〉
or M .

P r o o f. Suppose that there exists 0 6= y ∈ ker(ϕ). Then, there exists s ∈ S such

that sy = 0. Since 〈0〉 is an n-submodule and 0 6= y, s ∈ S∩
√

AnnR(M). Therefore,

MS = 0 and ker(ϕ) = M . �

Corollary 2.6. Let M be a finitely generated R-module. Then, 〈0〉 is an
n-submodule of M if and only if the kernel of ϕ : M → MS is either 〈0〉 or M for

every multiplicative closed subset S of R.

P r o o f. By [1], Lemma 2.32 and Theorem 2.4, the proof is straightforward. �

Theorem 2.5. Let M be a finitely generated R-module, S be a multiplicative

closed subset of R, and 〈0〉 be an n-submodule. If L is an n-submodule of MS ,

then Lc is an n-submodule of M .

P r o o f. Let rm ∈ Lc for r /∈
√

AnnR(M) and m ∈ M . Assume that r
1 ∈

√

AnnRS
(MS). Then, there exists n ∈ N such that

(
r
1

)n ∈ AnnRS
(MS). Since M is

a finitely generated R-module, there exists s ∈ S such that srnM = 〈0〉. Since 〈0〉
is an n-submodule and rn /∈

√

AnnR(M), s ∈
√

AnnR(M). Therefore, MS = 〈0〉,
which is a contradiction. Hence, r

1 /∈
√

AnnRS
(MS). We conclude that

r
1
m
1 ∈ L and

m
1 ∈ L. So, m ∈ Lc and Lc is an n-submodule of M . �

Proposition 2.8. Let M be an R-module, S be a multiplicative closed subset

of R, and L be a submodule of MS . If L
c is an n-submodule of M , then L is an

n-submodule of MS .

P r o o f. Let r
s1

m
s2

∈ L for r
s1

/∈
√

AnnRS
(MS) and

m
s2

∈ MS. It is clear that

r /∈
√

AnnR(M). Since rm ∈ Lc and Lc is an n-submodule of M , m
s2

∈ L. Hence, L

is an n-submodule of MS. �

Proposition 2.9. Let M1 and M2 be R-modules,
√

AnnR(M1) =
√

AnnR(M2)

and M = M1 ×M2.
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(1) If L1 is an n-submodule of M1, then L1 ×M2 is an n-submodule of M .

(2) If L1 is an n-submodule of M1 and L2 is an n-submodule of M2, then L1 × L2

is an n-submodule of M .

P r o o f. (1) Suppose that r(m1,m2) ∈ L1 × M2, where r /∈
√

AnnR(M1 ×M2)

for r ∈ R and (m1,m2) ∈ M1 ×M2. Since

√

AnnR(M1) =
√

AnnR(M2) =
√

AnnR(M1) ∩ AnnR(M2) =
√

AnnR(M1 ×M2),

we find that r /∈
√

AnnR(M1). It follows that m1 ∈ L1. So, (m1,m2) ∈ L1 ×M2.

(2) The proof is similar to that of part (1). �

In [9], Macdonald introduced the notion of secondary module. Recall that

a nonzero R-moduleM is said to be secondary if for every a ∈ R, the endomorphism

of M given by the multiplication by a is either surjective or nilpotent.

Lemma 2.3. If every proper submodule of M is an n-submodule, then M is

a secondary R-module.

P r o o f. Assume that r ∈ R and that ϕr : M → M is defined by ϕr(m) = rm.

If ϕr is not surjective, then Im(ϕr) 6= M . So, there exists m ∈ M − Im(ϕr). Thus,

ϕr(m) = rm ∈ Im(ϕr). Since Im(ϕr) is an n-submodule, r ∈
√

AnnR(M). This

implies that ϕr is nilpotent. �

Proposition 2.10. Let M be an R-module and
√

AnnR(M) be a finitely gen-

erated ideal of R. If every proper submodule of M is an n-submodule, then every

ascending chain of its cyclic submodules stops.

P r o o f. Let Rm1 ⊂ Rm2 ⊂ Rm3 ⊂ . . . ⊂ Rmk ⊂ . . . be a chain of cyclic

submodules of M . Then

m1 = r2m2 = r2r3m3 = . . . = r2 . . . rkmk = . . .

for r1, r2, . . . ∈ R. Since Rmi is an n-submodule, ri ∈
√

AnnR(M). On the other

hand, since
√

AnnR(M) is a finitely generated ideal of R, we conclude the existence

of n ∈ N such that (
√

AnnR(M))n ⊆ AnnR(M). So, m1 = r2 . . . rnrn+1mn+1 = 0.

It follows that mi = 0 for all i ∈ N, which is a contradiction. Therefore, every
ascending chain of cyclic submodules of M stops. �

Corollary 2.7. Let M be an R-module and
√

AnnR(M) be a finitely generated

ideal of R. Every proper submodule of M is an n-submodule if and only if every

ascending chain of cyclic submodules of M stops, and M is a secondary R-module.
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P r o o f. ⇒) This follows from Lemma 2.3 and Proposition 2.10.
⇐) By [1], Proposition 2.39, the proof is straightforward. �

Corollary 2.8. Let R be a Noetherian ring and M be a finitely generated

R-module. If M is a secondary R-module, then every proper submodule of M is an

n-submodule.

Proposition 2.11. Let M be an R-module. Then, the following statements are

equivalent.

(1) Every proper submodule of M is an n-submodule.

(2) Every proper cyclic submodule of M is an n-submodule.

P r o o f. (1) ⇒ (2) This is clear.

(2) ⇒ (1) Assume that K is a proper submodule of M , and that rm ∈ K for

m ∈ M and r ∈ R −
√

AnnR(M). Then, there exists k ∈ K such that rm ∈ Rk.

Since Rk is an n-submodule, m ∈ Rk ⊆ K. Thus, K is an n-submodule. �

Proposition 2.12. LetM be a finitely generated R-module. Then, the following

statements are equivalent.

(1) Every proper submodule of M is an n-submodule.

(2)
√

AnnR(M) is a maximal ideal of R.

P r o o f. (1) ⇒ (2) Since M is a finitely generated R-module, M has a maxi-

mal submodule N . So, (N :R M) is a maximal ideal of R. By Proposition 2.4,

(N :R M) ⊆
√

AnnR(M). Therefore,
√

AnnR(M) is a maximal ideal of R.

(2) ⇒ (1) Let
√

AnnR(M) be a maximal ideal of R and N be a proper submodule

of M . Suppose that rm ∈ N , where r ∈ R −
√

AnnR(M) and m ∈ M . Since
√

AnnR(M) is a maximal ideal of R, AnnR(M) + 〈r〉 = R. Hence, there exist

s ∈ AnnR(M) and t ∈ R such that s + tr = 1. So, m = sm + trm = trm ∈ N . It

follows that N is an n-submodule. �

Corollary 2.9. Let AnnR(M) be a maximal ideal of R. Then, every proper

submodule of M is an n-submodule.

Corollary 2.10. Let M be a vector space. Then, every proper submodule of M

is an n-submodule.

Theorem 2.6. Let M be an R-module. Every proper submodule of M is

an n-submodule if and only if for every submodule N of M and for every a ∈
R−

√

AnnR(M), aN = N holds.
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P r o o f. ⇒) Suppose that every proper submodule of M is an n-submodule, and

a ∈ R −
√

AnnR(M). We show that aM = M . If aM 6= M , then aM is an

n-submodule. Since am ∈ aM for all m ∈ M , m ∈ aM and so aM = M , which is

a contradiction. Similarly, it can be shown that aN = N for every submodule N

of M .

⇐) Let N be a proper submodule of M , and am ∈ N for a ∈ R and m ∈ M ,

where a /∈
√

AnnR(M). Since Rm = a(Rm), there exists r ∈ R such that m = ram.

It follows that m ∈ N . �

An R-module M is called a comultiplication module if for every submodule N

of M , there exists an ideal I of R such that N = (0 :M I), or equivalently, N =

(0 :M AnnR(N)), see [2].

Proposition 2.13. Let M be a comultiplication module and

√

AnnR(M) = AnnR(M).

If M has an n-submodule, then the following statements are true.

(1) Every n-submodule is maximal.

(2) 〈0〉 is an n-submodule.

(3) M is a simple module.

P r o o f. (1) Let N be an n-submodule and K be a proper submodule of M such

that N ⊆ K. Then, AnnR(M) ⊂ AnnR(K). So, there exists some a in AnnR(K) −
√

AnnR(M). Suppose that k ∈ K. Then, ak = 0 ∈ N and so, k ∈ N . Therefore, N

is a maximal submodule of M .

(2) Let N be an n-submodule of M . By (1), N is a maximal submodule of M .

So, (N :R M) is a maximal ideal of R. Hence,
√

AnnR(M) is a maximal ideal of R.

It follows that 〈0〉 is an n-submodule.

(3) By (1) and (2), 〈0〉 is a maximal submodule ofM . Therefore,M is simple. �

Proposition 2.14. Suppose that N1, N2, . . . , Nn are primary submodules of M

such that the radicals
√

(Ni :R M) are not comparable. Then,
n⋂

i=1

Ni is an

n-submodule if and only if Ni is an n-submodule for each i ∈ {1, 2, . . . , n}.

P r o o f. ⇒) Let am ∈ Nk for a ∈ R and m ∈ M , where a /∈
√

AnnR(M) and

1 6 k 6 n. Since the radicals
√

(Ni :R M) are not comparable, there exists some r in
n⋂

i=1,i6=k

√

(Ni :R M)−
√

(Nk :R M). So, there exists t ∈ N such that rtam ∈
n⋂

i=1

Ni.

It follows that rtm ∈ Nk for some k. Thus, m ∈ Nk.

⇐) This follows from [1], Proposition 2.3 (ii). �
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Theorem 2.7. Let {Pα}α∈I be a family of prime submodules of M . If
⋂

α∈I

Pα is

an n-submodule, then
⋂

α∈I

Pα is a prime submodule.

P r o o f. Let am ∈ ⋂

α∈I

Pα, where a ∈ R and m ∈ M . If a /∈
(
⋂

α∈I

Pα : M
)

, then

a /∈
√

AnnR(M). Since
⋂

α∈I

Pα is an n-submodule, m ∈ ⋂

α∈I

Pα. It follows that
⋂

α∈I

Pα

is a prime submodule. �

Theorem 2.8. Let {Pα}α∈I be a family of primary submodules of M . If
⋂

α∈I

Pα

is an n-submodule, then
⋂

α∈I

Pα is a primary submodule.

P r o o f. Let am ∈ ⋂

α∈I

Pα, where a ∈ R and m ∈ M . If a /∈
√(

⋂

α∈I

Pα : M
)

,

then a /∈
√

AnnR(M). Since
⋂

α∈I

Pα is an n-submodule, m ∈ ⋂

α∈I

Pα. It follows that
⋂

α∈I

Pα is a primary submodule. �

Lemma 2.4. LetM be a finitely generated R-module and N be an n-submodule.

Then, rad(N) is an n-submodule if and only if rad(N) is a prime submodule.

P r o o f. ⇒) By Theorem 2.7, rad(N) is a prime submodule.

⇐) Suppose that am ∈ rad(N), where a /∈
√

AnnR(M) and m ∈ M . Since N is

an n-submodule, by Proposition 2.4, (N :R M) ⊆
√

AnnR(M). This implies that
√

(N :R M) =
√

AnnR(M). Since (rad(N) : M) =
√

(N :R M) =
√

AnnR(M),

m ∈ rad(N). Hence, rad(N) is an n-submodule. �

Proposition 2.15. Let M and K be R-modules such that M ⊆ K and
√

AnnR(M) =
√

AnnR(K). If N is an n-submodule of M , then there exists

an n-submodule L of K such that N = L ∩M .

P r o o f. Put

A = {T : T 6 K and T ∩M = N}.

Since N ∈ A, A is not empty. By using Zorn’s lemma, we find a maximal element L

of A. Now, we show that L is an n-submodule of K. Suppose that rk ∈ L for some

r ∈ R−
√

AnnR(K) and k ∈ K. Assume that k /∈ L. Since L is a maximal element

of A, (L + 〈k〉) ∩M * N . So, there exist l ∈ L, m ∈ M − N and s ∈ R such that

l + sk = m. Since rl + rsk = rm ∈ N and r /∈
√

AnnR(M), m ∈ N , which is

a contradiction. Therefore, L is an n-submodule. �

Proposition 2.16. Let N be an n-submodule, and L be a prime submodule of an

R-module M such that (L :R M) ⊆
√

AnnR(M). Then, N ∩ L is an n-submodule.
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Lemma 2.5. LetM be an R-module. Suppose thatK is an n-submodule ofM , L

is a primary submodule of M , and K * L. Then, K ∩ L is an n-submodule of M if

and only if (L :R M) ⊆
√

AnnR(M).

P r o o f. Let K ∩ L be an n-submodule of M . Since K * L, there exists some k

in K − L. Assume that r ∈ (L :R M) −
√

AnnR(M). Then, rk ∈ K ∩ L and

since K ∩ L is an n-submodule, k ∈ K ∩ L ⊆ L, which is a contradiction. So,

(L :R M) ⊆
√

AnnR(M). Now, for the converse, let (L :R M) ⊆
√

AnnR(M).

By Theorem 2.2, L is an n-submodule. By [1], Proposition 2.3 (ii), K ∩ L is an

n-submodule of M . �

Proposition 2.17. Let N be an n-submodule and L be an r-submodule of an

R-module M . Then, N ∩ L is an r-submodule.

Proposition 2.18. If 〈0〉 is the only r-submodule of an R-module M , then 〈0〉 is
an n-submodule.

P r o o f. Let rm = 0 for r ∈ R −
√

AnnR(M) and m ∈ M . Then, r 6∈ AnnR(M)

and hence by [7], Corollary 1, AnnM (r) = 〈0〉. Since 〈0〉 is an r-submodule, it follows
that m = 0. Therefore, 〈0〉 is an n-submodule. �

Proposition 2.19. Let M be an R-module, and S be a multiplicative closed

subset of R such that R−
√

AnnR(M) ⊆ S. If S∗ is an S-closed subset of M and N

is a submodule ofM such that N ∩S∗ = ∅, then there exists an n-submodule L ofM
such that N ⊆ L and L ∩ S∗ = ∅.

P r o o f. Put Ω = {L : N ⊆ L 6 M ; L ∩ S∗ = ∅}. Since N ∈ Ω, Ω is a nonempty

set and by Zorn’s lemma, it has a maximal element like L. Since L ∩ S∗ = ∅, L is
a proper submodule of M . Assume that L is not an n-submodule. Then, there exist

r ∈ R −
√

AnnR(M) and m ∈ M − L such that rm ∈ L. Since L is maximal in Ω

and L $ (L :M r), we deduce that (L :M r) 6∈ Ω. So, there exists y ∈ S∗ such that

ry ∈ L. Now, since S∗ is S-closed and r ∈ S, ry ∈ L ∩ S∗, which is contradiction.

Therefore, L is an n-submodule. �

Proposition 2.20. Let N be a submodule of an R-submodule of M . Then, N is

an n-submodule of M if and only if N [x] is an n-submodule of M [x].

P r o o f. Let N be an n-submodule of M . By [1], Proposition 2.41, N [x] is an

n-submodule of M [x]. Now, let N [x] be an n-submodule of M [x] and rm ∈ N

for r ∈ R −
√

AnnR(M) and m ∈ M . Then, rm ∈ N [x] and since N [x] is an

n-submodule, m ∈ N [x]. Therefore, m ∈ N and so, N is an n-submodule. �
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Proposition 2.21. Suppose that R = R1 ×R2 × . . .×Rn and M = M1 ×M2 ×
. . .×Mn, where Mi is a nonzero Ri-module for 1 6 i 6 n and n > 2. Then, M has

no n-submodules.

P r o o f. Assume that N is an n-submodule of M . Since N 6= M , there exists j,

1 6 j 6 n, such that (0, . . . , 0, m
︸︷︷︸

jth

, 0, . . . , 0) ∈ M −N . Then,

(1, . . . , 1, 0
︸︷︷︸

jth

, 1, . . . , 1)(0, . . . , 0, m
︸︷︷︸

jth

, 0, . . . , 0) ∈ N.

So, (1, . . . , 1, 0
︸︷︷︸

jth

, 1, . . . , 1) ∈ R −
√

AnnR(M) and since N is an n-submodule,

(0, . . . , 0, m
︸︷︷︸

jth

, 0, . . . , 0) ∈ N , which is a contradiction. �

Let M be a module over a commutative ring R, and N be a proper submodule

of M . We say that N has the star property if a ∈ R, m ∈ M , am ∈ N and

a /∈ AnnR(M) imply m ∈ N .

Proposition 2.22. Let N be a submodule of an R-module M that has the star

property. Then, N is an n-submodule.

Proposition 2.23. Let N be a submodule of an R-module M that has the star

property. Then, (N :R M) = AnnR(M).

P r o o f. Assume that (N :R M) 6⊆ AnnR(M). Then, there exists r ∈ (N :R M)

such that r /∈ AnnR(M). Thus, rM ⊆ N and since N is an n-submodule, we

conclude that N = M , a contradiction. Hence, (N :R M) ⊆ AnnR(M). We have

AnnR(M) ⊆ (N :R M). So, (N :R M) = AnnR(M). �

Lemma 2.6. LetN be a submodule of an R-moduleM that has the star property.

Then, N is a prime submodule.

P r o o f. The proof is straightforward. �

Lemma 2.7. LetN be a submodule of an R-moduleM that has the star property.

Then, AnnR(M) is a prime ideal.

P r o o f. By Proposition 2.23, (N :R M) = AnnR(M) and by Lemma 2.6, N is

a prime submodule. Therefore, (N :R M) is a prime ideal. Hence, AnnR(M) is

a prime ideal. �
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Lemma 2.8. LetN be a submodule of an R-moduleM that has the star property.

If K is an n-submodule, then the following statements are true.

(1) For every a ∈ R and m ∈ M , am ∈ K and a /∈ AnnR(M) imply m ∈ K.

(2) K is a prime submodule.

(3) (K : M) = AnnR(M).

3. Generalization of n-submodules

In this section, we introduce a new class of submodules, namely, the class of

G.n-submodules. The notion of G.n-submodule is a generalization of the notion

of n-submodule. We present some characterizations of G.n-submodules, and we

examine the way the aforementioned notions are related to each other.

Definition 3.1. Let M be a module over a commutative ring R. A proper

submodule N of M is said to be a generalization of n-submodule (G.n-submodule)

if for a ∈ R and m ∈ M , am ∈ N and a /∈
√

AnnR(N) imply m ∈ N .

Example 3.1.

(1) Suppose that R is a ring that has only one prime ideal. Then, every proper

submodule of the R-module R is a G.n-submodule.

(2) As a Z-module, Z6 does not have any G.n-submodules.

(3) In Z4 as a Z-module,
〈
2
〉
is a G.n-submodule.

(4) In Z4

⊕
Z as a Z-module,

〈
2
〉⊕〈0〉 is a G.n-submodule.

Proposition 3.1. Every n-submodule is a G.n-submodule.

It is clear that in general, a G.n-submodule is not necessarily an n-submodule, see

Example 3.1 (4).

Lemma 3.1. In a torsion-free R-module, the notions of n-submodule and

G.n-submodule coincide.

Lemma 3.2. Let M be an R-module, and 0 be an n-submodule. Then, the

notions of n-submodule and G.n-submodule coincide.

P r o o f. Let N be a G.n-submodule and am ∈ N for a ∈ R and m ∈ M with

a /∈
√

AnnR(M). If a /∈
√

AnnR(N), then m ∈ N . If a ∈
√

AnnR(N), then there

exists k ∈ N such that ak ∈ AnnR(N). So, ak+1m = 0. Since 0 is an n-submodule,

m = 0. Therefore, m ∈ N . This implies that N is an n-submodule. �
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Theorem 3.1. Let M be an R-module, and N be a proper submodule of M .

Then, the following statements are equivalent.

(1) N is a G.n-submodule of M .

(2) N = (N :M a) for every a /∈
√

AnnR(N).

(3) For any ideal I of R and any submodule K ofM , IK ⊆ N with I 6⊆
√

AnnR(N)

implies K ⊆ N .

P r o o f. (1) ⇒ (2) Let N be a G.n-submodule of M . For every a ∈ R, the

inclusion N ⊆ (N :M a) always holds. Let a /∈
√

AnnR(N) and m ∈ (N :M a).

Then, am ∈ N . Since N is a G.n-submodule, we conclude that m ∈ N and thus,

N = (N :M a).

(2) ⇒ (3) Suppose that IK ⊆ N for an ideal I of R and a submodule K of M ,

where I 6⊆
√

AnnR(N). Since I 6⊆
√

AnnR(N), there exists a ∈ I such that a /∈
√

AnnR(N). Then, aK ⊆ N and so K ⊆ (N :M a) = N , by (2).

(3) ⇒ (1) Let am ∈ N for a ∈ R andm ∈ M , where a /∈
√

AnnR(N). To complete

the proof of the desired result, it is sufficient to take I := Ra and K := Rm. �

Proposition 3.2.

(1) If N is a G.n-submodule of M , then (N :R M) ⊆
√

AnnR(N).

(2) If N is a G.n-submodule of M , then (N :R M) ⊆
√

AnnR(M).

(3) Let {Ni}i∈I be a nonempty set of G.n-submodules of an R-module M . Then,
⋂

i∈I

Ni is a G.n-submodule.

(4) Let {Ni}i∈I be a finite chain of G.n-submodules of a finitely generated

R-module M . Then,
⋃

i∈I

Ni is a G.n-submodule of M .

P r o o f. (1) Assume that N is a G.n-submodule, but (N :R M) 6⊆
√

AnnR(N).

Then, there exists r ∈ (N :R M) such that r /∈
√

AnnR(N). Thus, rM ⊆ N and

since N is a G.n-submodule, we conclude that N = M , a contradiction. Hence,

(N :R M) ⊆
√

AnnR(N).

(2) By (1), (N :R M) ⊆
√

AnnR(N). Let r ∈ (N :R M). Then, rM ⊆ N .

Since N is a G.n-submodule, r ∈
√

AnnR(N). Therefore, there exists k ∈
N such that rk ∈ AnnR(N). Hence, r(k+1)M = 0. This implies that r ∈
√

AnnR(M).

(3) Let rm ∈ ⋂

i∈I

Ni for r ∈ R and m ∈ M − ⋂

i∈I

Ni. Then m 6∈ Nj for some j ∈ I.

Since Nj is a G.n-submodule ofM , we obtain r ∈
√
AnnRNj ⊆

√

AnnR(
⋂

i∈I

Ni). So,
⋂

i∈I

Ni is a G.n-submodule.
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(4) Let rm ∈ ⋃

i∈I

Ni for r ∈ R and m ∈ M − ⋃

i∈I

Ni. Then, m 6∈ Ni for any i ∈ I.

Since Ni is a G.n-submodule for any i ∈ I, we conclude that r ∈
√

AnnR(Ni) and

thus, the fact that I is a finite set implies r ∈
√

AnnR

(
⋃

i∈I

Ni

)

. Therefore,
⋃

i∈I

Ni is

a G.n-submodule. �

Proposition 3.3. Let K and L be submodules ofM , and I be an ideal of R such

that I 6⊆
√

AnnR(K) ∪
√

AnnR(L). Then, the following statements are true.

(1) If K and L are G.n-submodules of M with IK = IL, then K = L.

(2) If IK is a G.n-submodule of M , then IK = K.

P r o o f. (1) Since K is a G.n-submodule and IL ⊆ K, Theorem 3.1 shows that

L ⊆ K. Likewise, K ⊆ L.

(2) Since IK is a G.n-submodule and IK ⊆ IK, we conclude that K ⊆ IK. This

completes the proof. �

By Lemma 3.1, the next lemmas provide a useful characterization of modules that

have G.n-submodules.

Lemma 3.3. Let M be a torsion-free R-module. Then, the zero submodule is

a G.n-submodule of M .

Lemma 3.4. Let M be a multiplication R-module.

(1) If M is torsion-free, then the zero submodule is the only G.n-submodule of M .

(2) If AnnR(M) is a radical ideal, then the zero submodule is the only G.n-submo-

dule of M .

Proposition 3.4. Let N be a proper submodule ofM . Then, N is a G.n-submo-

dule if and only if for every m ∈ M , (N :R m) = R or (N :R m) ⊆
√

AnnR(N).

P r o o f. Assume that N is a G.n-submodule. If (N :R m) 6⊆
√

AnnR(N), then

there exists r ∈ (N :R m) −
√

AnnR(N). So, rm ∈ N , where r /∈
√

AnnR(N).

Since N is a G.n-submodule, then m ∈ N . Hence, (N :R m) = R. Conversely, let

rm ∈ N for r ∈ R and m ∈ M , where r /∈
√

AnnR(N). Then, r ∈ (N :R m) −
√

AnnR(N). By the assumption, (N :R m) and therefore, m ∈ N . �

Corollary 3.1. Let N be a proper submodule ofM . Then, N is a G.n-submodule

if and only if for every m ∈ M −N , (N :R m) ⊆
√

AnnR(N).

Recall that r ∈ R is said to be a zero divisor of an R-module M if there exists

a nonzero element m ∈ M such that rm = 0.
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Theorem 3.2. Let M be an R-module and N be a submodule of M . Then, N

is a G.n-submodule if and only if every zero divisor of the R-module M
N
is

in
√

AnnR(N).

P r o o f. Let N be a G.n-submodule and r be a zero divisor of M
N
. Then, there

exists m ∈ M−N such that rm ∈ N . Since N is a G.n-submodule, r ∈
√

AnnR(N).

For the converse, assume that rm ∈ N for r ∈ R and m ∈ M , where m /∈ N . Then, r

is a zero divisor of M
N
and thus r ∈

√

AnnR(N). �

Proposition 3.5. A prime submodule N of M is a G.n-submodule if and only if

(N :R M) ⊆
√

AnnR(N).

P r o o f. Suppose that N is a prime submodule of M . If N is a G.n-submodule,

then by Proposition 3.2 (1), (N :R M) ⊆
√

AnnR(N). For the converse, assume that

(N :R M) ⊆
√

AnnR(N). Now, we show that N is a G.n-submodule. Let am ∈ N

and a /∈
√

AnnR(N) for a ∈ R and m ∈ M . Since N is a prime submodule and

a /∈ (N :R M), we find that m ∈ N and thus N is a G.n-submodule. �

Lemma 3.5. LetN be aG.n-submodule of anR-moduleM such that (N :R M)=
√

AnnR(N). Then, N is a prime submodule.

P r o o f. The proof is straightforward. �

Proposition 3.6. Every G.n-submodule is an r-submodule.

P r o o f. Let N be a G.n-submodule of M , and am ∈ N for some a ∈ R and

m ∈ M , with annM (a) = 0. Assume that a ∈
√

AnnR(N). Then, there exists n ∈ N
such that anN = 0. Choose the smallest positive integer n such that anN = 0. Then,

an−1N 6= 0. Since a(an−1N) = anN = 0, an−1N ⊆ annM (a) = 0 and so, an−1N = 0,

which is a contradiction. Thus, a /∈
√

AnnR(N). Since N is a G.n-submodule and

am ∈ N , we conclude that m ∈ N . Hence, N is an r-submodule of M . �

Lemma 3.6. Let M and N be R-modules such that N ⊆ M . If L is a G.n-

submodule of N and N is a G.n-submodule of M , then L is a G.n-submodule of M .

P r o o f. Let am ∈ L for a ∈ R −
√

AnnR(L) and m ∈ M . Since N is

a G.n-submodule of M and
√

AnnR(N) ⊆
√

AnnR(L), then m ∈ N . Since L

is a G.n-submodule of N and m ∈ N , then m ∈ L. �

Proposition 3.7. Suppose thatR=R1×R2×. . .×Rn andM=M1×M2×. . .×Mn,

whereMi is a nonzero Ri-module for 1 6 i 6 n. If N is a G.n-submodule ofM , then

there exists j, 1 6 j 6 n, such that N = N1×N2× . . .×Nn, Nj is a G.n-submodule

and for any i with i 6= j, Ni = 0.
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P r o o f. Assume that N is a G.n-submodule. Since N 6= M , there exists j,

1 6 j 6 n, such that (0, . . . , 0, m
︸︷︷︸

jth

, 0, . . . , 0) ∈ M −N . Then,

(1, . . . , 1, 0
︸︷︷︸

jth

, 1, . . . , 1)(0, . . . , 0, m
︸︷︷︸

jth

, 0, . . . , 0) ∈ N.

So, (1, . . . , 1, 0
︸︷︷︸

jth

, 1, . . . , 1) ∈
√

AnnR(N). This implies that N = 0 × . . . ×

0 × K
︸︷︷︸

jth

×0 × . . . × 0, where K is a submodule of Mj . We have AnnR(N) =

R1 × . . .×Rj−1 ×AnnRj
(K)×Rj+1 × . . .×Rn. Assume that am ∈ K for a ∈ Rj −

√
AnnRj

(K) andm ∈ Mj. Since (0, . . . , 0, a
︸︷︷︸

jth

, 0, . . . , 0)(0, . . . , 0, m
︸︷︷︸

jth

, 0, . . . , 0) ∈ N ,

(0, . . . , 0, m
︸︷︷︸

jth

, 0, . . . , 0) ∈ N . It follows that m ∈ K. Hence, K is a G.n-submodule

of Mj. �

Proposition 3.8. Let M be an R-module. If N is a G.n-submodule of M such

that (N :R M) 6= AnnR(N), then (N :M AnnR(N)k) is a G.n-submodule of M

for k ∈ N.

P r o o f. We have (AnnR(N))k+1 ⊆ AnnR((N :M (AnnR(N))k)) ⊆ AnnR(N).

Let am ∈ (N :M (AnnR(N))k) for a ∈ R and m ∈ M , with

a /∈
√

AnnR((N :M (AnnR(N))k)).

Then, a(AnnR(N))km ⊆ N and since N is a G.n-submodule, (AnnR(N))km ⊆ N .

Hence, m ∈ (N :M (AnnR(N))k). �

Proposition 3.9. Let M be an R-module and R be an Artinian ring. If every

proper submodule of M is a G.n-submodule, then every ascending chain of its cyclic

submodules stops.

P r o o f. Let Rm1 ⊂ Rm2 ⊂ Rm3 ⊂ . . . ⊂ Rmk ⊂ . . . be a chain of cyclic

submodules of M . Then

m1 = r2m2 = r2r3m3 = . . . = r2 . . . rkmk = . . . ,

for r1, r2, . . . ∈ R. Since Rmi is a G.n-submodule, ri ∈
√

AnnR(mi−1). On the other

hand, since
√

AnnR(mi) ⊆
√

AnnR(mi−1), we conclude the existence of n ∈ N such
that

√

AnnR(mi) =
√

AnnR(mn) for all n 6 i. So, m1 = r2 . . . rnrn+1mn+1 = 0.

It follows that mi = 0 for all i ∈ N, which is a contradiction. Therefore, every
ascending chain of cyclic submodules of M stops. �
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