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Abstract. We discuss a group-theoretical generalization of the well-known Gauss formula
involving the function that counts the number of automorphisms of a finite group. This
gives several characterizations of finite cyclic groups.
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1. Introduction

Euler’s totient function (or, simply, the totient function) ϕ is one of the most

famous functions in number theory. The totient ϕ(n) of a positive integer n is defined

to be the number of positive integers less than or equal to n that are coprime to n.

In algebra this function is important mainly because it gives the order of the group

of units in the ring (Zn,+, ·). Also, ϕ(n) can be seen as the number of generators or

as the number of automorphisms of the cyclic group (Zn,+). Note that there exist

a lot of identities involving the totient function. One of them is the Gauss formula

(1.1)
∑

d|n

ϕ(d) = n ∀n ∈ N
∗.

In the last years there has been a growing interest in extending arithmetical notions

to finite groups, see, e.g., [1], [2], [6], [7], [13], [14]. Following this trend, we remark

that (1.1) can be rewritten as

∑

H6Zn

|Aut(H)| = |Zn| ∀n ∈ N
∗.
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It suggests us to consider the functions

S(G) =
∑

H6G

|Aut(H)| and f(G) =
S(G)

|G|

for any finite group G. Thus, the classical Gauss formula becomes

(1.2) f(Zn) = 1 ∀n ∈ N
∗.

The main goal of our paper is to study the above function f . We start by observing

that it is multiplicative, i.e., if Gi, i = 1, 2, . . . ,m, are finite groups of coprime orders,

then we have

f

( m
∏

i=1

Gi

)

=

m
∏

i=1

f(Gi).

This implies that the computation of f(G) for a finite nilpotent group G is reduced

to p-groups.

Our first theorem shows that the cyclic groups are in fact the unique groups

satisfying (1.2).

Theorem 1.1. Let G be a finite group. Then f(G) > 1, and we have equality if

and only if G is cyclic.

The above theorem leads to the following natural question:

Is there a minimum of f on the class of finite noncyclic groups?

In what follows, we give some partial answers to this question by finding the

constant c for several particular classes of finite noncyclic groups.

Proposition 1.2. For any finite noncyclic group G, we have

f(G) > 1 +
1

|Z(G)|
.

In particular, if G is centerless, then f(G) > 2.

Note that Proposition 1.2 implies

f(G) > 1 +
4

|G|

for any finite nonabelian groupG. Also, by the proof of Proposition 2.1, we infer that

small values of f(G) are obtained for finite noncyclic groups G with many cyclic sub-

groups. This leads to the next proposition. We recall that a finite group G is called

a minimal noncyclic group if G is not cyclic, but all proper subgroups of G are cyclic.

Proposition 1.3. Let G be a finite minimal noncyclic group. Then f(G) > 2,

and we have equality if and only if G ∼= Z3 ⋊ Z2n , n ∈ N
∗.
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The following theorem shows that the constant c can be taken 5
2 for finite abelian

groups.

Theorem 1.4. Let G be a finite noncyclic abelian group. Then f(G) > 5
2 , and

we have equality if and only if G ∼= (Z2 × Z2) × Zn, where n is an odd positive

integer.

Inspired by the above results, we came up with the following conjecture, which we

have verified by computer for many classes of finite groups.

Conjecture 1.5. If 2 is the second smallest value of the function f .

For the proof of Theorem 1.4, we will need to know the number of automorphisms

of a finite abelian p-group. This has been explicitly computed e.g., in [3], [9], [12].

Theorem 1.6. Let G ∼=
k
∏

i=1

Zpni be a finite abelian p-group, where 1 6 n1 6

n2 6 . . . 6 nk. Then

(1.3) |Aut(G)| =
k
∏

i=1

(pai − pi−1)
k
∏

u=1

pnu(k−au)
k
∏

v=1

p(nv−1)(k−bv+1),

where

ar = max{s : ns = nr} and br = min{s : ns = nr}, r = 1, 2, . . . , k.

In particular, for k = 2, we have

(1.4) |Aut(G)| = (p− 1)2(p+ 1)[n1/n2]p3n1+n2−[n1/n2]−2.

We end this paper by indicating a list of open problems concerning our previous

results.

Problem 1.1. Determine all finite groups G such that f(G) = 2.

Problem 1.2. Find the minimum of f on the class of finite noncyclic p-groups.

Problem 1.3. Is Im(f) dense in the interval [2,∞)?

Since f(D2n) =
1
2 (n + 1) for any odd integer n > 3, it follows that N∗ ⊆ Im(f).

Thus, the function f takes arbitrarily large values.

Most of our notation is standard and will usually not be repeated here. For basic

notions and results on groups we refer the reader to [10].
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2. Proof of the main results

First of all, we prove Theorem 1.1.

P r o o f of Theorem 1.1. Let C(G) be the poset of cyclic subgroups of G. For

every divisor d of |G|, we denote by nd the number of cyclic subgroups of order d

of G and by n′
d the number of elements of order d in G. Then we have

n′
d = ndϕ(d)

because a cyclic subgroup of order d contains ϕ(d) elements of order d. One obtains

S(G) =
∑

H6G

|Aut(H)| >
∑

H∈C(G)

|Aut(H)| =
∑

H∈C(G)

ϕ(|H |)

=
∑

d|n

∑

H∈C(G), |H|=d

ϕ(d) =
∑

d|n

ndϕ(d) =
∑

d|n

n′
d = |G|,

which shows that f(G) > 1. Moreover, we have equality if and only if C(G) = L(G),

i.e., if and only if G is cyclic, as desired. �

P r o o f of Proposition 1.2. By the proof of Theorem 1.1, it follows that

f(G) = 1 +
1

|G|

∑

H/∈C(G)

|Aut(H)|

for any finite group G. If G is noncyclic, then we get

f(G) > 1 +
|Aut(G)|

|G|
> 1 +

|Inn(G)|

|G|
= 1 +

1

|Z(G)|

as desired. �

Note that the ratio r(G) = |Aut(G)|/|G| is > 1 for many classes of finite groups G.

However, there are examples of finite groups G with Z(G) 6= 1, but of arbitrarily

small r(G), see, e.g., [4], [5], [8].

P r o o f of Proposition 1.3. By a classical result of Miller and Moreno (see [11]),

a finite minimal noncyclic group is of one of the following types:

(1) Zp × Zp, where p is a prime;

(2) Q8;

(3) 〈a, b : ap = bq
n

= 1, b−1ab = ar〉, where p, q are distinct primes and r 6≡ 1

(mod p), rq ≡ 1 (mod p).

For these groups we easily obtain:
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(1) f(Zp × Zp) = 1 + (p+ 1)(p− 1)2/p > 2 for all primes p,

(2) f(Q8) = 4 > 2,

(3) f(〈a, b : ap = bq
n

= 1, b−1ab = ar〉) = 1 + (p− 1)/q > 2 because q | p− 1.

Moreover, we have f(G) = 2 if and only if G is of type 3 and p = 3, q = 2, i.e., if

and only if G ∼= Z3 ⋊ Z2n , n ∈ N
∗. This completes the proof. �

Before proving Theorem 1.4, we establish two auxiliary results.

Lemma 2.1. Let G be a noncyclic abelian p-group of order pn. Then |Aut(G)| >

pn(p− 1)2.

P r o o f. Let G ∼=
k
∏

i=1

Zpni , where k > 2 and 1 6 n1 6 n2 6 . . . 6 nk. For k = 2,

we have

|Aut(G)| = (p− 1)2(p+ 1)[n1/n2]p3n1+n2−[n1/n2]−2 > (p− 1)2p3n1+n2−2

> (p− 1)2pn1+n2

by (1.4). For k > 3, we use the general formula (1.3). Observe that

i 6 ai 6 k and 1 6 bi 6 i ∀ i = 1, 2, . . . , k.

Then

|Aut(G)| =

k
∏

i=1

(pai − pi−1)

k
∏

u=1

pnu(k−au)
k
∏

v=1

p(nv−1)(k−bv+1)

>

k
∏

i=1

(pi − pi−1)

k
∏

v=1

p(nv−1)(k−v+1) = (p− 1)kpS ,

where

S =
k

∑

i=1

[i− 1 + (ni − 1)(k − i+ 1)] = (n1 − 1)k +
k

∑

i=2

ni(k − i+ 1).

Since (p− 1)k > (p− 1)2, it suffices to show that

S > n1 + n2 + . . .+ nk,

which is equivalent to
k−1
∑

i=1

ni(k − i) > k.

This is true because for k > 3 we have

k−1
∑

i=1

ni(k − i) >

k−1
∑

i=1

(k − i) =
k(k − 1)

2
> k,

completing the proof. �
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Corollary 2.2. Let G be a finite abelian group. Then |Aut(G)| > ϕ(|G|), and

we have equality if and only if G is cyclic.

P r o o f. Obviously, the result is reduced to finite abelian p-groups. If G is

a noncyclic abelian p-group of order pn, then Lemma 2.1 leads to

|Aut(G)| > pn(p− 1)2 > pn−1(p− 1) = ϕ(|G|).

The proof is completed by the well-known fact that |Aut(G)| = ϕ(|G|) for all finite

cyclic groups G. �

We are now able to prove Theorem 1.4.

P r o o f of Theorem 1.4. Let G ∼=
m
∏

i=1

Gi be the decomposition of G as a direct

product of abelian p-groups. Then

f(G) =

m
∏

i=1

f(Gi).

Since G is not cyclic, at least one of the groups Gi, i = 1, 2, . . . ,m, is not cyclic. On

the other hand, we already know that f(Gi) > 1 for all i by Theorem 1.1. This shows

that it suffices to prove the inequality f(G) > 5
2 for noncyclic abelian p-groups.

Assume that G ∼=
k
∏

i=1

Zpni is an abelian p-group, where k > 2 and 1 6 n1 6

n2 6 . . . 6 nk. By induction on n = n1 + n2 + . . .+ nk, we prove that

(2.1) f(G) > 1 +
(p+ 1)(p− 1)2

p
.

For n = 2, we have G ∼= Zp × Zp and so

f(G) = 1 +
|Aut(G)|

|G|
= 1 +

|GL(2, p)|

p2
= 1 +

(p+ 1)(p− 1)2

p
.

Suppose now that n > 3 and that (2.1) holds for any noncyclic abelian p-group

of order pn−1. Since G is not cyclic, it possesses at least p + 1 maximal sub-

groups M0,M1, . . . ,Mp. Moreover, at least one of them, say M0, is noncyclic. Then

Lemma 2.1 and Corollary 2.2 imply that

S(G) > S(M0) + |Aut(G)|+

p
∑

i=1

|Aut(Mi)| > S(M0) + pn(p− 1)2 + pϕ(pn−1).

316



By using the inductive hypothesis, we get

f(G) >
1

p
f(M0) + (p− 1)2 +

p− 1

p
>

1

p

[

1 +
(p+ 1)(p− 1)2

p

]

+ (p− 1)2 +
p− 1

p

= 1 +
(p2 + p+ 1)(p− 1)2

p2
> 1 +

(p+ 1)(p− 1)2

p

as desired. We can easily see that the minimum value of the right side of (2.1) is 5
2

and it is attained for p = 2. Hence, we have f(G) > 5
2 , with equality if and only if

p = 2 and G ∼= Z2 × Z2. This completes the proof. �
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[13] M.Tărnăuceanu: A generalization of the Euler’s totient function. Asian-Eur. J. Math.
8 (2015), Article ID 1550087, 13 pages. zbl MR doi
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