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K Y B E R N E T I K A — V O L U M E 5 8 ( 2 0 2 2 ) , N U M B E R 6 , P A G E S 9 6 0 – 9 8 3

PARTIALLY OBSERVABLE MARKOV DECISION
PROCESSES WITH PARTIALLY OBSERVABLE
RANDOM DISCOUNT FACTORS

E. Everardo Martinez-Garcia, J. Adolfo Minjárez-Sosa
and Oscar Vega-Amaya

This paper deals with a class of partially observable discounted Markov decision processes
defined on Borel state and action spaces, under unbounded one-stage cost. The discount rate
is a stochastic process evolving according to a difference equation, which is also assumed to be
partially observable. Introducing a suitable control model and filtering processes, we prove the
existence of optimal control policies. In addition, we illustrate our results in a class of GI/GI/1
queueing systems where we obtain explicitly the corresponding optimality equation and the
filtering process.

Keywords: partially observable systems, discounted criterion, random discount factors,
queueing models, optimal policies

Classification: 90C39, 90B22

1. INTRODUCTION

The paper concerns a study of a class of discounted partially observable (PO) Markov
decision processes (MDPs) on Borel spaces and unbounded costs with random discount
factors. Specifically we consider a controlled process whose evolution is given by the
system equations:

xt+1 = F1

(
xt, at, w

(1)
t

)
, yt = F2

(
xt, w

(2)
t

)
, (1)

αt+1 = G1

(
αt, ξ

(1)
t

)
, βt = G2

(
αt, ξ

(2)
t

)
t ∈ N0, (2)

where
{
xt
}

and
{
αt
}
, αt > 0, are the state and discount processes, respectively, which

are partially observable through processes
{
yt
}

and
{
βt
}

called state observation process
and discount observation process, respectively. In addition, Fi and Gi, i = 1, 2, are

known functions, at represents the control at time t, and
{
w

(i)
t

}
and

{
ξ

(i)
t

}
, i = 1, 2,

are independent sequences of independent and identically distributed (i.i.d.) random
vectors.
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The discount process {αt} defines a performance index with random discount factor
in the following sense. Let c be the one-stage cost function, then the cost incurred at
time t ∈ N0 takes the form c(x0, a0) for t = 0, and

e−
∑t−1
k=0 αkc(xt, at), t ∈ N. (3)

The expectation of the accumulation of the costs (3) during the evolution of the system
determines the optimality criterion we are interested in studying. That is, our objective
is to show the existence of an optimal policy minimizing such a performance index,
subject to the equations (1) – (2). Furthermore, we dedicate an important part of the
paper to the application of our results to a class of GI/GI/1 queueing systems with
controlled service rates.

To achieve our goal we follow the usual approach (see, e. g., [2,14,24,25] and references
therein), but adapted to the nonstandard system (1) – (2). This approach consists of
transforming the PO control problem into an equivalent completely observable (CO)
control problem with nonconstant discount factor, evolving on the space P(X) × P(Γ),
where P(X) and P(Γ) are the families of probability measures on the state space X and
on the discount factor space Γ, respectively. In this case, the CO state process and the
CO discount process are sequence of measures {νt} ⊂ P(X) and {ηt} ⊂ P(Γ) where νt
and ηt are the conditional distributions of xt and αt, respectively, given the observed
history.

Essentially, the transformation PO→CO is based in the application of suitable filter-
ing techniques with which it is possible to prove the existence of functions Ψ and Φ such
that

νt+1 = Ψ(νt, at, yt+1), ηt+1 = Φ(ηt, βt+1), t ≥ 0.

Hence, by appropriately analyzing the coupled process {(νt, ηt)} ⊂ P(X)×P(Γ), we can
apply the dynamic programming approach to solve the CO control problem.

It is worth emphasizing that this transformation procedure is merely theoretical and
only guarantees the existence of the functions Ψ and Φ. Therefore, an important chal-
lenge, from the applications point of view, is to explicitly exhibit such functions in
specific situations, which could be a non-trivial problem. Thus, as an additional re-
sult, in this paper we extensively illustrate the transformation procedure PO→CO in a
G1/G1/1 queueing system with controlled service rate and PO waiting times. In this
case, to obtain the functions Ψ and Φ, we assume that the conditional distributions νt
and ηt have densities, which yields that our analysis is done on suitable spaces of density
functions.

The discounted optimality criterion has been widely studied under several settings
(see, e. g., [3,4,7–9,11–13,18,19,21,22,26] and references therein); in fact, within the field
of applications, it is one of the most studied performance indices because the natural
economic and financial interpretation of the discount factor as function of the interest
rate. It is precisely by this interpretation that many recent paper have addressed the
problem of assuming nonconstant and/or random discount factors (see [3, 7–9, 19, 20,
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22, 26]). Hence, our contribution is framed in this aspect. However, to the best of our
knowledge, partially observable MDPs with discount factors modelled by a partially
observable stochastic process have not been previously studied.

The remainder of the paper is organized as follows. In Section 2 we define the
PO system we are interested in. Next, in Section 3 we introduce the transformation
procedure which yields the CO control problem whose solution is analyzed in Section
4. In addition, Section 5 contains the analysis of a PO queueing system with controlled
service rate. Finally we conclude with some remarks.

1.1. Notation and terminology

Throughout the paper we will use the following notation and terminology

Symbols

• N, set of positive integers.

• N0, set of nonnegative integers. So, N0 = N ∪{0} .

• <, set of real numbers.

• <+, set of nonnegative real numbers.

Functions

• (x)
+

:= max {0, x} .

• ID (·) , indicator function of the set D.

• δd(x) =

{
1, x = d;
0, otherwise.

Observe that δ0(·) = δ(·) is the Dirac delta function.

Space of functions

A Borel space is a Borel subset of a complete and separable metric space. Let W be
a Borel space.

• B(W ), Borel σ−algebra in W. Further, ”measurability” for sets and functions
always means measurability with respect to B(W ).

• P(W ), set of all probability measures on W, which is also a Borel space with respect
to the weak topology.

• L (W ) , space of lower semicontinuous (l.s.c.) and bounded below functions on W.

• L+ (W ) , space of nonnegative and l.s.c. functions. Hence L+ (W ) ⊂ L (W ) .

• Given the Borel space W ′, a stochastic kernel ϕ (·|·) on W given W ′ is a function
such that ϕ (·|w′) ∈ P(W ) for each w′ ∈ W ′, and ϕ (B|·) is a measurable function
on W ′ for each B ∈ B(W ). We denote by P(W |W ′) the family of stochastic kernels
on W given W ′.
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2. THE PARTIALLY OBSERVABLE SYSTEM

We consider a partially observable (PO) Markov decision process evolving according to
the system equations

xt+1 = F1

(
xt, at, w

(1)
t

)
, (4)

yt = F2

(
xt, w

(2)
t

)
, t ∈ N0, (5)

x0 given or with known distribution ν ∈ P(X), where F1 and F2 are known functions,
xt, at, and yt represent the state, control, and observation at time t, taking values in

Borel spaces X, A, and Y, respectively. In addition
{
w

(1)
t

}
and

{
w

(2)
t

}
are independent

sequences of independent and identically distributed (i.i.d.) random vectors with values
in Borel spaces S1 and S2 with distributions θ1 ∈ P(S1) and θ2 ∈ P(S2) respectively.
Both sequences are also assumed to be independent of the initial state x0 ∈ X. Let
Q ∈ P(X|X × A) and K ∈ P(Y |X) be the state transition kernel and the observation
kernel determined by F1 and F2. That is, for B ∈ B(X), C ∈ B(Y ), x ∈ X, and a ∈ A,

Q (B|x, a) := Pr (xt+1 ∈ B|xt = x, at = a)

=

∫
S1

IB [F1(x, a, s)] θ1(ds), (6)

and

K (C|x) := Pr (yt ∈ C|xt = x)

=

∫
S2

IC [F2(x, s)] θ2(ds). (7)

We denote by c : X × A → < the one-stage cost which is a nonnegative continuous
function. In addition, we consider a stochastic process {αt} representing the discount
rate whose evolution is given by the equation

αt+1 = G1

(
αt, ξ

(1)
t

)
, t ∈ N0, (8)

α0 given or with known distribution η ∈ P(Γ), where αt ∈ Γ := (0,∞),
{
ξ

(1)
t

}
is

a sequence of i.i.d. random vectors with values in a Borel space R1 with common
distribution ρ1 ∈ P(R1) and G1 : Γ×R1 → Γ is a known function. The discount process
plays the following role. Let ε (α) := e−α, α ∈ Γ. Then the discounted cost incurred at
time t is c(x0, a0) for t = 0, and for t ∈ N,

ε (α0) ε (α1) · · · ε (αt−1) c(xt, at). (9)

In the setting of our problem, we assume that the discount process {αt}, given in (8),
is partially observable with observation process defined as

βt = G2

(
αt, ξ

(2)
t

)
t ∈ N0, (10)
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where βt ∈ Σ := (0,∞) , G2 : Γ × R2 → Σ is a known function,
{
ξ

(2)
t

}
is a sequence

of i.i.d. random vectors, independent on
{
ξ

(1)
t

}
, with values in a Borel space R2 and

distribution ρ2 ∈ P(R2). Similarly as (6) – (7), let Q′ ∈ P(Γ|Γ) and K ′ ∈ P(Σ|Γ) be the
discount factor transition kernel and the corresponding observation kernel defined by G1

and G2 as

Q′ (B′|α) := Pr (αt+1 ∈ B′|αt = α)

=

∫
R1

IB′ [G1(α, s)] ρ1(ds), B′ ∈ B(Γ), α ∈ Γ, (11)

and

K ′ (C ′|α) := Pr (βt ∈ C ′|αt = α)

=

∫
R2

IC′ [G2(α, s)] θ2(ds), C ′ ∈ B(Σ), α ∈ Γ. (12)

The previous elements define the following PO control model:

MPO := (X,Y,A,Q,K, ν,Γ,Σ, Q′,K ′, η, ε, c) . (13)

The model MPO has the following interpretation. At time t = 0, the initial state has
a given distribution ν ∈ P(X). A state observation y0 is generated according to the
observation kernel K and an action a0 ∈ A is selected. Next, the cost c(x0, a0) is
incurred and an initial discount factor α0 ∈ Γ with initial distribution η ∈ P(Γ) comes
in with observation β0 generated by the kernel K ′. Then, considering the kernel Q, the
system moves to a state x1 ∈ X. After that, a new state observation y1 is obtained
according to the kernel K and the action a1 ∈ A is selected. Then a discounted cost
ε(α0)c(x1, a1) is incurred and a new discount factor α1 ∈ Γ comes in with corresponding
observation β1 generated by the kernel K ′. In general, at time t ∈ N, when the system is
in state xt ∈ X, a state-observation yt ∈ Y is generated according to the kernel K. Next,
a control at ∈ A is selected, a discounted cost as (9) is incurred, and a new observation
βt ∈ Σ is generated according to the kernel K ′ of the discount factor αt ∈ Γ. The system
jumps to a new state and the process is repeated over and over again.

According to the previous description, the actions are selected taking into account
the observed history. In this sense, let

Z0 := σ (y0) , Zt := σ (z0, z1, ..., zt−1, yt) , t ∈ N, where zk = (yk, βk) ∈ Y × Σ, (14)

be the σ−algebra generated by the observations up to time t. Hence, a control policy
is a sequence π = {at} of A−valued random vectors such that at is Zt−measurable for
each t ∈ N0. We denote by Π the set of all control policies.

According to (9), for each policy π ∈ Π and initial distributions ν ∈ P(X) and
η ∈ P(Γ) of x0 and α0, respectively, we define the total expected discounted cost as

V (π, ν, η) = Eπν,η

∞∑
t=0

Λtc(xt, at), (15)
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where

Λt :=

t−1∏
k=0

ε (αk) for t ∈ N, and Λ0 := 1, (16)

and Eπν,η is the expectation operator with respect to a probability measure Pπν,η induced
by π ∈ Π and (ν, η) ∈ P(X)× P(Γ) (see, e. g., [5] for construction of Pπν,η). Thus, if

V ∗(ν, η) := inf
π∈Π

V (π, ν, η) (17)

is the optimal cost, the PO optimal control problem is to find a policy π∗ ∈ Π satisfying

V ∗(ν, η) = V (π∗, ν, η), (ν, η) ∈ P(X)× P(Γ). (18)

To avoid trivial situations, we assume that there is a policy π ∈ Π such that
V (π, ν, η) <∞, (ν, η) ∈ P(X)× P(Γ).

3. THE COMPLETELY OBSERVABLE CONTROL PROBLEM

Following a standard procedure (see, e. g., [2,14,25]) the study of the PO optimal control
problem (17) – (18) is based on its transformation into a completely observable (CO)
optimal control problem by introducing suitable filtering processes

{
νt
}
∈ P(X) and{

ηt
}
∈ P(Γ), for both the state and the discount processes. Specifically, for each π ∈ Π,

initial distributions (ν, η) ∈ P(X)× P(Γ), and B ∈ B(X), let

ν0(B) := Pπν,η (x0 ∈ B) = ν(B) (19)

and
νt(B) := Pπν,η (xt ∈ B|Zt) , t ∈ N. (20)

Then (see , e. g., [2,14,25]) there exists a measurable function Ψ : P(X)×A×Y → P(X)
such that the process {νt} ∈ P(X) satisfies

νt+1 = Ψ(νt, at, yt+1), t ∈ N0, (21)

with initial condition ν0 = ν. Now let k ∈ P (Y |P(X)×A) be defined as

k (C|ν, a) := Pr [yt+1 ∈ C|νt = ν, at = a] , C ∈ B(Y ), (ν, a) ∈ P(X)×A. (22)

Then, from (6) and (7) we have

k (C|ν, a) =

∫
X

∫
X

K (C|x′)Q(dx′|x, a)ν(dx)

=

∫
X

∫
S1

∫
S2

IC [F2 (F1 (x, a, s) , s′)] θ2(ds′)θ1(ds)ν(dx). (23)

In addition, let q ∈ P (P(X)|P(X)×A) be the transition kernel corresponding to the
filtering process {νt} , that is, for D ∈ B(P(X)), (ν, a) ∈ P(X)×A,

q (D|ν, a) := Pr [νt+1 ∈ D|νt = ν, at = a] . (24)
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From (21) – (23) we have,

q (D|ν, a) =

∫
Y

ID [Ψ(ν, a, y)] k (dy|ν, a) , D ∈ B(P(X)), (ν, a) ∈ P(X)×A. (25)

For the filtering process {ηt} ∈ P(Γ) we proceed similar as (19) – (25). Indeed, for
each π ∈ Π, initial distributions (ν, η) ∈ P(X)× P(Γ), and B′ ∈ B(Γ), we define

η0(B′) := Pπν,η (α0 ∈ B′) = η(B′) (26)

and
ηt(B

′) := Pπν,η (αt ∈ B′|Zt, βt) , t ∈ N. (27)

The process {ηt} satisfies

ηt+1 = Φ(ηt, βt+1), t ∈ N0, (28)

with initial condition η0 = η, for some measurable function Φ : P(Γ) × Σ → P(Γ). We
define the kernels k′ ∈ P (Σ|P(Γ)) and q′ ∈ P (P(Γ)|P(Γ)) as

k′ (C ′|η) := Pr [βt+1 ∈ C ′|ηt = η] , C ′ ∈ B(Σ), η ∈ P(Γ) (29)

and
q′ (D′|η) := Pr [ηt+1 ∈ D′|ηt = η] , D′ ∈ B(P(Γ)), η ∈ P(Γ). (30)

Then, from (11) and (12) the kernels k′ and q′ can be written as

k′ (C ′|η) =

∫
Γ

∫
Γ

K ′ (C ′|α′)Q′(dα′|α)η(dα)

=

∫
Γ

∫
R1

∫
R2

IC′ [G2 (G1 (α, s) , s′)] ρ2(ds′)ρ1(ds)η(dα) (31)

and

q′ (D′|η) =

∫
Σ

ID′ [Φ(η, β)] k′ (dβ|η) , D ∈ B(P(Γ)), η ∈ P(Γ). (32)

On the other hand, we define the one-stage cost c̃ : P(X)×A→ < as

c̃(ν, a) :=

∫
X

c(x, a)ν(dx) (33)

and the function ε̃ : P(Γ)→ (0,∞) as

ε̃ (η) :=

∫
Γ

ε(α)η(dα). (34)

From (33) and (34), for each policy π ∈ Π and initial distributions (ν, η) ∈ P(X)×P(Γ),
we can write the performance index (15) as

V (π, ν, η) = Eπν,η

∞∑
t=0

Λ̃tc̃(νt, at), (35)
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where

Λ̃t :=

t−1∏
k=0

ε̃ (ηk) for t ∈ N, and Λ̃0 := 1. (36)

Thus, we can define the following CO optimal control problem which consists of finding
a policy π∗ ∈ Π such that

V ∗(ν, η) := inf
π∈Π

V (π, ν, η) = V (π∗, ν, η), (ν, η) ∈ P(X)× P(Γ), (37)

subject to (21) and (28). Furthermore, following standard procedures given, for instance,
in [2, 14, 25], we have that a solution for the CO control problem (37) is also a solution
of the PO control problem (18). In other words, both CO and PO control problems are
equivalent.

4. SOLUTION OF THE COMPLETELY OBSERVABLE CONTROL PROBLEM

For a function u : P(X)× P(Γ)→ < we define the operator

Tu(ν, η) = min
a∈A

Tau(ν, η),

where, for (ν0, η0) = (ν, η)

Tau(ν, η) := c̃(ν, a) + ε̃ (η)Eπν,η [u(ν1, η1)]

= c̃(ν, a) + ε̃ (η)Eπν,η [u(Ψ (ν, a, y1) ,Φ (η, β1))]

= c̃(ν, a) + ε̃ (η)

∫
P(Γ)

∫
P(X)

u(ν′, η′)q (dν′|ν, a) q′ (dη′|η) . (38)

We also consider the following value iteration functions {vt} defined as

v0 = 0;

vt(ν, η) := Tvt−1(ν, η), t ∈ N. (39)

By applying dynamic programming arguments, it is easy to prove that vt is the optimal
cost for a t−stage optimal control problem. That is, defining

Vt(π, ν, η) = Eπν,η

t∑
k=0

Λ̃k c̃(νk, ak), (40)

we have
vt(ν, η) = inf

π∈Π
Vt(π, ν, η), (ν, η) ∈ P(X)× P(Γ). (41)

Assumption 4.1. (a) c̃ is inf-compact on P(X)×A, that is, the set
{
a ∈ A : c̃(ν, a) ≤ r

}
is compact for every ν ∈ P(X) and r ∈ <;

(b) c̃ ∈ L+ (P(X)×A) ;

(c) Tau ∈ L+ (P(X)× P(Γ)×A) for all u ∈ L+ (P(X)× P(Γ)) .
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Remark 4.2. (a) From [15, Lemma 3.2(f)] (see also [16, Lemma 2.7]), under Assump-
tion 4.1 we have that for all u ∈ L+

(
P(X)×P(Γ)

)
the function u∗(ν, η) := Tu(ν, η)

belongs to L+

(
P(X) × P(Γ)

)
. In addition, there exists a measurable function

f∗ : P(X)× P(Γ)→ A such that u∗(ν, η) = Tf∗u(ν, η).

(b) It is clear that if the control set A is compact and c̃ is lower semicontinuous in
a ∈ A, then c̃ is inf–compact.

Theorem 4.3. If Assumption 4.1 holds, then:

(a) The optimal cost V ∗ defined in (37) is the minimal solution in L+ (P(X)× P(Γ))
of the optimality equation, that is

V ∗(ν, η) = TV ∗(ν, η) = min
a∈A

TaV
∗(ν, η), (ν, η) ∈ P(X)× P(Γ), (42)

and if Ṽ ∈ L+ (P(X)× P(Γ)) is another solution of the optimality equation then
V ∗ ≤ Ṽ . Furthermore, vt ↗ V ∗ as t→∞, where {vt} is the sequence of functions
defined in (39).

(b) There exists a measurable function f∗ : P(X)× P(Γ)→ A such that

V ∗(ν, η) = Tf∗V
∗(ν, η), (ν, η) ∈ P(X)× P(Γ),

and the policy π∗ = {a∗t } ∈ Π defined by a∗t = f∗(νt, ηt), t ∈ N0, is optimal.

P r o o f . Observe that {vt} is a nondecreasing sequence in L+ (P(X)× P(Γ)) . This
implies that there exists a function u ∈ L+ (P(X)× P(Γ)) such that vt ↗ u as t → ∞.
Hence, for each a ∈ A and (ν, η) ∈ P(X)× P(Γ),

Tavt−1(ν, η)↗ Tau(ν, η), as t→∞,

which implies, from [17, Lemma 4.2.4],

vt(ν, η) = min
a∈A

Tavt−1(ν, η)→ min
a∈A

Tau(ν, η) = Tu(ν, η).

Thus, since vt ↗ u as t→∞, we get

u = Tu. (43)

Now let f : P(X)× P(Γ)→ A be a measurable function such that (See Remark 4.2)

u(ν, η) = c̃(ν, f) + ε̃ (η)

∫
P(Γ)

∫
P(X)

u(ν′, η′)q (dν′|ν, f) q′ (dη′|η) .

Iteration of this inequality yields, for π = {at} ∈ Π, at = f(νt, ηt), t ∈ N0,

u(ν, η) = Eπν,η

n−1∑
t=0

Λ̃tc̃(νt, at) + Eπν,η

n−1∏
k=0

ε̃ (ηk)u(νk, ak)

≥ Eπν,η

n−1∑
t=0

Λ̃tc̃(νt, at), (44)
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where the last inequality is because u is nonnegative. Letting n → ∞, from (37) we
obtain

u(ν, η) ≥ V (π, ν, η) ≥ V ∗(ν, η), (ν, η) ∈ P(X)× P(Γ). (45)

On the other hand, from (40) and (41), for all π ∈ Π, (ν, η) ∈ P(X) × P(Γ), and
t ∈ N0,

vt(ν, η) ≤ Vt(π, ν, η) ≤ V (π, ν, η).

Thus, letting t→∞, as vt ↗ u, we get

u(ν, η) ≤ V (π, ν, η)

for all π ∈ Π and (ν, η) ∈ P(X)× P(Γ). This yields

u(ν, η) ≤ V ∗(ν, η), (ν, η) ∈ P(X)× P(Γ). (46)

Combining (45) and (46) we prove

u(ν, η) = V ∗(ν, η), (ν, η) ∈ P(X)× P(Γ). (47)

Hence, from (43), V ∗ is a solution of the optimality equation and vt ↗ V ∗ as t → ∞.
Now, if Ṽ ∈ L+ (P(X)× P(Γ)) is another solution of the optimality equation, from (45)
with Ṽ instead of u we obtain that V ∗ is the minimal solution in L+ (P(X)× P(Γ)) of
the optimality equation. This proves the part (a).

Finally, the existence of f∗ follows from Remark 4.2. Furthermore, using the fact
u = V ∗, from (44) we have, for π∗ = {a∗t } defined by a∗t = f∗(νt, ηt), t ∈ N0,

V ∗(ν, η) ≥ Eπ
∗

ν,η

n−1∑
t=0

Λ̃tc̃(νt, at),

which, letting n→∞, yields V ∗(ν, η) ≥ V (π∗, ν, η) for all (ν, η) ∈ P(X)× P(Γ). There-
fore, from (37), π∗ is optimal. �

Remark 4.4. There are situations where is convenient to express the filtering processes
(19) – (20) and (26) – (27) in terms of densities. That is, assume that the measures νt and
ηt are absolutely continuous with respect to the Lebesgue measure in <. This particular
case is important from the practical point of view because it allows to obtain, in an easy
way, the corresponding recursive equation (21) and (28) for specific application problems.
Of course, the definition and solution of the corresponding CO optimal control problem
depend on the observation process and must be done under the right assumptions. First
of all, the state space is a subset of <. Thus it is necessary to reformulate Assumption
4.1. For instance, for the lower semicontinuous conditions we need to set down the
notion of convergence in the set of densities, as will be specified in the study of the PO
GI/GI/1 queueing system in next section.
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5. EXAMPLE: A PO CONTROLLED QUEUEING SYSTEM

We denote by Dd the set of all density functions g on (d,∞). In particular, D0 := D is
the set of all densities on <+. We consider the L1−norm

‖g‖(d) :=

∫ ∞
d

|g(s)|ds.

Observe that Dd is a closed subset of L1(d,∞), i. e., if {gt} is a sequence in Dd such that

‖gt − g‖(d) → 0, as t→∞, (48)

then g ∈ Dd. We denote gt → g when (48) holds.

We consider the PO GI/GI/1 queueing system introduced in [10], which evolves as

xt+1 =
(
xt + atw̄t − w(1)

t

)+

:= max
{
xt + atw̄t − w(1)

t , 0
}
, t ∈ N, (49)

with observation process
yt := I[xt=0], t ∈ N0. (50)

Here, xt and w
(1)
t represent the waiting time of the t−th customer and the interarrival

time between the t−th and (t + 1)−th customers, taking values in X = S1 = [0,∞),
respectively. In addition, w̄t is a random ”base” service time of the t−th customer and
at, the control, is the reciprocal of a service rate ut, i. e., at = 1/ut, taking values in
A = [a∗, a

∗] , a∗ > a∗ > 0. We assume that the waiting time xt only is observed when
xt = 0, that is when yt = 1 (see (50)), which means that the controller only can register
when the customer arrives directly to the server.

In setting of our results, we suppose that the discount process {αt} evolves as an
autoregressive process of the form

αt+1 = max
{
γαt + ξ

(1)
t , d

}
, t ∈ N0, (51)

with observation process
βt = I[αt=d], (52)

where γ > 0,
{
ξ

(1)
t

}
is a sequence of i.i.d. random variables taking values in R1 = [0,∞),

and d > 0 is a fixed constant. We assume that the discount factor only is observed while

αt = d. Therefore, the events [βt = 1] , [αt = d] , and
[
γαt−1 + ξ

(1)
t−1 ≤ d

]
are equivalent.

Specifically, the controller only observes the events [xt = 0] and [αt = d] , defining
a PO control system with PO discount factor. Such a control system will be analyzed
assuming existence of densities for the involved random variables (see Remark 4.4), for
which we impose the following assumptions.
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Assumption 5.1. (a)
{
w̄t
}
,
{
w

(1)
t

}
, and

{
ξ

(1)
t

}
are independent sequences of non-

negative i.i.d. random variables with distribution functions Fw̄, Fw, and Fξ, and
continuous density functions fw̄, fw, and fξ in D.

(b) At initial time, if x0 = 0 the initial state is observed, and if x0 > 0, x0 has a
density function g1 ∈ D. Similarly, at initial time, either α0 ≤ d, and therefore it
is observed α0 = d, or α0 > d and it has a density g2 ∈ Dd.

(c) For t ∈ N, when xt > 0 and αt > d both are non observed, and they have
conditional densities g1

t ∈ D and g2
t ∈ Dd given the observed history. That is (see

(14)) ∫ x

0

g1
t (ω) dω = P [xt ≤ x|xt > 0,Zt−1]

and ∫ α

d

g2
t (s) ds = P [αt ≤ α|αt > d,Zt] . (53)

(d) The cost function c (·, ·) is continuous and nonnegative. In addition, the function

(g, a)→
∫ ∞

0

c(x, a)g(x) dx, (g, a) ∈ D×A,

is continuous.

It is worth noting that under Assumption 5.1 the initial condition of the PO queueing
system is a vector

(
y0, g

1
0 , β0, g

2
0

)
=
(
y, g1, β, g2

)
∈ {0, 1} × D× {0, 1} × Dd because:

• if y0 = 1 and β0 = 1, then x0 = 0 and α0 = d are observed;

• if y0 = 1 and β0 = 0, then x0 = 0 is observed and α0 > d with density g2 ∈ Dd;

• if y0 = 0 and β0 = 1, then x0 > 0 with density g1 ∈ D and α0 = d is observed;

• if y0 = 0 and β0 = 0, then x0 > 0 with density g1 ∈ D and α0 > d with density
g2 ∈ Dd.

Therefore, the initial distribution (ν, η) ∈ P(X)×P(Γ) for (x0, α0) ∈ X ×Γ takes the
form (see (19), (26))

ν(B) := yδ0(x0) + (1− y)

∫
B

g1(ω) dω, B ∈ B(X)

and

η(B′) := βδd(α0) + (1− β)

∫
B′
g2(ω) dω, B′ ∈ B(Γ).

Furthermore, the filtering processes (19) – (20) and (26) – (27) takes the form

ν0(B) := Pπν,η (x0 ∈ B) = ν(B),

νt(B) := Pπν,η (xt ∈ B|Zt) = ytδ0(xt) + (1− yt)
∫
B

g1
t (ω) dω, t ∈ N, B ∈ B(X);
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and

η0(B′) := Pπν,η (α0 ∈ B′) = η(B′)

ηt(B
′) := Pπν,η (αt ∈ B′|Zt, βt) = βtδd(αt) + (1− βt)

∫
B′
g2
t (ω) dω, t ∈ N, B′ ∈ B(Γ).

Hence, both {νt} and {ηt} are completely determined by the pairs
(
yt, g

1
t

)
and

(
βt, g

2
t

)
respectively. Under this context, and abusing the notation, we can consider the cost
function c̃ and the discount factor function ε̃, defined in (33) and (34) as

c̃(νt, at) =

∫ ∞
0

c(x, at)νt(dx) := c̃
(
yt, g

1
t , at

)
= ytc(0, at) + (1− yt)

∫ ∞
0

c(x, at)g
1
t (x) dx (54)

and

ε̃ (ηt) =

∫ ∞
0

ε(α)ηt(dα) := ε̃
(
βt, g

2
t

)
= βtε(d) + (1− βt)

∫ ∞
d

ε(α)g2
t (α) dα. (55)

Taking into account these facts, if
(
y, g1, β, g2

)
∈ {0, 1} × D × {0, 1} × Dd is the initial

condition, we express the performance index (35) as

V (π, y, g1, β, g2) = E

∞∑
t=0

Λ̃tc̃(yt, g
1
t , at),

where

Λ̃t :=

t−1∏
k=0

ε̃
(
βk, g

2
k

)
for t ∈ N, and Λ̃0 := 1,

and E is the corresponding expectation operator Eπy,g1,β,g2 . Furthermore, a policy π∗ ∈ Π

is optimal for the CO queueing control problem if (see (37)) for all
(
y, g1, β, g2

)
∈

{0, 1} × D× {0, 1} × Dd

V ∗(y, g1, β, g2) := inf
π∈Π

V (π, y, g1, β, g2) = V (π∗, y, g1, β, g2). (56)

Now, in order to show the existence of an optimal policy via an optimality equation,
we need to obtain recursive equations (see (21) and (28)) for the sequences of densities{
g1
t

}
∈ D and

{
g2
t

}
∈ Dd.

5.1. Recursive evolution of densities

We will borrow the recursive equation for
{
g1
t

}
from [10], by changing what has to be

changing as follows.
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For measurable functions ϕ1, ϕ2 : <+ → <+ and a ∈ A, we denote

< ϕ1, ϕ2 >:=

∞∫
0

ϕ1(s)ϕ2(s) ds, (57)

ρ
(a,ϕ1)

(ω) :=

∞∫
0

∞∫
(ω−aω̄)+

fw
(
(s+ aω̄ − ω)+

)
fw̄ (ω̄)ϕ1(s) dsdω̄ (58)

and

θ(ω; a, ϕ1) :=
ρ

(a,ϕ1)
(ω)

< ρ
(a,ϕ1)

, 1 >
. (59)

If ϕ1 = δ, we have

ρ
(a,δ)

(ω) =

∞∫
0

fw
(
(aω̄ − ω)+

)
fw̄ (ω̄) I[ω<aω̄]dω̄. (60)

Then (see [10, Th. 4.1, eq. (47)])
{
g1
t

}
evolves in D according to the equation

g1
0 = g1;

g1
t (s) = yt−1θ(s; at−1, δ) + (1− yt−1)θ(s; at−1, g

1
t−1), t ∈ N. (61)

On the other hand, the evolution of the densities
{
g2
t

}
∈ Dd is given in next result

which is proved in Appendix.

Theorem 5.2. The density process
{
g2
t

}
∈ Dd satisfies

g2
0 = g2;

g2
t (s) = βt−1

{
fξ(s− γd)I[s−γd>0]

F̄ξ (d− γd)

}
+(1− βt−1)

{∫∞
d
fξ(s− γω)I[s−γω>0]g

2
t−1(ω) dω∫∞

d
F̄ξ(d− γω)g2

t−1(ω) dω

}
(62)

for t ∈ N, where F̄ξ(·) = 1− Fξ(·).

In order to simplify the equation (62), we introduce similar notation as (57) – (60).
For measurable functions ϕ1, ϕ2 : (d,∞)→ <+ we define

< ϕ1, ϕ2 >d:=

∞∫
d

ϕ1(s)ϕ2(s) ds, (63)
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ρ
ϕ1

(s) :=

∞∫
d

fξ(s− γω)I[s−γω>0]ϕ1(ω) dω, (64)

and

θϕ1(s) :=
ρ
ϕ1

(s)

< ρϕ1
, 1 >d

. (65)

Thus,

ρ
δd

(s) =

∞∫
d

fξ(s− γω)I[s−γω>0]δd(ω) dω

= fξ(s− γd)I[s−γd>0]. (66)

Taking into account (63) – (66) we have

θg2t−1
(s) =

ρg2t−1
(s)

< ρg2t−1
, 1 >d

=

∫∞
d
fξ(s− γω)I[s−γω>0]g

2
t−1(ω) dω∫∞

d

∫∞
d
fξ(s− γω)I[s−γω>0]g

2
t−1(ω) dωds

.

Observe that from Fubini Theorem and letting u = s− γω we have∫ ∞
d

∫ ∞
d

fξ(s− γω)I[s−γω>0]g
2
t−1(ω) dωds

=

∫ ∞
d

[∫ ∞
d

fξ(s− γω)I[s−γω>0] ds

]
g2
t−1(ω) dω =

∫ ∞
d

[∫ ∞
d−γω

fξ(u)I[u>0] du

]
g2
t−1(ω) dω

=

∫ ∞
d

F̄ξ (d− γω) g2
t−1(ω) dω.

Therefore

θg2t−1
(s) =

∫∞
d
fξ(s− γω)I[s−γω>0]g

2
t−1(ω) dω∫∞

d
F̄ξ (d− γω) g2

t−1(ω) dω
. (67)

In addition

θδd(s) =
ρδd(s)

< ρ
δd
, 1 >d

=
fξ(s− γd)I[s−γd>0]∫∞

d
fξ (s− γd) I[s−γd>0]ds

=
fξ(s− γd)I[s−γd>0]

F̄ξ (d− γd)
. (68)

Hence, using (67) and (68) we obtain the following expression of (62):

g2
0 = g2 ∈ Dd;

g2
t (s) = βt−1θδd(s) + (1− βt−1)θg2t−1

(s), t ∈ N. (69)
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Observe that the cost function and the discount factor function (54) and (55) can be
written as

c̃
(
yt, g

1
t , at

)
= ytc(0, at) + (1− yt)

〈
c(·, at), g1

t (·)
〉

(70)

and
ε̃
(
βt, g

2
t

)
= βtε(d) + (1− βt)

〈
ε(·), g2

t (·)
〉
d
. (71)

5.2. The optimality equation

It is worth noting that we are dealing with a CO control process that evolves according
to the equations (61) – (69). In this sense, the corresponding optimality equation is
obtained by applying similar dynamic programming techniques to the case when the
processes {xt} and {αt} are completely observable. We explain such a procedure in
order to make it clearer to obtain the optimality equation for processes (61) – (69).

Suppose that the processes {xt} and {αt} are completely observable. We can write
the system (49) and (51) as

κt+1 = H (κt, at, χt) , t ∈ N0,

where κt = (xt, αt), χt = (w1
t , ξ

1
t ), and H : X × Γ × A × [0,∞) × [0,∞) → X × Γ is a

function defined as

H (κt, at, χt) =

((
xt + atw̄t − w(1)

t

)+

,max
{
γαt + ξ

(1)
t , d

})
.

Following standard dynamic programming arguments, for a function Û : X × Γ → <,
κ0 = κ ∈ X × Γ, and a ∈ A, we define the operator

T̂aÛ(κ) = c(x, a) + ε(α)E
[
Û(κ1)

]
= c(x, a) + ε(α)E

[
Û(H (κ, a, χ0))

]
, κ = (x, α) ∈ X × Γ, (72)

where ε(α) = e−α. Hence, the optimality equation takes the form

Û(κ) = min
a∈A

T̂aÛ(κ) = min
a∈A

{
c(x, a) + ε(α)E

[
Û(κ1)

]}
, κ = (x, α) ∈ X × Γ.

Now, to obtain the optimality equation corresponding to the process
{(
yt, g

1
t , βt, g

2
t

)}
whose evolution is determined by the relations (50), (61), (52), and (69), we consider
the cost function c̃ (see (70)) and the discount factor function ε̃ (see (71)). Then,
for a function U : {0, 1} × D × {0, 1} × Dd → <,

(
y0, g

1
0 , β0, g

2
0

)
=
(
y, g1, β, g2

)
∈

{0, 1} × D× {0, 1} × Dd, and a ∈ A we define the operator (see (38), (70),(71), (72))

TaU
(
y, g1, β, g2

)
:= yc(0, a) + (1− y)

〈
c(·, a), g1(·)

〉
+ ε̃
(
β, g2

)
E
[
U
(
y1, g

1
1 , β1, g

2
1

)]
.

(73)
We then proceed to calculate E

[
U
(
y1, g

1
1 , β1, g

2
1

)]
. From (61) and (69) we have

E
[
U
(
y1, g

1
1 , β1, g

2
1

)]
= E

[
U
(
y1, yθ(s; a, δ) + (1− y)θ(s; a, g1), β1, βθδd(α) + (1− β)θg2t−1

(α)
)]
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= U
(

1, yθ(s; a, δ) + (1− y)θ(s; a, g1), 1, βθδd(α) + (1− β)θg2t−1
(α)
)
P [x1 = 0]P [α1 = d]

+U
(

1, yθ(s; a, δ) + (1− y)θ(s; a, g1), 0, βθδd(α) + (1− β)θg2t−1
(α)
)
P [x1 = 0]P [α1 > d]

+U
(

0, yθ(s; a, δ) + (1− y)θ(s; a, g1), 1, βθδd(α) + (1− β)θg2t−1
(α)
)
P [x1 > 0]P [α1 = d]

+U
(

0, yθ(s; a, δ) + (1− y)θ(s; a, g1), 0, βθδd(α) + (1− β)θg2t−1
(α)
)
P [x1 > 0]P [α1 > d] .

(74)
Now observe that

P [x1 = 0] = P
[
w(1) > x+ aw̄

]
= 1− P

[
w(1) ≤ x+ aw̄

]
= 1− E

[
E
[
I[w(1)≤x+aw̄]|x

]]
= 1−

∫ ∞
0

P
[
w(1) ≤ ω + aw̄

]
g1(ω) dω

= 1−
∫ ∞

0

∫ ∞
0

Fw (ω + aw̄) fw̄(ω̄)g1(ω) dω̄ dω (75)

Thus

P [x1 > 0] = 1− P [x1 = 0] =

∫ ∞
0

∫ ∞
0

Fw (ω + aw̄) fw̄(ω̄)g1(ω) dω̄ dω. (76)

Similarly we get

P [α1 = d] =

∫ ∞
d

Fξ (d− γα) g2(α) dα (77)

and

P [α1 > d] = 1−
∫ ∞

d

Fξ (d− γα) g2(α) dα. (78)

Then, combining (73) – (78) we obtain

TaU
(
y, g1, β, g2

)
:= yc(0, a) + (1− y)

〈
c(·, a), g1(·)

〉
+ε̃
(
β, g2

)
U
(
1, yθ(s; a, δ) + (1− y)θ(s; a, g1), 1, βθδd(α) + (1− β)θg2(α)

)
·
(

1−
∫ ∞

0

∫ ∞
0

Fw (ω + aω̄) fw̄(ω̄)g1(ω) dω̄dω

)(∫ ∞
d

Fξ (d− γα) g2(α) dα

)

+ε̃
(
β, g2

)
U
(
1, yθ(s; a, δ) + (1− y)θ(s; a, g1), 0, βθδd(α) + (1− β)θg2(α)

)
·
(

1−
∫ ∞

0

∫ ∞
0

Fw (ω + aω̄) fw̄(ω̄)g1(ω) dω̄dω

)(
1−

∫ ∞
d

Fξ (d− γα) g2(α) dα

)

+ε̃
(
β, g2

)
U
(
0, yθ(s; a, δ) + (1− y)θ(s; a, g1), 0, βθδd(α) + (1− β)θg2(α)

)
·
(∫ ∞

0

∫ ∞
0

Fw (ω + aω̄) fw̄(ω̄)g1(ω) dω̄ dω

)(∫ ∞
d

Fξ (d− γα) g2(α) dα

)
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+ε̃
(
β, g2

)
U
(
0, yθ(s; a, δ) + (1− y)θ(s; a, g1), 1, βθδd(α) + (1− β)θg2(α)

)
·
(∫ ∞

0

∫ ∞
0

Fw (ω + aω̄) fw̄(ω̄)g1(ω) dω̄dω

)(
1−

∫ ∞
d

Fξ (d− γα) g2(α) dα

)
.

Therefore the dynamic programming operator T is defined as

TU
(
y, g1, β, g2

)
= min

a∈A
TaU

(
y, g1, β, g2

)
,
(
y, g1, β, g2

)
∈ {0, 1}×D×{0, 1}×Dd. (79)

Observe that from Assumption 5.1 (d) and because the control set A is compact (see
Remark 4.2 (b)), the function c̃, defined in (54), is inf-compact on {0, 1}×D×A. Thus,
in the setting of Theorem 4.3, to prove that the optimal value function V ∗ defined in
(56) is the minimal solution in L+ ({0, 1} × D× {0, 1} × Dd) and to ensure the existence
of an optimal policy, it is sufficient to verify that (see Assumption 4.1)

a) c̃ ∈ L+ ({0, 1} × D) ;

b) TaU ∈ L+ ({0, 1} × D× {0, 1} × Dd ×A) for all U ∈ L+ ({0, 1} × D× {0, 1} × Dd) .

Condition a) easily follows from (54) (see (70)) and Assumption 5.1 (d), while Condi-
tion b) is obtained from the continuity of the following functions whose proofs are given
in Appendix,

(a, ϕ1)→
∞∫

0

∞∫
0

fw
(
(s+ aω̄ − ω)+

)
fw̄ (ω̄)ϕ1(s) dsdω̄, (a, ϕ1) ∈ A× D, (80)

ϕ2 →
∞∫

d

fξ(s− γω)I[s−γω>0]ϕ2(ω) dω, ϕ2 ∈ Dd, (81)

(a, ϕ1)→
∫ ∞

0

∫ ∞
0

Fw (ω + aω̄) fw̄(ω̄)ϕ1(ω) dω̄dω, (a, ϕ1) ∈ A× D, (82)

and

ϕ2 →
∫ ∞

d

Fξ (d− γα)ϕ2(α) dα, ϕ2 ∈ Dd. (83)

Indeed, observe that (80) implies the continuity of the functions

(a, ϕ1)→ ρ
(a,ϕ1)

(·) and (a, ϕ1)→ θ(·; a, ϕ1), (a, ϕ1) ∈ A× D, (84)

and (81) yields the continuity of the functions

ϕ2 → ρ
ϕ2

(·) and ϕ2 → θϕ2
(·), ϕ2 ∈ Dd. (85)

Therefore, for all U ∈ L+ ({0, 1} × D× {0, 1} × Dd) , form (80) – (85) we can conclude
that TaU ∈ L+ ({0, 1} × D× {0, 1} × Dd ×A) , that is Condition b) holds.

In conclusion, from Theorem 4.3 we have that V ∗ is the minimal solution of the
optimality equation (79) in the space of functions L+ ({0, 1} × D× {0, 1} × Dd), and
there exists an optimal policy for the PO queueing system (49) – (50) with PO discount
factor (51) – (52).
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6. APPENDIX: PROOFS

Lemma 6.1. The functions defined in (80), (81), (82), and (83) are continuous.

P r o o f . The continuity of the function (80) is proved following similar arguments as
in [10, Lemma 6.2]. Now, let {ϕn} be a sequence in Dd such that ϕn → ϕ ∈ Dd (see
(48)). Then, since fξ is bounded, from Convergence Dominated Theorem we have that

lim
n→∞

∣∣∣∣∣∣
∞∫

d

fξ(s− γω)I[s−γω>0]ϕn(ω) dω −
∞∫

d

fξ(s− γω)I[s−γω>0]ϕ(ω) dω

∣∣∣∣∣∣ = 0,

which implies that the function (81) is continuous. Similarly is proved the continuity of
functions (82) and (83). �

6.1. Proof of Theorem 5.2

Lemma 6.2. For any real valued and bounded function ϕ : Γ→ < and t ∈ N,

(a) E[ϕ(αt) | Zt, βt] = I[αt=d]ϕ(d) + I[αt>d]

E[ϕ(αt)I[αt>d] | Zt]
P (αt > d | Zt)

= I[αt=d]ϕ(d) + I[αt>d]E[ϕ(αt) | αt > d,Zt]. (86)

(b) E[ϕ(αt) | Zt, βt]I[αt>d] = I[αt−1=d]

∞∫
d

ϕ(s)fξ (s− γd) I[s−γd>0] ds

F̄ξ (d− γd)

+ I[αt−1>d]

∞∫
d

ϕ(s)
∞∫
d

fξ (s− γω) I[s−γω>0]g
2
t−1(ω) dωds∫∞

d
F̄ξ (d− γd) g2

t−1(ω) dω
(87)

P r o o f . (a) Let ϕ : Γ→ < be any real valued and bounded function. For each t ∈ N,

E[ϕ(αt) | Zt, βt] = E[ϕ(αt)I[αt=d] | Zt, βt] + E[ϕ(αt)I[αt>d] | Zt, βt]
= I[αt=d]ϕ(d) + E[ϕ(αt)I[αt>d] | Zt, βt] (88)

On the other hand, from definition of conditional expectation, there exists a measur-
able function G such that

E[ϕ(αt) | Zt, βt] = G(z0, . . . , , zt−1, zt, βt).

Hence,

E[ϕ(αt)I[αt>d] | Zt, βt] = I[αt>d]E[ϕ(αt) | Zt, βt]
= I[αt>d]G(z0, . . . , zt−1, zt, βt)

= I[αt>d]G(z0, . . . , zt−1, zt, 0). (89)
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Taking expectation given Zt in (89), using the fact Zt ⊆ (Zt, βt), and because G(z0, . . .
. . . , zt−1, zt, 0) is Zt−measurable, we obtain

E[ϕ(αt)I[αt>d] | Zt] = G(z0, . . . , , zt−1, zt, 0)P (αt > d | Zt).

Hence

G(z0, . . . , , zt−1, zt, 0) =
E[ϕ(αt)I[αt>d] | Zt]
P (αt > d | Zt)

. (90)

Combination of (88) – (90) yields

E[ϕ(αt) | Zt, βt] = I[αt=d]ϕ(d) + I[αt>d]

E[ϕ(αt)I[αt>d] | Zt]
P (αt > d | Zt)

. (91)

This proves the first equality in (86).

On the other hand, from Conditional Bayes Theorem (see [6]) and definition of g2
t

(see (53)) we have∫ ∞
d

ϕ(s)g2
t (s) ds = E[ϕ(αt) | αt > d,Zt] =

E[ϕ(αt)I[αt>d] | Zt]
E[I[αt>d] | Zt)

=
E[ϕ(αt)I[αt>d] | Zt]
P (αt > d | Zt)

.

Thus, from (91)

E[ϕ(αt) | Zt, βt] = I[αt=d]ϕ(d) + I[αt>d]E[ϕ(αt) | αt > d,Zt],

which proves the second equality in (86).

(b) Observe that from (53), (86), and the independence of the state and discount factor
observation processes we have

E[ϕ(αt) | Zt, βt] = I[αt=d]ϕ(d) + I[αt>d]

∞∫
d

ϕ(ω)g2
t (ω) dω (92)

and

E[ϕ(αt−1) | Zt] = I[αt−1=d]ϕ(d) + I[αt−1>d]

∞∫
d

ϕ(ω)g2
t−1(ω) dω. (93)

Now, since Zt = σ (z0, . . . , zt) ⊆ σ (z0, . . . , zt, αt−1) , we have

E[ϕ(αt)I[αt>d] | Zt]

= E
[
ϕ
(
γαt−1 + ξ

(1)
t−1

)
I
[γαt−1+ξ

(1)
t−1>d]

| Zt
]

= E
[
E
[
ϕ
(
γαt−1 + ξ

(1)
t−1

)
I
[γαt−1+ξ

(1)
t−1>d]

| Zt, αt−1

]
| Zt

]
= E

[∫ ∞
0

ϕ (γαt−1 + ω) I[γαt−1+ω>d]fξ(ω) dω | Zt
]

= E

[∫ ∞
d−γαt−1

ϕ (γαt−1 + ω) fξ(ω) dω | Zt

]
.
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Letting s = γαt−1 + ω we get

E[ϕ(αt)I[αt>d] | Zt] = E

[∫ ∞
d

ϕ(s)fξ (s− γαt−1) I[s−γαt−1>0]ds | Zt
]

=

∫ ∞
d

ϕ(s)E
[
fξ (s− γαt−1) I[s−γαt−1>0]|Zt

]
ds. (94)

From (93) with ϕ(αt−1) = fξ (s− γαt−1) I[s−γαt−1>0] we obtain

E
[
fξ (s− γαt−1) I[s−γαt−1>0]|Zt

]
= I[αt−1=d]fξ (s− γd) I[s−γd>0]

+ I[αt−1>d]

∞∫
d

fξ (s− γω) I[s−γω>0]g
2
t−1(ω) dω. (95)

Thus, (94) takes the form

E[ϕ(αt)I[αt>d] | Zt]

=

∫ ∞
d

ϕ(s)

I[αt−1=d]fξ (s− γd) I[s−γd>0]+I[αt−1>d]

∞∫
d

fξ (s−γω) I[s−γω>0]g
2
t−1(ω)dω

ds

= I[αt−1=d]

∫ ∞
d

ϕ(s)fξ (s− γd) I[s−γd>0]ds

+ I[αt−1>d]

∫ ∞
d

ϕ(s)

∞∫
d

fξ (s− γω) I[s−γω>0]g
2
t−1(ω)ωds. (96)

On the other hand

P [αt > d | Zt] = E
[
I[γαt−1+ξt−1>d] | Zt

]
= E

[
E[I[γαt−1+ξt−1>d] | Zt, αt−1] | Zt

]
= E [P [ξt−1 > d− γαt−1] | Zt, αt−1 | Zt]
= E

[
F̄ξ (d− γαt−1) | Zt

]
= I[αt−1=d]F̄ξ (d− γd) + I[αt−1>d]

∫ ∞
d

F̄ξ (d− γω) g2
t−1(ω) dω, (97)

where the last equality comes from (93). Combining (86), (96), and (97) we get

E[ϕ(αt) | Zt, βt] = I[αt=d]ϕ(d)

+

I[αt>d]

[
I[αt−1=d]

∞∫
d

ϕ(s)fξ (s−γd) I[s−γd>0] ds+I[αt−1>d]

∞∫
d

ϕ(s)
∞∫
d

fξ (s− γω) I[s−γω>0]g
2
t−1(ω) dωds

]
I[αt−1=d]

F̄ξ (d−γd)+I[αt−1>d]

∫∞
d F̄ξ (d−γω) g2t−1(ω) dω

.

(98)
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Hence, multiplying by I[αt>d] in (98) and using indicator functions properties we get

E[ϕ(αt) | Zt, βt]I[αt>d] = I[αt−1=d]

∞∫
d

ϕ(s)fξ (s− γd) I[s−γd>0] ds

F̄ξ (d− γd)

+I[αt−1>d]

∞∫
d

ϕ(s)
∞∫
d

fξ (s− γω) I[s−γω>0]g
2
t−1(ω) dωds∫∞

d
F̄ξ (d− γd) g2

t−1(ω) dω
,

that is, (87) holds. �

P r o o f . of Theorem 5.2. From (92) we have

E[ϕ(αt) | Zt, βt]I[αt>d] =

∞∫
d

ϕ(ω)g2
t (ω) dω. (99)

Thus, comparing (87) and (99), and using the equivalence of the events [βt−1 = 1] ,
[αt−1 ≤ d] , and [αt−1 = d] (see (52)), we conclude, for t ∈ N,

g2
t (s) = βt−1

{
fξ(s− γd)I[s−γd>0]

F̄ξ (d− γd)

}
+(1−βt−1)

{∫∞
d
fξ(s− γω)I[s−γω>0]g

2
t−1(ω) dω∫∞

d
F̄ξ(d− γω)g2

t−1(ω) dω

}
,

which is the relation (62). �

7. CONCLUDING REMARKS

In this paper we have studied a class of partially observable MDPs under a discounted
criterion where the discount factor is modelled by a stochastic process which is also
partially observable. The importance in considering random discount factors lies in its
applications in economic and financial models. Indeed, as it is well known, usually the
discount factor is a function of the interest rate, which, from a realistic point of view,
should be considered random and even more, partially observable, unlike the ordinary
case that assumes it to be constant. The analysis that we have proposed was based on
the application of a standard procedure, that is, transforming the partially observable
problem into a completely observable problem through a filtering process.

On the other hand, although the transformation procedure is merely theoretical, we
have extensively illustrated it with a queueing system with controlled service rate and
partially observable waiting times, which itself is interesting in the field of operations
research. In fact, the queueing system (49) can be considered as a generalization of the
classical inventory system by letting w̄t = 1. In this case, xt and at represent the stock

and the ordered quantity at the beginning of stage t, while w
(1)
t is the random demand

during the stage t. Under a partially observation scenario, we can assume that the only
possible observation is when the stock is zero. This case is known in the literature of
partially inventory systems as ”zero balance walk” (see, e. g., [1]). Hence, according to
our results, we can analyze the zero balance walk case for inventory systems considering
partially observable discount factors.
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An interesting work that the authors are currently working on is the computational
implementation of the results. It is clear that this constitutes a non-trivial challenge
due to the fact of dealing with processes in infinite-dimensional spaces, which implies
proposing efficient discretization methods.
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México) grant Ciencia Frontera 2019-87787.

(Received April 25, 2022)

R E F E R E N C E S

[1] A. Bensoussan, M. Cakanyildirim, and S. P. Sethi: Partially observed inventory sys-
tems: the case of zero-balance walk. SIAM J. Control Optim. 46 (2007), 176–209.
DOI:10.1137/040620321

[2] D. P. Bertsekas and S. E. Shreve: Stochastic Optimal Control: The Discrete Time Case.
Academic Press, New York 1978. DOI:10.1137/1022042

[3] Y. Carmon and A. Shwartz: Markov decision processes with exponentially representable
discounting. Oper. Res. Lett. 37 (2009), 51–55. DOI:10.1016/j.orl.2008.10.005
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