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STABLE PERIODIC SOLUTIONS IN SCALAR PERIODIC
DIFFERENTIAL DELAY EQUATIONS

Anatoli Ivanov and Sergiy Shelyag

Abstract. A class of nonlinear simple form differential delay equations with
a T -periodic coefficient and a constant delay τ > 0 is considered. It is shown
that for an arbitrary value of the period T > 4τ − d0, for some d0 > 0, there
is an equation in the class such that it possesses an asymptotically stable
T -period solution. The periodic solutions are constructed explicitly for the
piecewise constant nonlinearities and the periodic coefficients involved, by
reduction of the problem to one-dimensional maps. The periodic solutions
and their stability properties are shown to persist when the nonlinearities are
“smoothed” at the discontinuity points.

1. Introduction

Differential delay equations serve as mathematical models of various phenomena
in numerous applications where delays are intrinsic features of their functioning. An
extensive list of applications can be found in e.g. monographs [4, 8, 10] with further
references therein. The theoretical basics of the equations are given in monographs
[3, 6].

The scalar differential delay equation
(1.1) x′(t) = −µx(t) + g

(
x(t− τ)

)
, g ∈ C(R,R), µ ≥ 0

is one of the simplest by its form and still exhibiting a variety of quite complex
dynamics and a broad range of applications. Depending on the particular form of
the nonlinearity g it is well-known under particular names such as Mackey-Glass
model [2, 9], Lasota-Wazewska equation [12], Nicholson’s blowflies model [1], some
other named models [10].

Equations of form (1.1) were studied in numerous publications primarily with
respect to the property of global asymptotic stability of the equilibrium and the
existence of nontrivial periodic solutions. In the presence of the negative feedback
property for the nonlinearity g and the instability of the linearized equation about
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the unique equilibrium it is shown that the equation typically possesses a nontrivial
periodic solution slowly oscillating about the equilibrium. The standard techniques
used to prove the existence of periodic solutions are the ejective fixed point theory
with its modifications [3, 6]. The exact value of the periods for such periodic
solutions is generally not known; it can be arbitrary and varies continuously under
continuous changes of g and µ.

A natural extension of model (1.1) is the following equation with the periodic
coefficient a(t):

(1.2) x′(t) = −µx(t) + a(t)f
(
x(t− τ)

)
, t ≥ 0 ,

where f , a ∈ C(R,R) and a(t+ T ) ≡ a(t) for some positive period T ≥ τ > 0. The
presence of the non-autonomous periodic input a(t) can be justified in corresponding
biological models by various factors, for example, by seasonal changes in the negative
feedback [4, 8, 10].

Given equation (1.2) with the T -periodic coefficient a(t) one can ask a natural
question whether it admits periodic solutions with the same period. The primary
objective of this note is to show that such periodic solutions exist for a wide
continuous range of periods T ≥ 4τ − δ0 for some small δ0 > 0. The periodic
solutions are constructed explicitly in terms of piece-wise constant functions f and
a, and their continuous approximations. The special case of µ = 0 is considered
in this paper. The extension to the case of µ > 0 is straightforward, however, it
requires substantial additional space for adequate exposition and will be treated in
a separate paper.

2. Preliminaries

Consider the scalar differential delay equation

(2.1) x′(t) = a(t)f
(
x(t− τ)

)
, t ≥ 0 ,

with a T -periodic coefficient a(t) ≥ 0, a(t+ T ) ≡ a(t), T ≥ τ , and a nonlinearity
f(x) satisfying the negative feedback assumption x · f(x) < 0 ∀x ∈ R, x 6= 0.

For the continuous functions f and a the standard choice of the initial set for
equation (2.1) is the Banach space of continuous functions on the initial interval
[−τ, 0]: X = C([−τ, 0],R). For an arbitrary initial function φ ∈ X there exists a
unique solution x(t) = x(t;φ) to equation (2.1) defined for all t ≥ 0. It is obtained
by forward integration. At every t ≥ 0 the solution x(t) can be viewed as an element
of space X by the following representation: X 3 xt(s) := x(t+ s), s ∈ [−τ, 0].

For the initial basic construction of periodic solutions in Section 3 the functions
f and a are piecewise constant. For arbitrary φ ∈ X the corresponding solution
x(t;φ) is explicitly built for all t ≥ 0 by direct integration. It turns out to be a
piecewise affine function differentiable everywhere except at discrete isolated set of
points (in fact, it is a finite set of points on every finite interval [0, t0], t0 > 0).

We are interested in oscillation of solutions about the equilibrium x(t) ≡ 0.
Sufficient conditions for the oscillation can be easily found in relevant available
publications on the issue (see e.g. the monograph [5] and further references therein).
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In particular, when supt∈[0,T ]
∫ t+τ
t

a(s) ds > −1/f ′(0) all solutions of equation
(2.1) oscillate. We shall assume this condition to hold throughout the paper.

Due to the negative feedback assumption the important role in the dynamics is
played by the slowly oscillating solutions. A solution is called slowly oscillating if
the distance between its any two zeros is greater than the delay τ > 0. Any initial
function φ ∈ X such that φ(s) > 0 ∀s ∈ [−τ, 0] gives rise to a slowly oscillating
solution, under the assumption of oscillation of all solutions.

Define two sets
K+ := {φ ∈ X | φ(s) ≥ 0 ∀s ∈ [−τ, 0], φ 6≡ 0}

and
K− := {φ ∈ X | φ(s) ≤ 0 ∀s ∈ [−τ, 0], φ 6≡ 0} .

It is a straightforward calculation to verify that for arbitrary φ ∈ K+, φ(0) 6= 0,
the corresponding solution x(t;φ) has an increasing sequence of zeros 0 < z1 <
z2 < z3 < · · · such that zk+1 − zk > τ, k ∈ N, and

x(t) < 0 ∀t ∈ (z2k−1, z2k) and x(t) > 0 ∀t ∈ (z2k, z2k+1).
Therefore, the solution x(t;φ) is slowly oscillating [3, 6]. Similar property is valid
for any solution x(t;ψ), ψ ∈ K−, ψ(0) 6= 0.

3. Piecewise constant nonlinearities

In this section we consider the particular case of equation (2.1) when τ = 1:
(3.1) x′(t) = a(t)f

(
x(t− 1)

)
, t ≥ 0 .

Note that the case of general delay τ > 0 can always be normalized to τ = 1 by
time rescaling t = τ · s. We start with the case when the nonlinearity f is the
negative sign function

f(x) = f0(x) = −sign(x) =


+1 if x < 0

0 if x = 0
−1 if x > 0 ,

and the T -periodic coefficient a(t) is a piecewise constant function defined by two
positive constants a1, a2 as

a(t) = A0(t) =


a1 if t ∈ [0, p1)
a2 if t ∈ [p1, p1 + p2)
periodic extension on R outside interval [0, T ), T = p1 + p2 ,

where a1, a2, p1, p2 are all positive constants.
Due to the piecewise constant values of both f(x) and a(t) the forward solutions

to (3.1) can be calculated explicitly; they are piecewise affine continuous functions
for t ≥ 0 differentiable everywhere except at a countable set of isolated points (where
the solution changes slope). We will consider initial functions φ(s) ∈ C([−1, 0],R)
which give rise to slowly oscillating solutions. Without loss of generality one can
assume that φ ∈ K+ and φ(s) > 0 ∀s ∈ [−1, 0]. The corresponding solution
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Figure 1. Solution of Eq. (3.1) for t ∈ [0, T ].

Given φ ∈ K+ and its corresponding solution x(t;φ) we would like to find
conditions such that its segment xp1+p2(s) belongs to the set K−, in other words,
such that the translation operator by the period T = p1 + p2 along the solutions
maps the set K+ into K−.

The following is the explicit calculation of the solution x(t;h), t ≥ 0, for h > 0.
See Figure 1 for the geometric representation of the solution.

On the interval [0, p1] the solution is given by x(t) = h− a1t. We assume that
x1 := x(p1) = h−a1p1 < 0. Therefore, there exists the unique value t1 = h/a1 < p1
such that x(t1) = 0.

We also assume that p1 − t1 < 1, implying t1 + 1 > p1. Then on the interval
[p1, t1 + 1] the solution x is given by x(t) = x1 − a2(t− p1). Set x2 := x(t1 + 1) =
(1− a2/a1)h− a2 + p1(a2− a1). Since x1 < 0 and a2 > 0 we also have that x2 < 0
is valid. Therefore, the segment of the solution x(t), t ∈ [t1, t1 + 1], belongs to the
set K−.

We next suppose that t1 + 1 < p1 + p2. On the interval [t1 + 1, p1 + p2] the
solution x is found as x(t) = x2 + a2[t − (t1 + 1)]. Set x3 := x(p1 + p2) and
additionally assume that x3 < 0. The value of x3 is easily calculated as

x3 = x(p1 + p2) =

(
1− 2

a2
a1

)
h− a1p1 − a2(2− 2p1 − p2) := F1(h) = mh− b.

We note that the piecewise affine solution x(t;h) is continuous on [0, p1 + p2] and
differentiable everywhere except at points t = p1 and t = t1 + 1.

Likewise, when ψ ∈ K− and ψ(0) = h < 0 analogous calculations yield

x3 = x(p1 + p2;ψ) =

(
1− 2

a2
a1

)
h+ a1p1 + a2(2− 2p1 − p2) := F2(h) = mh+ b.

Fig. 1: Solution of Eq. (3.1) for t ∈ [0, T ].

x(t) = x(t;φ), t ≥ 0, depends only on the value φ(0) := h > 0 and does not depend
on the remaining values φ(s) > 0, s ∈ [−1, 0) on the initial interval.

Given φ ∈ K+ and its corresponding solution x(t;φ) we would like to find
conditions such that its segment xp1+p2(s) belongs to the set K−, in other words,
such that the translation operator by the period T = p1 + p2 along the solutions
maps the set K+ into K−.

The following is the explicit calculation of the solution x(t;h), t ≥ 0, for h > 0.
See Figure 1 for the geometric representation of the solution.

On the interval [0, p1] the solution is given by x(t) = h− a1t. We assume that
x1 := x(p1) = h−a1p1 < 0. Therefore, there exists the unique value t1 = h/a1 < p1
such that x(t1) = 0.

We also assume that p1 − t1 < 1, implying t1 + 1 > p1. Then on the interval
[p1, t1 + 1] the solution x is given by x(t) = x1 − a2(t− p1). Set x2 := x(t1 + 1) =
(1− a2/a1)h− a2 + p1(a2 − a1). Since x1 < 0 and a2 > 0 we also have that x2 < 0
is valid. Therefore, the segment of the solution x(t), t ∈ [t1, t1 + 1], belongs to the
set K−.

We next suppose that t1 +1 < p1 +p2. On the interval [t1 +1, p1 +p2] the solution
x is found as x(t) = x2 + a2[t − (t1 + 1)]. Set x3 := x(p1 + p2) and additionally
assume that x3 < 0. The value of x3 is easily calculated as

x3 = x(p1 + p2) =
(

1− 2a2

a1

)
h− a1p1 − a2(2− 2p1 − p2) := F1(h) = mh− b .

We note that the piecewise affine solution x(t;h) is continuous on [0, p1 + p2] and
differentiable everywhere except at points t = p1 and t = t1 + 1.

Likewise, when ψ ∈ K− and ψ(0) = h < 0 analogous calculations yield

x3 = x(p1 + p2;ψ) =
(

1− 2a2

a1

)
h+ a1p1 + a2(2− 2p1 − p2) := F2(h) = mh+ b .

We would like to guarantee that the slope m = 1− 2a2/a1 of the affine maps F1, F2
satisfies |m| < 1, and the y-intercept b = a1p1 + a2(2− 2p1 − p2) > 0 is positive.
An easy calculation leads to the following conclusion:
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Proposition 3.1. Suppose that a2 < a1. Then |m| = |1 − 2a2/a1| < 1. If in
addition (a1/a2 − 2)p1 > p2 − 2 then b = a1p1 + a2(2− 2p1 − p2) > 0 is positive.

Define the piecewise affine map F by

(3.2) F (h) =
{
F1(h) if h > 0
F2(h) if h < 0 .

Under the assumptions of Proposition 3.1 map F has a unique attracting two-cycle
{h∗1, h∗2} = {−b/(1 +m), b/(1 +m)} which attracts all initial values h ∈ R when
−1 < m < 0 (a2 < a1 < 2a2) and all h ∈ (−b/m, b/m) when 0 < m < 1 (2a2 < a1).
This two-cycle of F corresponds to asymptotically stable slowly oscillating periodic
solution of equation (3.1) with the period T = 2(p1+p2). It is also easy to see that the
periodic solution has the following symmetry property x(t+p1+p2) = −x(t) ∀t ∈ R.
This is due to the fact that F2(−h) = −F1(h), h > 0.

The above consideration immediately implies the following

Corollary 3.2. Suppose that a1, a2, p1, p2 satisfy the assumptions of Proposi-
tion 3.1. Then the corresponding equation (3.1) has a unique asymptotically stable
slowly oscillating symmetric periodic solution x∗(t) with the period T = 2(p1 + p2).

Consider next the case of equation (3.1) when f(x) = f0(x) and the piecewise
constant coefficient a(t) is defined by four constants as

(3.3) a(t) = A1(t) =



a1 if t ∈ [0, p1)
a2 if t ∈ [p1, p1 + p2)
a3 if t ∈ [p1 + p2, p1 + p2 + p3)
a4 if t ∈ [p1 + p2 + p3, p1 + p2 + p3 + p4)
periodic extension on R outside interval [0, T ),
T := p1 + p2 + p3 + p4 ,

where a1, a2, a3, a4, p1, p2, p3, p4 are all positive constants.

Proposition 3.3. Assume that the two quadruples a1, a2, p1, p2 and a3, a4, p3, p4
each satisfy the conditions of Proposition 3.1 and that in addition the inequalities
m1 = 1− 2a2/a1 < b1/b2, m2 = 1− 2a4/a3 < b2/b1 are valid. Then the differential
delay equation (3.1) possesses a unique asymptotically stable slowly oscillating
periodic solution with the period T = p1 + p2 + p3 + p4.

The validity of Proposition 3.3 is seen from the analogous construction of the
piecewise affine map F similar to that given my (3.2), where F1 is built of the
quadruple a1, a2, p1, p2 while F2 is derived from the quadruple a3, a4, p3, p4. The
periodic solution is defined by the unique attracting 2-cycle of the interval map F ,
which is given explicitly by (h∗1, h∗2) = ((m1b2 − b1)/(1−m1m2), (b2 −m2b1)/(1−
m1m2)), h∗1 > 0, h∗2 < 0. Such 2-cycle exists if the additional assumptions of the
proposition on values of m1, m2, b1, b2 are met. Note that one of the inequalities
for m1, m2 is satisfied by default.

Next we would like to see what values of the period T can be achieved for the
stable periodic solutions, based on values ai, pi, 1 ≤ i ≤ 4, defining the piecewise
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constant coefficient a(t). According to Proposition 3.1, one must first have that
a1 > a2 and a3 > a4 are satisfied so that both |m1| < 1, |m2| < 1 are valid. Since we
also require that b1 = p1(a1−2a2)+a2(2−p2) > 0, b2 = p3(a3−2a4)+a4(2−p4) > 0,
both can be achieved if a1 > 2a2, a3 > 2a4 and p2 < 2, p4 < 2. To get arbitrarily
large values of the period T one can proceed in several ways. One is to keep values
p2 < 2, p4 < 2 fixed and increase either or both values of a1, a3 indefinitely. Another
way is to define the coefficient a(t) by modifying A1(t) in (3.3) beyond the initial
period T1 = p1 + p2 + p3 + p4 by A2(t) := A1(t) for t ∈ [0, T1) and A2(t) ≡ 0 for
t ∈ [T1, T1 + p5), for some p5 > 0 (which can be any). By increasing the value of p5
the new period T = p1 + p2 + p3 + p4 + p5 of the periodic solution can be made
continuously arbitrarily large.

In view of the construction and consideration above we arrive at the following
statement

Theorem 3.4. There is a constant T0 > 2 such that for arbitrary period T within
the range T0 ≤ T < ∞ there are choices of values ai, pi, 1 ≤ i ≤ 4, such that
equation (3.1) with nonlinearity f = f0 and the respective coefficient a = A2 has
an asymptotically stable slowly oscillating periodic solution with the period T .

Since by the very construction the periodic solutions are slowly oscillating each
semi-cycle is of the length greater than 1. Therefore the period of any such periodic
solution is always greater than 2. Period T = 4 is achieved when each of the
semi-periods T1 = p1 +p2 and T2 = p3 +p4 is 2. We obtain the period 4 solution for
this particular choice of the constants’ values a1 = 7, a2 = 3, a3 = 6, a4 = 2.5 and
p1 = p2 = 1, p3 = 1.2, p4 = 0.8. Due to the continuous dependence of the period T
on the constants’ values the smaller period can be achieved by their perturbation.
We numerically observed stable periodic solutions by changing the above values
proportionally up to when T1 = T2 = 1.8, thus making the period T = 3.6 (one
can choose this value as T0 in the statement). It would be of interest to derive a
sharper estimate for T0.

4. Smoothed nonlinearities

In this section we consider equation (2.1) where the piecewise constant functions
f(x) and a(t) of Section 3 are replaced by close to them continuous nonlinearities.
The basic idea is to make functions f and a continuous (or even smooth) in a
small neighborhood of every discontinuity point by connecting the respective two
constant values by a line segment.

We start first with the case f(x) = f0(x) and a(t) = A0(t). Let δ0 > 0 be small,
and for every δ ∈ (0, δ0] introduce the continuous functions fδ(x) and Aδ0(t) by:

(4.1) f(x) = fδ(x) =


+1 if x ≤ −δ
−1 if x ≥ δ
−(1/δ)x if x ∈ [−δ, δ] ,
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and
(4.2)

a(t) = Aδ0(t) =



a2 + a1−a2
2δ (t+ δ) if t ∈ [−δ, δ]

a1 if t ∈ [δ, p1 − δ)
a1 + a2−a1

2δ [t− (p1 − δ)] if t ∈ [p1 − δ, p1 + δ]
a2 if t ∈ [p1 + δ, p1 + p2 − δ)
a2 + a1−a2

2δ [t− (p2 − δ)] if t ∈ [p1 + p2 − δ, p1 + p2 + δ]
periodic extension on R outside interval [0, T ), T = p1 + p2 .

Note that in the above definition of Aδ0(t) there is an intentional overlap in values of
the function on the intervals [−δ, δ] and [p2−δ, p2 +δ] (where they are the same due
to the intended periodicity). Likewise to (4.2), we define the continuous functions
Aδ1(t) and Aδ2(t) based on the earlier defined piecewise constant coefficients A1(t)
and A2(t) and with the same respective periods.

It is a well known fact that such small δ-perturbation of the nonlinearity f and
the coefficient a lead to small smooth perturbations of the map F (away from its
discontinuity point h = 0) (see e.g. [7, 11] for more relevant details). Below we
outline the justification of this fact by showing the continuous dependence on δ
and smoothness of the corresponding map for the value x1(δ).

For δ ≥ 0 the value x1(δ) = x(p1;h) is explicitly calculated by direct integration
as

x1(δ) = h−
∫ δ

0
aδ(t) dt− a1(p1 − 2δ)−

∫ p1

p1−δ
aδ(t) dt

= h− a1p1 + 2a1δ −
∫ δ

0
aδ(t) dt−

∫ p1

p1−δ
aδ(t) dt

= x1(0) + x̃1(δ) ,

where x̃1(δ) is continuous in δ with x̃1(0) = 0.
Similar calculations for the next two values x2(δ) and x3(δ) lead to the expression

x3(δ) = F1(h, δ) = F1(h) + F̃1(h, δ) where F1(h) is as in (3.2) and F̃1(h, δ) is
continuous in h, δ and continuously differentiable in h with F̃1(h, 0) = 0 and
∂(F̃1(h, δ))/∂h ≤M, where positive constant M is independent of δ ≥ 0. Analogous
calculations are valid for F2(h, δ) (we omit those calculations and particular details
of the expressions). Therefore, by the continuity for small δ > 0 map F (h, δ) as in
(3.2) has an attracting two-cycle close to that when δ = 0.

The above considerations give us the following statement:

Theorem 4.1. There exist T0 > 2 and δ0 > 0 such that for arbitrary T with T0 <
T <∞ and any 0 < δ < δ0 differential delay equation (3.1) with f(x) = fδ(x) and
T -periodic a(t) = Aδ1(t) (or Aδ2(t)) has an asymptotically stable slowly oscillating
solution with the period T .
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5. Discussion and conclusions

The results of Sections 3 and 4 derived for differential delay equation (3.1) can
be extended to the more general equation (2.1) with µ > 0 and piecewise constant
or smoothed functions f(x) and a(t). The calculations become more involved and
complex, however, as the solutions are now piecewise exponential of the form
x(t) = A exp{−µt}+B,A,B - constant. The resulting dynamics can become more
complicated as well: besides the stability and periodicity they can exhibit the
chaotic behaviors. The basic idea of the analysis is the same as for equation (3.1):
a reduction of the dynamics to that of interval maps. A review paper [7] provides
examples of such analyses as well as references to other publications.
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