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Abstract. This paper deals with a mixed boundary-value problem of Ventcel type in two
variables. The peculiarity of the Ventcel problem lies in the fact that one of the boundary
conditions involves second order differentiation along the boundary. Under suitable assump-
tions on the data, we first give the definition of a weak solution, and then we prove that
the problem is uniquely solvable. We also consider a particular case arising in real-world
applications and discuss the resulting model.
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1. Introduction

The Ventcel problem is a boundary-value problem of mixed type, whose peculiarity

relies in the fact that the boundary condition involves a second-order differentiation

of the solution, which is in contrast with the usual Neumann or even Robin problem,

where the boundary condition involves a first-order differentiation only.

The initial motivation of Ventcel (whose name is transliterated in several different

ways, we follow [3], [16]) was to find the boundary conditions that restrict a given
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elliptic operator to the infinitesimal generator of a Markov process (see [20]). Much

later, Favini, Ruiz Goldstein, Goldstein and Romanelli showed how to solve the

parabolic problem with boundary conditions of Ventcel type in a convenient Lebesgue

space with weight (see [9], [10] and the references therein).

While the Ventcel boundary condition has received less attention than the classical

Dirichlet, Neumann, and Robin conditions, there is by now a pretty extensive litera-

ture, which includes results for general second order elliptic equations with variable

coefficients (see e.g. [1], [2], [14]).

The questions of well-posedness of the elliptic problem and regularity of the so-

lution, together with the convergence of the finite element approximation, are still

under investigation: see, for instance, [3], [6], [13], [16]. Applications are found in

the study of thin layers, rough boundaries, heat conduction processes with a heat

source on the boundary, fluid-structure interaction problems, and more.

Our interest arises from planar elasticity: indeed, in Section 5 we show that the

equilibrium problem of a prestressed membrane whose boundary is composed of rigid

and cable elements can be rephrased as a Ventcel problem. The solution was ob-

tained in [21] by means of a numerical strategy, leaving the question of existence and

uniqueness open. In the present paper we prove well-posedness of a simplified model.

1.1. Formulation of the problem. Following the notation in [3], [16], for

a bounded domain Ω ⊂ R
d, d > 2, with Lipschitz boundary ∂Ω, let Γν be an open

subset of ∂Ω having positive measure and such that ΓD = ∂Ω \ Γν also has positive

measure. For a convenient function f = f(x), x ∈ Ω, and boundary data ϕ = ϕ(x),

x ∈ ΓD, and g = g(x), x ∈ Γν , as well as for variable coefficients a2 = a2(x) and a0 =

a0(x) with x ∈ Γν , we are interested in the Ventcel mixed boundary-value problem

(1.1)






−∆u = f in Ω,

u = ϕ on ΓD,

uν − a2∆τu+ a0u = g on Γν ,

where ∆τ is the Laplace-Beltrami operator on Γν and the subscript (·)ν indicates

the outward normal derivative on Γν . Some known results:

⊲ For ΓD = ∅, Ω ⊂ R
d with d > 2, a0 = α > 0 (constant), a2 = −β (constant) and

g ≡ 0, well-posedness has been established independently of the sign of β, see [3]

(the notation is taken from there).

⊲ For ΓD = ∅, Ω ⊂ R
d with d > 2, a0 = α > 0 (constant) and a2 = β > 0 (constant),

regularity results and finite element analysis are presented in [13].

⊲ For Ω ⊂ R
d with d = 3, a0 = 0, a2 = 1 (constant) and ϕ ≡ 0, regularity results

and a priori error analysis in polyhedral domains are obtained in [16].
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1.2. Main result. In order to formulate the main claim of our work, we first

have to set the following assumption:

Assumption 1.1.

(1) Ω is a bounded Lipschitz domain (an open, connected set) in the plane, whose

boundary ∂Ω properly contains a finite number N > 1 of simple C1-curves Γi,

i = 1, . . . , N , satisfying Γi ∩ Γj = ∅ for i 6= j.

(2) By a C1-curve Γi we mean the trace of a function r = ri(s) belonging to the

class C1([0, Li],R
2) and satisfying |r′

i(s)| = 1 in the interval [0, Li]. Thus, Li > 0

is the length of Γi, and the tangent unit vector τ = ∂/∂s, as well as the out-

ward unit vector ν may be extended by continuity from the interior of Γi to its

endpoints.

(3) Each curve Γi is simple in the sense that the equality r(s1) = r(s2) may hold

for s1 < s2 only if s1 = 0 and s2 = L. We allow the case when ri(0) = ri(Li),

i.e., Γi is a closed curve, but in such a case we require r
′
i(0) = r

′
i(Li); thus, τ

and ν have a unique extension to the (coinciding) endpoints.

(4) The notation Γ◦
i stands for the interior of Γi, which is defined as follows: Γ

◦
i =

Γi \ {ri(0), ri(Li)} if ri(0) 6= ri(Li), and Γ◦
i = Γi if ri(0) = ri(Li). We also

define the open subset Γν =
N⋃
i=1

Γ◦
i ⊂ ∂Ω, and we assume that the closed subset

ΓD = ∂Ω \ Γν has a positive length.

E x am p l e 1.2. A domain fulfilling the above structure is, for instance, the an-

nulus Ω = BR1
(0) \ BR0

(0) with 0 < R0 < R1. We may let Γν = ∂BR0
(0) and

ΓD = ∂BR1
(0), as well as Γν = ∂BR1

(0) and ΓD = ∂BR0
(0); the last case is con-

sidered in [3], Section 2.1.2. Another example is the square Ω = (0, 1)× (1, 2) with

Γi = [0, 1] × {i}, i = 1, 2; in this case we have Γ◦
i = (0, 1) × {i}, i = 1, 2, hence

Γν = Γ◦
1 ∪ Γ◦

2 = (0, 1)× {1, 2} and ΓD = ∂Ω \ Γν = {0, 1} × [1, 2].

Our main result is the following:

Theorem 1.3. Let Assumption 1.1 hold and ϕ : ΓD → R satisfy a uniform Lip-

schitz condition. Then for any f ∈ L2(Ω), g ∈ L2(Γν), 0 6 a0 ∈ L∞(Γν) and

a2 ∈ W 1,∞(Γν) such that inf
Γν

a2 > 0, problem (1.1) admits a unique weak solution.

R em a r k 1.4. Taking Assumption 1.1 (2) into account, the tangential derivative

(u(ri(s)))
′ = du(ri(s))/ds of a smooth function u is denoted by ∇τu, the intrinsic

gradient of u on Γi, and the second derivative (u(ri(s)))
′′ = d2u(ri(s))/ ds

2 by ∆τu,

the Laplace-Beltrami operator on Γi. For shortness, we also write us and uss in place

of ∇τu and ∆τu, respectively. The tangential derivatives and the Laplace-Beltrami

operator are defined, for instance, in [13], Section 2.2.
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Taking a2 ∈ W 1,∞(Γν) gives the third condition in (1.1) a variational structure

(see Definition 3.2), namely, the condition becomes

uν −∇τ (a2∇τu) +∇τa2∇τu+ a0u = g on Γν .

In the special case when a2 is constant, the coercivity of the bilinear form associated

to the definition of a weak solution is essentially automatic. In contrast, in the non-

constant case, coercivity is gained (see Lemma 4.2) by adding a convenient term to

both sides of the functional equation, so to obtain a compact resolvent operator,

subject to the Fredholm alternative. The weak formulation of the problem also relies

on the existence of a sufficient regular lifting of the boundary data to the whole

domain; in order to make this paper self-contained, we give details in Lemma 3.1.

1.3. Non-local interpretation. We shortly mention that problem (1.1) can

be rephrased in terms of a suitable non-local operator (see, for instance, [3], Sec-

tion 2.2.1). The idea is that if the domain Ω and the boundary data ϕ, ψ are suffi-

ciently smooth, then the solution u of the Dirichlet problem

(1.2)






−∆u = f in Ω,

u = ϕ on ΓD,

u = ψ on Γν ,

is uniquely determined and differentiable on Γν . If the boundary value ϕ on ΓD

is kept fixed and ψ is let to vary, then the outward derivative uν along Γν can

be thought of as the outcome of an operator; namely, the operator L : ψ 7→ uν ,

usually called the Dirichlet-to-Neumann operator (a related operator is the Steklov-

Poincaré operator defined in [18], pp. 3–4). The Dirichlet-to-Neumann operator

is considered in detail in [5] in the case when the bounded domain Ω ⊂ R
2 is

replaced by the half-space in R
d−1 × (0,∞) ⊂ R

d, d > 2, and ΓD = ∅. In the

present case, instead, the operator L acts on functions defined on the bounded,

possibly non-straight and disconnected curve Γν . Such an operator is non-local in

the sense that any modification of the given function ψ in a small neighborhood

of any point x0 ∈ Γν implies a consequent modification of the outcome uν on the

whole Γν . Under convenient assumptions, the Ventcel problem (1.1) is equivalent to

the single equation

(1.3) Lψ − a2∆τψ + a0ψ = g on Γν .

Indeed, if u is any solution of problem (1.1), then its trace ψ = u|Γν
solves equa-

tion (1.3), because Lψ = uν . Conversely, if ψ is any solution of equation (1.3), then
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the solution u of the Dirichlet problem (1.2), which is used in the definition of L, is

also a solution of the Ventcel problem (1.1). The peculiarity of equation (1.3) lies

in the fact that the non-local operator L and the (local) Laplace-Beltrami operator

are compared to each other.

2. Poincaré-type inequalities

In this section we establish some estimates that resemble the well-known Poincaré

inequality, and play a key role in the subsequent proof of uniqueness of the weak

solution to problem (1.1). In particular, in Lemma 2.4 we also prove an interesting

Poincaré inequality for the composite Sobolev space V0 defined in (2.3).

Lemma 2.1 (Poincaré-type inequality in a bounded interval). Let (a, b) be

a bounded interval on the real line, and let v ∈ H1((a, b)). Since v has a continuous

extension to the closed interval [a, b], we may define

v0 = min
[a,b]

v, v1 = max
[a,b]

v, Ĩ = {s ∈ [a, b] ; v0 < v(s) < v1}.

We claim that

(2.1)

∫

Ĩ

(v(s)− v0)
2 ds 6 |Ĩ|2

∫

Ĩ

(v′(s))2 ds,

where |Ĩ| denotes the Lebesgue measure of Ĩ.

P r o o f. If Ĩ = ∅, i.e., if v is constant, then (2.1) obviously holds. Otherwise, we

argue as follows. Let s0 ∈ [a, b] be any point such that v(s) = v0. By the fundamental

theorem of calculus we get the estimate

v(s)− v0 6

∫ s

s0

|v′(t)| dt 6 ‖v′‖L1((a,b)).

By [11], Lemma 7.7 (or [4], Comment 4, p. 314) we have v′ = 0 almost everywhere

in (a, b) \ Ĩ, and hence we may replace L1((a, b)) with L1(Ĩ) in the inequality above,

thus getting

v(s) − inf
(a,b)

v 6 ‖v′‖L1(Ĩ).

An application of the Cauchy-Schwarz inequality on the set Ĩ yields ‖v′‖L1(Ĩ) 6

‖1‖L2(Ĩ)‖v
′‖L2(Ĩ) = |Ĩ|1/2‖v′‖L2(Ĩ). This and the preceding inequality yield the

pointwise estimate

(v(s) − v0)
2
6 |Ĩ|‖v′‖2

L2(Ĩ)
,

and (2.1) follows by integration on Ĩ. �
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Corollary 2.2 (Poincaré-type inequality on a simple C1-curve). Let Γ be the

trace of a function r = r(s) belonging to the class C1([0, L],Rd), L ∈ (0,∞), d > 2,

and satisfying |r′(s)| = 1 in [0, L]. Assume that Γ is a simple curve satisfying

Assumption 1.1 (3). Since each w ∈ H1(Γ) has a continuous representative, we may

define

w0 = min
Γ
w, w1 = max

Γ
w, Γ̃ = {x ∈ Γ; w0 < w(x) < w1}.

We claim that

(2.2)

∫

Γ̃

(w(r(s)) − w0)
2 ds 6 |Γ̃|2

∫

Γ̃

|∇τw(r(s))|
2 ds,

where |Γ̃| denotes the Hausdorff measure of Γ̃.

P r o o f. Let (a, b) = (0, L) and v(s) = w(r(s)). Since |r′(s)| = 1, the Hausdorff

measure (or total length) of Γ̃ equals the Lebesgue measure of the set Ĩ in Lemma 2.1.

Furthermore, by the definition of the intrinsic gradient ∇τw (see Remark 1.4) we

have |∇τw(s)| = |v′(s)|, and the conclusion is accomplished through inequality (2.1).

�

In order to define an appropriate functional setting where facing problem (1.1),

it is convenient to introduce the following vector spaces on a domain Ω satisfying

Assumption 1.1:

V = {v ∈ H1(Ω); v|Γν

∈ H1(Γν)},

and

(2.3) V0 = {v ∈ H1(Ω); v|Γν

∈ H1
0 (Γν), v|ΓD

= 0},

both endowed with the norm

(2.4) ‖v‖2V :=

∫

Ω

|Du|2 dx+

∫

Ω

u2 dx+

∫

Γν

|∇τu|
2 ds+

∫

Γν

u2 ds,

where Du = Du(x, y) = (ux(x, y), uy(x, y)) is the gradient of u. We have:

Lemma 2.3 (Poincaré inequality for V0). Let Ω and Γν be as in Assumption 1.1,

and let V0 be given by (2.3). There exists a constant L > 0 such that the inequality

‖v‖L2(Γν) 6 L‖Dv‖L2(Ω) holds for every v ∈ V0.

P r o o f. By the usual Poincaré inequality (see [19], Theorem 7.91), there exists

a constant CP such that ‖v‖H1(Ω) 6 CP ‖Dv‖L2(Ω). Furthermore, by the trace

inequality [19], Theorem 7.82 we also have ‖v‖L2(Γν) 6 C‖v‖H1(Ω) for a convenientC,

and the conclusion follows. �
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R em a r k 2.4. Some care is needed when dealing with the Poincaré inequality in

the space V0; in particular, it is not to be expected that ‖w‖L2(Γν) 6 C‖∇τw‖L2(Γν)

for a constant C and for all w ∈ V0. To construct a counterexample, let us consider

the annulus Ω = BR1
(0) \ BR0

(0) with Γν = ∂BR1
(0) and ΓD = ∂BR0

(0) as in

Example 1.2. The radial function w(x) = (|x| − R0)/(R1 − R0) belongs to V0 and

satisfies ‖w‖L2(Γν ) = |Γ1|1/2 as well as ‖∇τw‖L2(Γν) = 0. Hence, a constant C as

above cannot exist.

3. Definition of weak solutions

As a consequence of Lemma 2.3, and by means of the two-dimensional Poincaré

inequality, the norm on V0 (recall the definition in (2.3))

(3.1) ‖v‖2V0
:=

∫

Ω

|Du|2 dx+

∫

Γν

|∇τu|
2 ds

is equivalent to (2.4), and standard procedures show that (V0, ‖·‖V0
) is a Hilbert space

(see, for instance, [3], [6], [16]). On the other hand, we also need that the Dirichlet

datum ϕ : ΓD → R in problem (1.1) has a lifting ϕ̃ ∈ V , i.e., we need that ϕ is the

trace on ΓD of some ϕ̃ ∈ V . Before proceeding further, we give a sufficient condition

for ϕ to satisfy such a requirement:

Lemma 3.1 (Existence of a lifting). Let Assumption 1.1 be complied. If the

boundary data ϕ : ΓD → R satisfy a uniform Lipschitz condition, then there exists

ϕ̃ ∈ V such that ϕ = ϕ̃|ΓD
.

P r o o f. By McShane’s lemma [15], Theorem 1, there exists a uniformly Lipschitz

function ϕ̃ : R
2 → R coinciding with ϕ on ΓD. In particular, the restriction ϕ̃|Γν

belongs to the Sobolev space W 1,∞(Γν) ⊂ H1(Γν), and therefore ϕ̃ ∈ V . �

3.1. The inhomogeneous problem. Following [8], (10), p. 314 and [11], (8.3),

we allow f and g be given by f = f1 +div f2 and g = g1 +∇τ g2. Such equalities are

intended in the weak sense: namely, every choice of f1 ∈ L2(Ω,R), f2 ∈ L2(Ω,R2)

and g1, g2 ∈ L2(Γν) gives rise to two linear, continuous operators Lf , Lg acting on

the function space V0 through

Lf : w 7→

∫

Ω

(f1w − f2 ·Dw) dx, Lg : w 7→

∫

Γν

(g1w − g2∇τw) ds.

For shortness, we let Lw be the sum of the two operators above:

Lw = Lf + Lg.
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If the boundary datum ϕ : ΓD → R has a lifting ϕ̃ ∈ V , we may define the function

space

Vϕ = {u ∈ H1(Ω); u− ϕ̃ ∈ V0}

and give the definition of weak solution of problem (1.1):

Definition 3.2 (Weak solution of the inhomogeneous problem). Let Assump-

tion 1.1 hold and let f1 ∈ L2(Ω,R), f2 ∈ L2(Ω,R2), g1, g2 ∈ L2(Γν), a2 ∈ W 1,∞(Γν)

and a0 ∈ L∞(Γν). Suppose that ϕ : ΓD → R has a lifting ϕ̃ ∈ V . A weak solution of

problem (1.1) is a function u ∈ Vϕ such that for every w ∈ V0 the following equality

holds:

(3.2)

∫

Ω

Du ·Dw dx+

∫

Γν

((a2∇τw + w∇τa2)∇τu+ a0uw) ds = Lw.

The definition is motivated by the following property:

Proposition 3.3. Let Assumption 1.1 hold and f ∈ C0(Ω), g ∈ C0(Γν), a2 ∈

C1(Γν), a0 ∈ C0(Γν) and ϕ ∈ C1(ΓD). Any function u ∈ C2(Ω) is a weak solution

of problem (1.1) if and only if the three equalities in (1.1) hold pointwise.

P r o o f. Step 1. Let us prepare an identity to be used afterwards. By the product

rule, for every w ∈ V0 we have ∇τ ((a2w)∇τu) = ∇τ (a2w)∇τu + a2w∆τu in the

weak sense on Γi, i = 1, . . . , N , as well as ∇τ (a2w) = a2∇τw + w∇τa2; hence

(3.3)

∫

Γi

(a2∇τw + w∇τ a2)∇τu ds =

∫

Γi

∇τ (a2w)∇τu ds

=

∫

Γi

∇τ ((a2w)∇τu) ds−

∫

Γi

a2w∆τu ds.

Furthermore, by the fundamental theorem of calculus we also have

∫

Γi

∇τ ((a2w)∇τu) ds

= a2(ri(Li))w(ri(Li))∇τu(ri(Li))− a2(ri(0))w(ri(0))∇τu(ri(0))

for every i = 1, . . . , N . If ri(0) = ri(Li), then the right-hand side obviously vanishes.

If, instead, ri(0) 6= ri(Li), then w(ri(0)) = w(ri(Li)) = 0 because w ∈ H1
0 (Γi).

Consequently, we arrive at

∫

Γi

∇τ ((a2w)∇τu) ds = 0 for every i = 1, . . . , N .
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Plugging this into (3.3) and summing over i leads to the identity

(3.4)

∫

Γν

(a2∇τw + w∇τ a2)∇τu ds = −

∫

Γν

a2w∆τu ds.

Step 2. Suppose that u ∈ C2(Ω) is a weak solution of problem (1.1). Then by

the definition of a weak solution we have u ∈ Vϕ and therefore u = ϕ pointwise

on ΓD (cf. [12], Corollary 1.5.1.6). Moreover, since C
1
c (Ω) ⊂ V0, we may take any

ψ ∈ C1
c (Ω) and let w = ψ in (3.2) obtaining

∫

Ω

Du ·Dψ dx =

∫

Ω

fψ dx ∀ψ ∈ C1
c (Ω),

which implies

(3.5) −∆u = f in Ω

(see, for instance, [4], Step D, p. 293). In order to prove the last equality in (1.1),

we start from an arbitrary Lipschitz function η ∈W 1,∞(Γν)∩H1
0 (Γν) and we define

w = η on Γν , w = 0 on ΓD. Thus, w is Lipschitz continuous on ∂Ω and therefore,

as mentioned in the proof of Lemma 3.1, it has a Lipschitz continuous lifting to the

whole plane R2. We denote such a lifting again by w, for simplicity, and observe that

w ∈ V0. Multiplying both sides of (3.5) by w and integrating by parts we obtain

(3.6)

∫

Ω

Du ·Dw dx−

∫

Γν

wuν ds =

∫

Ω

fw dx.

Recall that identity (3.2) holds for all w ∈ V0 by assumption. By comparing (3.2)

with the equality above, we deduce that

(3.7)

∫

Γν

(wuν + (a2∇τw + w∇τ a2)∇τu+ a0uw) ds =

∫

Γν

gw ds.

Since w = η on Γν , this and identity (3.4) yield

(3.8)

∫

Γν

(ηuν − a2η∆τu+ a0uη) ds =

∫

Γν

gη ds,

and the last equality in (1.1) follows from the fundamental lemma of the calculus of

variations (see [4], Corollary 4.24).

Step 3. Conversely, assume that a function u ∈ C2(Ω) satisfies the three equal-

ities in (1.1) pointwise. Then u ∈ Vϕ (see again [12], Corollary 1.5.1.6, or also

Theorem 9.17 and the subsequent Remark 19 in [4]). To proceed further, we multi-

ply (3.5) by an arbitrary test function w ∈ V0 and integrate by parts obtaining (3.6).

On the other side, multiplying the last equality in (1.1) by the same arbitrary w and

integrating over Γν we get (3.8). This and identity (3.4) produce (3.7), which added

to (3.6) leads to (3.2), and the proof is complete. �
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3.2. The homogeneous problem. With the aid of the lifting ϕ̃ ∈ V of the

boundary datum ϕ : ΓD → R, we may reduce the inhomogeneous problem (1.1) to

the homogeneous one

(3.9)





−∆v = fϕ̃ in Ω,

v = 0 on ΓD,

vν − a2∆τv + a0v = gϕ̃ on Γν ,

where fϕ̃, gϕ̃ denote the linear, continuous operators on V0, respectively defined as

fϕ̃ : w 7→ Lf (w) −

∫

Ω

Dϕ̃ ·Dw dx,

gϕ̃ : w 7→ Lg(w) −

∫

Γν

(a0ϕ̃w + (a2∇τw + w∇τa2)∇τ ϕ̃) ds.

R em a r k 3.4. Any function u ∈ Vϕ̃ is a weak solution of problem (1.1) if and

only if the function v = u−ϕ̃ ∈ V0 is a weak solution of problem (3.9). For simplicity,

in the sequel we will show that problem (1.1) is uniquely solvable by proving the

existence and uniqueness of a weak solution of problem (3.9).

4. Proof of Theorem 1.3

In this section we will focus on the analysis concerning the existence and uniqueness

of solutions to problem (3.9). To this aim we first define, for any positive a2 ∈

W 1,∞(Γν) away from zero, and for every non-negative a0 ∈ L∞(Γν), some values

which will be used throughout the main proofs. Precisely, we set

(4.1)





λ2 := inf
Γν

a2 > 0, Λ2 := sup
Γν

a2, M := sup
Γν

|∇τa2|,

λ0 := inf
Γν

a0 > 0, Λ0 := sup
Γν

a0.

4.1. Uniqueness of the solution.

Lemma 4.1 (Uniqueness of the solution of the homogeneous problem). Let As-

sumption 1.1 be complied. Suppose that 0 6 a0 ∈ L∞(Γν), and let a2 ∈ W 1,∞(Γν)

satisfy inf
Γν

a2 > 0. If v ∈ V0 satisfies

(4.2)

∫

Ω

Dv ·Dw dx+

∫

Γν

((a2∇τw + w∇τa2)∇τ v + a0vw) ds = 0

for every w ∈ V0, then v vanishes almost everywhere in Ω.
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P r o o f. Before proceeding further, observe that if v ∈ V0 fulfills relation (4.2) for

every w ∈ V0, and if furthermore ∇τ v vanishes a.e. on Γν , then

∫

Ω

Dv ·Dw dx+

∫

Γν

a0vw ds = 0.

In such a case, choosing w = v and recalling that a0 > 0 on Γν , it follows that v = 0.

Hence, in order to prove the lemma, we consider an arbitrary v ∈ V0 satisfying (4.2)

for every w ∈ V0, and show that ∇τ v = 0 a.e. on Γν .

The constant k

Profile of v on Γ2

Profile of v on Γ1

Figure 1. Sample profile of v on the (rectified) curves Γ1, Γ2 (N1 = 1).

Suppose, on the contrary, that there exists a positive integer N1 6 N such that

the oscillation ωi given by

ωi = max
Γi

v −min
Γi

v

is positive if and only if i 6 N1 (see Figure 1). Since N1 is a finite number, there

exists a positive ε0 such that ωi > ε0 for every i 6 N1. Observe that at least one of

the following two inequalities must hold:

µ1 := max
16i6N1

max
Γi

v > 0; min
16i6N1

min
Γi

v < 0.

We consider the first case, the second one being analogous. Furthermore, without

loss of generality we assume that µ1 is attained on Γ1. By the definition of µ1 and ε0,

for every i = 1, . . . , N1 we have

min
Γi

v 6 max
Γi

v − ε0 6 µ1 − ε0

and therefore,

(4.3) min
Γ1

v 6 max
16i6N1

min
Γi

v =: µ0 6 µ1 − ε0 < µ1 = max
Γ1

v.
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Arguing as in [11], Theorem 8.1 and in [17], Theorem 3.2.1, let us define µ+
0 =

max{µ0, 0} and choose a real number k in the open interval (µ
+
0 , µ1). Consider the

function w = (v − k)+. Since k is positive, we have w ∈ V0. Apart from a negligible

set, the gradient Dw in Ω is given by

(4.4) Dw(x) =

{
Dv(x) if v(x) > k,

0 if v(x) 6 k,

and a similar representation holds for ∇τw on Γν . In particular, we have

∇τw∇τ v = |∇τw|
2, w∇τ v = w∇τw a.e. on Γν .

As a consequence of position (4.4), the first integral in (4.2) is non-negative, and

hence,

(4.5)

∫

Γν

(a2∇τw + w∇τa2)∇τ v ds+

∫

Γν

a0vw ds 6 0.

Let us focus on the product vw. By definition, the function w = (v − k)+ is either

positive or zero. When w vanishes, the product vw obviously vanishes. When w

is positive, instead, v − k is also positive and therefore v > k > 0. In conclusion,

we have vw > 0 on Γν . Since a0 > 0, it follows that the last integral in (4.5) is

non-negative, and therefore we arrive at
∫

Γν

a2|∇τw|
2 ds 6

∫

Γν

|∇τa2||∇τw|w ds.

Let C = max{1,M/λ2}, whereM,λ2 are as in (4.1). In particular, we assume λ2 > 0

(ellipticity). With this notation we may write

(4.6)

∫

Γν

|∇τw|
2 ds 6 C

∫

Γν

|∇τw|w ds.

We aim to replace the domain of integration Γν by the set Γ̃ =
N1⋃
i=1

Γ̃i, where

Γ̃i =
{
x ∈ Γi ; 0 < w(x) < max

Γi

w
}
=

{
x ∈ Γi ; k < v(x) < max

Γi

v
}
, i = 1, . . . , N1.

By definition, Γ̃i is a (possibly empty) relatively open subset of Γi. Furthermore, the

equality ‖∇τw‖L2(Γ̃i)
= ‖∇τw‖L2(Γi) holds, because ∇τw vanishes almost every-

where in Γi \ Γ̃i (see [11], Lemma 7.7). Since ∇τw = 0 on Γi for i > N1, inequal-

ity (4.6) implies

(4.7)

∫

Γ̃

|∇τw|
2 ds 6 C

∫

Γ̃

|∇τw|w ds.
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In order to estimate the last integral, using the Cauchy-Schwarz inequality in Γ̃ we get
∫

Γ̃

|∇τw|w ds 6 ‖∇τw‖L2(Γ̃)‖w‖L2(Γ̃).

By (4.3), ∇τw cannot vanish identically in Γ̃1, hence ‖∇τw‖L2(Γ̃) > 0. Thus, the

inequality above and (4.7) imply

(4.8) ‖∇τw‖L2(Γ̃) 6 C‖w‖L2(Γ̃).

Let us estimate the last term. For every i = 1, . . . , N1 we have k > µ+
0 > min

Γi

v,

and consequently min
Γi

w = 0. Hence, by using relation (2.2) we obtain ‖w‖2
L2(Γ̃i)

6

|Γ̃i|2‖∇τw‖2L2(Γ̃i)
, and by summation over i = 1, . . . , N1

‖w‖L2(Γ̃) 6 |Γ̃|‖∇τw‖L2(Γ̃).

This and (4.8) imply C|Γ̃| > 1. In contrast, we now check that |Γ̃| ց 0 as k ր µ1. To

see this, it suffices to observe that when k increases, the corresponding set Γ̃ = Γ̃(k)

describes a decreasing family of open subsets of Γν with finite Hausdorff measure,

and by the continuity of the measure we have

lim
kրµ1

|Γ̃(k)| =

∣∣∣∣
⋂

k∈(µ+

0
,µ1)

Γ̃(k)

∣∣∣∣ = |∅| = 0,

which is a contradiction. Thereafter, the unique function v ∈ V0 satisfying (4.2) for

every w ∈ V0 is the null function. �

4.2. Existence of a solution. Let us now turn our attention to the question

concerning the existence of solutions to the homogeneous problem (3.9). To this

aim, we have to recall that the composite Sobolev space V0 introduced in (2.3) was

endowed with the norm (3.1). We start with the following lemma.

Lemma 4.2. Let Assumption 1.1 be complied. Suppose that a0 ∈ L∞(Γν) and

let a2 ∈ W 1,∞(Γν) satisfy inf
Γν

a2 > 0. For V0 as in (2.3) let us consider the bilinear

form B : V0 × V0 → R given by

B(v, w) =

∫

Ω

Dv ·Dw dx+

∫

Γν

a2∇τ v∇τw ds+

∫

Γν

(∇τa2∇τ v)w ds+

∫

Γν

a0vw ds.

Then for λ0, λ2 and M defined in (4.1), the bilinear form

Bσ0
(v, w) :=





B(v, w) + σ0

∫

Γν

vw ds if σ0 > 0,

B(v, w) if σ0 6 0,
where σ0 =

M2

2λ2
− λ0,

is continuous and coercive.
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P r o o f. Part 1. Continuity. From the definition of B, we directly have by means

of the Cauchy-Schwarz inequality and (4.1)

(4.9) |B(v, w)| 6

∫

Ω

|Dv ·Dw| dx+ Λ2

∫

Γν

|∇τ v||∇τw| ds

+M

∫

Γν

|∇τ v||w| ds+ Λ0

∫

Γν

|v||w| ds

6 ‖Dv‖L2(Ω)‖Dw‖L2(Ω) + Λ2‖∇τv‖L2(Γν )‖∇τw‖L2(Γν)

+M‖∇τv‖L2(Γν )‖w‖L2(Γν ) + Λ0‖v‖L2(Γν )‖w‖L2(Γν ).

On the other hand, applying Lemma 2.3 leads to ‖v‖L2(Γν) 6 L‖Dv‖L2(Ω) and

‖w‖L2(Γν) 6 L‖Dw‖L2(Ω). These inequalities in conjunction with (4.9) yield for

a positive k

|B(v, w)| 6 k‖v‖V0
‖w‖V0

.

Further, for all v, w ∈ V0 we similarly have

∫

Γν

vw ds 6 ‖v‖L2(Γν )‖w‖L2(Γν ).

As an immediate consequence of this, by invoking again Lemma 2.3, as well as

recalling definition (3.1), it holds that

|Bσ0
(v, w)| 6 |B(v, w)| +

∣∣∣∣σ0
∫

Γν

vw ds

∣∣∣∣ 6 L1‖v‖V0
‖w‖V0

∀ v, w ∈ V0,

where L1 is a positive constant. Hence, Bσ0
is continuous.

Part 2. Coercivity. Again in light of positions (4.1) we directly have

(4.10)

∫

Γν

a2|∇τ v|
2 ds+

∫

Γν

(∇τa2∇τ v)v ds+

∫

Γν

a0v
2 ds

> λ2

∫

Γν

|∇τ v|
2 ds−M

∫

Γν

|∇τv||v| ds+ λ0

∫

Γν

v2 ds.

Now if M = 0, then σ0 6 0 and therefore,

Bσ0
(v, v) = B(v, v) >

∫

Ω

|Dv|2 dx+ λ2

∫

Γν

|∇τ v|
2 ds > L2‖v‖

2
V0
,

where L2 = min{1, λ2} > 0, hence Bσ0
is coercive. If, instead, M > 0, then we let

ε = λ2/(2M) in the Young inequality and obtain |∇τ v||v| 6 ε|∇τ v|2 + v2/(4ε). By

plugging such an estimate into (4.10), we arrive at

B(v, v) >

∫

Ω

|Dv|2 dx+
λ2
2

∫

Γν

|∇τ v|
2 ds−

(M2

2λ2
− λ0

)∫

Γν

v2 ds
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and for L3 = min{1, λ2/2} > 0 we may write

Bσ0
(v, v) >

∫

Ω

|Dv|2 dx+
λ2
2

∫

Γν

|∇τ v|
2 ds > L3‖v‖

2
V0
.

Hence, Bσ0
is coercive also in this case, and the proof is complete. �

Lemma 4.3 (Unique solvability of the homogeneous problem). Let Assump-

tion 1.1 be complied. Suppose 0 6 a0 ∈ L∞(Γν) and let a2 ∈ W 1,∞(Γν) satisfy

inf
Γν

a2 > 0. Then problem (3.9) admits a unique weak solution.

P r o o f. We rely on the properties of the bilinear form Bσ0
(v, w) introduced in

Lemma 4.2. For σ0 6 0, equation (3.2) may be rewritten as Bσ0
(v, w) = Lw, and

the existence and uniqueness of the solution v follow immediately from the Lax-

Milgram theorem. If, instead, σ0 > 0, then we invoke the Fredholm alternative [11],

Theorem 5.3 (see also [8], Section D.5). To be precise, solving equation (3.2) is

equivalent to finding v ∈ V0 such that

(4.11) Bσ0
(v, w) = Lw + σ0

∫

Γν

vw ds ∀w ∈ V0.

By the Lax-Milgram theorem we may define the linear, continuous operator

T : V ∗
0 → V0 given by T (L) = vL, where vL is the unique solution of the equa-

tion Bσ0
(v, w) = Lw in the unknown v. For every v ∈ V0 we also define the linear,

continuous operator Iv ∈ V ∗
0 given by

Ivw =

∫

Γν

vw ds.

Consequently, relation (4.11) can be rewritten as

v = T (L) + σ0T (Iv).

The existence and uniqueness of a solution v follow from the Fredholm alternative

provided we ensure that

(i) the homogeneous equation v = σ0T (Iv) has only the trivial solution;

(ii) the operator K : v 7→ T (Iv) is compact.

Condition (i) was already established in Lemma 4.1. To check (ii), take a bounded

sequence (vn) in V0. By Lemma 2.3, the traces vn|Γν

are uniformly bounded in

H1
0 (Γν), hence there exists a subsequence of functions still denoted by vn, whose

traces on Γν converge to some v∞ in L
2(Γν). Henceforth, the operators Ivn converge

to Iv∞ in the norm of the dual space V
∗
0 . Since the operator T is continuous, the

sequence of functions K(vn) = T (Ivn) converges in V0. In conclusion, K is a compact

operator, and the lemma follows from the Fredholm theorem. �

137



As a consequence of all the above preparations, we finally can prove our main

statement:

P r o o f of Theorem 1.3. The assumption on ϕ implies by means of Lemma 3.1

the existence of a lifting ϕ̃ ∈ V . Hence, the considerations presented in Remark 3.4

convert problem (1.1) into a homogeneous problem having the form (3.9). Finally,

Lemma 4.3 ensures its unique solvability. �

5. Equilibrium of a prestressed membrane

As announced in Section 1, let us attend to the interplay between Equilibrium

Problem 1 in [21], Section 3.1 and problem (1.1), exactly by presenting the formula-

tion of the former in terms of the nomenclature employed in the present paper. We

consider a plane domain Ω satisfying Assumption 1.1, and we restrict ourselves to the

case when Γν is a curve parametrized by a vector-valued function r(t) = (x(t), y(t))

belonging to C2((t0, t1)) ∩C1([t0, t1]) and satisfying r
′(t) 6= 0 for all t in a bounded

interval [t0, t1] on the real line, with t0 < t1.

Expression of the Laplace-Beltrami operator. Let us consider a function

u ∈ C2(Ω ∪ Γν), and recall that the arc length along the curve Γν is given by

s(t) =

∫ t

t0

√
(x′(ξ))2 + (y′(ξ))2 dξ.

Since r′(t) 6= 0, the function s(t) admits a smooth inverse t = t(s), so yields (recall

Remark 1.4) the following representation of the Laplace-Beltrami operator of u along

the one-dimensional manifold Γν :

(5.1) ∆τu = uss =
d2

ds2
u(x(t(s)), y(t(s))).

It is essential for our purposes to express ∆τu in terms of the partial derivatives of u

with respect to the Cartesian coordinates x, y, the outward derivative uν , and the

curvature κ of the curve Γν , given by

(5.2) κ(t) =
x′(t)y′′(t)− y′(t)x′′(t)

((x′(t))2 + (y′(t))2)3/2
, t ∈ (t0, t1).

To this purpose, we will make use of the obvious identity

(5.3)
d

dt
=

√
(x′(t))2 + (y′(t))2

d

ds
.
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Furthermore, for every point (x, y) = (x(t), y(t)) ∈ Γν , and by introducing the

tangent unit vector to Γν

(5.4) τ := τ (t) =
(x′(t), y′(t))√

(x′(t))2 + (y′(t))2
, t ∈ (t0, t1),

we let

uτ = τ ·Du(x(t), y(t))(5.5)

=
x′(t)ux(x(t), y(t)) + y′(t)uy(x(t), y(t))√

(x′(t))2 + (y′(t))2
, t ∈ (t0, t1),

uττ = τ ·D2u(x(t), y(t))τ⊤(5.6)

=
(x′(t))2uxx(x(t), y(t)) + 2x′(t)y′(t)uxy(x(t), y(t))

(x′(t))2 + (y′(t))2

+
(y′(t))2uyy(x(t), y(t))

(x′(t))2 + (y′(t))2
, t ∈ (t0, t1),

where Du(x, y) = (ux(x, y), uy(x, y)) is the gradient of u, D
2u(x, y) the Hessian

matrix and τ⊤ the transpose of τ . The following lemma shows the relation between

uss, uττ and the outward derivative of u on Γν , explicitly given by

(5.7) uν =
x′(t)uy(x(t), y(t)) − y′(t)ux(x(t), y(t))√

(x′(t))2 + (y′(t))2
, t ∈ (t0, t1).

Lemma 5.1. If u ∈ C2(Ω ∪ Γν), then uss = uττ + κ(t)uν on Γν .

P r o o f. By computing the derivative on the right-hand side of the equality us =
d
ds (u(x(t(s)), y(t(s))) and taking (5.3) into account, we find for all t ∈ (t0, t1)

(5.8)
√
(x′(t))2 + (y′(t))2us = x′(t)ux(x(t), y(t)) + y′(t)uy(x(t), y(t)),

which in particular shows due to (5.5) that us = uτ . Differentiating both sides

of (5.8) with respect to t yields

x′(t)x′′(t) + y′(t)y′′(t)√
(x′(t))2 + (y′(t))2

us + ((x′(t))2 + (y′(t))2)uss

= (x′(t))2uxx(x(t), y(t)) + 2x′(t)y′(t)uxy(x(t), y(t)) + (y′(t))2uyy(x(t), y(t))

+ x′′(t)ux(x(t), y(t)) + y′′(t)uy(x(t), y(t)), t ∈ (t0, t1).

By dividing both sides by (x′(t))2+(y′(t))2 and using relation (5.6), the last equality

becomes, on (t0, t1),

x′(t)x′′(t) + y′(t)y′′(t)

((x′(t))2 + (y′(t))2)3/2
us + uss = uττ +

x′′(t)ux(x(t), y(t)) + y′′(t)uy(x(t), y(t))

(x′(t))2 + (y′(t))2
.
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Finally, taking (5.2) and (5.8) into consideration, we arrive at

uss = uττ + κ(t)
x′(t)uy(x(t), y(t)) − y′(t)ux(x(t), y(t))√

(x′(t))2 + (y′(t))2
, t ∈ (t0, t1),

and the lemma follows thanks to (5.7). �

Setting the domain. The definition of a convex plane curve is quite standard:

see, for instance, [7], p. 37. In view of the example below we assume strict convexity

of the curve Γν , in the sense that κ(t) > 0 for all t ∈ (t0, t1). We also suppose

x(t0) < 0, x(t1) > 0 and x′(t), y(t) > 0 ∀ t ∈ (t0, t1).

By setting

(5.9)






Γν = {(x(t), y(t)) ∈ R
2 ; t ∈ (t0, t1)},

ΓD = {(x(t0), t) ∈ R
2 ; 0 6 t 6 y(t0)}

∪{(t, 0)) ∈ R
2 ; t ∈ (x(t0), x(t1))}

∪{(x(t1), t) ∈ R
2 ; 0 6 t 6 y(t1)},

we consider the planar, non-empty, open and bounded domain Ω, uniquely deter-

mined by the condition ∂Ω = Γν ∪ ΓD. In these circumstances, the equilibrium of

a prestressed membrane obeys an elliptic equation in Ω for the unknown u : Ω → R

(whose graph represents the shape of the membrane) endowed with a classical Dirich-

let condition on ΓD (rigid boundaries with their own stiffness), which basically fixes

the shape of the membrane on the portion ΓD, and a Ventcel-type one on Γν (non-

rigid boundaries, without any stiffness), idealizing the physical equilibrium for cable

elements.

The mixed boundary-value problem. As discussed in [21], Section 2.2.2, the

introduction of a cable boundary as a structural element providing equilibrium to

a membrane requires a restriction on its shape, which is modeled by the convex-

ity assumption κ(t) > 0, and the so-called cable-membrane compatibility equation

uττ = 0 along Γν (see [21], relation (5) for a particular parametrization of Γν). Re-

calling Lemma 5.1 and relation (5.1), we have

uττ = 0 ⇔ uν −
1

κ(x)
∆τu = 0.

Now consider the most simplified case of Equilibrium Problem 1 in [21], Section 3.1,

which is obtained when σ = c1. The problem corresponds to the equilibrium of
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a membrane tensioned with the same stress c > 0 in the two main orthogonal direc-

tions and not exposed to external loads. The comments above make such a problem

read as follows: fixed a sufficiently regular function ϕ : ΓD → R, find u such that






∆u = 0 in Ω,

u = ϕ on ΓD,

uν −
1

κ(x)
∆τu = 0 on Γν .

This is manifestly a special case of problem (1.1), which is well-posed by virtue of

Theorem 1.3.

A c k n ow l e d g em e n t. We are grateful to the referee for having helped us to

improve the paper.
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