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Abstract. We first consider the finite time stability of second order linear differential
systems with pure delay via giving a number of properties of delayed matrix functions.
We secondly give sufficient and necessary conditions to examine that a linear delay system
is relatively controllable. Further, we apply the fixed-point theorem to derive a relatively
controllable result for a semilinear system. Finally, some examples are presented to illustrate
the validity of the main theorems.
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1. INTRODUCTION

A delay differential system is an impressive mathematical model and simulta-
neously provides an available tool to depict various processes in mechanical and
technical systems. In addition, it is necessary to make use of such systems to model
a number of phenomena in scientific and technological problems. During the past
few decades, most previously published studies have focused on asymptotic stability,
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control problems finite time stability, and the representation of solutions of linear
and nonlinear or fractional order delay systems; see for examples [1]-[4], [7], [14],
[16], [17], and the references cited therein.

Lyapunov stability, asymptotic stability, and exponential stability concerned with
the behavior of systems within an infinite time interval have been extensively studied
in [9]-]12], [19] with the help of linear matrix inequality and Gronwall’s integral in-
equality. However, few researchers have been able to draw on systematic research into
finite time stability (FTS) concerned with the behavior of systems over a finite inter-
vals. The relative controllability and related problems of linear systems represented
by different types of delay systems have been investigated in [8], [15], [20], [13].

In [7], the authors introduced the notations of delayed matrix cosine and delayed
matrix sine for solving the following oscillating system with pure delay:

(1.1)

providing det A # 0. In [13], the authors introduced a delay Grammian matrix, which

was used to establish sufficient and necessary conditions of controllability for (1.1).
Very recently, Elshenhab and Wang [3] dropped the invertible condition on the

matrix A and studied the explicit representation of solutions of linear systems with

pure delay:

(12) {z”(x) + Az(x —9) =g(x), x€J:=1[0,T], 2(z) € R™,
z(z) = Y(x), 2'(x) =¢'(z), —I9<x<0,

where A € R™ " is a constant coefficients matrix, g € C(J,R"™) is a given func-
tion, T = ko for a fixed k € N := {0,1,2,...}, ¥ is a fixed delay time, and
¥ € C?([-9,0],R™) determines initial conditions. The authors introduced the
notation of delayed matrix functions Hg(A-) and My(A-) (see [4], Definition 1
or Definition 2.1) for (1.2). The solution z of (1.2) can be given by (see [4],
Corollary 1 or 2):

0
Ho(Ax)p(—09) + [ﬁ My(A(x — 9 — 5))" (s)ds

(1.3)  z(x) = F My (Az) (—) + /x My(A(x — 9 —s))g(s)ds, =z € J,
0
<0.
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Motivated by [3], we study the FTS of (1.2) and the relative controllability of
control systems with delay governed by:

(1.4) { 2"(x) + Az(z —0) = Bu(z), € J, z(z) € R",

z(x) = Y(x), 2'(x) =¢'(z), —-9¥<z<0,
and

(L5) {z”(x) + Az(x — ) = f(x,2(x)) + Bu(z), z€J, z(z) € R",
. 2(x) = p(x), 2'(z) = ¢'(2), -0 <z <0,

where B € R™*" f: J x R™ — R"™ and u € L?(J, R").

The rest of the paper is organized as follows. Firstly, we give some sufficient
conditions to guarantee that (1.2) is FTS by researching the estimation of Hy(A-) and
My (A-). Secondly, we establish a delayed Grammian matrix and rank criterion to
guarantee that (1.4) is relatively controllable. Further, we construct a suitable control
function and apply Krasnoselskii’s fixed point to derive relatively controllable of (1.5).
Finally, some examples are presented to illustrate the validity of the main theorems.

2. PRELIMINARIES

Let ||z]| = Z |z;| and ||A| = llzljax Z |a;;| be the vector norm and matrix norm,

respectively. Denote by C(J,R™) the Banach space of a vector-value continuous
function from J — R™ endowed with the norm |z|] = Jnax || (s)||. Let X,Y be

the Banach spaces, Ly(X,Y") denote the space of all bounded linear operators, and
L?(J,Y) denote the Banach space of all the Bochner-integrable functions endowed

with the norm ||-||z2(sy). In addition, we let [[¢|c = IFagio]Hi/)(S)H? V'lc =
/ d Il " . s€l=v;
s [0/ and 7] = max [[6(5)]

Definition 2.1 (see [4], Definition 1). The delayed matrix function Hy(A-):
R — R™ ™ is given by

0, —oco<z< -1,

E, —-9<z<0,
1‘2
E—AE, O<$<'l9,

72 v — (ke — 2%
E-AZ +..+ (—1)’%’f%,

(k=19 <z<kyd, keN,

307



and My(A-): R — R™*™ is given by
0, —x<z< -1,

Bz +9), —0<z<0,
3

E(x+z9)—A%, 0< <9,

E(a:+19)—Ax—?+...+(—1)’“Ak(

(2.2) My (Az) =
r— (k—1)9)%+!
(2k+1)! ’

(k-1 <z<kd, keN,
where © and E denote the zero and identity matrices, respectively.

Definition 2.2 (see [9]). System (1.2) is FTS with respect to {0, J,4,4d, 8} if
and only if ||¢||c < 0 implies ||z(x)|| < B for all « € [0,T], where ¢ < 3.

Definition 2.3. System (1.4) is called relatively controllable if for an arbitrary
initial function 1 € C2, the terminal state z; € R™ with z; > 0, Ju* € L?(J,R")
such that
(23) {z”(m) + Az(x —9) = Bu*(z), x€0,z1], 1 >0,

2@) = Y(a), Z(@) = P'(@), —I< <0,
there exists a solution z(z,u*) := z*(x) satisfying z*(z) = ¢(z), —9 < z < 0, and
z*(x1) = 21.

Definition 2.4. System (1.5) is called relatively controllable if for an arbitrary
initial function 1 € C?, the terminal state z; € R, Ju € L?(J,R™) such that (1.5)
there exists a solution z(r,u) := z(z) satisfying z(x) = ¥(x), —9 < z < 0, and

z(x1) = 21.
Lemma 2.1. A solution of (1.4) has the following form:
Ho(Ar)d(—9) + [y Mo(Alz — 0 — )" (s)ds
(2.4) z(z)= +My(Az) (—9) + [ My(A(z — 9 — s))Bu(s)ds, x>0,
1#(%), - <z < Oa
Obviously, a solution of (1.5) has the following form:
0
Ho (A2 (-0) + / Mo(Ala =0 = )" (5)ds
+My(Ax)yp / My(A(x — 9 — ) f(s,2(s))ds

+/ My(A(x — 9 — s))Bu(s)ds, x>0,
0
¢($)7 _19 < x < 07
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Lemma 2.2. For any x € ((k —1)9, k9] and k € N, we have

[Ho(Az)[| < cosh(v/[|Af|z),  [[Mo(Az)|| < Wi (),

where
2i+1

k
i X
19+Z||A|| (O Al > 1,
\:[11(;[;) — i=0

9+ %(e“’ —e *) =9 +sinh(z), 0<|A4] <1

Proof. By the formula of (2.1) and (2.2), we have

a? (z — (k= 1)0)*
< — +... R
oA < 1+ A1+ e
L L a2
UHAIG + AT+ A
(e\/HA * 4 e VIAlZy — cosh(y/]|Alz),
2k+1
) . (o= (= 1)0)
[Mo(Az)|| < (z +0) + HAH -+ (1Al 2E T 1!
L2 L a2k
($+19)+HAH Jr||A|| -+ A] 2rE1)

0+ Z HAH’% o 1AlF>1,
< — (26 +1)!
9+ %(e”” —e *) =19 +sinh(z), 0<|A4] <1

The proof is completed.

Lemma 2.3. For any x € ((k — 1)9, k9] and k € N, we have

0 j )
Mo =0 = splas € 3@ = (-2

[

.
i Mw
N
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Proof. According to Definition 2.1 and My(A-), we obtain
0
| IMota@ -0 - s
-9

z—k9 0
= [ Moo —splast [ [MyAG =0 = )]s

—
k 0 . 25—1
. —(j—1)9 —s)%

z—k9 2k+1
— k9 —s)
A k (.13
4 /_19 TS

k+1
IIAIIJ 1

<L

The proof is completed.

k j— 1

Lemma 2.4. For any x € ((k —1)9, k9] and k € N, we have
0
/19 My (A(z =0 = $))[l[|%" (s)[| ds

k 1 0
TAF et [ e as
<= G- [ )

Jj=1 j B 1
A w/l
L LA e (JMC S

Proof. By Lemma 2.3, we have
0
/19 Mo (A(z — 9 = s))lll|e" ()l ds

LA™ vt [
<Y Grtpe =G =09 [ )las

j=1
r—k9 — kY — g)2kt1 y

sl [ S s
= 4] [
<y j|_1 @G0 [ s
J:1 B

A 1
4 1A e (2”k %)'!C (z — (k — 1)9)%+2.

The proof is completed.
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3. FINITE TIME STABILITY AND RELATIVE CONTROLLABILITY OF LINEAR SYSTEMS

Define

k41
HAH’ 1

—2

k G- 1
Z HAH J) _ ] _ 1),[9)

_ AP r— (i 2j—1 "
xx/?,(x)f;—@j_l)!( G- [ o

A" 19" | 2k 42

3.1. Finite time stability. Now we are ready to give the FTS results.
Theorem 3.1. If
(3.1) cosh(v/[[Al) (= 9)| + T1 (@) |9 (=) + Va(@) |9 |l
s e e —G-10 <5 vse
=1 '

then (1.2) is FTS with respect to {0, J, 9,0, 8}.
Proof. By (1.3), we have

(3.2)  z(x) = Ho(Az)yp(=0) + My (Ax)y' (=)

/ My(A(x — 9 — 5))¢" (s)ds + /O’C My(A(z — 9 — s))g(s) ds.

By Lemmas 2.2 and 2.3 via (4.1), we have

=1 < oA+ [ 1Mot =0 = DIl s
M0+ [ IMa(AG = i)l ds
< cosh(V/TAT) [(=O)] + W1 (&) 19/ (=O)] + ¥ () 9" o
+llg ||Z” - G-
< p.

The proof is completed. O
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Theorem 3.2. If
(33)  cosh(y/TAT) [0~ )l + T (@) (<)) + Ws(a)
k40— _ .
+|g||j;”(2"j)! (- G-D0» <8 Vrel

then (1.2) is FTS with respect to {0, J, 9,0, 8}.
Proof. By Lemmas 2.2 and 2.4 via (4.3), we have

0
[2(@)[| < [[Ho(Az) [l (=) +/ [My(A(z — 0 = )|l (s)]| ds

FIMaADI 0]+ [ IMaAG = il 0
< cosh(y/ TATDY(= )] + 1 ()¢ (~0)] + Ts(2)

+llg ||Z” - G-
< p.

The proof is completed. O

3.2. Relative controllability. We study the relative controllability of (1.4) with
¥ > 0. We introduce the delayed Grammian matrix as follows:

(3.4)  Wyl-9,z] = /Ox Mo(A(z1 — 0 — ) BBT My(AT (21 — 9 — 5)) ds,

where T denotes the transpose of the matrix.
We now will give the delayed Grammian matrix criterion result.

Theorem 3.3. Wy[—9, x1] is nonsingular matrix if and only if (1.4) is relatively
controllable.

Proof. Sufficiency. Since Wy[—1, 1] is a nonsingular matrix, which guarantees
that W, ' [, 21] exists. For an arbitrary z; € R"™, one can select u € L?(J, R") such
that

(3.5) u(s) = BT My(AT (21 — 9 — 8))W, =0, 21)¢,
where
(3.6) € = 21— Ho (A )(—0)— Mo (Azr )b / Meo(A(z1—0—s))"(s) ds.

312



Inserting (3.5) in (2.4), we have:
(3.7)

2(a1) = Ho(Az )0 / Mo(Alzr — 9 — )" (s) ds + Mo ( Az ' ()
+ /0 My(A(x1 — 9 — 8))BBT My(AT (z1 — 0 — 5)) dsW [0, 21]¢.
Linking (3.4) and (3.7) via (3.6), we obtain:
2(@1) = Ho(Aw1)(—0) + Moy (Azy / Mo(Alwy — 0 — 5))0(s) ds + €

According to Definition 2.3, the system (1.4) is relatively controllable.
Necessity. Suppose Wy[—1, x1] is singular. There exists at least one nonzero state
Z € R™ such that 2" Wy[—9, 21]Z = 0. Therefore, we have

0=2"Wy[—0,21)2 = /OIIETng(A(xl — 9 —8)BBT My(AT (1 — 9 — 5))2ds
_ /OII(ETMﬁ(A(arl — 9= $)B)(E My(A(z1 — 0 — 5))B) " ds

T1
_ / 15T My (A(z1 — 0 — 5))B|2 ds,
0
which implies that

(3.8) 2T My(A(xy —9 —8))B = (0,...,0):=0" Vs€[0,].

n

Note that (1.4) is relatively controllable. Therefore, there exists u € L?(J, R™)
that drives the initial state to zero at xq, i.e.,

(3.9)  2(w1) = Ho(Az1)0 / Mo(A(z1 — 0 — 8))i"(s) ds
+ My (Axy)y' (— / My(A(x1 — 9 — s))Bu(s)ds
=0.

There exists @ € L%(J,R™) that drives the initial state to 2 # 0 at z1, i.e.,

(3.10) 2(z1) = Ho(Az1 )Y //\/119 (x1 — 9 —s))Y"(s)ds
+ My (Az )i / Mo(A(z1 — 9 — ))Bii(s) ds
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Combining (3.9) and (3.10) gives
(3.11) s /O Ma(A(z1 — 9 — $))B(i(s) — a(s)) ds.
Multiplying by 2T of (3.11), we get

375 /O 5T My (A(zr — 0 — 8))B(i(s) — (s)) ds.

By (3.8), one can obtain 2"z = 0, which conflicts with Z # 0. Thus Wy[—1, x1] is
nonsingular. The proof is completed. O

We next will establish the rank criterion result.

Theorem 3.4. System (1.4) is relatively controllable if and only if x1 > (n — 1)
and rank S, = n, where S, = [B,AB,A*B, ..., A" 'B].

Proof. Sufficiency. Let (1.4) be not relatively controllable and rank S, = n.
By Theorem 3.3, Wy[—1, 1] is singular, i.e., there at least exists one nonzero state
z € R™ such that

0= 2T Wy|=0,21]7 = /O =T Mo(A(a1 — 0 — 8))BBT My (AT (21 — 0 — 5))7 ds
_ /O (2T My (A1 — 0 — 5))B)(ZT My(A(z1 — 9 — 5))B) T ds,
which implies that
Z"My(A(xy —9 —5))B=0 Vsc0,21].
Let x = 21 — ¥ — s and we have
(3.12) Z"My(Ax)B =0 Yz € [0,z — 7).
By (3.12), taking the derivative 2n times and then taking x = nd, we have
Z'B=0, z'AB=0, z'A’B=0,...,2' A" 'B=0,

that is ' [B, AB, A%2B,..., A" 'B] = 0. By using Z # 0, we can know that the
rank S,, < n. So, (1.4) is relatively controllable.

Necessity. Assume (1.4) is relatively controllable, namely, for arbitrary (), z; and
x1, there exists a control function «*(-) such that (2.3) has a solution z(z, u*) := z*(x)
that satisfies z*(z) = ¢¥(z), —9 < 2 <0, and z*(z1) = 2.
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By Lemma 2.1, a solution of (1.4) can be given by

v +/ Mo(A(z — 9 — )" (s) ds

z(z) = +My(Az)y' (—09) + fo My(A(x — ¥ — s))Bu(s)ds, x € J,

Letting u(-) = v*(-) and « = x1, we have
(3.13) = Hy(Az1)y) / My(A(z1 — 9 — 5))"(s)ds
+ My (Axq )’ (— / My(A(zy — 9 — s))Bu*(s) ds.
Let & satisfy the following equation:
(3.14) € = 21— Hy (Azy ) (—9) —Mo(Aw, / Mo (A1 —9—s))"(s) ds.
For 1 € ((k—1)9,kd] and k € NT := {1,2,...}, one can get

/Oxl Mo(A(z1 — 9 — ) Bu*(s) ds

z1—(k—1)9 9 _ 3 _ _ 5
_ / (E(:Bl _s)— A(x1 9 —s) LA (x1 — 29 —9) n
0

3! 5!
b
[ g

T (crpeare i (lzz_k 2_)1;)7 P )Bu (s) ds

ry — 9 —8)?

+ /:12: (E(:Bl —5) — A(#)Bu*(s) ds
/ E(z1 — s)Bu*(s)ds
@ —0

T z1—19 _ _ 3
= / r1 — s)u ds—AB/ ww(s)ds—i—...
0 .

z1—(k—1)9 2k—1
\k—1 gk—1 (1 —(k=1)J —s) *
+(-1D)" A B/o o= D) u*(s)ds.
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Set
Dy (1) = /:1 (x1 — s)u™(s)ds,

x—19 9 o\3
(1)2(1‘1) :/ Mu*(s)ds,
; 31

(k-1 21— (k—1)9 — s)2k=1
<I>k(x1):/0 (@1 ((Zk—)l)! ) u*(s)ds.

Noting (3.13) and (3.14), we have
(3.15) B® (1) — AB®y(z1) + ... + (1) AR BO () = £,

Because (1.4) is relatively controllable, (3.15) has a solution for an arbitrary £. It
follows from the Cayley-Hamilton formula that an arbitrary power A7, j > n can be
expressed as a linear combination of E, A,..., A"~! in [6]. Therefore, for any k > n,
(3.15) can be replaced by

(3.16) B®,(21) — AB®y(z1) 4 ...+ (—1)" TA" ' Bd,, (1) = &,
where ®;(z1) with i = 1,2,...,n is a function of z;. If (3.16) has a unique solution
for an arbitrary &, this implies that rank S,, = n. The proof is completed. 0

4. RELATIVE CONTROLLABILITY OF SEMILINEAR SYSTEMS

We need the following hypothesis:
(Hy) The operator A: L?(J,R™) — R™ defined by

Au= /0 My(A(xy — 9 — s))Bu(s)ds

has an inverse operator A~!, which takes values in L?(.J,R™) \ ker A. Then there
exists a constant M > 0 such that

M = ||A7 YL, (Re L2 (1 R" \ker A)-

Obvious, the operator A must be surjective to satisfy (Hp) (see [5], [18]). If A
is surjective, then we can define A=': R"® — L?*(J,R") \ ker A. Let (-,-) denote
the Euclidean scalar product in R™. Since L?(J,R") is a Hilbert space, we can use
ker A = im A*+. We need to look for A*; let I'(s) = My(A(z; — 9 — 5))B, and for
an arbitrary w € R™ and u € L?(J,R"), if we have

() = ([ Pt asw) = [ w16 T as
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which gives A*w = I'(s) "w. Thus ker A* = {0} if and only if

1
/ [T(s)Tw|?*ds # 0 for any 0 # w € R™.
0

By (3.4), if we have
" S TU) 2 S = " S Tw S Tw S
@y [ IreTeras= [ e T

_ /Ozl(r(s)r(s)w,w) ds = (Wy[=0, 21]w, w),

then the surjectivity of A is equivalent to the regularity of Wy[—1,z1], and we
assume this.
To solve Au = v, v € ker AT = im A*, we take u(s) = I'(s) "w and we have

v=AT()"Tw) = /gCl [(s)T(s) " wds = Wy [0, z1]w
0

which gives w = Wy[—9, x1] " tv, and u(t) = A~ v = ['(t) " Wy[—9, z1] " 1v. Moreover,
By (4.1), we have

o UV DT =0 211~ T0l2 ds

| @ = [ e wo-aa ot a

:/ (D(s) "W =, 21]~ 0, () T Wy [0, 2]~ 10) ds
0
= —xilTlssTs—xflvv
((Wﬁ[ 0.7 [T PN dswol-0.] )
= ((Wg[—ﬁ,ml]_l)—rv,v) = (U,Wg[—ﬁ,ml]_lv),
which implies that

(4.2) M = ||Wy[=d, ]| V/2.

Note that by (4.1), we obtain ||A| = ||A*] = |[We[—9, z1]] /2.
(Hz) The function f: J x R™ — R™ is continuous, and there exists ¢ € C(J,R™)
such that

||f((E,Zl) - f(vaQ)” < Sﬁ(x)”«zl - ZQ”aZleZ € Rna zeJ

According to the hypothesis (H;), for an arbitrary z(-) € C(J,R"™), the control
function w,(x) be given by

(4.3)  wuy(z)=A" < — Hy(Axq)y / My(A(z1 — 9 — s))"(s)ds
— My (A )b / Mo(A(z1 — ))f(s,z(s))ds)(a:).
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Next, we apply the fixed-point theorem to prove relative controllability of (1.5).
Using (4.3), we will show that for the operator F: C(J,R"™) — C(J,R™) given by

(4.4) (Fz)(xz) = Hy(Ax)y / My(A(z — 9 — s))y"(s)ds
+ My (Az)y / My(A(x — 9 — ) f(s,2(s))ds

+ /0 My (A(x — 9 — s))Bu,(s)ds

there exists a fixed point z(-), which is just a solution of (1.5). Furthermore, we check
(Fz)(x1) = z1 and (Fz)(0) = ¢(0), which implies that the system (1.5) is relatively
controllable on [0, z1]. Define

My = cosh(v/[[Aflz0)l[ (=)l + @1 (z1) [ (=) | + P2 (z1) [ [|c,

£ HAIIJ L P us =
§ j — G =19¥; |fl =sup | f(z,0)l, M =supp(z).
— xeJ xeJ

Theorem 4.1. Assume that (H;) and (Hg) are satisfied. Then system (1.5) is
relatively controllable provided that

(4.5) MMMZ||B|| + MM, < 1.

Proof. Consider F defined in (4.4) on B,., where B, = {z € C(J,R"): ||z|| < r}
and r > 0. We divide our proof into several steps.

Step 1. We show that F(%B,.) C 9B,. For any z € B,, by Lemmas 2.2 and 2.3, we
have

(4.6) / CIMa(AG =9 — (1 (s, 2()) — F(.0)] + (s, 0)]) i
< (M]|z]) + ||f|>/0x [Mo(A(z — 0 — 5))||ds < (M]|z]| + || f])) Mo,

and
(4.7)

||Uz||L2(J,Rn)\kerA

< ||A ”Lb([R" L2(J,R")\ker A) ||?1 — 7-{,19(143:1)1#( )—Mﬂ(AQTlW/(_ﬁ)

0 T
- / My(A(zy — 9 — 8))"(s)ds — / My (A(xy — 9 —35))f(s,2(s))ds
9 0

M{llzall + cosh(v/[| Allz2) [l (=) + Uy (1) [[¢"(=0)
+ Wa(a) 9" e + (M]|=]| + [|f]) Me).
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Noting (4.6) and (4.7), we have

0
(48) [(F2) @) < [Ho(Az)i(—0)] + / I Mo(A(z — 0 — )" (s)]| s
+ [ Mo (Az)e (~9)] + / I Mo(A( — 0 — ) (5, 2(5)) | ds

+ /Ox My (A(x — 9 — s))Buy(s)| ds
< cosh(v/[[All2) Y (=9I + (@) ][4 (=) + Y2 (2)[¥"]lc
+ /0 [Moy(A(x =0 = s))[[(I1f (s, 2(5)) = f(s,0)[| + [ f(s,0)[]) ds

+ / Mo (Al — 9 — )| B]llus(s)] ds
< My + | FIMa + MMy |B|(| ]l + My + Ms | F])
+ (MMZM||B|| + MM,)r

<,

where
_ M+ || f]| M+ MMa||Bl|(|lz | + M + lelfll)

1— MM2M||B| + MM,

So F(%B,) C B, for z € J.

Next, we subdivide the operator F into two operators F; and F» on B, as follows:

(F1z)(z) = Ho(Az)y) / My(A(z — 9 — 5))9" (s)ds
+ My (Az)y' (— / My(A(x — 9 — s))Bu,(s)ds, z€J,
(Faoz)(z / My(A(x — 9 — 9))f(s,2(s))ds, =z € J.

Step 2. We show that Fj is a contraction mapping. In viewing of (H;) and (Ha),
for any z(-),z(-) € B, and = € J, we have

luz — uzll L2 (,Rm )\ ker A

<A Ly (e, 22(J,R7 )\ ker A)

/0 " Mo(Alar — 9 — ) (F(s,2()) — £(5,3(s))) ds

< M/Oxl Mo (A(zy — 0 — 9))|lp(s)||2(s) — Z(s)|| ds < MMM ||Z — 2],
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and
[(F12)(z) — (F12)(@)]| < /Ox Mo (A(z — 0 = 5))[B||luz(s) — uz(s)|| ds
< MMM3|B|||Z -7,
which gives that
I(Fi2) = (F3)| < LIZ-3l, L:=MMMZ|B].

By (4.5), the operator F; is a contraction.

Step 3. We show that F5 is a continuous and compact operator. Owing to the
function f € C(J,R™), the operator F» is continuous on ‘B,. In order to check the
compactness of F3, we prove that F5(%B,.) is uniformly bounded and equicontinuous.
By Step 1, it follows that F2(%,) is uniformly bounded.

For any z € 8B, and 0 < z < z + h < z1, we have

[(F22)(z + h) — (F22) ()]
z+h

[ Mol =0 = ) s, 5(60) ds = [ Moo = 0= )75, 25
<L+ I,

where

L= /Ox (Mo (A(z +h =0 = s)) = My (A(z =0 = s)))[[|[f(s, 2(s)) || ds,

x+h
Iy :/ Mo (A(z +h =9 = ))[[[[ £ (s, 2(s)) ] ds.

Without loss of generality, letting (k—1)9 < x < z+h < kd ash — 0 and k € N,
we obtain

I < /0 [(Mo(A(z +h =0 —s)) = My(A(z =9 = s)))l[| (s, 2(s))[| ds
< (Mr+ ||f||)/O [(Mo(A(z +h =9 —s)) = My(A(z = — s)))|| ds.
Letting h — 0 and taking any fixed point ¢, we have
My(Alz+h -1V —35)) > My(A(z -9 —s)) ash—0,

which implies that I; — 0 as h — 0.
For I5, by Lemma 2.2, we get

- R x+h
I < (Mr + IIfII)/ [ Mo(Ax + 1 — 9 — 5))]| s

x

< (Mr+ || f)¥1(z1)h — 0 as h — 0.
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From the above we obtain ||(F22)(z + h) — (F22)(z)|| = 0 as h — 0 and F» is an
equicontinuous operator. Hence, F3 is relatively compact on B,. by the Arzela-Ascoli
theorem. Then Krasnoselskii’s fixed-point theorem gives that F has a fixed point
z € B,.. Apparently, z is a solution of (1.5) satistying z(z) = ¢¥(z), —¥ < <0, and

z(x1) = z1. The proof is completed.

Example 5.1.

(5.1)

5. EXAMPLES

Set ¥ =04, k=5, J =10,2] and T = 2. Consider

{z”(m) + Az(x - 9) = g(a),
2(a) = ¥(a), /()

) o=

= (0m) =

By (1.3), for « € J, we have

0.2 04
0.3 0.2

= ¢'(x),

2(x) = Ho(Az)p(=0) + My(Ax)y' (=)

0 T
+/ wmm@—ﬁ—ﬂw%ﬂm+/ MMA@—ﬁ—mmﬂa
Y 0

where

Ho(Az) =

sin

E— AL
2!
z? (x —0.4)*
E— A + A2 2
2! T
x? (r —0.4) (
E— Ao+ A® @' A3 i
2! ! !
x? (r—0.4) (x —0.8)°
E— A=+ A? : A3 :
2! 4! 6!
4 (z—1.2)8
+A 5
E—Afi Aﬂx—&@ Agx—oaﬁ
2! 4! 6!
+AA$—L%8 Aﬂm—LQN
8! 10!

x € J,
x € [—04,0],

cos 2z
2

). v = (

0< <04,

04<2<0.8,

08<z<1.2,

1.2<z < 1.6,

16<z

N
N

O
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and

E(m+0.4)—A%, 0<z <04,
E(x +0.4) —AZ—T +A2("”_5$)5, 04<x<0.8,
E(z+0.4) — Az—j + A? (= _5?'4)5 — A3 (@ _7?'8)7, 08<z<1.2,
My(Az) = ¢ BE(z +0.4) — Az—? + AQ(:”_Sﬂ

_ _7?'8)7 it _9!1'2)9, 12< 2 < 16,
E(z+04) — Az—? + 42 _5?'4)5 _ ol _7?'8)7

Lt _9!1'2)9 _ ol _1;6)11, 1.6<z<2.

By calculation, one has [[¢)|c = 0.2, [[(=0.4)] = 0.2, [[¢/(=0.4)] = 0.3,

[0 ]lc = 2.5, ®1(2) = 4.03, Ty(2) = 1.12, Ug(2) = 2.42,

> O(SZ)_, (2 - 0.4(i — 1))% = 2.16,
i=1

cosh(2v/0.6) = 2.46 and ||g|] = 1. We present finite time stable results of (5.1) in
Table 1.

Theorem  ||¢||c J | 4] B FTS
3.1 02 [0,2] 04 781 0.3 7.9(optimal) Yes
3.2 0.2 [0,2] 0.4 893 0.3 8.94 Yes

Table 1. Finite time stable results of (5.1) with 7' = 2.

By Definition 2.2, we seek a suitable 8 such that ||z|| of (1.2) does not exceed
on J. On the one hand, we can use the explicit formula of solution to (5.1) via
numerical simulation to find a corresponding 5 = 7.9 for a fixed T' = 2 (see Figure 1).

By checking the conditions in Theorems 3.1 and 3.2 for J, one can choose a better
value 8 = 7.9 by comparing with the value of 5 in Table 1.

Example 5.2. Set 9 =0.5, k=5, J=1[0,21] and 1 = 2.5. Consider

(5.2) { 2"(z) + Az(x — ) = Bu(z), =z € J,
z(z) = Y(x), 2 (x) =¢'(x), —-05<z<0,

where u € L?(J, R?) and

- (2) A= (03 e (%) s (2)



0.8 T T T
=l |

0.

0.6 N
0.5 N
0.4 N
0.3 N
0.2 N

0.1 7

0 | | |
0 0.5 1.0 Ls . 20

Figure 1. The norm of the state vector of (5.2) when T' = 2.

By calculation, the matrix Wy 5[—0.5,2.5] of (5.2) via (3.4) can be given by:

2.5
Wo.5[—0.5,2.5] :/ Mos(A(2—1))BB " Mys(AT(2 —1t))dt
0
= Wi+ Wy + W3 + Wy + Ws,

where

0.5 — )3 —t)5 — 1) —1)°
. /0 (E(2.5—t)—A(2 S!t) +A2(1.55! 0> _ s 7!t) +A4%)
x BBT (E(2.5 —1) - AT@%P

A _#\9

e (2—1)3 5 (1.5 —)° (1—1)7
ng/0.5(E(2.5—t)—A AT - A )

5 (1.5 —1)°

+(AT) 5

x BBT (E(2.5 —t) — ATQ%P b (ATY? (1.55—| t° (ATY? (1- t)7) dt,

W3 _ /11.5 (E(25 B t) B A(2 ;!t)?’ n A2 (1557 t)B)

« BBT (E(2.5 AT 2 ;!t)3 + (AT)27(1'55_! t>5) at,

W, = /2 (E(2.5 ) - 14(2;7"5)3)33T (E(2.5 _py_ato t>3) dt,
1.5 .

2.5
W5 = / (E(2.5—1)BB"(E(2.5—t))dt.
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By computation, one can get

1.213 0.664 1.192 0.854 0.807 0.616
i (1 ) e (1 ) e (0 )

0.664 1.905 0.854 1.515 0.616 0.916
0.333  0.258 0.048 0.036
W4_<0.258 0.361)’ W5_<0.036 0.052)'

and

3.593 2.428 0.425 —0.217
Wo.5[—0.5,2.5] = ( ) .

15 1—0.5,2.5] =
2.428 4.749) o Wois [20.5,29] (—0.217 0.3217
Set z(x1) = (21,22)". By (3.5), one can construct u € L%(J, R?) as
(5.3)  u(t) =B Mos(AT(2—1)W;4[-0.5,2.5)¢

5—t)Y
+A4%)Wg; [-0.5,2.5]¢, 0<x<0.5,

BT(B(25 - t) - ATEG 4 g2l g3l
xWya[-0.5,25]¢, 05<z <1,

2—1)3 5 (1.5 —t)°
A
xWia[-0.5,2.5¢, 1< o< 1.5,

BT (E(2.5 _py—ar!

3
BT(E(2.5— t) — AT( 3'> )Wofg[—o.5,2.5]§, 1.5<t <2,

BT(E(2.5 —t))W;2[-0.5,2.5]¢, 2<t<2.5.

where

€ = 2(2.5) — Hos(25A)%(—0.5) — Mo5(2.54)' (~0.5)
0

- Mos(A(2 —t)y" (t)dt

—0.5

(= 25% o2 41 L 18 50510
B (22)_(E_AT+A n A 6' +A 8 10' 0.25

3 9 11 1
—(3E—A£+A2——A315 A41——A505 ( )

31 9! 11!
0 3 5 7
2-1) 5 (15 —1) (1=
_ E@Q5—1)— A A '
/,0'5< (25-1) T 51 7
205 =1 (=)' (0
AT A ) 5 ) 4t

_(=—1911
 \22+0452 )
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Consider S, = {B,AB} =

(2 —1)9 and rank S,, = 2.

1 04 08 08
0.5 1 0.55 046

). Obviously, z; = 2.5 >

By Theorems 3.3 and 3.4, (5.2) is relatively controllable. Figures 2 and 3 show the
state z(z) of (5.2) when we set z = (21,22)" = (1,1)7 and 2z = (21,22)" = (0.5,2)".

Clearly, we can see the state of system (5.2) is relatively consistent with the

achieved states.

1.4 T T T T T
z
1.2 ]
1.0
0.8
0.6
0.4
0.2
0
—-0.21" 7]
—-0.4 7]

! ! ! ! !
70'—60.5 0 0.5 1.0 1.5 2.0 . 2.5

Figure 2. The state z(t) of system (5.2) when we set z = (21,22) | = (1,1) .

2.5 T T T T T
z

2.0

1.5

1.0

0.5

0

05 ! ! ! ! !
—0.5 0 0.5 1.0 1.5 2.0 . 2.5

T

Figure 3. The state z(z) of system (5.2) when we set z = (z1,22) " = (0.5,2) .

Example 5.3. Set 9 =0.5, k=5, J=1[0,21] and z; = 2.5. Consider

(5.4) {Z”@) + Az(x =) = f(x,2(2)) + Bu(z), we .,

z(x) = ¢(x),  2'(x) =9 (x), =05 <z <O,
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where u € L?(J, R?) and

= (20) 4= (0 0n) B (o5 )
v = (). o) - (61_0(“0'”21(‘” )

x a5 (x +0.1)22(w)

We now use (4.2) to estimate M. By Example 5.2, we have

3.593 2.428 0.425 —0.217
Wo.5[—0.5,2.5] = ( ) .

Wy a[-0.5,2.5] =
2.428 4.749)’ 05[=05,:2.5] (—0.217 0.3217

—1”1/2

Consequently, one can get M = ||[Wy[—9, x1] = v/0.642. Hence, A satisfies

assumption (Hy).

Further, it is easy to verify that for any Z(z),Z(z) € R? and x € J,

1/ (2, 2(x)) = f(z, Z(2))]| <

<

(@ +0.1)([21(2) = Z1(2)] + [22(2) — Z2(2)])

gl~8l~

(@ +0.1)Z—2].

Hence, f satisfies the assumption (Hz), where we set ¢(z) = g5(x+0.1) € C(J, R™).

W 0
By elementary calculation, one has M = % sup (z +0.1) = 0.044, ||4|| = 0.9,
x€[0,2.5]

|B|| = 1.5, My = 21.75, My = 3.737, and || f|| = sup || f(s, 0)|| = 0. Therefore, one
zeJ

can get M]/W\MQQHBH + MM, = 091 < 1, which guarantees that (4.5) holds. By
Theorem 4.1, the system (5.4) is completely controllable on J.
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