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Abstract. Let E = {u ∈ C1[0, 1] : u(0) = u(1) = 0}. Let Sν
k with ν = {+,−} denote the

set of functions u ∈ E which have exactly k − 1 interior nodal zeros in (0, 1) and νu be
positive near 0. We show the existence of S-shaped connected component of Sν

k -solutions
of the problem







(

u′√
1− u′2

)′

+ λa(x)f(u) = 0, x ∈ (0, 1),

u(0) = u(1) = 0,

where λ > 0 is a parameter, a ∈ C([0, 1], (0,∞)). We determine the intervals of parameter λ
in which the above problem has one, two or three Sν

k -solutions. The proofs of the main
results are based upon the bifurcation technique.

Keywords: mean curvature operator; Sν
k -solution; bifurcation; Sturm-type comparison

theorem

MSC 2020 : 34C23, 35J65, 35B40, 34C10

1. Introduction and main result

In this paper, we study the existence of S-shaped connected component of

Sν
k -solutions of the problem

(1.1)







(

u′

√
1− u′2

)′

+ λa(x)f(u) = 0, x ∈ (0, 1),

u(0) = u(1) = 0.

Here Sν
k with ν = {+,−} and k ∈ N denotes the set of functions y ∈ E =

{u ∈ C1[0, 1] : u(0) = u(1) = 0} which have exactly k − 1 interior nodal zeros
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in (0, 1), and νy is positive near 0. Moreover, λ > 0 is a parameter, a and f obey

the conditions specified later.

The motion of the relativistic oscillator is described by the equation

(1.2)
d

dt

(

m0ẋ
√

1− ẋ2/c2

)

+ λu = 0,

which has been investigated by several authors, see Hutten [13] and Mac-Coll [19].

Equation in (1.1) can be regarded as a more general form of (1.2).

Problem (1.1) is also the one-dimensional counterpart of the Dirichlet problem

associated with the prescribed mean curvature equation in Minkowski space

(1.3)







div

( ∇u
√

1− |∇u|2

)

+ λf(x, u) = 0 in Ω,

u = 0 on ∂Ω,

where λ is a positive parameter, Ω is a bounded smooth domain in R
N , N > 1.

Problem (1.3) plays an important role in certain fundamental issues in differential

geometry and in the special theory of relativity, see for example [5], [6], [11]. We

refer the readers, for motivations and results, to [1] and the references cited therein.

Existence, multiplicity and qualitative properties of positive solutions of (1.1)

and (1.3) have been extensively studied by several authors via the method of critical

point theory, fixed point theorem in cones as well as the bifurcation technique. We

refer the reader to Coelho et al. [6], Bereanu et al. [2], [3], Corsato et al. [7], Dai

and Wang [8] and Ma and Xu [17], [18] for references along this line. However, there

are few papers dealing with the existence and multiplicity of sign-changing solutions

of (1.3), see Boscaggin and Garrione [4], and Dai and Wang [9]. Boscaggin and Gar-

rione in [4] showed that there are more and more sign-changing solutions on growing

of the parameter λ > 0 for (1.3) with Ω = BR(0) via the shooting method. Dai and

Wang in [9] obtained the existence of ⊂-type connected components for (1.3) with
Ω = BR(0) by bifurcation technique.

It is the purpose of this paper to give some conditions which will guarantee the

existence of S-shaped connected component of Sν
k -solutions of (1.1), and accordingly,

we determine the intervals of parameter λ in which (1.1) has one, two and three

Sν
k -solutions.

As in [6], we understand that the solution of problem (1.1) is a function which

belongs to C1[0, 1] with ‖u′‖∞ < 1, such that u′/
√
1− u′2 is differentiable and

problem (1.1) is satisfied, where ‖·‖∞ denotes the usual sup-norm.
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In order to study the global bifurcation phenomena of problem (1.1), we must

consider the eigenvalue problem

(1.4)

{

ϕ′′(x) + λa(x)ϕ(x) = 0, x ∈ (0, 1),

ϕ(0) = ϕ(1) = 0,

where a satisfies:

(F1) a ∈ C[0, 1] with 0 < a∗ 6 a(x) 6 a∗ on [0, 1] for some a∗, a
∗ ∈ (0,∞).

It is well-known that (1.4) possesses infinitely many eigenvalues 0 < λ1 < λ2 <

. . . < λk < . . . → ∞, all of which are simple. The eigenfunction ϕk corresponding to

λk has exactly k − 1 simple zeros in (0, 1), see [22], page 269. Let

0 = t0 < t1 < . . . < tk−1 < tk = 1

be the successive zeros of ϕk.

In the special case of a(x) ≡ 1, we know that

(1.5) λm = (mπ)2, ϕm(x) = sinmπx,

and accordingly,

(1.6) tj+1 − tj =
1

m
, j ∈ {0, 1, . . . ,m− 1}.

In the following, we assume that:

(F2) f ∈ C(−∞,∞) with f(0) = 0, sf(s) > 0 for all s 6= 0.

(F3) There exists α > 1, f0 > 0 and f1 > 0 such that

lim
|s|→0

f(s)− f0s

s1+α
= −f1.

(F4) There exists s0 : s0 ∈ [ 1
24c∗,

1
8c∗) such that

min
|s|∈[s0,4s0]

f(s)

s
>

27f0

5
√
5λka∗

(2π

c∗

)2

,

where c∗ := m−1
1 and m1 be as in (1.9).

It is easy to find that if (F2) and (F3) hold, then

(1.7) lim
|s|→0+

f(s)

s
= f0.

Moreover, if (1.7) and (F2) hold, then there exists f∗ > 0 such that

(1.8) 0 < sup
06|s|61

f(s)

s
6 f∗.
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Consider problem (1.1) and assume, in addition to (F1)–(F4), that f satisfies:

(F5) There exists a constant m1 ∈ N such that

(1.9) 0 < λka(x) sup
0<|s|<1

f(s)

s
6 (m1π)2, x ∈ [0, 1],

for some k ∈ N.

Indeed, under (F1), (F2) and (F3), we have an unbounded subcontinuum of

Sν
k -solutions of (1.1) which is bifurcating from (λk/f0, 0) and goes rightward. Con-

ditions (F1), (F4) and (F5) lead the unbounded subcontinuum to the left at some

point, and finally to the right near λ = ∞. Roughly speaking, we shall show that
there exists an S-shaped connected component of Sν

k -solutions.

Arguing the shape of bifurcation we have the following main result:

Theorem 1.1. Assume that (F1)–(F4) hold. Let (F5) hold for some k ∈ N. Then

there exist λ∗ ∈ (0, λk/f0) and λ∗ > λk/f0 such that

(i) problem (1.1) has at least one Sν
k -solution if λ = λ∗;

(ii) problem (1.1) has at least two Sν
k -solutions if λ∗ < λ 6 λk/f0;

(iii) problem (1.1) has at least three Sν
k -solutions if λk/f0 < λ < λ∗;

(iv) problem (1.1) has at least two Sν
k -solutions if λ = λ∗;

(v) problem (1.1) has at least one Sν
k -solution if λ > λ∗.

λ

E

λ∗ λ∗λk/f0

Figure 1. Bifurcation diagram of Theorem 1.1.

Figure 1 illustrates the global bifurcation graphs for Theorem 1.1. We point out

that the solution branches shown in Figure 1 are qualitative sketches rather than

computer calculated curves for representative f .

Remark 1.1. Let us consider that the nonlinear function

f(s) = s[(s− 1)2 + 1]e−s/m, m > 0,

satisfies (F3) with m > 0, α = 1, f0 = 2 and f1 = 2(m+1)/m. Moreover, if m > 0 is

sufficiently large, then this function satisfies (F4) with s0 = m+1 since g(s) := f(s)/s

is increasing on (m+1−
√
m2 − 1,m+1+

√
m2 − 1) and is decreasing on (m+1+√

m2 − 1,∞) and hence, min
s∈[m+1,2(m+1)]

f(s)/s = min{g(m+ 1), g(2m+ 2)} → ∞ as
m → ∞.
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Remark 1.2. For other results concerning the existence of an S-shaped con-

nected component in the set of solutions of semilinear problems, see [16], [20] for

that of p-Laplacian problem, see [21].

Remark 1.3. Coelho et al. in [6] studied (1.1) when the nonlinearity f satisfies

Carathéodory condition. Motivated by this paper, we may work in L∞(0, 1) and

replace (F1) by a weaker condition

0 < a∗ 6 essinf a(·) 6 esssupa(·) 6 a∗.

Remark 1.4. By the time-map method (see [12]), we may show that there exists

L0 > 0 such that







(

u′

√
1− u′2

)′

+ λL arctanu = 0, x ∈ (0, 1),

u(0) = u(1) = 0

has a unique positive solution for each λ > π
2 provided L ∈ (0, L0). So, (F4) is

a crucial condition to guarantee the existence of S-shaped connected component of

Sν
1 -solutions.

The rest of the paper is arranged as follows. In Section 2, we show a global

bifurcation phenomena from the trivial branch with the rightward direction near the

initial point. Section 3 is devoted to showing the change of direction of bifurcation,

and completing the proof of Theorem 1.1.

2. Rightward bifurcation

Let Y = C[0, 1] with the norm

‖u‖∞ = max
x∈[0,1]

|u(x)|.

Let E = {u ∈ C1[0, 1] : u(0) = u(1) = 0} with the equivalent norm

‖u‖ = ‖u′‖∞.

Define L : D(L) → Y by setting

Lu := −u′′, u ∈ D(L),

where

D(L) = {u ∈ C2[0, 1] : u(0) = u(1) = 0}.

Then L−1 : Y → E is compact.
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Let S be the closure of the set of all nontrivial solutions (λ, u) of (1.1) in [0,∞)×E.

In the following, we shall show a global bifurcation phenomena from the trivial branch

with the rightward direction of bifurcation. Let us rewrite (1.1) as

(2.1)

{

u′′(x) + λa(x)f0uh(u
′) + λa(x)ξ(u)h(u′) = 0, x ∈ (0, 1),

u(0) = u(1) = 0,

where

h(s) =

{

(1 − s2)3/2, |s| 6 1,

0, |s| > 1,
and ξ(s) := f(s)− f0s, s ∈ R.

Since λk is simple and lim
|s|→∞

ξ(s)/s = 0, it follows from (2.1) and a close analogue

of Dancer unilateral global bifurcation theorem (see [10], Theorem 2) that there exist

two continua C+
k and C−

k of S bifurcating from (λk/f0, 0), such that either C+
k and C−

k

are both unbounded, or else C+
k ∩ C−

k = {(λk/f0, 0)}. Notice that for any τ ∈ [0, 1],

the initial value problem

u′′(x) + λa(x)f0uh(u
′) + λa(x)ξ(u)h(u′) = 0, u(τ) = u′(τ) = 0

has a unique solution. This implies the second case can never occur, see the proof of

Theorem 1.1 in [9]. Thus, we get:

Lemma 2.1. Assume that (F1)–(F3) hold. Let (F5) hold for some k ∈ N. Then

there exist two unbounded continua C+
k and C−

k of S bifurcating from (λk/f0, 0) such

that for ν ∈ {+,−} and k ∈ N, one has

(1) Cν
k ⊆ (R+ × Sν

k ) ∪ {(λk/f0, 0)};
(2) u has exactly k − 1 simple zeros, and νu is positive near 0 for every (λ, u) ∈

Cν
k \ (λk/f0, 0);

(3) lim
(λ,u)∈Cν

k ,
λ→∞

‖u‖ = 1.

By the same method as for proving Lemma 2.5 in [18] with obvious changes, we

may get the following:

Lemma 2.2. Assume that (F1)–(F3) hold. Let (F5) be satisfied for some k ∈ N.

Let {(βn, un)} be a sequence of Sν
k -solutions of (1.1) which satisfies ‖un‖ → 0 and

βn → λk/f0. Let ϕk(x) be the k-eigenfunction of (1.4) which satisfies ‖ϕk‖ = 1.

Then there exists a subsequence of {un}, again denoted by {un} such that un/‖un‖
converges uniformly to ϕk on [0, 1].
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Lemma 2.3. Assume that (F1)–(F3) hold. Let (F5) be satisfied for some k ∈ N.

Then there exists δ > 0 such that (λ, u) ∈ Cν
k and |λ − λk/f0| + ‖u‖ 6 δ imply

λ > λk/f0.

P r o o f. We only deal with the case when ν = +. The other case can be treated

by a similar method.

Assume on the contrary that there exists a sequence {(βn, un)} such that
(βn, un) ∈ C+

k , βn → λk/f0, ‖un‖ → 0 and βn 6 λk/f0. By Lemma 2.2, there

exists a subsequence of {un}, again denoted by {un}, such that un/‖un‖ converges
uniformly to ϕk on [0, 1], where ϕk ∈ S+

k is the kth eigenfunction of (1.4) which

satisfies ‖ϕk‖ = 1. Multiplying the equation of (1.1) with (λ, u) = (βn, un) by un

and integrating it over [0, 1], we obtain

(2.2) βn

∫ 1

0

a(x)h(u′
n(x))f(un(x))un(x) dx =

∫ 1

0

(u′
n(x))

2 dx,

and accordingly,

(2.3) βn

∫ 1

0

a(x)h(u′
n(x))

f(un(x))

‖un‖
un(x)

‖un‖
dx =

∫ 1

0

(u′
n(x))

2

‖un‖2
dx.

On the other hand, we have

(2.4)

∫ 1

0

(ϕ′
k(x))

2 = λk

∫ 1

0

a(x)ϕ2
k(x) dx.

By (2.3) and (2.4), it follows that

(2.5) βn

∫ 1

0

a(x)h(u′
n(x))f(un(x))un(x) dx = λk

∫ 1

0

a(x)(un(x))
2 dx− ζ(n)‖un‖2,

with a function ζ : N → R satisfying

lim
n→∞

ζ(n) = 0.

Therefore,

∫ 1

0

a(x)
h(u′

n)f(un(x)) − f0un(x)

u1+α
n (x)

∣

∣

∣

un(x)

‖un‖
∣

∣

∣

2+α

dx

=
1

‖un‖α
[λk − f0βn

βn

∫ 1

0

a(x)
∣

∣

∣

un(x)

‖un‖
∣

∣

∣

2

dx− ζ(n)
]

.
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Lebesgue’s dominated convergence theorem and condition (F3) imply that

∫ 1

0

a(x)
h(u′

n)f(un(x)) − f0un(x)

u1+α
n (x)

∣

∣

∣

un(x)

‖un‖
∣

∣

∣

2+α

dx → −f1

∫ 1

0

a(x)|ϕk|2+α dx < 0,

and
∫ 1

0

a(x)
∣

∣

∣

un(x)

‖un‖
∣

∣

∣

2

dx →
∫ 1

0

a(x)|ϕk |2 dx > 0.

This contradicts βn 6 λk/f0. �

3. Direction turn of bifurcation

Lemma 3.1. Let v ∈ C[0, 1] with v(t) > 0 for t ∈ [0, 1]. If v′(t) is nonincreasing

on [0, 1], then

v(t) > min{t, 1− t}‖v‖∞, t ∈ [0, 1].

In particular, for any α, β ∈ (0, 1) we have

min
α6t6β

v(t) > min{α, 1− β}‖v‖∞.

P r o o f. It is an immediate consequence of the fact that v is concave down in [0, 1]

and hence we omit it. �

In the sequel, we will need the following lemma.

Lemma 3.2. Let κ ∈ (0, 1), 0 6 tj < tj+1 6 1 such that u(tj) = u(tj+1) = 0

and β0 ∈ (0, (18 (1 − κ))(tj+1 − tj)) be given. Let Iκ,β0
:= [tj + 4β0/(1− κ), tj+1 −

4β0/(1− κ)]. Then

tj+1 + tj
2

∈ Iκ,β0
, and |u′(s)| 6 1− κ ∀u ∈ A, s ∈ Iκ,β0

,

where

A := {u∈E : u is concave in [tj , tj+1], 0<u′(tj)< 1, 0>u′(tj+1)>−1, ‖u‖∞6 4β0}.

P r o o f. Set 1−κ = α and ξ = 4β0/(1− κ), then the conditions can be rewritten as

0 < α < 1, ξ ∈
(

0,
tj+1 − tj

2

)

, and I := Iκ,β0
= [tj + ξ, tj+1 − ξ].

Assume on the contrary that there exists s ∈ I such that |u′(s)| > 1 − κ = α, then

u′(s) > α or u′(s) < −α.
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We only deal with the case when u′(s) > α, the other case can be treated by

a similar method. By the fact that u ∈ C1[0, 1] and u is concave in [tj , tj+1], u
′ is

decreasing. If u′(s) > α, then u(s)− u(tj) = u′(t)(s− tj) for some t ∈ (tj , s). Hence,

u(s)/(s− tj) > u′(s) > α. Therefore, u(s) > α(s − tj) > ξα = 4β0 > ‖u‖∞. This

contradicts ‖u‖∞ 6 4β0. �

Let κ = 1
3 and

1
24 (tj+1− tj) = β0 ∈ (0, 1

12 (tj+1− tj)). Then we have the following:

Corollary 3.1. For any concave function u ∈ E with

u(0) = u(1) = 0, 0 < u′(tj) < 1, −1 < u′(tj+1) < 0, ‖u‖∞ 6
tj+1 − tj

6
,

we have

|u′(x)| 6 2

3
, x ∈

[3tj + tj+1

4
,
tj + 3tj+1

4

]

.

Lemma 3.3. Assume that (F1) and (F2) hold. Let (F5) be satisfied for some

k ∈ N. Let u be a Sν
k solutions of (1.1). Then there exists Iu := (αu, βu) such that

(3.1) u(αu) = u(βu) = 0, βu − αu > c∗; |u| > 0 in Iu, ‖u‖∞ = u(t0), t0 ∈ Iu.

Moreover,

(3.2)
1

4
‖u‖∞ 6 u(x) 6 ‖u‖∞, x ∈

[3αu + βu

4
,
αu + 3βu

4

]

=: Ju,

or

(3.3)
1

4
‖u‖∞ 6 −u(x) 6 ‖u‖∞, x ∈ Ju.

P r o o f. By condition (F5) and the Sturm-type comparison theorem, see [14], [15],

it is easy to see that there exist αu, βu such that βu − αu > c∗, which follows

that (3.1) is valid.

Since −u′′ = λa(x)h(u′)f(u), conditions (F1) and (F2) combined with the fact

that u(αu) = u(βu) = 0 imply that u′ is decreasing on Iu and u(x) > 0, x ∈ (αu, βu)

or u′ is increasing on Iu and u(x) < 0, x ∈ (αu, βu). Suppose the former case occurs

(in the latter one the argument would be similar).

By Lemma 3.1, it is easy to check that

1

4
‖u‖∞ 6 u(x) 6 ‖u‖∞, x ∈ Ju.

So, (3.2) is also valid. �
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Lemma 3.4. Assume that (F1)–(F4) hold. Let (F5) hold for some k ∈ N. Let Cν
k

be as in Lemma 2.1. If (λ, u) ∈ Cν
k such that ‖u‖∞ = 4s0, we have λ < λk/f0.

P r o o f. Using the same notations used in the proof of Lemma 3.3, let (λ, u) ∈ Cν
k ,

then by Lemma 3.3, we obtain

(3.4) s0 6 u(x) 6 4s0, x ∈ Ju,

or

(3.5) s0 6 −u(x) 6 4s0, x ∈ Ju.

We only deal with case (3.4) since case (3.5) can be treated in a similar way.

Fix s0 = 1
24 (βu−αu), then from Corollary 3.1 for any (λ, u) ∈ Cν

k with ‖u‖∞ = 4s0

we have

0 6 |u′(x)| 6 2

3
, x ∈ Ju.

Assume on the contrary that λ > λk/f0, then for x ∈ Ju, by (F5) and Corollary 3.1,

we have

λa(x)
f(u)

u
(1− u′2)3/2 >

λk

f0
a∗

27f0

5
√
5λka∗

(2π

c∗

)2 5
√
5

27
>

( 2π

βu − αu

)2

.

Let

v(x) = sin
( 2π

βu − αu

(

x− 3αu + βu

4

))

,

then v is a positive solution of














v′′(x) +
( 2π

βu − αu

)2

v(x) = 0, x ∈ Ju,

v
(3αu + βu

4

)

= v
(αu + 3βu

4

)

= 0.

We note that u(x) for all x ∈ (αu, βu) is a positive solution of

u′′(x) + λa(x)
f(u)

u
(1 − u′2)3/2u(x) = 0.

Sturm comparison theorem (see [14], [15]) implies that u has at least one zero on Ju.

This contradicts the fact that u(x) > 0 on Ju. �

Lemma 3.5. Assume that (F1) holds. Let (F5) be satisfied for some k ∈ N.

Let Cν
k be as in Lemma 2.1. Then

lim
λ→∞

‖u‖∞ ∈
[c∗
2
,
1

2

]

.
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P r o o f. In the case of k = 1, Ma and Xu in [18] proved that

lim
λ→∞

‖u‖ = 1, lim
λ→∞

‖u‖∞ =
1

2
.

Next, we shall consider the case when k > 2. Let u be a Sν
k -solution of (1.1) and

0 = z0 < z1 < . . . < zk−1 < zk = 1

be the successive zeros of u. By the same method as for proving Lemma 3.3, we

know that there exists zj for some j ∈ {0, 1, . . . , k − 1} such that zj+1 − zj > c∗

and ‖u‖∞ = u(t0) for some t0 ∈ (zj , zj+1).

Next, we deal with the case when u(x) > 0, x ∈ (zj , zj+1), the other case can

be treated by a similar method. Using the same method as for proving (see [9],

Theorem 1.1) we know that u′ → 1 in C[ε + zj , t0 − ε1] as λ → ∞. Here ε and ε1

are some arbitrary sufficiently small positive constants.

Since f(s)s > 0 for s 6= 0, it follows from (F5) that u is concave down in [zj, zj+1],

then

u′(x) > 0, x ∈ [zj, t0], −u′(x) < 0, x ∈ (t0, zj+1].

Then for (λ, u) ∈ Cν
k we have

lim
λ→∞

‖u‖∞ = lim
λ→∞

u(t0) = lim
λ→∞

∫ t0

zj

u′(t) dt > lim
λ→∞

∫ t0−ε1

zj−ε

u′(t) dt = t0−ε1−zj+ε.

By the arbitrariness of ε and ε1 we have

lim
λ→∞

‖u‖∞ > t0 − zj.

Similarly, using the fact that u′ → −1 in C[t0+ ε2, zj+1− ε3] as λ → ∞ for arbitrary
positive constants ε2 and ε3, we may deduce

lim
λ→∞

‖u‖∞ > zj+1 − t0.

Therefore, it yields that

(3.6) lim
λ→∞

‖u‖∞ >
zj+1 − zj

2
.

On the other hand,

lim
λ→∞

‖u‖∞ = lim
λ→∞

u(t0) = lim
λ→∞

∫ t0

zj

u′(t) dt 6 t0 − zj , t0 ∈ (zj, zj+1)

and

lim
λ→∞

‖u‖∞ = lim
λ→∞

u(t0) = lim
λ→∞

∫ zj+1

t0

−u′(t) dt 6 zj+1 − t0, t0 ∈ (zj , zj+1)
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and accordingly,

(3.7) lim
λ→∞

‖u‖∞ 6
zj+1 − zj

2
.

Therefore, from (3.6) and (3.7) we have

lim
λ→∞

‖u‖∞ =
zj+1 − zj

2
>

c∗
2
.

�

P r o o f of Theorem 1.1. Let Cν
k be as in Lemma 2.1. We only deal with C+

k

since the case C−
k can be treated similarly. By Lemma 2.3, C+

k is bifurcating from

(λk/f0, 0) and goes rightward.

By Lemmas 2.1, 3.5, we have lim
λ→∞

‖u‖ = 1 and lim
λ→∞

‖u‖∞ ∈ [ 12c∗,
1
2 ]. Then there

exists (λ0, u0) ∈ C+
k such that ‖u0‖∞ = 4s0. Lemma 3.4 implies that λ0 < λk/f0.

By Lemmas 2.3, 3.4, C+
k passes through some points (λk/f0, v1) and (λk/f0, v2)

with ‖v1‖∞ < 4s0 < ‖v2‖∞, and there exist λ and λ which satisfy 0 < λ < λk/f0 < λ

and both (i) and (ii):

(i) If λ ∈ (λk/f0, λ], then there exist u and v such that (λ, u), (λ, v) ∈ C+
k and

‖u‖∞ < ‖v‖∞ < 4s0.

(ii) If λ ∈ (λ, λk/f0], then there exist u and v such that (λ, u), (λ, v) ∈ C+
k and

‖u‖∞ < 4s0 < ‖v‖∞.
Define λ∗ = sup{λ : λ satisfies (i)} and λ∗ = inf{λ : λ satisfies (ii)}. Then by the

standard arguments, (1.1) has a S+
k solution at λ = λ∗ and λ = λ∗, respectively.

Clearly, C+
k turns to the left at (λ

∗, ‖uλ∗‖∞) and to the right at (λ∗, ‖uλ∗
‖∞),

finally to the right near λ = ∞. This completes the proof of Theorem 1.1.
�
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