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Abstract. We consider the equation dy(t)/dt = (A+B(t))y(t) (t > 0), where A is the gen-

erator of an analytic semigroup (eAt)t>0 on a Banach space X , B(t) is a variable bounded
operator in X . It is assumed that the commutator K(t) = AB(t)−B(t)A has the following
property: there is a linear operator S having a bounded left-inverse operator S−1

l such

that ‖SeAt‖ is integrable and the operator K(t)S−1

l is bounded. Under these conditions
an exponential stability test is derived. As an example we consider a coupled system of
parabolic equations.

Keywords: Banach space; differential equation; linear nonautonomous equation; expo-
nential stability; commutator; parabolic equation
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1. Introduction and statement of the main result

Throughout this paper, X is a Banach space with a norm ‖·‖ and the identity
operator I. By B(X ) we denote the set of bounded linear operators in X . For a linear
operator C, Dom(C) is its domain, σ(C) is its spectrum, and α(C) = supReσ(C).

If C ∈ B(X ), then ‖C‖ is its operator norm.
Further, A denotes a generator of an analytic semigroup eAt on X , and B(t) (t > 0)

is a variable bounded piece-wise strongly continuous operator mapping Dom(A) into

itself for each t > 0.

The paper deals with the exponential stability conditions for the equation

(1.1)
dy(t)

dt
= (A+B(t))y(t) (t > 0).
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A solution to (1.1) for given y0 ∈ Dom(A) is a function y : [0,∞) → Dom(A) having

at each point t > 0 a strong derivative, at zero the right strong derivative, and

satisfying (1.1) for all t > 0 and y(0) = y0.

The existence, uniqueness and continuous dependence on initial vectors of solutions

are due to Theorem II.3.4 from [14], since the operator B(t) is bounded, and maps

Dom(A) into itself, and the operator A generates an analytic semigroup.

We will say that (1.1) is an exponentially stable equation if there are positive

constants m1 and δ1 such that ‖y(t)‖ 6 m1e
−δ1t‖y(0)‖ (t > 0) for any solution y(t)

of (1.1).

Certainly, (1.1) can be rewritten as equation

(1.2)
dy(t)

dt
= C(t)y(t)

with the corresponding operator C(t), but C(t) in the present paper has a special

form: it is the sum of A and B(t). This allows us to use the information about A

and B(t) more completely than the theory of general equations (1.2).

The stability theory of abstract differential equations is well developed, cf. [1]–[9],

[12], [15]–[18], etc. Mainly, equation (1.1) is considered as a perturbation of a stable

semigroup generated by A. In paper [11], stability conditions for equation (1.1)

have been established in terms of the commutator K(t) = AB(t) − B(t)A (t > 0).

Besides, it was shown that stability conditions in terms of the commutator enable

us to investigate equations with an unstable semigroup eAt. This fact gives us the

conditions for the stabilization of systems with distributed parameters. Paper [11]

deals with bounded commutators. The aim of this paper is to generalize the main

result from [11] to the case when K(t) is unbounded.

Denote by UB(t, s) (t > s > 0) the evolution operator of the equation

(1.3)
du(t)

dt
= B(t)u(t) (t > 0)

and assume that there are real numbers b0 and c0 = const. > 1 such that

(1.4) ‖UB(t, s)‖ 6 c0 exp[b0(t− s)] (t > s > 0).

For the recent solution bounds for the differential equations with bounded operators,

see for instance [2]. It is also assumed that there is a linear operator S withDom(S) ⊇
Dom(A) having a bounded left-inverse one S−1

l such that

(1.5) J(S) :=

∫
∞

0

‖Se(A+b0I)t‖ dt < ∞

and

(1.6) m(K(·), S) := sup
t>0

‖K(t)S−1
l ‖ < ∞.
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In addition, denote

J0 :=

∫
∞

0

‖e(A+b0I)t‖ dt.

Due to (1.5) we have

J0 =

∫
∞

0

‖S−1
l Se(A+b0I)t‖ dt 6 ‖S−1

l ‖J(S) < ∞.

Now we are in a position to formulate the main result of the paper.

Theorem 1.1. Let conditions (1.4)–(1.6) and

(1.7) c0m(K(·), S)J(S)J0 < 1

hold. Then equation (1.1) is exponentially stable.

This theorem is proved in the next section.

For example, if −A is sectorial and α(A) < αA < 0, then as is well-known (see [13],

Theorem 1.4.3, page 26) ‖eAt‖ 6 mAe
αAt (mA = const. > 1; t > 0) and for any

ν ∈ (0, 1),

‖(−A)νeAt‖ 6 mνt
−ν exp(−δνt) (0 < δν 6 |αA|; mν = const. > 1; t > 0).

So if αA + b0 < 0 and −δν + b0 < 0, in the considered case

J0 6 mA

∫
∞

0

e(αA+b0)t dt =
mA

|αA + b0|

and

J(S) = Jν :=

∫
∞

0

‖(−A)νe(A+b0)t‖ dt 6 mν

∫
∞

0

t−νe(b0−δν)t dt < ∞.

Note that ∫
∞

0

t−νe(b0−δν)t dt =
1

(δν − b0)1−ν
Γ(1− ν),

where

Γ(1 + x) =

∫
∞

0

sxe−s ds (x ∈ (−1,∞))

is the Euler Gamma function. Thus,

Jν 6
mAΓ(1− ν)

|δν − b0|1−ν
.
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Let us present an example of A satisfying (1.6). To this end recall that if A is

a selfadjoint negative definite operator in a Hilbert space, then ‖f(A)‖ = sup
s6α(A)

|f(s)|

for a function f bounded on σ(A), cf. [14], and therefore, ‖eAt‖ = eα(A)t (t > 0), and

‖(−A)νeAt‖ = sup
s6α(A)

(−s)νest = ϕν(A, t) (0 < ν < 1),

where

ϕν(A, t) =





(ν
t

)ν
e−ν if t 6

ν

|α(A)| ,

|α(A)|νeα(A)t if t >
ν

|α(A)| .

So if A is negative definite and S = (−A)ν , then

(1.8) J0 =

∫
∞

0

e(b0+α(A))t dt =
1

|b0 + α(A)| and J(S) 6 Jν =

∫
∞

0

eb0tϕν(A, t) dt,

provided that α(A) + b0 < 0.

2. Proof of Theorem 1.1

Lemma 2.1. Let A generate an analytic semigroup (eAt)t>0 and B(r) map

Dom(A) into itself for all r > 0. In addition, let there be a linear operator S

with Dom(S) ⊇ Dom(A) having a bounded left-inverse one S−1
l such that SeAt be

integrable on each finite interval, and the conditions (1.6) and

∫ t

0

‖esA‖‖SesA‖ ds < ∞ (0 < t < ∞)

hold. Then with the notation

[eAt, B(r)] := etAB(r) −B(r)eAt (t, r > 0),

one has

[eAt, B(r)] =

∫ t

0

esAK(r)e(t−s)A ds (0 6 t, r < ∞).

In addition,

‖[eAt, B(r)]‖ 6 m(K(·), S)
∫ t

0

‖esA‖‖Se(t−s)A‖ ds (0 6 t, r < ∞)

and [eAt, B(r)] maps Dom(A) into itself.
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P r o o f. In this proof for a fixed r > 0, for the brevity we put B(r) = B and

K(r) = K. Condition (1.6) implies
∥∥∥∥
∫ t

0

esAKe(t−s)A ds

∥∥∥∥ =

∥∥∥∥
∫ t

0

esAKS−1
l Se(t−s)A ds

∥∥∥∥

6 m(K(·), S)
∫ t

0

‖esA‖‖Se(t−s)A‖ ds

6 m(K(·), S)max
s6t

‖esA‖
∫ t

0

‖Se(t−s)A‖ ds < ∞.

So the operator
∫ t

0 e
sAKe(t−s)A ds is bounded for all finite t. On Dom(A) we have

∫ t

0

esAKe(t−s)A ds =

∫ t

0

esA(AB −BA)e(t−s)A ds

=

∫ t

0

(esAABe(t−s)A − esABAe(t−s)A) ds

=

∫ t

0

( ∂

∂s
esABe(t−s)A + esAB

∂

∂s
e(t−s)A

)
ds

=

∫ t

0

∂

∂s
(esABe(t−s)A) ds = eAtB −BeAt,

as claimed. �

For an operator function Z(t, s) defined and uniformly bounded on 0 6 s 6 t 6 ∞
set ‖Z‖C := sup

t>s>0
‖Z(t, s)‖.

Lemma 2.2. LetX(t, s) be the evolution operator of (1.1), and with the notations

W (t, s) = exp[A(t− s)]UB(t, s) and

H(t, s) := [eA(t−s), B(t)]UB(t, s) (t > s > 0),

let ‖W‖C < ∞ and

(2.1) ζ(H) := sup
s

∫
∞

s

‖H(t, s)‖ dt < 1.

Then the inequalities

(2.2) ‖X‖C 6
‖W‖C

1− ζ(H)

and

(2.3) ‖X −W‖C 6
ζ(H)‖W‖C
1− ζ(H)

are valid.
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P r o o f. Note that for all h ∈ Dom(A) we have

(2.4)
dX(t, s)h

dt
= (A+B(t))X(t, s)h

and

(2.5)
dW (t, s)h

dt
= (AeA(t−s)UB(t, s) + eA(t−s)B(t)UB(t, s))h

= ((A +B(t))eA(t−s)UB(t, s) + eA(t−s)B(t)UB(t, s)

−B(t)eA(t−s)UB(t, s))h

= (A+B(t))W (t, s)h +H(t, s)h.

Due to Lemma 2.1, operator H(t, s) is bounded for all finite t, s and maps Dom(A)

into itself. Subtracting (2.4) from (2.5), on Dom(A) we get

d(W (t)−X(t))

dt
= (A+B(t))(W (t, s) −X(t, s)) +H(t, s).

Making use of the variation of constants formula, (see [14], Theorem II.3.1) we can

write

(W (t, s)−X(t, s))h =

∫ t

s

X(t, s1)H(s1, s)h ds1 ∀h ∈ Dom(A).

Since Dom(A) is dense in X , and W (t, s), X(t, s) and H(t, s) are bounded, we can

write

W (t, s)−X(t, s) =

∫ t

s

X(t, s1)H(s1, s) ds1.

Consequently,

(2.6) ‖W (t, s)−X(t, s)‖ 6

∫ t

s

‖X(t, s1)‖‖H(s1, s)‖ ds1,

and therefore,

‖X(t, s)‖ 6 ‖W (t, s)‖+
∫ t

s

‖X(t, s1)‖‖H(s1, s)‖ ds1.

Hence, for any finite t > s we obtain

sup
06s6v6t

‖X(v, s)‖ 6 ‖W‖C + sup
06s6v6t

‖X(v, s)‖ζ(H).

Now (2.1) implies (2.2). From (2.6) and (2.2), inequality (2.3) follows. This proves

the lemma. �
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P r o o f of Theorem 1.1. By (1.4),
∫

∞

s

‖H(t, s)‖ dt6 c0

∫
∞

s

eb0(t−s)‖[eA(t−s), B(t)]‖ dt6 c0

∫
∞

0

eb0v‖[eAv, B(v + s)]‖ dv.

Inequality (2.2) means that (1.1) is Lyapunov stable, i.e., there is a constant m1 > 1,

independent of the initial vector, such that ‖y(t)‖ 6 m1‖y(0)‖ (t > 0) for any

solution y(t) of (1.1), see [6].

Furthermore, substitute

(2.7) y(t) = uε(t)e
−εt (ε > 0)

into (1.1). Then

(2.8)
duε(t)

dt
= (A+B(t) + εI)uε(t).

If ε is small enough, then conditions (1.4), (1.5) and (1.6) hold with B(t)+εI instead

of B(t).

Applying our above arguments to equation (2.8) we can assert that it is Lyapunov

stable: ‖uε(t)‖ 6 m1‖uε(0)‖ (t > 0). So due to (2.7), equation (1.1) is exponentially

stable. This proves the theorem. �

3. Equations with the Lipschitz property

In this section we illustrate Theorem 1.1 in the case when

(3.1) ‖B(t)−B(t1)‖ 6 q0|t− t1| (t, t1 > 0; q0 = const. > 0),

and

(3.2) ‖ exp[B(τ)t]‖ 6 p(t) (t, τ > 0),

where p(t) is a piecewise-continuous function independent of τ uniformly bounded

on [0,∞).

Lemma 3.1. Let conditions (3.1), (3.2) and

(3.3) θ0 := q0

∫
∞

0

tp(t) dt < 1

hold. Then the evolution operator UB(t, s) of (1.3) satisfies the inequality

sup
t>s

‖UB(t, s)‖ 6
χ

1− θ0
(t > s > 0),

where χ := sup
t>0

p(t).
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P r o o f. Equation (1.3) can be rewritten in the form

du(t)

dt
−B(τ)u(t) + [B(t)−B(τ)]u(t)

with an arbitrary fixed τ > 0. This equation is equivalent to the following one:

u(t) = exp[B(τ)(t − s)]u(s) +

∫ t

s

exp[B(τ)(t − t1)][B(t1)−B(τ)]u(t1) dt1.

So

‖u(t)‖ 6 ‖ exp[B(τ)(t−s)]‖‖u(s)‖+
∫ t

s

‖ exp[B(τ)(t−t1)]‖‖B(t1)−B(τ)‖‖u(t1)‖ dt1.

According to (3.1) and (3.2),

‖u(t)‖ 6 p(t− s)‖u(s)‖+ q0

∫ t

s

p(t− t1)|t1 − τ |‖u(t1)‖ dt1.

With τ = t, this relation gives us

‖u(t)‖ 6 p(t− s)‖u(s)‖+ q0

∫ t

s

p(t− t1)(t− t1)‖u(t1)‖ dt1.

Hence,

sup
s6t6T

‖u(t)‖ 6 χ‖u(s)‖+ sup
s6t6T

‖u(t)‖θ0

for any positive finite T . By (3.3) we arrive at the inequality

sup
06t6T

‖u(t)‖ 6
χ‖u(s)‖
1− θ0

.

Since the right-hand side of the latter inequality does not depend on T , we get the

required inequality. �

Under the hypothesis of Lemma 3.1, condition (1.4) holds with b0 = 0 and

c0 = χ/(1− θ0), hence Theorem 1.1 implies:

Corollary 3.2. Let conditions (1.6), (3.1) and (3.2) hold. Let

Ĵ(S) :=
χ

1− θ0

∫
∞

0

‖SeAt‖ dt < ∞ and Ĵ0 :=

∫
∞

0

‖eAt‖ dt,

and
χm(K(·), S)Ĵ(S)Ĵ0

1− θ0
< 1.

Then equation (1.1) is exponentially stable.

For estimates for the exponential function of various finite and infinite dimensional

operators, see for example [10].

362



4. Example

Consider the problem

∂u(t, x)

∂t
=

∂2u

∂x2
(t, x) +M(t, x)u(t, x) (0 < x < 1),(4.1)

u(t, 0) = u(t, 1) = 0 (t > 0),(4.2)

where M(t, x) = (mjk(t, x)) is a variable real n × n-matrix function defined and

uniformly bounded on [0,∞)× [0, 1], twice continuously differentiable in x and con-

tinuous in t.

Take X = L2([0, 1];Cn) – the Hilbert space of n-vector valued functions defined

on [0, 1] with the scalar product

(v, w) =

∫ 1

0

(v(x), w(x))n dx (v, w ∈ L2([0, 1];Cn)),

where (·, ·)n is the scalar product in Cn. For the brevity put L2
n = L2([0, 1];Cn) and

take

(Af)(x) = f ′′(x) and (B(t)f)(x) = M(t, x)f(x) (f ∈ Dom(A), 0 6 x 6 1)

and S = (−A)1/2 with

Dom(A) = H2(0, 1)n ∩H1
0 (0, 1)

n = {h ∈ L2
n : h′′ ∈ L2

n, h(0) = h(1) = 0}.

Then (K(t)f)(x) = M ′′

xx(t, x)f(x) + 2M ′

x(t, x)f
′(x). Obviously,

ek,j(x) =
√
2 sin(πkx)ej ∀ j = 1, . . . , n,

where {ej}nj=1 is the standard basis in C
n, are the eigenfunctions of A of the al-

gebraic multiplicity n, Pkj = (·, ek,j)ek,j are the eigen-projections of A and −π
2k2

(k = 1, 2, . . .) are its eigenvalues of multiplicity n. We have

A = −π
2

n∑

j=1

∞∑

j=1

k2Pkj , (−A)1/2 = π

n∑

j=1

∞∑

j=1

kPkj and eAt =

n∑

j=1

∞∑

j=1

e−π
2k2tPkj ,

and by (1.8)

(4.3) ‖(−A)1/2eAt‖ = ϕ1/2(A, t),

where

ϕ1/2(A, t) =





1√
2t
e−1/2 if t 6

1

2π
2
,

πe−π
2t if t >

1

2π
2
.
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In addition, ‖(−A)−1/2‖ = ‖S−1‖ = 1/π, and by Green’s formula we have

( d

dx
S−1f,

d

dx
S−1f

)
= −

( d2

dx2
S−1f, S−1f

)
= −(AS−1f, S−1f).

As S−1 is selfadjoint and commutes with A, this yields

( d

dx
S−1f,

d

dx
S−1f

)
= −(AS−2f, f) = (f, f),

and therefore, for any f ∈ Dom(A) with ‖f‖ = 1 we obtain

‖K(t)S−1f‖ =
∥∥∥M ′′

xx(t, ·)S−1f + 2M ′

x(t, ·)
d

dx
S−1f

∥∥∥

6 sup
x
(‖M ′′

xx(t, x)‖n‖S−1‖+ 2‖M ′

x(t, x)‖n)

Here ‖·‖ =
√
(·, ·) is the norm in L2

n and ‖·‖n is the norm in C
n. Suppose that

(4.4) m̂(K(·),M) := sup
x,t

(1
π

‖M ′′

xx(t, x)‖n + 2‖M ′

x(t, x)‖n
)
< ∞.

Then m(K(·), S) = sup
t

‖K(t, ·)S−1‖ 6 m̂(K(·),M). Consider the vector equation

(4.5)
∂v

∂t
= M(t, x)v (v = v(t, x), 0 < x < 1).

Assume that there are constant qM independent of x and a piecewise-continuous

function pM (t) independent of s and x, and uniformly bounded on [0,∞) such that

‖M(t, x)−M(t1, x)‖n 6 qM |t− t1| (t, t1 > 0; qM = const. > 0),(4.6)

‖ exp[M(τ, x)t]‖ 6 pM (t) (t, τ > 0; 0 6 x 6 1)(4.7)

and

(4.8) θM := qM

∫
∞

0

tpM (t) dt < 1

hold. Then due to Lemma 3.1 the evolution operator UM (t, s) of (4.5) satisfies the

inequality

‖UM (t, s)‖n 6
χM

1− θM
(t > s > 0),

where χM := sup
t>0

pm(t). Hence, condition (1.4) holds with b0 = 0 and c0 =

χM/(1− θM ). Thus,

Ĵ0 =

∫
∞

0

‖eAt‖ dt 6
∫

∞

0

e−π
2t dt =

1

π
2
.
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In addition, due to (4.3)

Ĵ(S) =

∫
∞

0

‖SeAt‖ dt 6 Ĵ1/2, where Ĵ1/2 :=

∫
∞

0

ϕ1/2(A, t) dt.

This integral is simply calculated. Now Corollary 3.2 yields:

Corollary 4.1. Let conditions (4.6)–(4.8) and

χMm(K(·), S)J1/2
(1 − θM )π2

< 1

hold. Then equation (4.1), (4.2) is exponentially stable.

Acknowledgements. I am very grateful to the reviewer of this paper for really

deep and helpful remarks.
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