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Abstract. We show the upper and lower bounds of convergence rates for strong solutions
of the 3D non-Newtonian flows associated with Maxwell equations under a large initial
perturbation.
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1. INTRODUCTION

In this paper, we study the non-Newtonian fluids associated with Maxwell equa-
tions:
u—V-S(Du)+ (u-V)u+Vr—(b-V)b=f,
by —Ab+(u-V)b—(b-V)u=g, .
1.1 in Qr :=R>x (0, T),
(1-1) div u=0 and divb=0, Qr ( )
u(z,0) =up(z) and b(z,0) = by(z).

Here u: R3 x (0,7) — R? is the flow velocity vector, b: R x (0,7) — R? is the
magnetic vector, m: R3 x (0,7) — R is the total pressure, f and g are the external
forces, and Du is the symmetric part of the velocity gradient, i.e.,

1/0u; Ou,
Du = Di' = ! J
“ i (8333 8331

5 ). =123
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We assume that ug, by € L*(R?) and divug = 0 = div by. To motivate the conditions
on the stress tensor S, we recall the following examples of constitutive laws:

S(Du) = (po + pa|Dul?"*)Du or S(Du) = (uo + | Duf*)P~?/2Du, 1 < p < oo,

where 110 > 0 and p; > 0 are constants, see [1], [19].

For notational convenience, we denote by ngm a vector space of all symmetric
3 x 3 matrices ¢ = ((ij)1<i,j<3- We note that the deviatoric stress tensor S = (.5;5),
1,7 = 1,2, 3 satisfies the following assumptions: For (z,t) € Qr,

(i) S: Qr x M2, — M2 isa Carathéodory function,

) sym sym
(ii) (symmetry) Si; = Sji,
(iii) (polynomial growth) [S;(§)] < (ko + pl€P~?)IE],
(iv) (coercivity condition) there exists ¢; > 1 such that

_ 08S;; _
(po + H1|€|p 2)|77|2 < 3512 MetNij < m(uo + M1|€|p 2)|77|27

(v) (strict monotonicity) for all ¢,n € M2, (¢ #n), S(¢) —S(n) : (C—n) > 0.
Gunzburger et al. in [4] considered (1.1) for the case of bounded or periodic do-

mains, and they established unique solvability of the initial-boundary value problem.
More specifically, assuming that ug € H?(Q) and by € H'(Q) with some boundary
conditions for a bounded domain, it was shown in [4] that if 3 < ¢ < 6, a generalized
solution exists, and moreover, it satisfies

(1.2) ue L>(0,T; L*(Q)NH'(Q)), Vue L>®(0,T;L(Q)),
be L0, T; L*(Q) N HY(), Vbe L>(0,T;L*Q)), be L*0,T;H*(Q)),
up € L*(Q x (0,T)), b€ L2 x (0,T)).

Furthermore, they have shown the uniqueness of solutions. Here strong solutions
means that the solutions satisfy (1.1) pointwise a.e. and the energy equality holds.
Recently, the authors in [6] established global unique solvability to (1.1) for uy €
(W2 N WtP) and by € WhH2, g < p in the same class above, see [15] for weak
solutions. For a half space, the proof in [4] also holds.

Let us take a look at the main results on the Navier-Stokes equation. Secchi in [17]
considered the L2-asymptotic stability for weak solutions of 3D Navier-Stokes equa-
tions under the large initial data perturbation. He proved that if one has a smooth
solution (for small data), then every weak solution v(x,t) to the perturbed Navier-
Stokes equations converges asymptotically to u(z,t), that is,

(1.3) lv(t) — u(t)||lpz = 0 ast — oco.
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After his work, Kozono in [11] considered the asymptotic stability of large solutions
with large perturbation to the Navier-Stokes equations in Q C R3:

u — Autu-Vu+Vp=f+f div(u) =0,

ulaq = 0, u(0) = wg + a. Here Q is an open subset of R? which may be unbounded
as well as its boundary 9 € C3. Assume further that f, f € LL ([0,00), L%(2)) and
wo,a € L?(Q) with zero divergence and zero normal component on the boundary
in the weak sense. Let w be a weak solution of (1) with a = 0, f = 0, which
also belongs to Serrin’s class L*((0,00), L4(2)) with 2/a+3/¢ =1 and ¢ > 3. In
addition, he proved that every perturbed flow v with the energy inequality converges
asymptotically to w in Serrin’s class, that is, ||v(t) — w(t)||L, — 0 as ¢ — oo, or
[Vo(t) — Vw(t)||z, = O(t~'/2). In this direction, we refer to [21] and [22]. We also
refer to [8] for L2-asymptotic stability of singular solutions corresponding to singular
external force to the Navier-Stokes system of equations in R3, see also [7].

On the other hand, for the upper and lower bounds for weak solutions to 3D
Navier-Stokes equations, a lot of important work has been done see e.g. 2], [3], [12],
[14], [16] and [18]. The L?-decay rates of weak solutions with both upper and lower
bounds reads

Cr(1+ )73/ < Ju(t)|| p2(rey < Co(1+1) 73/,

Motivated by Secchi’s result (see [17]), very recently, the authors in [20] have obtained
the optimal upper and lower bounds of convergence rates for the 3D Navier-Stokes
equations under large initial perturbation. For wy with

(1.4) / |Wo(Aw)|? dw = CA*7™2 + oA 73) as A — 0,

they have shown that for the global Leray weak solution u(x, t) of the 3D Navier-
Stokes equations then even for the large initial perturbation, every weak solution
v(x,t) corresponding to ug + wp of the perturbed Navier-Stokes equations converges
algebraically to u(x,t) corresponding to ug with the optimal upper and lower bounds

(1.5) Cr(1+t)7"2 < [Jo(t) —u(t)|| z2(rs) < Co(1+8)77/2 for larget > 1,2 <y < g
For the asymptotic behavior of strong solutions to (1.1), the author in [9] or [10]
recently have examined the L2-algebraic decay, that is ||(u, b)(t)||z2 < C(1 +t)=3/%
in the whole space R?® with respect to the monopolar shear thickening fluids using
Fourier splitting method in [16]. We also refer to [5] and [13] for Navier—Stokes
equations of non-Newtonian type.
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In light of the results of a series for the viscous fluid flows, recently, Xie, Guo and
Dong in [20] have studied the upper and lower convergence rates for weak solutions
to 3D shear thickening non-Newtonian fluid equation of bipolar type:

up — poAu 4 paA%u+ (u-Viu+ Vp = f + V- (|[Vul[""2Vu),
(1.6) divu =0,
u(z,0) = uo(z).
For wy with (1.4), they obtain the asymptotic stability of large solutions with large

perturbation for the difference between a weak solution u corresponding to the initial
data ug and the weak solution u corresponding to the perturbed initial data ug + wp:

CLL+ )™ Cat) — w(t)llagesy < Ca(L+t) =G/

for a sufficiently small v > 0.

The purpose of this paper is to investigate asymptotic stability of strong solutions
inspired by [20]. If w and h are perturbed initially, then the perturbed flow @ and b
satisfy
U —V-S(Du)+ (-V)a+Va—(b-V)b=f,
by — Db+ (@- V)b — (b- V)i =g,
divi=0 and divb=0,

U(x,0) = up(x) + wo(x) and b(z,0) = bo(x) + ho(z).

(1.7)

Theorem 1.1. Suppose (u, b) is a strong solution of the 3D non-Newtonian flows
associated with Maxwell equations (1.1) with the initial data ug, by € L*(R?) and ex-
ternal force f,g € L*(Qr). If the initial perturbation wg, ho € L*(R3) satisfies (1.4)
with2 < v < g, then there exists a strong solution u(z, t) and l;(x, t) of the perturbed
equations (1.7) and satisfies the optimal convergence rates

(1.8)  Cr(1+6)7 2 < [a(t) — u(t)| p2msy + |b(t) — b(t)]|2(rs) < Co2(1+¢)77/2

for large t > 1.

Remark 1.2. Comparing to [20], we focus on the monopolar fluid for the stress
tensor, which means only the first derivative of the velocity is involved in the stress
tensor. For this case of the monopolar fluid since there is not enough regularity of
weak solutions, we need a solution with slightly higher regularity, which is called
strong solutions.

Remark 1.3. For the existence of (weak or strong) solutions to the perturbed
system, it is checked according to the standard arguments, see [6] and [15].
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Corollary 1.4. For a sufficiently smooth solution (ug, bo), if (u,b) of 3D MHD
equations, that is, p = 2 in (1.1) satisfies one of the following conditions:
(a) ue L¥/=3)(0,T; L"(R3)) with 3 < r < 0o,
(b) Vu e L*/Cr=3)(0,T; L"(R?)) with 3 < r < oo,
then (1.8) holds.

2. PRELIMINARY

We first introduce some notations. Let (X, ||-||) be a normed space. By L4(0,T; X),
we denote the space of all Bochner measurable functions ¢: (0,7) — X such that

T 1/q
lellors = ([ leolrar) " <oo it1<g <o,
0

el Lo o,7:x) = S(UP @) < oo if ¢ = o0
te(0

For 1 < ¢ < 00, we mean by W*4(R3) the usual Sobolev space. Let A = (ai;)7 ;—;
3
and B = (b;;)} j—; be matrix valued maps and we then denote A : B = Y7 ai;bi;.
ij=1

For vector fields u, v we write (u;v;); j=1,2,3 as © ® v. Unless specifically mentioned,
the letter C is used to represent a generic constant, which may change from line
to line. And also, we denote by A < B an estimate of the form A < CB with an
absolute constant C.

Next, we recall a notion of weak and strong solutions to (1.1) satisfying the fol-

lowing definition:

Definition 2.1 (Weak solutions [6]). Let p > 2. Suppose that ug € L?(R?) and
bo € L?(R?). We say that (u,b) is a weak solution of the magnetohydrodynamics
with power-law type nonlinear viscous fluid (1.1) if u and b satisfy the following:

(i) we Lo(I; L(RY) N LI Wha(RY)), b e L=(1; L2(RY)) N L2(1; H(RY)),
(ii) (u,b) satisfies (1.1) in the sense of distribution, that is,

/ /R —+ u- V)¢)udxdt—/0T RSS:ng)dxdt—/OT/W([).Vd))bdxdt
/ /RS =2y ¢ bdxdt+/ /W w- V)bdz dt = / ,/[Rsb Vo)uda dt

for all ¢ € C§°(R3 x [0,7T)) with V- ¢ = 0 and
/u'dex:O, /b'dex:O
R3 R3
for every v € C5°(R?),
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(iii) (u,d) satisfies the energy inequality

sup (lu(-,t)172ms) + 160 1)1 72(re))
0<t<T

T
+ 2/0 (HOHVUHQB(W) + M1||Vu|‘qm(uze3) + ||Vb|\%2(uze3))dt
< ol 2y + 1boll 72 (gsy-
Definition 2.2 (Strong solutions [6]). Let p > 2. Suppose that
up € (W2 NWH)(R*) and by € WH2(R?), ¢ e (1,00)

and ¢’ be the Holder conjugate of q. We say that (u,b) is a strong solution of (1.1)
if (u,b) is a weak solution in Definition 2.1 and (u,b) satisfies
Vu € L3(R? x (0,7)) N L>(0,T; LY N L*(R?)),
u € L2(R? x (0,T)), S(Du) € LY (0, T; Wb (R®)), V|Du|/? € L*((0,T); L*(R?)),
by € L*(R* x (0,T)), Vb e L>(0,T; L*(R%)), b € L*(0,T; W*?(R?)).

We denote the pressure difference p(x,t) = ma(z,t) — m1(z,t) and the difference
w(z,t) = u(x,t) — u(x,t) and h(z,t) = b(x,t) — b(x,t). Hence, w(x,t) and h(x,t)
satisfy the following equations in a weak sense:
dyw — poAw 4+ -Vw+w-Vu—b-Vh—h-Vb+ Vp

=mV - (|Vu|"2Vu — |Vu|"2Vu),
(2.1) Oh—Ah+T-Vh+w-Vb—b-Vw—h-Vu=0,
V-w=0 and V- -h=0,
w(z,0) =wo(x) and h(z,0) = ho(z).

We also recall the optimal upper and lower bounds of the linear heat equations,
see Olive and Titi [14].

Lemma 2.3. Suppose the initial data zo € L?(R®) and satisfies
/ 120(rw)|* dw = Cr®7 ™3 + 0(2y — 3) for as r — 0.
82

Then there exist two positive constants C7 and Cy such that the solution of the heat

equation

Opz — Az =0,
(2.2)

Z({E, 0) = Zo(i[:),
has the following upper and lower bounds:

Ci(1+1)772 < ||eP 2|2 < Co(1+ )72 for large t > 1.
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Lemma 2.4. Let (u,b) be a strong solution to the initial value problem of (2.1)
with the initial data ug,byo € H'(R®). Then we have for & < p <3

G(E, 1)) + |h(E, 1) < C(e—“ﬂzﬂo@n + e 1€ R (&)
t
g / ()l 22y + (6| 2y ) ds

14—2 19-5 (197517)/8
+|£|(/ ()| 20 p>d)

(14— 2 /(19—5p) (19-5p)/8
+|£|(/ lu(s)| 2 pds) )

and for p > 3,
(&, )] + [h(&, 1))
t
< C(I@o(ﬁ)e"g' |+ [ho(§)e™ 17| + |§|/O (lw(s)llr2(rs) + ||h(8)||L2(R3))d5)a

where C depends only on the H'(R?®)-norm of ug and by.
Proof. Applying the Fourier transformation of (1.1), we have
(2:3) By + €D =2 F(&,1),  @o(€) = D(,0) = wy,
he +[€]2h =2 H(E,t), ho
where
F(&,t) =V - (|Va[""2Vii — [Vul " 2Vu)(, 1) — (@ V)w(&, ) + (w - V)u(&, 1),
+ (b V(E 1) + (h- VB(E 1) — V(€. 1)

and

H(&,t) == —(- V)h(E,t) + (w- V)b t) + (b V)w(&, ) + (h- V)u(&, ).

First of all, we note that for the divergence-free vectors v, w € L>(0,T; L?(R?)),

(2.4) (0~ V)w(&, )] = /R Y (e o) do
S lElllv @ wllp < E(lv(@®)]]Z2 + [w(®)]]72)-

Taking divergence operator to both side for the first equation in (1.1)

0? ~ = SO ~ _
A= Z B0z, s — Wity + bihy = hiby + DUl ?Dij(@) + | DulP~2Dij(u)).
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Hélder’s and Young’s inequalities with (2.4) yield
(2.5)
V()] < || (IDFOF ||z + (| Du@) P |zy) + €N @ wE)]|
+1€l||w(t) @ u®)l[ o+ E[b(E) © h()] oy + €]||R(E) @ b(#)| 1
<N Da@)2 + 1 Du@)lf2) + Elllw@)] g ([@@)]] 22 + [[u)]]z2)
+1ENPO |2 (B[22 + [[B(E)]]22)
< EINDEO5 5 + 1Du@)f50) + [Elllw(®)]] 22 + [[AE)]] 2,

where we use the boundedness of ||u(t)]|1z2, ||u(t)]|1z2, [|b(t)||L2 and ||b(t)]|2. Simi-
larly, using (2.4), we also have

(@~ V)h(E )]+ (w- V)&, )] + (- Vyw(E 1) + [(h - V)u(E,b)]
<& (llw®)] L2 + |Ih(E)]]L2).
Inserting (2.5) into F'(§,t), we have

[F (&, 0] < Clel(lw(®)]]2 + [1A(E)]122) + CIEIADEONT, + [ Du®)7, ).

Similarly, H(&,t) is estimated by
[H (& )] < ClEN(| w2 + [[A(B)]|z2)-
It follows from (2.3) that
m@ﬂ=d“ﬁ%@>(/ F(&,t)e ¢ (=9) g,

From (2.3), integrating in time, we get

t
m@m=e%ﬁﬁ@+/f«@owwm
0

< Cle™ @0 ()] + /Ote_gz(t_s)|F(£,t)| ds

< Cle I g (¢)| + C/t e =g (fu(s)l| L2 gas) + I1h(s)l|L2es)) ds
-+Cmy/ (IS sy + I [ ) ds

< Cle I @y (¢)| + IEI/ (lw(s)l[L2 + 1h(s)lL2) ds
wetel( [ I as

14—2 19-5
+cm(A|m@u;mgm P ds

)(19—51?)/8

3

)(19—51?)/8
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where we use Korn’s inequality and the following inequality in the last inequality:
for 4 <p<3

T— 4 5 11 4
(2.6) / IV2(5) 125" g & / (o 922 |t s

(19—5p)/8
C(/ ||Z(5)||(1472p)/(1975p) ds)
0
00 (5p—11)/8
( [ z<>||L2(Rs>dt)

14—-2 19-5 (19-5p)/8
<ol [l as)

Y

and for p >

t
(2.7) / (IVz(s ”LP L83 Sgc/o ||VZ(S)|| (p— 2)||V pr 3)/(P=2) 44

2/(p—2 -3 -2
< ClIVII o piam V2 omitey ) < 0

For (2.6)—(2.7), we use standard Gagliardo-Nirenberg inequality and the boundednes
V2u € L2(0,T; L?(R?)). Similarly, we show that

(€, 1)) < C<Ie£2tﬁo(£)l + Ié“l/0 (Jw(s)ll L2 + ||h(5)||L2)dS>v

where we use the assumptions and thus, this completes the proof. ([

2.1. Upper bounds. To obtain optimal upper bound of convergence rate of
strong solutions of the system, taking the L2-inner product of (2.1) with w and h,
respectively, it yields that

d
EH(w,h)HQLz(Rs)+uo|\V(w,h)||2L2(R3) < —/Rg(w.Vu)wdx—/Rs(w.Vb)hdx

+/ (h-Vb)wdx +/ (h-Vu)hdz
R3 R3

4
= Z Tis
i=1
where we use
/ (|Vu|P~2Vu)Vw — (|Va[P~2Va)Vw dz < 0,
R3

and

_/RS(B'WL)'wdx_/ (b-Vuw) - hdz = 0.

R3
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For J1 and Js,
1
T < wl1allVul 2 < lwlfa[|VulFe + EHVU)HQL?

and
Tz < |[w]| pal|Pll [ V0] 2 < [|(w, B)[72 (V0172 T II(Vw Vh)|[7:-

Similarly, we can see

1
Tz + Ja < [[(w, W)= (IVullZ2 + [ Vb]72) + 751 (Vw, VA 7.

Combining [J1—J4 we have

d

(2.8) =

1w, D)|[72 sy + 2min{C, o}V (w, h)||72ps)
< Cll(w, )|[721(Vu, VO)Z2,

where C is Korn’s constant. For the convenience of calculation, let min{Cg, uo}= 5
Multiplying both sides of (2.8) by smooth function o(t) , where p(t) satisfies o(0) =1
and ¢'(t) > 0, and integrating in time on [0, ¢], it yields that

t
o)l (w0, 1) s, + / 0(5) 19 (1, )2 ds
t
< [1awo, o) 12 gy + / & ()1, )2 s
+c/ )l (w, )2 || (Y, VB)| 2 dis.

Set S(t) = {€ € R™: o(t)|¢|> < o'(t)}. Then

/01t 9(8)/Rs E171(@, h)(E, 5)|* A ds > /lt g(s)/ o €12 |(@, h) (€, s)]? dEds
/ / (@ s)|? d¢ ds

—/0 9“8)/5@'( W)€ s dg ds.

Applying Plancherel’s theorem,
t
o) (w, B) 172 gy < I1(wo, ho) |72 sy +/0 o'(s) /S( : (@, h)(&,5)]> dE ds
+C/ ), 1) 22 1(Tu, Tb)||2: ds.

404



Set o(t) = (1 4+ t)**7. From Lemma 2.4 with Young’s inequality and the energy
estimate, we have
(2.9)

(1404 [ J@ b ae

t
< [@h@rase [avor [ e h@r acas

t s 2
vo [avor [ ) |§|2( / <||<w,h><r>||L2dr) ae ds

t (19-5p)/8
o [ / |5|2[( [ il 0r)

s 14—2 19-5 (19 51’7)/8
([t )™
t
+c/ (1+ 8)* || (w, 1) |22 ds.
0

Using the estimate
/ €7 de < (1+5)702
S(s)
and the relation
2(14 - 2p) _
(19-5p) = 7

we have
1+ [ J@ b e

t
— / (@0, ho) ()P dé + C / (14 )3 / eI (., ho) ()2 de ds
R™ 0 S(s)

t
+c</ (1+5)3T7s2 / |5|2dgds>
+C/ ].-|—S 3+’)’/ |£|2< / ||U ”2(14 2p) /(19— 5I))d +C> dfds
S(s)

—c+c/ (14 ) 3+V/ |§|2d£ds+(]</ (1+s)3+732/ |£|2d§ds)
S(s) 0 S(s)

0 [ e = nis
0
SCHCA+) +CA+1)7/*H

t
" C/ (L4 8) ) (w, W17 (Vu, Vb)[72 ds,
0
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or equivalently,
1—|—t4+7/ (@, h)(&,t)|* d¢
SCA+1)77 4 C/Ot(l + 8) [ (w, h)||32 | (Vu, VB)|3- ds.
Applying Gronwall’s inequality, we immediately deduce that
(2.10) / |(@, h) (&, 1)) dE < C(A+1)"Y2  for large t > 1.

To further improve the decay rate, we now employ the iterative methods to get the
optimal decay estimates. Plugging (2.10) into (2.9) leads to

(-0 [ J@ e e

t
< [L@ho@raso [(asor [ e @ b s

t s 2
+C/ (1+s)3+7/ |§|2</ (1+T)1/4d7') d¢ ds
S(s)
(14—2p)/(19—5 (19-5p)/8
vo [ [ [( [ s e a)

14—-2 19-5 (19=5p) /872
(/ () S ”>d> } déds

t
_ 3+ 2 347 .2 2
c+c/0(1+s) /S(S) €| dfds+0</0 (145)37s /S(S) €] dgds)

t
+ C/ (148> (w, )22 (Vu, Vb) |72 ds
0

t
< +CA+1)*T7 + c/ (14 8)"||(w, B)|172 ]| (Vu, Vb)[|72 ds.
0
Applying Gronwall’s inequality, we immediately yield that
(2.11) / |(@,h)(&,8)>dE < C(1+1)~1 for large ¢ > 1.

Again, in order to improve more the decay rate, we now employ the iterative methods
to get the optimal decay estimates. Plugging (2.11) into (2.9) leads to

1+t4+”/ (@, h) (&, )| de
t
~ 7 2 34~ —&12t . 7 2
< [ @ @rae e [ass [ e b acas
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t s 2
+C/ (1+s)3ﬂ/ |5|2(/ (1+T)1/2dT> d¢ds

0 S(s)

K (14-2p) /(195 (15-5p)/8
ve fiwears ([ o

(19-5p) /872
</ ()| oy 0 5”’d) ] de ds

<SC+CO0+1)3% + C/Ot(l + 8)37|(w, h)||2: | (Vu, Vb) |22 ds.
Applying Gronwall’s inequality, we immediately deduce that
/ |(@,h)(&,H)>de < C(1+1)7%2  for large t > 1.
To improve efficiency, using the previous process repeatedly, we reach for 2 < v < g
/ (@, h) (&, 1)) dE < C(1+1)"7/? for large ¢ > 1.

2.2. Lower bounds. Let (w, k) be a solution of (2.1) and ®(z,t) = e"***w, and
WU(z,t) = e"*A'hg be the solution of the heat equation. Then 1 (x,t) = w(x, t)—®(z, t)
and ¢(z,t) = h(x,t)—V(x,t) satisfy the following difference system in the weak sense:
b — poAY + U -Vw+w-Vu—b-Vh—h-Vb+ Vr

=mV - (|Vu|P~2Va — |[VulP~2Vu),
(2.12) p— AP+ Vh+w-Vb—b-Vw—h-Vu=0,
divyy =0, and dive =0,
Y(x,0) =0, and ¢(x,0)=0.

In the same manner as Lemma 2.4, we obtain that, for %1 < p < oo,

[D(E, )]+ [o(€,1)] < C(mo(fn +160(6)] + [¢] / (lw(s)llL2grsy + 1h(5)]| 2(re)) ds

(14—2p)/(19—5p) (19-5p)/8
+|§|(/ IR 0 as)

(14—2p) /(195 (19-5p)/8
sl [ e me) ).

For the proof of the estimate above, we use the uniform boundedness of (u, b):
(2.13) s D)2y + 1(Vt, VBl ey < oo
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Taking the L2-inner product of (2.12) with ¢ and ¢, respectively, and integrating
them over R3, we have

d
1@ D as) + 1ol V(8 @) 72(ms)
:m/ (|Vu|p*2w)w—(|Vﬂ|ﬁ*2va)w}dx—/ (@ - Vw)y dx
R3 R3

_/R3(w.vu)wdx+/Rs(B.Vh)wder/Rs(h-Vb)wdx

_/Rg(g.Vh)gi)dx—/Rs(w-Vb)dndx
+/Rs<5.vfw)¢dx+/w<h-w>¢dx

9
=1

For K4, using the same proof as in [20], Equation (3.16) we know
(2.14) / (|VulP~2Vu)Vy — (|Va|P~2Va) Vi dz
R3

< / (|ValP—2va)Ve — ([VulP"2Vu) Ve da
R3
< C|IV®| L) (VT 1 sy + VUl 2 s))-

For Iy and K3, after the integration by parts, applying Holder’s and Young’s in-
equalities with the divergence free condition yields

Ko = —/Rg(ﬁ-Vw)wdxz/ (7 - V) () + @) dr

[RB
< Ol e e 1217 ey + 23511V [ Z2(ray,

512

and also we get

Ks= — /Rs(w -Vu)ypdr = /Rs(w -V)udr = /Rs(w -V )udr + /[Rg(@ -V )udz
< H‘I’HLM||U||L2||V1/J||L2 + N7l Vull 2
< =

128 ||V¢||L2(R3) + CH“HL?(RS) ||(I>||L°°(R3) + C||¢||L2(Rs)||vu||m(u;es)

That is,

(2.15) Ka + K3 < C(llullFzqmsy + NUll72ms)) 19017 (59
Ho
+ CllYl1 72 ms) IVl T 2 ms) + aHV?ﬁH%z(RS)-
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For K4 and K5 we observe that
Kqs+ Kg = / (l~) V\Il)wdx+/ (E -V®&)opda.
R3 R3

Indeed,

/R3(E. Vh)wdx+/ (b-Vw)¢da

R3

:/ (5~V(¢+\Il))1/)dx+/ (b-V(i +®))pda
R3 R3
- / (E~V¢)wdx+/‘(E~V\P)wdx
/(b w)¢dx+/ (- VO)pda
R3
/ G- V) de + / (5 V) da.
[RB
And thus, by integration by parts, we get
Ka+Ks < Obl 7197 + @)1 7) + Z(vaH%?"‘”V(bHQH)-

For K5, after integration by parts, applying Hélder’s and Young’s inequalities with
the divergence free condition yields

(2.16) Ks = —/ (h~Vb)1/)dx:/ (h-Vip)bdz
R3 R3

:/ (¢~V1/))bdx+/ (U - Vo)bda
R3 R3

<N zellbll 2Vl 22 + (bl Lall@ll LoVl L2
1

< 57 (IVOIIZ: + VA7) + ClIbI L2y 121 Z o rs)
+ ClIbl[ 72 (ge) | 8l|72 (go)-

where we use the following estimate:

18l1 4 ll gl V9l 2 < BILE VDI 1615 IV o125 + <[V ]|

128

C||b||L2||VbHL2H¢HL2 + = (IVYIIZ: + VelZ2)

128(

< CblZ:lgllze + o (IVRIZ: + [Vell72)

128
due to Vb € L>(0,T; L*(R?)).
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For Kg and K7, applying Holder’s and Young’s inequalities with the divergence

free condition yields

Ko = —/Rs(ﬁ-Vh)cﬁdx:/Rs(ﬂ-qu)(¢+\I')dx

~ Ho
< Cllul 2 me) 19117 oo (mey + F”vd)H%?(Ri‘)v

and
Kr = — /RB(w Vb)dz = / (W - Ve)bda +/ (@ - Vo)bdz
< Yl eallVollL2lbll Lz + 1@l Lee 6] L4 [ VS| 2
< 128(||V¢||L2 g2y + VO[22 (me))
+ ClIblIZ 2oy |21 oo m3y + CllY T2 10122 R3).
that is,
(2.17) Ke + K7 < %(HVWFL?(RS) + VO[T 2ms)) + ClIONZ 2 o) | RI1T oo 2y

+ C||1/)||2L2(R3)||b||2L2(R3) + C||a||%2(u;e3)||‘1’||%w(u;e3)~

In the same manner as K5, we can see

(2.18) Ko Vol Zams) + CllullLz s el Z2ms) + CllullLags) 12117 gs)-

128|

Combining (2.14)-(2.18) and Lemma 2.3, we have

(219) LW, 6)Faqeo) + Holl V(8 ) Facus
< ClV | oo (@) (IVENT s gy + 1Vl )
+ O W) e )+ N2, D) | V2t VD)
< OO+ VAL oy + IVl )
£ O 727 4 00, ) ol (T, IO sy

where we use (2.13) and

(0, ®) [ e < [VH/2(8, @) 12 < C(L+1)73/277.
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To obtain the lower bound, as in the previous method, we let () = (1 +¢)**7 with
2 <y < 2, we rewrite (2.19) as

(L + 057 (1, ) (D)2 )
<C t 3+ o, h 24¢d
< /0(1+s> /S(S)|(wo 0)(©)? de ds

t s 2
o [arap [ ) |£|2( / <||w<7>||Lz<Rs>+||h<7>||Lz<Rs>>dT) dé ds

¢ (14—2p)/(19—5p) (19-5p)/8
+C/ (1+S)3+7/S |£|2[(/ ” ||L2([Rp P) dr )
(14—2p)/(19—5p) (19-5p)/872
||u ||L2 R3) dr déds

+C/ (148" (1 +5) 2270 (|Vally, L + | Vulb, k) ds
+ c/ (14 8)7(1 4 5)73/27 ds
0
t
+C/O (14 )" (I(p, D)1 72 msy (Y, VO)[| 72 (s ds
t t
<c+c/ (1+s)3+7/ |§|2d€ds+0</ (1+s)3+731/2/ |£|2d£ds>
S(s) 0 S(s)
t
+c/ 1+ s)¥4(|val2 L, + [ Vaul?,t 1)ds+C/ (1+5)%/2ds
0
e / (14 5)" (0, )22 ) | (Tt V022 s

t
< C(1+8)%2H7 4 C/ (14 5)" (0, D)1 7229y | (Vi VO)[| 72 sy ds,
0
where we use

/<1+t>3/2||vZ||Lp1dr a0 [ vl ar
0

(19-5p) /4
o+ ( / I ar) e
3/2 2(14—2p)/(19—5p) 3/2
C(1+1) || )z Ry dr | +C(1+1)
<O(1+1) 3</ I2() 172 gy d7> +C(1+1)32

t
<C(+1)? (/ (1+7)7" dT) +CA+t)*? <o +1t)32
0
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Applying Gronwall’s inequality, we obtain

(%, 9|72 ey < C(L+1)5/%
Due to Lemma 2.3, we know
(2.20) @) > C1(1+t)7/%, and |[W(t)]| > Cr(1+1t)/2
Using (2.20) and the triangle inequality, we get that

[(w, )1 Z2msy = lwllF2asy + [1B1172gs)
2 (191172 gsy — ¥l 72msy) + (1¥NF2msy — 1Dl F2msy) = C (1 + £y~

This completes the proof for the upper and lower bound of the convergence rate
through Subsections 2.1 and 2.2, and thus we finish the proof of Theorem of 1.1. [J
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