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Abstract. We introduce weakly strongly quasi-primary (briefly, wsq-primary) ideals in
commutative rings. Let R be a commutative ring with a nonzero identity and Q a proper
ideal of R. The proper ideal Q is said to be a weakly strongly quasi-primary ideal if whenever
0 6= ab ∈ Q for some a, b ∈ R, then a2 ∈ Q or b ∈

√
Q. Many examples and properties

of wsq-primary ideals are given. Also, we characterize nonlocal Noetherian von Neumann
regular rings, fields, nonlocal rings over which every proper ideal is wsq-primary, and zero
dimensional rings over which every proper ideal is wsq-primary. Finally, we study finite
union of wsq-primary ideals.
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1. Introduction

Throughout this article, we focus only on commutative rings with a nonzero iden-

tity and nonzero unital modules. Let R always represent such a ring and let M

represent such an R-module. The concept of prime ideals and its generalizations

have a distinguished place in Commutative Algebra since not only they are used in

characterizing certain class of rings but also they have some applications to other

areas such as general topology, algebraic geometry, graph theory etc., see for exam-

ple [6], [9], [19] and [23]. Recall from [5] ([3]) that a proper ideal Q of R is said to

be a prime (weakly prime) ideal if whenever ab ∈ Q (0 6= ab ∈ Q) for some a, b ∈ R,

then either a ∈ Q or b ∈ Q. Also, a proper ideal Q of R is said to be a primary

(weakly primary) ideal if whenever ab ∈ Q (0 6= ab ∈ Q) for some a, b ∈ R, then

either a ∈ Q or b ∈ √
Q, where

√
Q denotes the radical of the ideal Q, see [5], ([12]).

In 2016, Beddani and Messirdi introduced 2-prime ideals and they used it to charac-
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terize valuation domains. Let R be an integral domain and k its quotient field, R is

said to be a valuation domain if for each x ∈ k, either x ∈ R or x−1 ∈ R, see [16].

Recall from [9] ([14]) that a proper ideal Q of R is said to be a 2-prime ideal (weakly

2-prime ideal) if ab ∈ Q (0 6= ab ∈ Q) for some a, b ∈ R, then a2 ∈ Q or b2 ∈ Q. The

authors in [9] showed that an integral domain R is a valuation domain if and only if

every proper ideal Q of R is a 2-prime ideal. Afterwards, Koç et al. defined strongly

quasi-primary ideals which is a generalization of 2-prime ideals and they character-

ized divided domains in terms of strongly quasi-primary ideals. Recall from [15] that

a proper ideal Q of R is said to be a strongly quasi-primary ideal if whenever ab ∈ Q

for some a, b ∈ R, then a2 ∈ Q or b ∈ √
Q. Our aim in this article is to introduce and

study weakly strongly quasi-primary ideals. For the sake of completeness, now we will

give some notions and notations which will be frequently used in the sequel. Let M

be an R-module, N a submodule ofM and K a nonempty subset ofM. The residual

of N by K is denoted by (N : K) = {a ∈ R : aK ⊆ N}. In particular, if N = 0, we

will use ann(K) instead of (0 : K). Also, for every ideal Q of R and every nonempty

subset J of R, the residual of Q by J is defined as (Q : J) = {a ∈ R : aJ ⊆ Q}. We
denote the set of all elements x ∈ R such that xy ∈ Q for some y /∈ Q by ZdR(Q).

Particularly, the set of all zero divisors of R is denoted by zd(R) instead of ZdR(0),

and the set of all regular elements of R is denoted by reg(R) = R− zd(R). A proper

ideal Q of R is said to be a weakly strongly quasi-primary (briefly, wsq-primary) ideal

if whenever 0 6= ab ∈ Q for some a, b ∈ R, then a2 ∈ Q or b ∈ √
Q. Among other

things, in this paper, we compare wsq-primary ideals and other classical ideals such

as strongly quasi-primary ideals, weakly primary ideals, weakly 2-prime ideals and

weakly semi-primary ideals, see, Propositions 2.1–2.4 and Examples 2.1–2.3. Also,

we investigate the stability of wsq-primary ideals under intersection, under homomor-

phism, in factor rings, in localization of rings, in cartesian product of rings, in trivial

extension of an R-moduleM , see Propositions 2.5–2.10, Lemma 2.1 and Theorem 2.4.

Furthermore, we characterize nonlocal Noetherian von Neumann regular rings, fields,

nonlocal rings over which every proper ideal is wsq-primary, and zero dimensional

rings over which every proper ideal is wsq-primary, see Theorems 2.2, 2.3, 2.6, Corol-

lary 2.2. Finally, from Lemma 2.2 to Theorem 2.9, we study the finite union of

strongly quasi-primary ideals.

2. wsq-primary ideals of commutative rings

Definition 2.1. Let R be a commutative ring. A proper ideal Q of R is called

a weakly strongly quasi-primary if whenever a, b ∈ R and 0 6= ab ∈ Q, then either

a2 ∈ Q or b ∈ √
Q.
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Recall from [7] that a proper ideal Q of R is said to be a weakly semi-primary

if whenever 0 6= ab ∈ Q for some a, b ∈ R, then a ∈ √
Q or b ∈ √

Q. Also, Q is

said to be a weakly 2-absorbing primary ideal if whenever 0 6= abc ∈ Q for some

a, b, c ∈ R, then ab ∈ Q or ac ∈ √
Q or bc ∈ √

Q, see [8]. Note that every weakly

semi-primary ideal is also a weakly 2-absorbing primary ideal. However, the converse

is not true in general. For instance, let R = Z and Q = 6Z, namely, principal ideal

of Z generated by 6. Then Q is a weakly 2-absorbing primary ideal which is not

a weakly semi-primary ideal.

Proposition 2.1. Let R be a ring and Q be a proper ideal of R. The following

statements hold.

(1) If Q is a strongly quasi-primary ideal, then Q is a wsq-primary ideal.

(2) If Q is a weakly primary ideal, then Q is a wsq-primary ideal.

(3) If Q is a weakly 2-prime ideal, then Q is a wsq-primary ideal.

(4) IfQ is a wsq-primary ideal, then Q is a weakly semi-primary ideal. In particular,

every wsq-primary ideal is a weakly 2-absorbing primary ideal.

(5) If Q is a wsq-primary ideal of a reduced ring R, then
√
Q is a weakly prime ideal

of R. In particular, if Q is a nonzero wsq-primary ideal of a reduced ring R,

then
√
Q is a prime ideal of R.

P r o o f. (1), (2) and (3) These are trivial.

(4) Let 0 6= ab ∈ Q for some a, b ∈ R. As Q is a wsq-primary ideal of R, then

a2 ∈ Q or b ∈ √
Q. Thus, a ∈ √

Q or b ∈ √
Q. Consequently, Q is a weakly

semi-primary ideal of R. The rest is clear.

(5) Let a, b ∈ R such that 0 6= ab ∈ √
Q. Then there is n ∈ N such that (ab)n ∈ Q.

Since R is reduced, note that (ab)n 6= 0. This implies that either (an)2 ∈ Q or

(bn)m ∈ Q for some m ∈ N. Then a ∈ √
Q or b ∈ √

Q, so that
√
Q is a weakly prime

ideal of R. Now, suppose that Q is a nonzero wsq-primary ideal and R is reduced.

Then
√
Q is a weakly prime ideal of R. If

√
Q is not a prime ideal of R by Theorem 1

of [3],
√
Q

2
= (0), which implies that

√
Q = (0) = Q, which is a contradiction. �

Recall from [10] that a ring R is said to be a UN-ring if every nonunit element

a ∈ R is a product of a unit and a nilpotent. Note that a commutative ring R is

a UN-ring if and only if
√
0 is a maximal ideal of R.

Remark 2.1. If R is a UN-ring with
√
0
2
= (0), then the class of wsq-primary

ideals and all the other classes of ideals mentioned in Proposition 2.1 coincide.

Proposition 2.2. Let R be a ring and Q be a proper ideal of R. If
√
Q

2 ⊆ Q,

then Q is a weakly 2-prime ideal if and only if Q is a wsq-primary ideal if and only

if Q is a weakly semi-primary ideal.
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P r o o f. Suppose that Q is a weakly semi-primary ideal of R and let 0 6= ab ∈ Q

for some a, b ∈ R. Then a ∈ √
Q or b ∈ √

Q. As
√
Q

2 ⊆ Q, we conclude that a2 ∈ Q

or b2 ∈ Q. Thus, Q is a weakly 2-prime ideal of R. The other implications follow

from Proposition 2.1. �

The following examples show that the concept of wsq-primary ideals and the other

concepts of ideals are totally different.

Example 2.1. Consider the zero ideal Q := (0) of R := Z/12Z. It is clear that

Q is a wsq-primary ideal. However, Q is not strongly quasi-primary ideal. Indeed,

we have 3.4 ∈ Q, but neither 3
2 ∈ Q nor 4 ∈ √

Q. Here x means x + 12Z, that is,

the class of x modulo 12 for any integer x ∈ Z.

Example 2.2. Let R = k[X,Y ]/I, where k is a field and I = (X2). Assume that

Q = (xy, x2), where a = a + I for some a ∈ k[X,Y ]. Then note that
√
Q = (x) is

a prime ideal of R. Since 0 6= xy ∈ Q, x /∈ Q and y /∈ √
Q it follows that Q is not

a weakly primary ideal. Let 0 6= fg ∈ Q ⊆ √
Q = (x) for some f, g ∈ k[X,Y ]. Then

X | fg so that X | f or X | g. This implies that X2 | f2 or X2 | g2. Then we have
f
2 ∈ Q or g ∈ √

Q. Thus, Q is a wsq-primary ideal of R.

Example 2.3. Set R = k[X,Y ], where X and Y are indeterminates and k is

a field. By Example 2.2 of [15], Q = (X3, XY, Y 3) is a strongly quasi-primary ideal

of R, and so wsq-primary. Moreover, 0 6= XY ∈ Q but neither X2 ∈ Q nor Y 2 ∈ Q.

Thus, Q is not weakly 2-prime of R.

Proposition 2.3. Let R be a ring and Q be a wsq-primary ideal of R. If Q is

not strongly quasi-primary, then Q2 = (0) and consequently
√
Q =

√
0.

P r o o f. Suppose that Q2 6= (0), we show that Q is strongly quasi-primary. Let

ab ∈ Q for some a, b ∈ R such that a2 /∈ Q. If ab 6= 0, then b ∈ √
Q. So suppose that

ab = 0. If aQ 6= (0), then there is q ∈ Q such that aq 6= 0, so 0 6= a(b+ q) = aq ∈ Q,

then b + q ∈ √
Q, and then b ∈ √

Q. If bQ 6= (0), then there is q′ ∈ Q such that

bq′ 6= 0, so 0 6= (a+ q′)b = bq′ ∈ Q, since (a+ q′)2 /∈ Q, and then b ∈ √
Q. So assume

that aQ = bQ = (0). Since Q2 6= (0), there exists c, d ∈ Q such that cd 6= 0. Then

0 6= (a + c)(b + d) = cd ∈ Q, since (a + c)2 /∈ Q, then b + d ∈ √
Q, and so b ∈ √

Q.

Thus, we conclude that Q is strongly quasi-primary ideal of R. Consequently, as

Q2 = (0) and
√
Q =

√

Q2, we conclude that
√
Q =

√
0. �

The following example shows that a proper ideal Q of R with Q2 = (0) need not

be a wsq-primary ideal of R. We have the following example.

Example 2.4. Let R := Z/12Z. Then Q := 6Z/12Z is an ideal of R and clearly

Q2 = (0). However, Q is not a wsq-primary ideal of R. Indeed, we have 0 6= 2.3 ∈ Q,

but 22 /∈ Q and 3n /∈ Q for every integer n > 1.
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Corollary 2.1. Let R be a reduced ring and Q be a proper ideal R. Then Q is

a wsq-primary ideal of R if and only if Q = (0) or Q is a strongly quasi-primary

ideal of R.

Proposition 2.4. Let R be a ring. Then the following statements hold:

(1) If Q is a radical ideal of R and Q is a wsq-primary ideal, then Q is a weakly

prime ideal of R.

(2) If Q is a weakly primary ideal of R and Q′ an ideal of R containing Q, then QQ′

is a wsq-primary ideal of R.

(3) If Q is a weakly primary ideal of R, then Q2 is a wsq-primary ideal of R.

P r o o f. (1) Suppose that Q =
√
Q and let 0 6= ab ∈ Q for some a, b ∈ R. Since Q

is a wsq-primary ideal of R, then a2 ∈ Q or b ∈ √
Q. Hence, a ∈ Q or b ∈ Q, and

so Q is a weakly prime ideal of R.

(2) Let 0 6= ab ∈ QQ′ ⊆ Q for some a, b ∈ R. Then a ∈ Q or b ∈ √
Q. SinceQ ⊆ Q′,

we get a2 ∈ QQ′ or b ∈ √
Q =

√
QQ′. Hence, QQ′ is a wsq-primary ideal of R.

(3) Follows directly from (2). �

Theorem 2.1. Let Q be a proper ideal of R. The following statements are

equivalent.

(1) Q is a wsq-primary ideal.

(2) For all x ∈ R, either (x) ⊆ (Q : x) or (Q : x) ⊆ √
Q or (Q : x) ⊆ ann(x).

(3) If 0 6= xJ ⊆ Q for some x ∈ R and an ideal J of R then x2 ∈ Q or J ⊆ √
Q.

P r o o f. Let Q be a proper ideal of R.

(1)⇒ (2) Suppose that Q is a wsq-primary ideal. Take x ∈ R. If x2 ∈ Q, it is clear

that (x) ⊆ (Q : x). Assume x2 /∈ Q. Let y ∈ (Q : x), that is, xy ∈ Q. If 0 6= xy, then

either x2 ∈ Q or yn ∈ Q for some n ∈ N. Since the first option gives us a contadiction,

we conclude y ∈ √
Q. If 0 = xy, then y ∈ ann(x), i.e., (Q : x) ⊆ ann(x) ∪ √

Q. This

implies that (Q : x) ⊆ √
Q or (Q : x) ⊆ ann(x).

(2) ⇒ (1) Choose x, y ∈ R such that 0 6= xy ∈ Q and x2 /∈ Q. Then item

(2) implies that (Q : x) ⊆ √
Q or (Q : x) ⊆ ann(x). If (Q : x) ⊆ √

Q, then

y ∈ (Q : x) ⊆ √
Q, which is desired. Let (Q : x) ⊆ ann(x). This means xy = 0,

a contradiction.

(1) ⇒ (3) Suppose that 0 6= xJ ⊆ Q for some x ∈ R and an ideal J of R. Let

x2 /∈ Q and j ∈ J. If 0 6= xj ∈ Q, then we have j ∈ √
Q. Now, assume that xj = 0.

Choose b ∈ J such that xb 6= 0. Since xb ∈ Q we have b ∈ √
Q. On the other

hand, note that 0 6= x(b + j) ∈ Q. This implies b + j ∈ √
Q and thus j ∈ √

Q.

Hence, J ⊆ √
Q.

(3) ⇒ (1) It is clear. �
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Recall from [5] that a ring R is a local ring if it has a unique maximal ideal.

Otherwise, we say that R is a nonlocal ring. Also, R is said to be a von Neumann

regular ring if every principal ideal I of R is generated by an idempotent element

e ∈ R, see [21].

Theorem 2.2. Let R be a nonlocal Noetherian ring. Then the following state-

ments are equivalent:

(1) Every wsq-primary ideal of R is weakly prime.

(2) Every weakly 2-prime ideal of R is weakly prime.

(3) R is a von Neumann regular ring.

P r o o f. (1) ⇒ (2) Clear.
(2) ⇒ (3) Let M be a maximal ideal of R. Clearly, M2 is weakly 2-prime ideal

of R, and so weakly prime. If M2 is not prime, then by Theorem 1 of [3], M4 = (0),

and so R is a local ring with a maximal ideal M =
√
0, a contradiction. Then M2

is a prime ideal of R, and so M2 =
√
M2 = M . So, by Theorem 1.8.22 of [22], M is

principal and is generated by an idempotent element of R. Using Theorem 3.2 of [20],

we conclude that R is a von Neumann regular ring.

(3) ⇒ (1) Let (0) 6= Q be a wsq-primary ideal of R. Since R is reduced and

every ideal is radical (see [2], Theorem 3.1.), then by using Corollary 2.1,
√
Q = Q is

a strongly quasi-primary ideal of R. Hence, by [15], Proposition 2.1 (iii), Q is a prime

ideal of R, and so is a weakly prime ideal of R. �

Example 2.5. Let k be a field and R := k[X,Y ], where X and Y are two

indeterminates. Then R is a nonlocal Noetherian ring. By Example 2 of [14], P =

(X2, XY ) is a weakly 2-prime ideal of R, and so wsq-primary. However, P is not a

weakly prime ideal of R, since 0 6= XY ∈ P but X /∈ P and Y /∈ P .

Theorem 2.3. Let R be a ring. Then the following statements are equivalent:

(1) Every wsq-primary ideal of R is prime.

(2) R is a domain and every strongly quasi-primary ideal of R is prime.

(3) R is a field.

P r o o f. (1) ⇒ (2) Since (0) is a wsq-primary of R, and every strongly quasi-

primary ideal of R is wsq-primary, we conclude that R is a domain and every strongly

quasi-primary ideal of R is prime.

(2) ⇒ (3) Following Proposition 2.1 of [15] and our hypothesis, it is clear that

every primary ideal of R is prime. Then, by Theorem 3.1 of [1], R is von Neumann

regular. Accordingly, R is a field since it is a domain.

(3) ⇒ (1) Obvious. �
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Proposition 2.5. Let R be a ring and let {Qi}i∈I be a family of wsq-primary of R

that are not strongly quasi-primary. Then Q :=
⋂

i∈I

Qi is a wsq-primary ideal of R.

P r o o f. First, it is easy to see that
√

⋂

i∈I

Qi =
⋂

i∈I

√
Qi =

√
0. On the other

hand, let 0 6= ab ∈ Q such that b /∈ √
Q for some a, b ∈ R. Since 0 6= ab ∈ Qi and

b /∈ √
Qi, we have a

2 ∈ Qi (for all i ∈ I), and so a2 ∈ Q. Thus, Q is a wsq-primary

ideal of R. �

Proposition 2.6. Let f : R → R′ be a ring homomorphism. Then the followings

hold:

(1) If f is an epimorphism and Q is a wsq-primary ideal of R containing Ker(f),

then f(Q) is a wsq-primary ideal of R′.

(2) If f is a monomorphism and Q′ is a wsq-primary ideal of R′, then f−1(Q′) is

a wsq-primary ideal of R.

P r o o f. (1) Let a′, b′ ∈ R′ and 0 6= a′b′ ∈ f(Q). Then there exist a, b ∈ R such

that a′ = f(a), b′ = f(b) and 0 6= f(ab) = a′b′ ∈ f(Q). Since Ker(f) ⊆ Q, we have

0 6= ab ∈ Q. It implies that a2 ∈ Q or b ∈ √
Q. It means that f(a)2 = f(a2) =

a′2 ∈ f(Q) or b′ ∈
√

f(Q). Thus, f(Q) is a wsq-primary ideal of R′.

(2) Let a, b ∈ R such that 0 6= ab ∈ f−1(Q′). Since Ker(f) = (0), we get

0 6= f(ab) = f(a)f(b) ∈ Q′. Hence, we have f(a)2 = f(a2) ∈ Q′ or f(b) ∈ √
Q′, and

so a2 ∈ f−1(Q′) or b ∈ f−1(
√
Q′) =

√

f−1(Q′). Thus, we conclude that f−1(Q′) is

a wsq-primary ideal of R. �

Proposition 2.7. Let I ⊆ Q be proper ideals of a ring R. Then the following

statements hold:

(1) If Q is a wsq-primary ideal of R, then Q/I is a wsq-primary ideal of R/I.

(2) If Q/I is a wsq-primary ideal of R/I and I is a wsq-primary ideal of R, then Q

is a wsq-primary ideal of R.

(3) If Q is a wsq-primary ideal and S is a subring of R with S * Q, then S ∩Q is

a wsq-primary ideal of S.

P r o o f. (1) Applying Proposition 2.6 (1) to the canonical surjection π : R → R/I,

we conclude that Q/I is a wsq-primary ideal of R/I.

(2) Let 0 6= ab ∈ Q for some a, b ∈ R. If 0 6= ab ∈ I, then a2 ∈ I ⊆ Q or

b ∈
√
I ⊆ √

Q. If ab /∈ I, then we have 0 6= ab = ab ∈ Q/I, and so a2 ∈ Q/I or

b ∈
√

Q/I =
√
Q/I. It means that a2 ∈ Q or b ∈ √

Q. Thus, Q is a wsq-primary

ideal of R.
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(3) Consider the injection i : S → R, which is defined as i(s) = s for all s ∈ S.

Since i is monic and Q is a wsq-primary ideal, by Proposition 2.6 (2), i−1(Q) = Q∩S

is a wsq-primary ideal of S. �

Lemma 2.1. Let R := R1 × R2 and let Q be a proper ideal of R1. Then the

following statements are equivalent:

(1) Q×R2 is a wsq-primary ideal of R.

(2) Q×R2 is a strongly quasi-primary ideal of R.

(3) Q is a strongly quasi-primary ideal of R1.

P r o o f. (1) ⇒ (2) Since Q × R2 *
√
0, we conclude that Q × R2 is a strongly

quasi-primary ideal of R by Proposition 2.3.

(2) ⇒ (3) Let ab ∈ Q for some a, b ∈ R1. Then (a, 1)(b, 1) ∈ Q × R2. Since

Q × R2 is a strongly quasi-primary ideal of R, then (a, 1)2 = (a2, 1) ∈ Q × R2 or

(b, 1) ∈ √
Q×R2 =

√
Q × R2. So, a

2 ∈ Q or b ∈ √
Q. Thus, Q is a strongly

quasi-primary ideal of R1.

(3) ⇒ (1) Follows directly from [15], Lemma 2.1. �

Theorem 2.4. Let R := R1 ×R2 and (0) 6= Q := Q1 ×Q2, where Q1 and Q2 be

ideals of R1 and R2, respectively. Then the following statements are equivalent:

(1) Q is a wsq-primary ideal of R.

(2) Q1 = R1 and Q2 is a strongly quasi-primary ideal of R2 or Q2 = R2 and Q1 is

a strongly quasi-primary ideal of R1.

(3) Q is a strongly quasi-primary ideal of R.

P r o o f. (1) ⇒ (2) Assume that (0) 6= Q := Q1 ×Q2 is a wsq-primary ideal of R.

Without loss of generality, we may assume that Q1 6= (0). Choose 0 6= a ∈ Q1. Then

note that (0, 0) 6= (a, 1)(1, 0) ∈ Q1 × Q2. Since Q is a wsq-primary ideal of R, we

have (a, 1)2 = (a2, 1) ∈ Q1 ×Q2 or (1, 0) ∈
√
Q1 ×Q2 =

√
Q1 ×

√
Q2. Thus, 1 ∈ Q1

or 1 ∈ Q2, that is, Q1 = R1 or Q2 = R2. If Q2 = R2, then by Lemma 2.1, Q1 is

a strongly quasi-primary ideal of R1. In other case, one can similarly show that Q2

is a strongly quasi-primary ideal of R2.

(2) ⇒ (3) Follows directly from [15], Lemma 2.1.
(3) ⇒ (1) Clear. �

Theorem 2.5. Let R be a ring. If every proper ideal of R is a wsq-primary,

then R has at most two maximal ideals.

P r o o f. Suppose that R has at least three maximal ideals M1, M2 and M3 of R.

By assumption, M1 ∩ M2 is a wsq-primary ideal of R. If M1 ∩ M2 is a strongly

quasi-primary ideal, then by [15], Proposition 2.1 (iii),
√
M1 ∩M2 = M1 ∩ M2 is
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a prime ideal of R, a contradiction. So, M1 ∩M2 is a wsq-primary ideal of R which

is not strongly quasi-primary. Hence, by Proposition 2.3, M2
1M

2
2 = (0) ⊆ M3, and

so M1 ⊆ M3 or M2 ⊆ M3, a contradiction. Thus, R has at most two maximal

ideals. �

According to Theorem 2.5, the direct product of three or more rings contains

always ideals which are not strongly quasi primary. Next, we characterize nonlocal

and zero-dimensional rings over which every proper ideal is wsq-primary.

Theorem 2.6. Let R be a nonlocal ring. Then every proper ideal of R is wsq-

primary if and only if R ∼= k1 × k2 for some fields k1 and k2.

P r o o f. (⇒) By using the hypothesis and Theorem 2.5, R has exactly two max-

imal ideals M1 and M2. Moreover, M1M2 is a wsq-primary ideal of R that is

not strongly quasi-primary. By Proposition 2.3, we have M2
1M

2
2 = (0), and so

R ∼= R/M2
1 × R/M2

2 . Now, we will show that R/M2
1 is a field. Let I1 be a nonzero

ideal of R/M2
1 and take P2 a prime ideal of R/M2

2 . By assumption, I1 × P2 is a

wsq-primary of R/M2
1 × R/M2

2 . Then, by Theorem 2.4, I1 = R/M2
1 , which implies

that R/M2
1 is a field. Similarly, one can show that R/M2

2 is a field.

(⇐) Clear. �

Corollary 2.2. Let R be a ring with dim(R) = 0. Then every proper ideal of R

is wsq-primary if and only if R is either

(1) UN-ring, or

(2) R ∼= k1 × k2 for some fields k1 and k2.

P r o o f. (⇒) By Theorem 2.5, R has at most two maximal ideals. If R is nonlocal,

then by Theorem 2.6, R is isomorphic to a direct product of two fields. Now, suppose

that R is local. Then R is UN-ring since dim(R) = 0.

(⇐) If R is isomorphic to a direct product of two fields, then clearly every proper

ideal of R is wsq-primary. Now, suppose that R is a UN-ring, then every proper

ideal is primary, and so wsq-primary. �

Proposition 2.8. Let R be a ring and S a multiplicatively closed subset of R.

Then the following assertions hold:

(1) If Q is a wsq-primary ideal of R with Q ∩ S = ∅, then S−1Q is a wsq-primary

ideal of S−1R.

(2) If S−1Q is a wsq-primary ideal of S−1R such that S ∩ ZQ(R) = ∅ and
S ⊆ Reg(R), then Q is a wsq-primary ideal of R.
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P r o o f. (1) Let a, b ∈ R, s, t ∈ S such that 0 6= (a/s)(b/t) ∈ S−1Q. Then there

exists u ∈ S such that 0 6= uab ∈ Q. Since Q is a wsq-primary ideal of R, then we

have either (ua)2 = u2a2 ∈ Q or b ∈ √
Q. Hence, (a/s)2 = a2u2/s2u2 ∈ S−1Q or

b/t ∈ S−1
√
Q =

√

S−1Q. Thus, S−1Q is a wsq-primary ideal of S−1R.

(2) Let a, b ∈ R such that 0 6= ab ∈ Q. Since S ⊆ Reg(R), we have 0 6= ab/1 =

(a/1)(b/1) ∈ S−1Q. This implies that (a/1)2 = a2/1 ∈ S−1Q or b/1 ∈
√

S−1Q =

S−1
√
Q. Then there is u ∈ S such that ua2 ∈ Q or ub ∈ √

Q. As S ∩ZQ(R) = ∅, we
get either a2 ∈ Q or b ∈ √

Q. Thus, Q is a wsq-primary ideal of R. �

Let R be a ring and M be an R-module. The additive group R ×M with multi-

plication (a,m)(b,m′) = (ab, am′+ bm) is a commutative ring with identity, denoted

R ∝ M and called the Nagata’s idealization or trivial extension, see [13]. If Q is an

ideal of R and N is a submodule of M then Q ∝ N is an ideal of R ∝ M if and only

if QM ⊆ N , see [4], Theorem 3.1.

Proposition 2.9. Let R be a ring, M be an R-module and Q be an ideal of R.

Then the following statements are equivalent:

(1) Q ∝ M is a wsq-primary ideal of R ∝ M .

(2) Q is a wsq-primary ideal of R and if a, b ∈ R with ab = 0, but a2 /∈ Q and

b /∈ √
Q, then a ∈ annR(M) and b ∈ annR(M).

P r o o f. (1) ⇒ (2) Assume that Q ∝ M is a wsq-primary ideal of R ∝ M and

let 0 6= ab ∈ Q for some a, b ∈ R. Then 0R∝M 6= (a, 0)(b, 0) ∈ Q ∝ M . Hence,

(a, 0)2 = (a2, 0) ∈ Q ∝ M or (b, 0) ∈ √
Q ∝ M =

√
Q ∝ M , since Q ∝ M is a wsq-

primary ideal of R ∝ M . Therefore, a2 ∈ Q or b ∈ √
Q and so Q is a wsq-primary

ideal of R.

Now, assume that ab = 0 and a2 /∈ Q, b /∈ √
Q for some a, b ∈ R. If a /∈ annR(M),

so there is some m ∈ M such that am 6= 0. Then 0R∝M 6= (a, 0)(b,m) ∈ Q ∝ M

but (a, 0)2 /∈ Q ∝ M and (b,m) /∈ √
Q ∝ M =

√
Q ∝ M , a contradiction. Similarly,

if we assume that b /∈ annR(M), we get a contradiction. Thus, a ∈ annR(M) and

b ∈ annR(M).

(2) ⇒ (1) Let 0R∝M 6= (a,m)(b,m′) ∈ Q ∝ M for some (a,m), (b,m′) ∈ R ∝ M .

So, ab ∈ Q. If ab 6= 0, we have a2 ∈ Q or b ∈ √
Q since Q is a wsq-primary ideal

of R. Then (a,m)2 ∈ Q ∝ M or (b,m′) ∈ √
Q ∝ M =

√
Q ∝ M , this means that

Q ∝ M is a wsq-primary ideal of R ∝ M . Now assume that ab = 0. If a2 /∈ Q and

b /∈ √
Q, then by the hypothesis, a, b ∈ annR(M), and so (a,m)(b,m′) = 0R∝M ,

a contradiction. �

Recall from [17] that an R-module M is said to be a reduced module if whenever

a2m = 0 for some a ∈ R, m ∈ M then am = 0.
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Proposition 2.10. Let R be a ring, M be a reduced R-module. Suppose that

Q is an ideal of R and N is a submodule of M such that
√
QM ⊆ N . Then the

following statements are equivalent:

(1) Q ∝ N is a wsq-primary ideal of R ∝ M .

(2) Q is a wsq-primary ideal of R and if a, b ∈ R with ab = 0, but a2 /∈ Q and

b /∈ √
Q then a ∈ annR(N) and b ∈ annR(N).

P r o o f. (1)⇒ (2) Assume that Q ∝ N is a wsq-primary ideal of R ∝ M . Similar

argument as in the proof of Proposition 2.9 shows that Q is a wsq-primary ideal

of R and if a, b ∈ R with ab = 0, but a2 /∈ Q and b /∈ √
Q, then a ∈ annR(N) and

b ∈ annR(N).

(2) ⇒ (1) Let 0R∝M 6= (a,m)(b,m′) ∈ Q ∝ N for some (a,m), (b,m′) ∈ R ∝ M .

So, ab ∈ Q. If ab 6= 0, we have a2 ∈ Q or b ∈ √
Q since Q is a wsq-primary ideal

of R. If a2 ∈ Q, then we have a ∈ √
Q, which implies that 2am ∈ √

QM ⊆ N.

Then, (a,m)2 = (a2, 2am) ∈ Q ∝ N. If b ∈ √
Q, then we have (b,m′) ∈ √

Q ∝
M =

√
Q ∝ N , this means that Q ∝ N is a wsq-primary ideal of R ∝ M . Now

assume that ab = 0. If a2 /∈ Q and b /∈ √
Q, then by the hypothesis, a, b ∈ annR(N).

Since am′ + bm ∈ N and ab = 0, we conclude that a(am′ + bm) = 0, which implies

a2m′ = 0. As M is reduced, we have am′ = 0. Likewise, bm = 0. Then we have

(a,m)(b,m′) = 0R∝M , a contradiction. �

Prime avoidance theorem states that if an ideal Q of a ring R is contained in

a finite union of ideals P1, P2, . . . , Pn of R, where at most two of Pi’s are not prime,

then Q must be contained in Pj for some 1 6 j 6 n, see [22], Theorem 1.4.3.

Moreover, some authors considered the infinite prime avoidance theorem and they

studied the class of rings satisfying infinite prime avoidance theorem (such rings were

called compactly packed rings), see for example [11], [14] and [18]. From now on, we

study finite union of strongly quasi-primary ideals and prove a result analogous to

the prime avoidance theorem for strongly quasi-primary ideals. First, we need the

following lemma.

Lemma 2.2. Let Q ⊆
n
⋃

i=1

Qi be an efficient covering, where Q,Q1, Q2, . . . , Qn

are ideals of R and n > 2. Further, assume that Q ∩ √
Qi * Q ∩

√

Qj for all i 6= j.

Then Qj is not a strongly quasi-primary ideal of R for each j = 1, 2, . . . , n.

P r o o f. Suppose Qj is a strongly quasi-primary ideal for some j ∈ {1, 2, . . . , n}.
First we will show that Q∩

(

⋂

i6=j

Qi

)

⊆ Q∩Qj. Let x ∈ Q∩
(

⋂

i6=j

Qi

)

. By the efficient

covering, there exists y ∈ Q−
(

⋃

i6=j

Qi

)

, that is, y ∈ Qj . Then x+y ∈ Q. This implies

that x+ y ∈ Qi for some i ∈ {1, 2, . . . , n}. If i 6= j, then we have (x+ y)−x = y ∈ Qi
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which is a contradiction. Thus, we have x + y ∈ Qj and so x = (x + y) − y ∈ Qj .

Then we have Q∩
(

⋂

i6=j

Qi

)

⊆ Q∩Qj . On the other hand, since Q∩√
Qi * Q∩

√

Qj

for all i 6= j, there exists yi ∈ (Q∩√
Qi)\

√

Qj. Then y
ki

i ∈ (Q∩Qi)−
√

Qj for each

i 6= j. Put k = max{ki : i 6= j}. Then we have ∏

i6=j

yki ∈ Q∩
(

⋂

i6=j

Qi

)

⊆ Q∩Qj ⊆ Qj .

Since Qj is a strongly quasi-primary ideal and
∏

i6=j

yki ∈ Qj, we get y
2k
1 ∈ Qj or

∏

i6=j,1

yki ∈
√

Qj . As
√

Qj is a prime ideal, we conclude that yi ∈
√

Qj for some i 6= j,

a contradiction. Therefore, no Qj is a strongly quasi-primary ideal of R. �

Theorem 2.7 (Avoidance Theorem for strongly quasi-primary ideals). Assume

that Q1, . . . , Qn are any ideals of R such that at least n−2 of them are strongly quasi-

primary. Assume that Q ⊆
n
⋃

i=1

Qi, where Q is an ideal of R and Q∩√
Qi * Q∩

√

Qj

for all i 6= j. Then Q ⊆ Qj for some j ∈ {1, 2, . . . , n}.

P r o o f. Assume that Q ⊆
n
⋃

i=1

Qi and at least n − 2 of Qi’s are strongly quasi-

primary ideals of R. Without loss of generality, one may assume that the covering

is an efficient covering. If n = 2, then the result is obvious. Suppose that n > 2.

Since the covering is efficient and Q ∩ √
Qi * Q ∩

√

Qj for all i 6= j, we conclude

n < 2 by Proposition 2.2. This means n = 1. Consequently, Q ⊆ Qj for some

j ∈ {1, 2, . . . , n}. �

In the previous theorem, the condition “Q ∩ √
Qi * Q ∩

√

Qj for all i 6= j” is

necessary. For this, we can observe from the example below that if we remove that

condition, the theorem will not be satisfied.

Example 2.6. Let R = Z2[X,Y ]/(X2, XY, Y 2) and Q1 = {0, X}, Q2 = {0, Y },
Q3 = {0, X + Y }. Consider the ideal Q = Q1 ∪ Q2 ∪ Q3 = {0, X, Y ,X + Y } of R,

which is the unique maximal ideal of R. It is clear that Qj ( Q and
√

Qj = Q

for each j = 1, 2, 3. So, the condition Q ∩ √
Qi * Q ∩

√

Qj fails in R. Also,

by Proposition 2.1 (iv) of [15], we conclude Qj is a strongly quasi-primary ideal

of R for each j = 1, 2, 3. Finally, one can see Q ⊆ Q1 ∪ Q2 ∪ Q3 but Q * Qj for

all j ∈ {1, 2, 3}.

Theorem 2.8. Let Q1, . . . , Qn be strongly quasi-primary ideals of R and Q be

an ideal of R such that Q ∩ √
Qi * Q ∩

√

Qj for all i 6= j. If rR + Q *
n
⋃

i=1

Qi for

some r ∈ R, then there exists x ∈ Q such that r + x /∈
n
⋃

i=1

Qi.
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P r o o f. Assume that rR + Q *
n
⋃

i=1

Qi for some r ∈ R. Let r ∈
k
⋂

i=1

Qi and

r /∈
n
⋃

i=k+1

Qi. If k = 0, then r + 0 /∈
n
⋃

i=1

Qi, as desired. Let k > 1. Our hypothesis

Q ∩ √
Qi * Q ∩

√

Qj for all i 6= j implies Q *
k
⋃

i=1

√
Qi. Then there exists a ∈

Q−
k
⋃

i=1

√
Qi. Now, we shall show that

n
⋂

i=k+1

Qi *
k
⋃

i=1

√
Qi. Suppose the contrary. As

√
Qi is prime, by the prime avoidence theorem, we have

n
⋂

i=k+1

Qi ⊆
√

Qj for some

j ∈ {1, 2, . . . , k}. This implies √Qi ⊆
√

Qj for some i ∈ {k + 1, k + 2, . . . , n}. Then
we conclude that Q ∩ √

Qi * Q ∩
√

Qj , which is a contradiction. Therefore, there

exists b ∈
n
⋂

i=k+1

Qi and b /∈
k
⋃

i=1

√
Qi. Consider x = ab ∈ Q. If r + x ∈

n
⋃

i=1

Qi, then

there exists 1 6 i 6 n such that r + x ∈ Qi.

Case 1 : Assume that i ∈ {1, 2, . . . , k}. Since r ∈
k
⋂

i=1

Qi, we have (r + x) − r =

x = ab ∈ Qi. As Qi is a strongly quasi-primary ideal, we conclude that a
2 ∈ Qi

or b ∈ √
Qi. Thus, we have a ∈ √

Qi ⊆
k
⋃

i=1

√
Qi or b ∈ √

Qi ⊆
k
⋃

i=1

√
Qi, which is

a contradiction.

Case 2 : Assume that i ∈ {k+1, k+2, . . . , n}. Since x = ab ∈
n
⋂

i=k+1

Qi, we conclude

that (r + x) − x = r ∈ Qi for some i ∈ {k + 1, k + 2, . . . , n}, again a contradiction.
Therefore, r + x /∈

n
⋃

i=1

Qi, which completes the proof. �

Theorem 2.9. Let Q1, . . . , Qn be strongly quasi-primary ideals of R and Q =

(q1, q2, . . . , qs) be a finitely generated ideal ofR. IfQ *
√
Qi for every i ∈ {1, 2, . . . , n}

and Q ∩ √
Qi * Q ∩

√

Qj for all i 6= j, then there exist b2, b3, . . . , bs ∈ R such that

α = q1 + b2q2 + . . .+ bsqs /∈
n
⋃

i=1

Qi.

P r o o f. We will use induction on n. If n = 1, it is clear. Assume that the claim is

true for n−1. Then there are a2, a3, . . . , as ∈ R such that x = q1+a2q2+ . . .+asqs /∈
n−1
⋃

i=1

Qi. If x /∈ Qn, then x /∈
n
⋃

i=1

Qi, which completes the proof. Suppose x ∈ Qn. If

q2, q3, . . . , qs ∈ √
Qn, then we have q1 ∈ √

Qn. Then we conclude that Q ⊆ √
Qn,

which is a contradiction. Therefore, we have qi /∈ √
Qn for some i ∈ {2, 3, . . . , s}.

Without loss of generality, suppose q2 /∈ √
Qn. Moreover, Q ∩ √

Qi * Q ∩
√

Qj for

all i 6= j implies
√
Qi *

√
Qn for all i 6= n. Thus, there exists yi ∈ √

Qi −
√
Qn

for all i 6= n. Then there is ki ∈ N such that yki

i ∈ Qi for all i 6= n. Let k =

max{k1, k2, . . . , kn−1} and y =
n−1
∏

i=1

yi. Then yk ∈ Qi for all i 6= n and yk /∈ Qn.

Indeed, if yk ∈ Qn, we would have y ∈ √
Qn. Since

√
Qn is a prime ideal, we
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conclude that yi ∈
√
Qn for some i ∈ {1, 2, . . . , n− 1} which is a contradiction. Let

α = q1 + (a2 + yk)q2 + a3q3 + . . . + asqs. We claim α /∈
n
⋃

i=1

Qi. For the contrary,

assume α ∈
n
⋃

i=1

Qi. Then α ∈ Qj for some j ∈ {1, 2, . . . , n}.
Now, we have two cases.

Case 1 : Let j ∈ {1, 2, . . . , n− 1}. Since α = x+ ykq2 ∈ Qj and yk ∈ Qj , we have

x ∈ Qj ⊆
n−1
⋃

i=1

Qi, a contradiction.

Case 2 : Let j = n. As α = x + ykq2 ∈ Qn and x ∈ Qn, we have y
kq2 ∈ Qn.

This implies that either q22 ∈ Qn or y
k ∈ √

Qn, which gives us a contradiction.

Consequently, we conclude α /∈
n
⋃

i=1

Qi. �
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