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Abstract. The goal of the article is to develop a theory dual to that of support in the de-
rived category D(R). This is done by introducing ‘big’ and ‘small’ cosupport for complexes
that are different from the cosupport in D. J. Benson, S. B. Iyengar, H.Krause (2012). We
give some properties for cosupport that are similar, or rather dual, to those of support for
complexes, study some relations between ‘big’ and ‘small’ cosupport and give some compar-
isons of support and cosupport. Finally, we investigate the dual notion of associated primes.
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1. Introduction and preliminaries

The theory of cosupport developed by Benson, Iyengar and Krause (see [2]) in the

context of compactly generated triangulated categories, was partially motivated by

work of Neeman, see [11]. Despite the many ways in which cosupport is dual to the

notion of support introduced by Foxby (see [6]) and Neeman (see [10]), cosupport

seems to be more elusive, even in the setting of a commutative noetherian ring.

In general, the theory of cosupport is not completely satisfactory because this

construction is not as well understood as support. Richardson in [12] investigated the

co-localization functor p(−), which is dual to the ordinary localization functor (−)p.

For example, p(−) preserves secondary representations and attached primes (the

duals of primary decompositions and associated primes (see [3], Section 7.2), and

preserves artinian modules when R is complete. Richardson then defined cosupport,

denoted by coSuppRK, of an R-module K to be the set of primes at which the

module’s co-localization is nonzero. From his point of view, this co-localization
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functor defines a sensible cosupport. In particular, the cosupport of a nonzero module

is nonempty and coSuppRA = {p ∈ SpecR : AnnRA ⊆ p} when A is artinian.

One purpose of this paper is to extend the concept of cosupport in [12] to un-

bounded complexes. We focus on the functor DR(−) = HomR

(

−,
⊕

m

E(R/m)
)

, the

sum running over all maximal ideals m of R, where E(R/m) is the injective envelope

of R/m. For an R-complex M , the co-localization of M relative to a prime ideal p is

the Rp-complex

pM := HomRp
(DR(M)p, E(R/p)) ≃ HomR(DR(M), E(R/p)).

In Section 2, we define coSuppRM of ‘big’ cosupport of M to be the set of prime

ideals p so that pM 6≃ 0. One of the main results of this work is a computation of

cosupport:

Theorem I. For any R-complex M , one has an equality

coSuppRM =
⋃

i∈Z

coSuppRHi(M).

In particular, M 6≃ 0 if and only if coSuppRM 6= ∅.

We provide the following (partial) duality between ‘big’ cosupport and support.

Theorem II. Let M be an R-complex.

(1) p ∈ coSuppRM if and only if p ∈ SuppRDR(M).

(2) If p ∈ SuppRM , then p ∈ coSuppRDR(M). The converse holds when M ∈

Dn(R), i.e., each Hi(M) is noetherian).

By examples we show that the above notion is not the same as the one in [13] and

the converse of (2) in the above theorem does not hold in general.

Section 3 investigates ‘small’ cosupport of complexes

cosuppRM := {p ∈ SpecR : RHomR(R/p, pM) 6≃ 0},

and some properties for ‘small’ cosupport that are similar to those of ‘small’ support

are provided for M ∈ D−(R). We also show that cosuppR
∏

λ

Mλ 6=
⋃

λ

cosuppRMλ in

general. In Section 4, we study some relations between ‘big’ and ‘small’ cosupport,

show that cosuppRM ⊆ coSuppRM forM ∈ D−(R) and the inclusion may be strict.

Section 5 is provides some relations between cosuppRM and cosuppRH(M). As an

application, we give the comparison of support and cosupport.
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The concept of coassociated primes of complexes is introduced in the last section,

and an extension of Nakayama lemma is given. In the appendix, we provide a sum-

mary of all the different cosupports of modules. To faciliate the discussion, we record

some related facts and their relations.

Unless stated to the contrary we assume throughout this paper that R is a com-

mutative noetherian ring which is not necessarily local. Next we recall some notions

and facts which will be needed later. For terminology we shall follow [5] and [12].

Complexes. The category of chain R-complexes is denoted by C(R). The derived

category of R-complexes is denoted by D(R).

Let M be an object in C(R) and n ∈ Z. The soft right-truncation, σ>n(M), of M

at n and the soft left-truncation, σ6n(M), of M at n are given by

σ>n(M) : . . . → Mn+2

dn+2

−→ Mn+1

dn+1

−→ Ker dn → 0,

σ6n(M) : 0 → Coker dn+1
d̄n−→ Mn−1

dn−1

−→ Mn−2 → . . .

The differential d̄n is the induced morphism on residue classes.

An R-complexM is called bounded above if Hn(M) = 0 for all n ≫ 0, bounded be-

low if Hn(M) = 0 for all n ≪ 0, and bounded if it is both bounded above and bounded

below. The full triangulated subcategories consisting of bounded above, bounded

below and bounded R-complexes are denoted by D−(R),D+(R) and Db(R), respec-

tively. We denote by Dn(R) the full triangulated subcategory of D(R) consisting

of R-complexes M such that Hi(M) are noetherian R-modules for all i, and denote

by Da(R) the full triangulated subcategory of D(R) consisting of R-complexes M

such that Hi(M) are artinian R-modules for all i. For M ∈ D(R),

infM := inf{n ∈ Z : Hn(M) 6= 0}, supM := sup{n ∈ Z : Hn(M) 6= 0}.

We write SpecR for the set of prime ideals of R and MaxR for the set of maximal

ideals of R. For an ideal a in R and p ∈ SpecR, we set

U(p) = {q ∈ SpecR : q ⊆ p} and V(a) = {q ∈ SpecR : a ⊆ q}.

Denote Dm(−) = HomR(−, E(R/m)) for m ∈ MaxR. For an R-complex M , we

set M∼ =
∏

m

Dm(Dm(M)). Let S be a multiplicatively closed subset of R. The

co-localization of the complex M relative to S is the S−1R-complex

S−1M := DS−1R(S
−1DR(M)).

If S = R − p for some p ∈ SpecR, we write pM for S−1M .
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2. Another version of big cosupport in D(R)

This section introduces the set coSuppRM of ‘big’ cosupport of an R-complex M .

We show that coSuppRM can be detected by the cosupport coSuppRHi(M), and

give a (partial) duality between coSuppRM and SuppRM .

Definition 2.1. LetM be an R-complex. The ‘big’ cosupport ofM is defined as

coSuppRM := {p ∈ SpecR : pM 6≃ 0}.

Following [5] or [13], the ‘big’ support of an R-complex M is the set

SuppRM := {p ∈ SpecR : Mp 6≃ 0}.

It follows from [5], equation (6.1.3.2) that SuppRM =
⋃

i∈Z

SuppRHi(M). The next

theorem establishes a similar fact that the big cosupport for an R-complex is com-

pletely related to the big cosupport of the homology modules of complexes.

Theorem 2.2. Let M be an R-complex. One has that

coSuppRM =
⋃

i∈Z

coSuppRHi(M).

P r o o f. One has the equivalences

p ∈ coSuppRM ⇔ Hi(
pM) 6= 0 for some i

⇔ HomR(DR(Hi(M)), E(R/p)) 6= 0 for some i

⇔ pHi(M) 6= 0 for some i

⇔ p ∈
⋃

i∈Z

coSuppRHi(M),

where the second equivalence is by injectivity of
⊕

m

E(R/m) and E(R/p). �

Corollary 2.3. For an R-complex M , one has M 6≃ 0 if and only if

coSuppRM 6= ∅.

P r o o f. One has that coSuppRM 6= ∅ if and only if coSuppRHi(M) 6= ∅ for

some i if and only if Hi(M) 6= 0 for some i if and only if M 6≃ 0, where the first

equivalence is by Theorem 2.2, the second one is by Lemma A.2. �
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Following [4], the annihilator for M ∈ D(R) is defined by intersecting the corre-

sponding sets for the homology modules Hi(M), i.e.,

AnnRM :=
⋂

i∈Z

AnnRHi(M).

If 0 6≃ M ∈ Dn
b(R), then SuppRM = V(AnnRM). The next corollary is dual to this.

Corollary 2.4. For any 0 6≃ M ∈ Da
b(R), one has that

coSuppRM = V(AnnRM) = SuppR(R/AnnRM).

P r o o f. Set i = infM and s = supM . We have

coSuppRM =

s
⋃

j=i

coSuppRHj(M) =

s
⋃

j=i

V(AnnRHj(M))

= V

( s
⋂

j=i

AnnRHj(M)

)

= V(AnnRM),

where the second equality is by Lemma A.2. �

The following result plays an important role in the rest of the paper.

Theorem 2.5. Let M be an R-complex. The following are equivalent:

(1) p ∈ coSuppRM ;

(2) p ∈ SuppRDR(M).

If in addition R is semi-local, then (1) and (2) are equivalent to

(3) p ∈ SuppRDm(M) for some m ∈ MaxR ∩V(p);

(4) RHomR(Rp,M
∼ ) 6≃ 0.

P r o o f. (1) ⇔ (2) One has the equivalences

p ∈ coSuppRM ⇔ p ∈ coSuppRHi(M) for some i

⇔ p ∈ SuppRDR(Hi(M)) for some i

⇔ p ∈ SuppRH−i(DR(M)) for some i

⇔ p ∈ SuppRDR(M),

where the first one is by Theorem 2.2, the second one is by Lemma A.2, the third

one is by injectivity of
⊕

m

E(R/m).

Next assume that R is semi-local.
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(2) ⇔ (3) One has the equivalences

p ∈ SuppRDm(M) for some m ∈ MaxR ∩ V(p)

⇔ p ∈ SuppRDm(Hi(M)) for some i and m ∈ MaxR ∩ V(p)

⇔ p ∈ coSuppRHi(M) for some i

⇔ p ∈ SuppRDR(Hi(M)) for some i

⇔ p ∈ SuppRDR(M),

where the first and the fourth ones are by [5], equation (6.1.3.2), the second one is

by Lemmas A.1 and A.4, the third one is by Lemma A.2.

(1) ⇔ (4) For any i ∈ Z, one has the isomorphisms

Hi(RHomR(Rp,M
∼ )) ∼=

∏

m

Hi(Dm(Dm(M)p)) ∼=
∏

m

Dm(Dm(Hi(M))p)

∼=
∏

m

HomR(Rp, Dm(Dm(Hi(M)))) ∼= HomR(Rp,Hi(M)∼ ),

where the first and the third ones are by adjointness, the second one is by injectivity

of E(R/m) and flatness of Rp. Therefore, we have the equivalences

RHomR(Rp,M
∼ ) 6≃ 0 ⇔ HomR(Rp,Hi(M)∼ ) 6= 0 for some i

⇔ p ∈ coSuppRHi(M) for some i

⇔ p ∈ coSuppRM,

where the first one is by the above isomorphism, the second one is by Lemmas A.1

and A.4 and the third one is by Theorem 2.2. �

Let U be a subset of SpecR. The specialization closure of U is the set

clU = {p ∈ SpecR : there is q ∈ U with q ⊆ p}.

The subset U is specialization closed if clU = U .

Remark 2.6.

(1) For any R-complex M , one has that coSuppRM = coSuppRΣM .

(2) For an exact triangle L → M → N  in D(R) we have

coSuppRM ⊆ coSuppRL ∪ coSuppRN.

(3) For any R-complex M , the set coSuppRM is specialization closed since

coSuppRM = SuppRDR(M)

by Theorem 2.5 and SuppRDR(M) is specialization closed.

(4) H(pM) ∼= pH(M) for any p ∈ SpecR.
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(5) (i) Let M ∈ Dn
+(R) and N ∈ D+(R). One has the isomorphism

p

(

M

L
⊗

R

N

)

≃ HomRp
(RHomR(M,DR(N))p, E(R/p))

≃ HomRp
(RHomRp

(Mp, DR(N)p), E(R/p)) ≃ Mp

L
⊗

Rp

pN,

where the first one is by adjointness, the second one is by [5], Lemma 6.1.6 and

the third one is by [5], Theorem 2.5.6.

(ii) Let M ∈ Dn
+(R) and N ∈ D−(R). One has the isomorphism

pRHomR(M,N) ≃ RHomRp

(

Mp

L
⊗

Rp

DR(N)p, E(R/p)

)

≃ RHomRp
(Mp,

pN),

where the first one is by [5], Theorem 2.5.6 and the second one is by adjointness.

(6) By the proof of Theorem 2.5, RHomR(Rp,M
∼ ) 6≃ 0 implies that

HomR(Rp,Hi(M)∼ ) 6= 0

for some i, and hence p ∈ CosuppRHi(M) ⊆ coSuppRHi(M) ⊆ coSuppRM by

Lemmas A.1 and A.4 and Theorem 2.2. Consequently, pM 6≃ 0.

(7) Sather-Wagstaff and Wicklein in [13] extended the notion of cosupport provided

by Benson, Iyengar and Krause in [2] to complexes. They defined the ‘large’

cosupport of an R-complex M as the set

Co-suppRM := {p ∈ SpecR : RHomR(Rp,M) 6≃ 0}.

However, our definition of ‘big’ cosupport for M is not the same as the above.

For example, let M = R = k[x] for any field k. Since HomR(R{0}, R) 6= 0 and

Co-suppRM is specialization closed by (3), it follows that Co-suppRM = SpecR.

But coSuppRM = SuppRDR(M) = MaxR 6= SpecR by Theorem 2.5.

(8) Let M be an R-complex and p ∈ SpecR. If each Hi(M) is a Matlis reflexive

R-module (i.e., Hi(M) ∼= DR(DR(Hi(M)))), then M ≃ DR(DR(M)), and hence

pDR(M) ≃ HomRp
(DR(DR(M))p, E(k(p))) ≃ DRp

(Mp).

So pDR(M) 6= 0 if and only if Mp 6= 0 as E(R/p) cogenerates the category of

p-local R-modules, that is to say,

p ∈ SuppRM ⇔ p ∈ coSuppRDR(M).
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In general, we have the following result.

Proposition 2.7. Let M be an R-complex.

(1) If p ∈ SuppRM , then p ∈ coSuppRDR(M).

(2) If M ∈ Dn(R), then p ∈ SuppRM if and only if p ∈ coSuppRDR(M).

P r o o f. (1) Since p ∈ SuppRM , p ∈ SuppRHi(M) for some i, and so p ∈

coSuppRH−i(DR(M)) by Lemma A.5. Therefore, p ∈ coSuppRDR(M) by Theo-

rem 2.2.

(2) “Only if” part by (1). “If” part: Since

p ∈ coSuppRDR(M), p ∈ coSuppRHi(DR(M))

for some i by Theorem 2.2, i.e., p ∈ coSuppRDR(H−i(M)). Hence, Lemma A.5

implies that p ∈ SuppRH−i(M). Consequently, p ∈ SuppRM . �

The following example shows that the converse of (1) in the above proposition

does not hold in general.

Example 2.8. ([14]). Let (R,m) be a local domain with dimR > 0. Consider

the complex

M = 0 →
⊕

n>0

R/mn → 0.

Then Dm(M) = DR(M) and 0 ∈ coSuppRDR(M). But

0 6∈ SuppRM as SuppRM = {m}.

3. Another version of small cosupport in D(R)

This section introduces the set cosuppRM of ‘small’ cosupport of anR-complexM ,

and provide a duality between the ‘small’ cosupport and support as in Section 2.

Definition 3.1. Let M be an R-complex. The ‘small’ cosupport of M is de-

fined as

cosuppRM := {p ∈ SpecR : RHomR(R/p, pM) 6≃ 0}.

Following [5] or [13], the ‘small’ support of an R-complex M is the set

suppRM :=

{

p ∈ SpecR : k(p)

L
⊗

R

M 6≃ 0

}

=

{

p ∈ SpecR : R/p

L
⊗

R

Mp 6≃ 0

}

,

where k(p) = Rp/pRp. Next, we bring an analogue of Theorem 2.5.
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Theorem 3.2. Let M be an R-complex in D−(R). The following are equivalent:

(1) p ∈ cosuppRM ;

(2) RHomR(DR(M), k(p)) 6≃ 0;

(3) p ∈ suppRDR(M);

(4) k(p)
L
⊗

Rp

pM 6≃ 0;

(5) pRp ∈ cosuppRp

pM .

If in addition R is semi-local, then (1)–(5) are equivalent to

(6) RHomR(k(p),M
∼ ) 6≃ 0;

(7) HomR

(

⊕

m

Dm(M), k(p)
)

6≃ 0;

(8) p ∈ suppRDm(M) for some m ∈ MaxR ∩ V(p);

(9) k(p)
L
⊗

Rp

RHomR(Rp,M
∼ ) 6≃ 0.

In particular, M 6≃ 0 if and only if cosuppRM 6= ∅.

P r o o f. One has the isomorphisms in D(R)

pRHomR(R/p,M) ≃ RHomRp
((R/p)p,

pM) ≃ RHomR(R/p, pM),

where the first one is by Remark 2.6 (5) and the second one is by adjointness.

pRHomR(R/p,M) ≃ RHomRp
(k(p), pM)

≃ RHomRp
(DR(M)p,HomRp

(k(p), E(k(p))))

≃ RHomR(DR(M), k(p)),

where the first one is by Remark 2.6 (5), the second one is by adjointness and the

third one is by the isomorphism HomRp
(k(p), E(k(p))) ∼= k(p).

DR(RHomR(R/p,M))p ≃

(

R/p

L
⊗

R

DR(M)

)

p

≃ k(p)

L
⊗

R

DR(M),

where the first one is by [5], Theorem 2.5.6 and the second one is by adjointness.

Hence, Theorem 2.5 implies the equivalences of (1)–(3).

(1) ⇔ (4) This follows from [13], Fact 3.5 and the isomorphism

RHomR(R/p, pM) ≃ RHomRp
(k(p), pM)

in D(R) by Remark 2.6 (5) and adjointness.

439



(1) ⇔ (5) Since M ∈ D−(R), pM ∈ D−(Rp). One has the isomorphisms in D(R)

RHomRp
(Rp/pRp,

pRp(pM))

≃ HomRp

(

k(p)

L
⊗

Rp

HomRp
(pM,E(k(p))), E(k(p))

)

≃ HomRp
(HomRp

(RHomRp
(k(p), pM), E(k(p))), E(k(p)))

≃ DRp
(DRp

(RHomR(R/p, pM))),

where the first and the third ones are by adjointness and the second one is

by [5], Theorem 2.5.6. Thus, RHomRp
(Rp/pRp,

pRp(pM)) 6≃ 0 if and only if

RHomR(R/p, pM) 6≃ 0 as E(k(p)) cogenerates the category of p-local R-modules, as

desired.

One has the isomorphisms in D(R)

RHomR(k(p),M
∼ ) ≃

∏

m

Dm

(

k(p)

L
⊗

R

Dm(M)
)

≃
∏

m

Dm(Dm(RHomR(R/p,M))p)

≃ RHomR(Rp,RHomR(R/p,M)∼ ),

where the first and the third ones are by adjointness, the second one is by [5],

Theorem 2.5.6.

HomR

(

⊕

m

Dm(M), k(p)

)

≃ HomR

(

⊕

m

Dm(M),HomRp
(k(p), E(R/p))

)

≃ HomR

(

⊕

m

(

R/p

L
⊗

R

Dm(M)
)

, E(R/p)

)

≃ HomR

(

⊕

m

Dm(RHomR(R/p,M)), E(R/p)

)

,

where the first one is by the isomorphism k(p) ∼= HomRp
(k(p), E(R/p)), the second

one is by adjointness and the third one is by [5], Theorem 2.5.6.

Dm(RHomR(R/p,M))p ≃

(

R/p
L

⊗

R

Dm(M)

)

p

≃ k(p)
L

⊗

R

Dm(M),

where the first one is by [5], Theorem 2.5.6 and the second one is by adjointness.

Hence, Theorem 2.5 implies the equivalences of (1) ⇔ (6) ⇔ (7) ⇔ (8).

(6) ⇔ (9) This follows from [13], Fact 3.5 and the isomorphism

RHomR(k(p),M
∼ ) ≃ RHomRp

(k(p),RHomR(Rp,M
∼ ))

in D(R) by adjointness. �
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Corollary 3.3. Let M be an R-complex in D−(R). One has that

cosuppRM = min(cosuppRH(M)).

P r o o f. One has the equivalences

p ∈ cosuppRM ⇔ p ∈ suppRDR(M) ⇔ p ∈ min(suppRH(DR(M)))

⇔ p ∈ min(suppRDR(H(M))) ⇔ p ∈ min(cosuppRH(M)),

where the first and the last equivalences are by Theorem 3.2, the second one is by [1],

Theorem 5.2 and the third one is by injectivity of
⊕

m

E(R/m). �

Proposition 3.4.

(1) Let M ∈ Dn
+(R) and N ∈ D−(R). One has that

cosuppRRHomR(M,N) = suppRM ∩ cosuppRN.

(2) Let M ∈ Dn
b(R) and N ∈ D−(R). One has that

cosuppR

(

M
L

⊗

R

N

)

= suppRM ∩ cosuppRN.

P r o o f. (1) One has the equivalences

p ∈ cosuppRRHomR(M,N) ⇔ p ∈ suppRDR(RHomR(M,N))

⇔ p ∈ suppR

(

M

L
⊗

R

DR(N)

)

⇔ p ∈ suppRM ∩ suppRDR(N)

⇔ p ∈ suppRM ∩ cosuppRN,

where the first and the fourth equivalences are by Theorem 3.2, the second one is

by [5], Theorem 2.5.6 and the third one is by [13], Proposition 3.12.

(2) One has the equivalences

p ∈ cosuppR

(

M

L
⊗

R

N

)

⇔ p ∈ suppRDR

(

M

L
⊗

R

N

)

⇔ p ∈ suppRRHomR(M,DR(N))

⇔ p ∈ suppRM ∩ suppRDR(N)

⇔ p ∈ suppRM ∩ cosuppRN,

where the first and the fourth equivalences are by Theorem 3.2, the third one is

by [13], Proposition 3.16. �
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Remark 3.5.

(1) For each M ∈ D−(R), one has pRHomR(R/p,M) ≃ RHomR(R/p, pM) by

Remark 2.6 (5) and adjointness. Thus,

p ∈ cosuppRM ⇔ p ∈ coSuppRRHomR(R/p,M).

(2) If M is an R-module, then

cosuppRM = {p ∈ SpecR : pExtiR(R/p,M) 6= 0 for some i}.

(3) Let V be a specialization closed subset of SpecR. For eachM ∈ D−(R), one has

cosuppRM ⊆ V ⇔ suppRDR(M) ⊆ V

⇔ DR(M)p = 0 for each p ∈ SpecR \V

⇔ pM = 0 for each p ∈ SpecR \V,

where the first equivalence is by Theorem 3.2, the second one is by [1],

Lemma 2.3 (1) and the third one is as E(R/p) cogenerates the category of

p-local R-modules.

(4) For each M ∈ D−(R) it follows from Theorems 2.5, 3.2 and [1], Corollary 5.3

that

cosuppRM ⊆ cl(cosuppRM) = coSuppRM ⊆ V(AnnRM).

(5) Given a set of R-complexes Mi in D−(R). In general, cosuppR
∏

i

Mi 6=
⋃

i

cosuppRMi. Indeed, let (R,m) be a local domain with dimR > 0 and

Mi = R/mi for i > 0. Since suppRR/mi ⊆ {m} for each i > 0,

⋃

i

cosuppRDm(R/mi) = {m}

by Proposition 3.4. But

cosuppR
∏

i>0

Dm(R/mi) 6= {m}

since 0 ∈ cosuppR
∏

s>0

Dm(R/ms).

The following proposition is an analogue of Proposition 2.7.

Proposition 3.6. Let M be an R-complex in D+(R).

(1) If p ∈ suppRM , then p ∈ cosuppRDR(M).

(2) If M ∈ Dn
+(R), then p ∈ suppRM if and only if p ∈ cosuppRDR(M).
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P r o o f. (1) Let p ∈ suppRM . Then p ∈ SuppR

(

R/p
L
⊗

R

M
)

, and so p ∈

coSuppRDR

(

R/p
L
⊗

R

M
)

by Proposition 2.7 (1). But

DR

(

R/p
L

⊗

R

M

)

≃ RHomR(R/p, DR(M)),

it follows from Remark 3.5 (1) that p ∈ cosuppRDR(M).

(2) This follows from Proposition 2.7 (2) since R/p
L
⊗

R

M ∈ Dn
+(R). �

4. Relations between big and small cosupport

We devote this section to some relations between ‘big’ and ‘small’ cosupport. We

show that cosuppRM ⊆ coSuppRM forM ∈ D−(R), and the inclusion may be strict.

Following [13], we denote by co-suppRM the set

co-suppRM := {p ∈ SpecR : RHomR(k(p),M) 6≃ 0}.

Proposition 4.1. For an R-complex M in D−(R), the sets suppRM and

cosuppRM have the same maximal elements with respect to containment, i.e.,

max(suppRM)=max(cosuppRM). Moreover,max(cosuppRM)=max(co-suppRM).

P r o o f. We prove that max(suppRM) ⊆ cosuppRM and max(cosuppRM) ⊆

suppRM .

If p ∈ max(suppRM), then co-suppR

(

R/p
L
⊗

R

DR(M)
)

= {p} by [13], Proposi-

tion 4.10. As HomRp
(k(p), E(k(p))) ∼= k(p), it follows from [2], Proposition 5.4 that

RHomR(DR(M), k(p)) ≃ RHomR

(

R/p

L
⊗

R

DR(M), E(R/p)

)

6≃ 0,

and hence p ∈ cosuppRM by Theorem 3.2. If p ∈ max(cosuppRM), then

cosuppR

(

R/p
L
⊗

R

M
)

= {p}, so p ∈ max
(

suppRDR(R/p
L
⊗

R

M)
)

. Thus, [13],

Proposition 4.7 (b) implies that p ∈ co-suppRRHomR(R/p, DR(M)). Consequently,

p ∈ suppRM by [13], Proposition 4.10.

The second statement follows from [2], Theorem 4.13. �

Proposition 4.2. For every M ∈ D−(R), one has an inclusion cosuppRM ⊆

coSuppRM ; equality holds if R is a semi-local complete ring and M ∈ Da
−(R).
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P r o o f. The inclusion follows from Theorems 2.5 and 3.2 since suppRDR(M) ⊆

SuppRDR(M). Now let M ∈ Da
−(R) and p ∈ coSuppRM , i = sup pM . Then

pM ∈ Da
−(Rp) by [12], Theorem 2.3, and so

Hi(RHomRp
(k(p), pM)) ∼= HomRp

(k(p),Hi(
pM)) 6= 0

by [14], Theorem 4.3. Consequently, RHomR(R/p, pM) 6≃ 0 and p ∈ cosuppRM ,

as claimed. �

The next example shows that the inclusion in Proposition 4.2 may be strict:

Example 4.3 ([1], Example 9.4). Let k be a field and R = k[[x, y]] the power

series ring in indeterminates x, y, and set m = (x, y) the maximal ideal of R. The

minimal injective resolution of R has the form

. . . → 0 → Q →
∐

htp=1

E(R/p) → E(R/m) → 0 → . . . ,

where Q denotes the fraction field of R. Let M denote the truncated complex

. . . → 0 → Q →
∐

htp=1

E(R/p) → 0 → . . .

One has that coSuppRDR(M) = SpecR since SpecR= SuppRM ⊆ coSuppRDR(M).

But m 6∈ cosuppRDR(M). In fact, if m ∈ cosuppRDR(M), then m ∈ suppRDR(M)

by Proposition 4.1, and hence m ∈ cosuppRM by Theorem 3.2. Consequently,

m ∈ suppRM by Proposition 4.1 again, which is a contradiction since suppRM =

SpecR \ {m}.

Proposition 4.4. Let M be an R-complex in D−(R).

(1) The sets cosuppRM and coSuppRM have the same minimal elements with re-

spect to containment, i.e., min(cosuppRM) = min(coSuppRM).

(2) For an ideal a of R, coSuppRM ⊆ V(a) if and only if cosuppRM ⊆ V(a).

(3) The Zariski closures of coSuppRM and cosuppRM are equal.

P r o o f. This follows from Theorems 2.5, 3.2 and [13], Propositions 3.14–3.15. �

Remark 4.5.

(i) Example 4.3 shows that suppRM and suppRH(M) need not coincide and

cosuppRM and cosuppRH(M) need not coincide.

(ii) For any M ∈ D−(R), cosuppRM may not be a specialization closed subset.

(iii) Example 2.8 and Proposition 4.4 (1) show that the converse of (1) in Proposi-

tion 3.6 does not hold in general.
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Proposition 4.6.

(1) IfM is inDn
−(R), then cosuppRM ⊆ co-suppRM and coSuppRM ⊆Co-suppRM .

(2) Assume that R is a semi-local ring and M ∈ D−(R). If each Hi(M) is

a Matlis reflexive R-module, then co-suppRM = cosuppRM and Co-suppRM =

coSuppRM .

P r o o f. (1) Since M ∈ Dn
−(R), it follows that cosuppRM ⊆ coSuppRM ⊆

MaxR. Hence, Proposition 4.1 implies that cosuppRM ⊆ co-suppRM . Note

that cosuppRM = coSuppRM and co-suppRM ⊆ Co-suppRM , so coSuppRM ⊆

Co-suppRM .

(2) As Hi(M) ∼= DR(DR(Hi(M))) for all i, M ≃ DR(DR(M)). Hence,

co-suppRM = co-suppRDR(DR(M)) = suppRDR(M) = cosuppRM

by [13], Propositions 6.1 and Theorem 3.2 and

Co-suppRM = Co-suppRDR(DR(M)) = SuppRDR(M) = coSuppRM.

�

Corollary 4.7. Assume that R is a semi-local complete ring. If M ∈ Dn
−(R) or

M ∈ Da
−(R), then co-suppRM = cosuppRM and Co-suppRM = coSuppRM .

The example in Remark 2.6 (7) shows that the inclusion in Proposition 4.6 may

be strict.

5. Comparison of cosupport and support

This section puts emphasis on the relation between cosuppRM and cosuppRH(M).

As an application, we give the comparison of the support and cosupport.

Proposition 5.1. Let p be a point in SpecR. One has that

(1) cosuppRR = MaxR and suppRR = SpecR,

(2) cosuppRk(p) = {p} = suppRk(p),

(3) suppRE(R/p) = {p} and cosuppRE(R/p) = U(p).

P r o o f. (1) It follows from Theorem 3.2 and [13], Proposition 3.11 that

cosuppRR = suppRDR(R) = suppR
⊕

m

E(R/m) = MaxR.

It follows from Proposition 3.6 that

suppRR = cosuppRDR(R) = cosuppR
⊕

m

E(R/m) = SpecR.
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(2) Since suppRk(p)={p}, it follows from Proposition 4.1 that cosuppRk(p)⊆U(p).

On the other hand, cosuppRk(p) = cosuppR(R/p⊗RRp) ⊆ V(p) by Proposition 3.4.

Consequently, cosuppRk(p) = {p}.

(3) Since p ∈ co-suppRE(R/p) if and only if HomR(k(p), E(R/p)) 6= 0 by [13],

Proposition 4.4 if and only if HomR(k(p), E(R/p)∼ ) 6= 0 by [14], Theorem 2.17

if and only if p ∈ cosuppRE(R/p), it follows from [13], Proposition 6.3 that the

equality holds. �

The next results study the relations between cosuppRM (or suppRM) and

cosuppRH(M) (or suppRH(M)).

Proposition 5.2.

(1) For each M ∈ Dn
+(R), one has suppRM =

⋃

i∈Z

suppRHi(M).

(2) IfR is semi-local complete, then forM∈Da
−(R), cosuppRM=

⋃

i∈Z

cosuppRHi(M).

P r o o f. We just prove one of the statements since the other is dual.

One has the equalities

cosuppRM = coSuppRM =
⋃

i∈Z

coSuppRHi(M) =
⋃

i∈Z

cosuppRHi(M),

where the first and the third ones are by Proposition 4.2 and the second one is by

Theorem 2.2, as desired. �

Proposition 5.3.

(1) For each M ∈ D−(R), one has suppRM ⊆
⋃

i∈Z

suppRHi(M).

(2) For each M ∈ Db(R), one has cosuppRM ⊆
⋃

i∈Z

cosuppRHi(M).

P r o o f. We just prove (1) since (2) follows by duality.

First, letM ∈ Db(R). If infM = supM = r, thenM ≃ ΣrHr(M) and suppRM ⊆

suppRHr(M). Assume that supM − infM > 0. The exact triangle σ>inf M+1(M) →

M → Σinf MHinf M (M) yields that

suppRM ⊆ suppRσ>inf M+1(M) ∪ suppRHinf M (M).

But suppRσ>inf M+1(M) ⊆
⋃

i∈Z

suppRHi(σ>inf M+1(M)) =
⋃

i>inf M+1

suppRHi(M)

by induction, so suppRM ⊆
⋃

i∈Z

suppRHi(M). Now let M ∈ D−(R). Then

M =
limσ>n

−→ (M). Since suppRM ⊆
⋃

n60

suppRσ>n(M) and suppRσ>n(M) ⊆
⋃

i>n

suppRHi(M), it follows that suppRM ⊆
⋃

i∈Z

suppRHi(M). �
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Corollary 5.4.

(1) For each M ∈ Dn
b(R), one has that cosuppRM ⊆ suppRM .

(2) If R is a semi-local complete ring, then for M ∈ Da
b(R), suppRM ⊆ cosuppRM .

P r o o f. We just prove (1) since (2) follows by duality.

By Proposition 5.3 (2), cosuppRM ⊆
⋃

i∈Z

cosuppRHi(M). But Hi(M) is noethe-

rian and coSuppRHi(M) ⊆ MaxR, so it follows from Propositions 4.1 and 5.2 that
⋃

i∈Z

cosuppRHi(M) ⊆
⋃

i∈Z

suppRHi(M) = suppRM , as claimed. �

Remark 5.5.

(i) The assumption M ∈ Dn
b(R) in (1) and M ∈ Da

b(R) in (2) in Corollary 5.4 are

essential. For example, assume that (R,m) is local and not artinian. One has

suppRE(R/m) = {m} ( SpecR = cosuppRE(R/m),

cosuppRR = {m} ( SpecR = suppRR.

(ii) Proposition 5.1 (1) and (3) show that one can have proper containment or equal-

ity in the above corollary.

6. Coassociated prime for complexes

The aim of this section is to develop a theory dual to that of associated primes

of complexes introduced by Christensen in [4], and find an extension of Nakayama

lemma.

Let (R,m, k) be a local ring and M an R-complex. The depth of M is

depthRM := − supRHomR(k,M).

Following [4], we say that p ∈ SpecR is an associated prime ideal for M ∈ D−(R) if

depthRp
Mp = − supMp < ∞, that is,

AssRM := {p ∈ SuppRM : depthRp
Mp = − supMp}.

For M 6≃ 0 in D−(R), we set assRM = AssRHsupM (M).

Let (R,m, k) be a local ring and M an R-complex. The width of M is

widthRM := inf

(

k
L

⊗

R

M

)

.

Definition 6.1. (1) We say that p ∈ SpecR is a coassociated prime ideal for

M ∈ D+(R) if widthRp

pM = inf pM > −∞, that is,

CoassRM := {p ∈ coSuppRM : widthRp

pM = inf pM}.
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(2) For an R-complex M 6≃ 0 in D+(R), we set coassRM = CoassRHinf M (M) and

for M ≃ 0 we set CoassRM = ∅.

Theorem 6.2. Let M ∈ D+(R). Then p ∈ CoassRM if and only if p ∈

AssRDR(M). In particular, M 6≃ 0 if and only if CoassRM 6= ∅.

P r o o f. Since pM = HomRp
(DR(M)p, ERp

(k(p))), it follows that

− supDR(M)p = inf pM = i

is finite. One has the equivalences

p ∈ CoassRM ⇔ inf(k(p)
L

⊗

Rp

pM) = inf pM = i ⇔ k(p)
⊗

Rp

Hi(
pM) 6= 0

⇔ k(p)
⊗

Rp

HomRp
(DR(Hi(M))p, E(k(p))) 6= 0

⇔ HomRp
(HomRp

(k(p), DR(Hi(M))p), E(k(p))) 6= 0

⇔ H−i(RHomRp
(k(p), DR(M)p) = HomRp

(k(p),H−i(DR(M)p)) 6= 0

⇔ pRp ∈ AssRp
H−i(DR(M)p) ⇔ p ∈ AssRDR(M),

where the second one is by [5], Lemma 2.4.14, the third one is by injectivity

of E(R/m) and E(k(p)) and flatness of Rp, the fourth one is by [5], Theorem 2.5.6,

the fifth one is by faithful injectivty of E(k(p)) and [5], Lemma 2.3.19, the last one

is by [4], Observations 2.4. �

Remark 6.3.

(1) Let K be an R-module. By Theorem 6.2, p ∈ CoassRK if and only if p ∈

AssRDR(K) if and only if pRp ∈ AssRp
DR(K)p if and only if pRp ∈ CoassRp

pK

since the morphism k(p) → DR(K)p is injective if and only if the morphism
pK → k(p) ∼= HomRp

(k(p), ERp
(k(p))) is surjective.

(2) Let M ∈ D+(R) and p ∈ coSuppRM and set inf pM = i. Then

p ∈ CoassRM ⇔ p ∈ AssRDR(M) ⇔ pRp ∈ AssRp
DR(Hi(M))p

⇔ pRp ∈ CoassRp
Hi(

pM) ⇔ pRp ∈ coassRp

pM

⇔ p ∈ CoassRHi(M),

where the second equivalence is by [4], Observations 2.4 and the third one is

by (1). In particular, one has the following inclusion:

coassRM ⊆ CoassRM.
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(3) For M ∈ D+(R), every minimal prime in coSuppRM belongs to CoassRM ; for

N ∈ Db(R), one has CoassRN ⊆ cosuppRN by [4], Proposition 2.6, Theo-

rems 3.2 and 6.2.

(4) ForM ∈ Da
b(R), the set of minimal prime in coSuppRM is finite by Corollary 2.4.

(5) If M is an R-module, then coassRM = CoassRM .

The following result is an extension of Nakayama lemma.

Proposition 6.4. Let a be an ideal of R such that a ⊆ J(R), the Jacobson radical

of R.

(1) If M is in D−(R) such that AssRM ∩MaxR 6= ∅, then RHomR(R/a,M) 6≃ 0.

(2) If M is in D+(R) such that CoassRM ∩MaxR 6= ∅, then R/a
L
⊗

R

M 6≃ 0.

P r o o f. (1) Given m ∈ AssRM ∩MaxR and set s = supMm. Then

Hs(RHomRm
(k(m),Mm)) ∼= HomRm

(k(m),Hs(Mm)) 6= 0

by [5], Lemma 2.3.19 and hence,

Hs(RHomRm
((R/a)m,Mm)) ∼= HomRm

((R/a)m,Hs(Mm)) 6= 0

since the map (R/a)m ։ (R/m)m is surjective, which implies that

RHomR(R/a,M) 6≃ 0.

(2) By Theorem 6.2, AssRDR(M)∩MaxR 6= ∅. Hence, RHomR(R/a, DR(M)) 6≃ 0

by (1), which implies that R/a
L
⊗

R

M 6≃ 0. �

Appendix: different cosupport of modules

The notion of support is a fundamental concept which provides a geometric ap-

proach for studying various algebraic structures.

There have been three earlier attempts to dualize the theory of support of modules.

Since S−1(−) = S−1R
⊗

R

−, the first one was made by Melkersson and Schenzel

(see [9]) by choosing S−1(−) to be HomR(S
−1R,−), and defined the cosupport of

an R-module K to be the set

{p ∈ SpecR : HomR(Rp,K) 6= 0}.
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The theory of cosupport is particularly well-behaved when restricted to the class of

artinian modules. However, this theory does not work at all well for non-artinian

modules. For example, if S is a multiplicatively closed set of integers which includes

a nonunit, then HomZ(S
−1Z,Z) = 0, that is to say, the cosupport of Z is empty

under this definition, which is definitely not what we want.

Next, by introducing a notion of cocyclic modules, Yassemi in [14] defined the

cosupport of an R-module K as the set of prime ideals p such that there exists

a cocyclic homomorphic image L of K with p ⊇ AnnRL, the annihilator of L, and

denoted this set by CosuppRK. An R-module L is cocyclic if L is a submodule

of E(R/m) for some m ∈ MaxR. He showed that for an artinian R-module this

definition is equivalent with the definition provided by Melkersson and Schenzel

in [9], and proved some properties for cosupport that are similar—or rather dual—to

those of support.

Lemma A.1. ([14]). For any R-module K, the following are equivalent:

(1) p ∈ CosuppRK;

(2) p ∈ SuppRDm(K) for some m ∈ MaxR ∩ V(p);

(3) HomR(Rp,K
∼ ) 6= 0, where K∼ =

∏

m

Dm(Dm(K));

(4) HomR

(

⊕

m

Dm(K), E(R/p)
)

6= 0.

Finally, for an ideal a of R, if K is an a-torsion R-module (i.e., SuppRK ⊆ V(a)),

then all the higher local cohomology modules of K vanish, where the local cohomol-

ogy functors are the right derived functors of the a-torsion functor, see [7]. Matlis

in [8] defined the local homology functors to be the left derived functors of the

a-adic completion functor. Since torsion and completion are dual, one expects these

functors to live up to their name and behave in a manner dual to local cohomol-

ogy. In particular, it is natural to expect there to be vanishing theorems for local

homology dual to the ones that relate the local cohomology of a module to the

module’s support. Therefore, Richardson in [12] created a co-localization functor

S−1(−) = DS−1R(S
−1DR(−)) which is dual to the localization functor S−1(−), and

then defined the cosupport of an R-module K to be the set of primes at which the

module’s co-localization is nonzero, i.e.,

coSuppRK := {p ∈ SpecR : pK 6= 0},

where pK := HomR(DR(K), E(R/p)). Richardson also gave some properties of

coSuppRK:
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Lemma A.2. ([12]). For any R-module K, the following statements hold:

(1) coSuppRK = ∅ if and only if K = 0.

(2) coSuppRK = SuppRDR(K).

(3) coSuppRK ⊆ V(AnnRK), equality holds if K is artinian.

Remark A.3.

(1) By [2], Remark 4.21, the notion of cosupport of modules provided by Melkersson

and Schenzel in [9] is not the same as the Richardson’s definition.

(2) If K is an artinian R-module, then all three definitions are equivalent by the

remark after Proposition 2.3 of [14] and Lemma A.2.

The next lemma gives a relation between the setCosuppRK and the set coSuppRK.

Lemma A.4. Let K be an R-module and p a point in SpecR.

(1) If p ∈ CosuppRK, then p ∈ coSuppRK.

(2) If R is a semi-local ring or K is a finitely generated R-module, then p ∈

coSuppRK if and only if p ∈ CosuppRK.

P r o o f. (1) If p ∈ CosuppRK, then HomR

(

⊕

m

Dm(K), E(R/p)
)

6= 0 by Lem-

ma A.1, and hence, HomR(Dm(K), E(R/p)) 6= 0 for some m ∈ MaxR. Consider the

exact sequence 0 → E(R/m) →
⊕

n∈MaxR

E(R/n) →
⊕

m 6=m′∈MaxR

E(R/m′) → 0, which

induces the following short exact sequence:

0 → HomR

(

HomR

(

K,
⊕

m 6=m′∈MaxR

E(R/m′)

)

, E(R/p)

)

→ HomR(DR(K), E(R/p)) → HomR(Dm(K), E(R/p)) → 0.

Thus, HomR(DR(K), E(R/p)) 6= 0, and so pK 6= 0 and p ∈ coSuppRK.

(2) If R is semi-local or K is finitely generated, then

pK ∼= HomR

(

⊕

m

Dm(K), E(R/p)

)

.

Hence, the equivalence follows from Lemma A.1. �

Lemma A.5. Let K be an R-module and p a point in SpecR. If p ∈ SuppRK,

then p ∈ coSuppRDR(K). The converse holds when K is finitely generated.

P r o o f. Since p ∈ SuppRK, p ∈ CosuppRDm(K) for some m ∈ MaxR ∩ V(p)

by [14], Lemma 2.8, it follows from the exact sequence

0 → HomR

(

K,
⊕

m 6=m′∈MaxR

E(R/m′)

)

→ DR(K) → Dm(K) → 0
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and [14], Theorem 2.7 that p ∈ CosuppRDR(K). Consequently, p ∈ coSuppRDR(K)

by Lemma A.4. Conversely, if p ∈ coSuppRDR(K), then

0 6= pDR(K) ∼= HomRp

(

Kp,
p

(

⊕

m

E(R/m)

))

by [12], Proposition 2.5 as K is finitely generated, which implies that Kp 6= 0.

Therefore, one has p ∈ SuppRK. �
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