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Abstract. Let R and S be commutative rings with identity, J be an ideal of S, f : R → S

be a ring homomorphism, M be an R-module, N be an S-module, and let ϕ : M → N be
an R-homomorphism. The amalgamation of R with S along J with respect to f denoted by
R ⊲⊳f J was introduced by M.D’Anna et al. (2010). Recently, R. El Khalfaoui et al. (2021)

introduced a special kind of (R ⊲⊳f J)-module called the amalgamation ofM and N along J
with respect to ϕ, and denoted byM ⊲⊳ϕ JN . We study some homological properties of the
(R ⊲⊳f J)-module M ⊲⊳ϕ JN . Among other results, we investigate projectivity, flatness,

injectivity, Cohen-Macaulayness, and prime property of the (R ⊲⊳f J)-module M ⊲⊳ϕ JN

in connection to their corresponding properties of the R-modules M and JN .

Keywords: amalgamation of ring; amalgamation of module; Cohen-Macaulay; injective
module; projective(flat) module
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1. Introduction

Throughout this paper all rings are considered commutative with the identity

element and all modules are unital. Let f : R → S be a ring homomorphism, and

let J be an ideal of S. In [4] and [5], D’Anna et al. introduced and studied the

following subring of R× S:

R ⊲⊳f J = {(r, f(r) + j) : r ∈ R, j ∈ J},

which is called the amalgamation of R with S along J with respect to f . It is easily

seen that R ⊲⊳f J = {(r, s) : r ∈ R, s ∈ S, f(r) − s ∈ J}. Categorically, R ⊲⊳f J

is in fact a pullback (or fiber product) of the canonical projection π : S → S/J and
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f̆ := π◦f , see [4], Proposition 4.2. This point of view allows the authors in [4] and [5]

to investigate various properties of R ⊲⊳f J in connection with properties of R, J

and f . Several properties of the construction R ⊲⊳f J are investigated in [4], [5],

and [13]. The amalgamated duplication of a ring along an ideal, introduced in [6],

can be considered as a particular case of R ⊲⊳f J , see [4], Examples 2.5 and 2.6. This

construction has been studied in [3], [7], [11], and [12].

Recently, El Khalfaoui et al. in [8] introduced and studied some basic proper-

ties of the amalgamated duplication of modules along an ideal. Let M be an

R-module, N be an S-module, which is an R-module induced naturally by f , and

let ϕ : M → N be an R-homomorphism. The amalgamation of M and N along J

with respect to ϕ, denoted by M ⊲⊳ϕ JN , is defined as

M ⊲⊳ϕ JN = {(m,ϕ(m) + n) : m ∈ M, n ∈ JN}.

For every (r, f(r) + j) ∈ R ⊲⊳f J and for every (m,ϕ(m) + n) ∈ M ⊲⊳ϕ JN , the

following scalar multiplication gives an (R ⊲⊳f J)-module structure to M ⊲⊳ϕ JN :

(r, f(r) + j)(m,ϕ(m) + n) = (rm,ϕ(rm) + f(r)n+ jϕ(m) + jn).

Note that if M = R, N = S, and ϕ = f , then M ⊲⊳ϕ JN coincides with R ⊲⊳f J .

Also, if S = R, N = M , and ϕ = idM , then M ⊲⊳ϕ JN is exactly M ⊲⊳ J

which is introduced in [1]. In this paper, we study some basic properties of the

ring R ⊲⊳f J in Section 2, which will be used to study some homological prop-

erties of the (R ⊲⊳f J)-module M ⊲⊳ϕ JN in Section 3. Using the fact that the

amalgamation can be studied in the frame of pullback constructions, it is shown

in Theorem 3.4 that the (R ⊲⊳f J)-module M ⊲⊳ϕ JN is projective (or flat) if

and only if the R-module M is projective (or flat) and the (f(R) + J)-module

ϕ(M) + JN is projective (or flat, respectively). Also, we show that over a Noethe-

rian ring R, the R-module M ⊲⊳ϕ JN is injective if and only if the (R ⊲⊳f J)-

module M ⊲⊳ϕ JN is injective provided that J is a flat R-module. The notion of

a strongly cotorsion module was introduced by Xu in [15] as a generalization of the

injectivity of modules. The strongly cotorsion property of a dth local cohomology

module M ⊲⊳ϕ JN is studied in Theorem 3.15, where d = dimR⊲⊳fJ (M ⊲⊳ϕ JN).

Finally, we investigate Cohen-Macaulay and prime properties of the (R ⊲⊳f J)-

module M ⊲⊳ϕ JN in connection with Cohen-Macaulay and prime properties of

the R-module M .
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2. Amalgamation of rings

Throughout this section, f : R → S is a ring homomorphism, and J is an ideal

of S. The amalgamation of R with S along J with respect to f , introduced in [5],

denoted by R ⊲⊳f J , is the following subring of R× S:

R ⊲⊳f J = {(r, f(r) + j) : r ∈ R, j ∈ J}.

In the case when S = R, we can consider the identity map id := idR : R → R,

and construct R ⊲⊳id J . This construction is also called an amalgamated duplication

of R along J instead of an amalgamation of R with R along J with respect to id.

Also, we use the notation R ⊲⊳ J instead of R ⊲⊳id J . This section contains some

properties of the amalgamation of rings which will be used in the sequel. In the

following proposition, we recall some properties of R ⊲⊳f J from [4], Propositions 5.1

and 5.7 and [5], Proposition 2.6.

Proposition 2.1. The following statements hold.

(i) Let p ∈ Spec(R), and q ∈ Spec(S). Set

ṕ
f = {(p, f(p) + j) : p ∈ p, j ∈ J},

q̄
f = {(a, f(a) + j) : a ∈ R, j ∈ J, f(a) + j ∈ q}.

Then the prime ideals of R ⊲⊳f J are of the type ṕf or q̄f for p ∈ Spec(R) and

q ∈ Spec(S) \ V (J). In particular,

Max(R ⊲⊳f J) = {ḿf : m ∈ Max(R)} ∪ {n̄f : n ∈ Max(S) \ V (J)}.

(ii) Let I be an ideal ofR and set I ⊲⊳f J := {(i, f(i)+j) : i ∈ I, j ∈ J}. Then I ⊲⊳f J

is an ideal of R ⊲⊳f J . In addition, we have the following canonical isomorphism:

R ⊲⊳f J

I ⊲⊳f J
∼=

R

I
.

(iii) f−1(J) × {0} is an ideal of R ⊲⊳f J , and the following canonical isomorphism

holds:
R ⊲⊳f J

f−1(J)× {0}
∼= f(R) + J.

(iv) Let J be a Noetherian R-module. Then R ⊲⊳f J is Noetherian if and only if R

is Noetherian.

(v) R ⊲⊳f J is isomorphic as an R-module to R⊕ J .
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Remark 2.2. With the notation of Proposition 2.1 for every j ∈ J we have

(0, j) ∈
⋂

p∈Spec(R)

ṕf . Also for every q ∈ Spec(S) \ V (J) there exists j ∈ J such that

(0, j) /∈ q̄f . Therefore, ṕf * q̄f for every p ∈ Spec(R) and every q ∈ Spec(S) \ V (J).

Fact 2.3. With the notation of Proposition 2.1, the following statements hold.

(i) p ∈ Spec(R) if and only if p ⊲⊳f J ∈ Spec(R ⊲⊳f J).

(ii) For every p ∈ Spec(R), and for every q ∈ Spec(S) \ V (J), we have ṕf 6= q̄f .

(iii) For every p1, p2 ∈ Spec(R), p1 = p2 if and only if ṕ1
f
= ṕ2

f
.

(iv) For every q1, q2 ∈ Spec(S) \ V (J), q1 = q2 implies that q1
f = q2

f .

(v) Let q1, q2 ∈ Spec(S) \V (J) such that q1, q2 ⊆ f(R)+ J . Then q1 = q2, provided

that q1
f = q2

f .

3. Amalgamation of modules

Throughout this section, f : R → S is a ring homomorphism, J is an ideal

of S,M is an R-module, N is an S-module and ϕ : M → N is an R-homomorphism.

The amalgamation of M and N along J with respect to ϕ denoted by M ⊲⊳ϕ JN is

M ⊲⊳ϕ JN = {(m,ϕ(m) + n) : m ∈ M, n ∈ JN}.

This notion is introduced in [8]. It can be seen thatM ⊲⊳ϕ JN is an (R ⊲⊳f J)-module

by the following scalar multiplication:

(r, f(r) + j)(m,ϕ(m) + n) = (rm,ϕ(rm) + f(r)n+ jϕ(m) + jn)

for every (r, f(r) + j) ∈ R ⊲⊳f J and (m,ϕ(m) + n) ∈ M ⊲⊳ϕ JN .

Remark 3.1. By the scalar multiplication of (R ⊲⊳f J)-module M ⊲⊳ϕ JN ,

it is easy to check that ({0} × J)(M⊲⊳ϕJN)={0} × JN . Also, (f−1(J) × {0})×

(M ⊲⊳ϕ JN) = f−1(J)M × {0} = ϕ−1(JN)× {0}.

Remark 3.2. Let pR : R ⊲⊳f J → R and pf(R)+J : R ⊲⊳f J → f(R) + J be the

natural projections. Also, consider the ring homomorphism h : R → R ⊲⊳f J such

that h(r) = (r, f(r)). Therefore, every (R ⊲⊳f J)-module has R-module structure

via h and every R-module has (R ⊲⊳f J)-module structure via pR. In particular,

M⊲⊳ϕJN has R-module structure. AlsoM and JN have (R⊲⊳f J)-module structure.

In the following proposition, we recall some properties of (R ⊲⊳f J)-module

M ⊲⊳ϕ JN from [8].
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Proposition 3.3. The following statements hold.

(i) Let JN be a Noetherian R-module. ThenM ⊲⊳ϕ JN is a Noetherian (R ⊲⊳f J)-

module if and only if M is a Noetherian R-module.

(ii) The sequence 0 → JN → M ⊲⊳ϕ JN → M → 0 of (R ⊲⊳f J)-modules and

(R ⊲⊳f J)-homomorphisms is exact, where ι : JN → M ⊲⊳ϕ JN is given by

ι(n) = (0, n) and pM : M ⊲⊳ϕ JN → M is the natural projection.

(iii) M ⊲⊳ϕ JN/({0} × JN) = M .

(iv) M ⊲⊳ϕ JN/(ϕ−1(JN)× {0}) = ϕ(M) + JN .

In [8], Remark 2.1 it is shown that ϕ(M) + JN is an (f(R) + J)-submodule of N .

Therefore, we have the following result.

Theorem 3.4. The (R ⊲⊳f J)-moduleM ⊲⊳ϕ JN is projective (or flat) if and only

if the R-module M is projective (or flat) and the (f(R) + J)-module ϕ(M) + JN is

projective (or flat, respectively).

P r o o f. Assume that πR : R → (f(R) + J)/J and πf(R)+J : f(R) + J →

(f(R) + J)/J are natural epimorphisms. Then the following diagram is a pull-

back of rings:

R ⊲⊳f J
pR

//

pf(R)+J

��

R

πR

��

f(R) + J
πf(R)+J

// f(R)+J

J

Also, by Proposition 2.1, Remark 3.1, and Proposition 3.3, we have:

(M ⊲⊳ϕ JN)
⊗

R⊲⊳fJ

R ∼= (M ⊲⊳ϕ JN)
⊗

R⊲⊳fJ

R ⊲⊳f J

{0} × J
∼=

M ⊲⊳ϕ JN

({0} × J)(M ⊲⊳ϕ JN)

=
M ⊲⊳ϕ JN

{0} × JN
= M,

and

(M ⊲⊳ϕ JN)
⊗

R⊲⊳fJ

(f(R) + J) ∼= (M ⊲⊳ϕ JN)
⊗

R⊲⊳fJ

R ⊲⊳f J

f−1(J)× {0}

∼=
M ⊲⊳ϕ JN

(f−1(J)× {0})(M ⊲⊳ϕ JN)

=
M ⊲⊳ϕ JN

f−1(J)M × {0}
=

M ⊲⊳ϕ JN

ϕ−1(JN)× {0}

= ϕ(M) + JN.

Now the assertion follows from [10], Theorem 1. �
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Proposition 3.5. M ⊲⊳ϕ JN is isomorphic as an R-module to M ⊕ JN .

P r o o f. For every m ∈ M and n ∈ JN , we define

g : M ⊲⊳ϕ JN → M ⊕ JN

such that g((m,ϕ(m) + n)) = (m,n). It is easy to check that g is well-defined, one

to one and epimorphism. For every r ∈ R and (m,ϕ(m) + n) ∈ M ⊲⊳ϕ JN , we

have r(m,ϕ(m)+n) = (rm,ϕ(rm)+ f(r)n) sinceM ⊲⊳ϕ JN is an R-module via the

ring homomorphism h : R → R ⊲⊳f J , where h(r) = (r, f(r)). Hence, we have the

following equation:

g(r(m,ϕ(m) + n)) = g((rm,ϕ(rm) + f(r)n)) = (rm, f(r)n)

= r(m,n) = rg((m,ϕ(m) + n)).

�

Corollary 3.6. The following statements hold.

(i) The R-module M ⊲⊳ϕ JN is projective if and only if the R-modules M and JN

are projective.

(ii) If the (R ⊲⊳f J)-modules M and JN are projective, then so is the (R ⊲⊳f J)-

module M ⊲⊳ϕ JN .

(iii) If the (R ⊲⊳f J)-modules M ⊲⊳ϕ JN and M are projective, then so is the

(R ⊲⊳f J)-module JN .

(iv) If R is a Noetherian ring, then the R-module M ⊲⊳ϕ JN is injective if and only

if the R-modules M and JN are injective.

(v) Let R be a Noetherian ring, and let the (R ⊲⊳f J)-modules M and JN be

injective. Then so is the (R ⊲⊳f J)-module M ⊲⊳ϕ JN .

(vi) Let R be a Noetherian ring, and let the (R ⊲⊳f J)-modules M ⊲⊳ϕ JN and JN

be injective. Then so is the (R ⊲⊳f J)-module M .

P r o o f. The items (i) and (iv) follow from Proposition 3.5, and the others are

induced by using the exact sequence 0 → JN → M ⊲⊳ϕ JN → M → 0 of (R ⊲⊳f J)-

modules and (R ⊲⊳f J)-homomorphisms, see Proposition 3.3. �

Proposition 3.7. The following statements hold.

(i) Let R be a Noetherian ring, and let M and JN be injective R-modules. Then

so is the (R ⊲⊳f J)-module M ⊲⊳ϕ JN .

(ii) Let M ⊲⊳ϕ JN be an injective (R ⊲⊳f J)-module. Then there exists an injective

R-module E such that M ⊲⊳ϕ JN is a direct summand of the (R ⊲⊳f J)-module

HomR(R ⊲⊳f J,E).
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P r o o f. (i) In the following sequence, the first R-isomorphism follows from

the Hom-tensor adojointness and tensor cancellation, and the latter is induced by

Proposition 3.5.

HomR⊲⊳fJ(−,HomR(R ⊲⊳f J,M ⊲⊳ϕ JN)) ∼= HomR(−,M ⊲⊳ϕ JN)

∼= HomR(−,M)⊕HomR(−, JN).

(ii) It follows from [13], Proposition 2.7. �

Corollary 3.8. Let R be a Noetherian ring, and let the R-module M ⊲⊳ϕ JN be

injective. Then so is the (R ⊲⊳f J)-module M ⊲⊳ϕ JN .

P r o o f. This follows from Corollary 3.6 (iv) and Proposition 3.7. �

In the following, we show that the converse of Corollary 3.8 holds, provided that J

is a flat R-module.

Proposition 3.9. Let J be a flat R-module, and let M ⊲⊳ϕ JN be an injective

(R ⊲⊳f J)-module. Then so is the R-module M ⊲⊳ϕ JN .

P r o o f. In the following sequence, the first isomorphism follows from Hom can-

celation, the second one is induced by Hom-tensor adjointness, and the third one

follows from Proposition 2.1.

HomR(−,M ⊲⊳ϕ JN) ∼= HomR(−,HomR⊲⊳fJ(R ⊲⊳f J,M ⊲⊳ϕ JN))

∼= HomR⊲⊳fJ

(

−
⊗

R

R ⊲⊳f J,M ⊲⊳ϕ JN

)

∼= HomR⊲⊳fJ

(

−
⊗

R

(R⊕ J),M ⊲⊳ϕ JN

)

∼= HomR⊲⊳fJ (−,M ⊲⊳ϕ JN)⊕HomR⊲⊳fJ

(

−
⊗

R

J,M ⊲⊳ϕ JN

)

.

By the assumption, the functors

HomR⊲⊳fJ (−,M ⊲⊳ϕ JN) and HomR⊲⊳fJ

(

−
⊗

R

J,M ⊲⊳ϕ JN

)

are exact. So, we get the assertion. �
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Proposition 3.10. With the notation of Proposition 2.1, the following statements

hold.

(i) The ideals ṕf and q̄f belong to SuppR⊲⊳fJ (M ⊲⊳ϕ JN) for every p ∈ SuppR(M)

and q ∈ SuppS(N) \ V (J).

(ii) SuppR⊲⊳fJ(M ⊲⊳ϕ JN) = SuppR⊲⊳fJ(M) ∪ SuppR⊲⊳fJ (JN).

(iii) SuppR(M ⊲⊳ϕ JN) = SuppR(M) ∪ SuppR(JN).

(iv) AssR⊲⊳fJ(M ⊲⊳ϕ JN) ⊆ AssR⊲⊳fJ (M) ∪ AssR⊲⊳fJ (JN).

(v) AssR(M ⊲⊳ϕ JN) = AssR(M) ∪AssR(JN).

P r o o f. (i) Let p ∈ Spec(R), and q ∈ Spec(S) \ V (J). Then ṕf and q̄f belong

to Spec(R ⊲⊳f J), by Proposition 2.1. Note that (M ⊲⊳ϕ JN)q̄f is canonically

isomorphic to Nq, and (M ⊲⊳ϕ JN)ṕf is canonically isomorphic to Mp, where p /∈

V (f−1(J)), by [8], Proposition 2.4. Also, for any p ∈ Spec(R) containing f−1(J),

consider a multiplicative subset Tp := f(R\p)+J of S and a set NTp
:= Tp

−1N and

JTp
:= Tp

−1J . Then (M ⊲⊳ϕ JN)ṕf is canonically isomorphic to Mp ⊲⊳ϕp JTp
NTp
,

where fp : Rp → STp
is a ring homomorphism induced by f and ϕp : Mp → NTp

is

an Rp-homomorphism induced by ϕ, by [8], Proposition 2.4. So, we get the assertion.

The items (ii), (iv) and (iii), (v) follow from Proposition 3.3 (ii) and Proposi-

tion 3.5, respectively. �

In the following, we investigate the annihilator of M ⊲⊳ϕ JN as an (R ⊲⊳f J)-

module.

Remark 3.11. Let r ∈ AnnR(M). For every m ∈ M , f(r)ϕ(m) = ϕ(rm) = 0,

since N has naturally R-module structure via f . Therefore, f(AnnR(M)) ⊆

AnnS(ϕ(M)).

Proposition 3.12. The following statements hold.

(i) AnnR⊲⊳fJ(M ⊲⊳ϕ JN) ⊆ AnnR(M) ⊲⊳f J .

(ii) If JN ⊆ ϕ(M), and J ⊆ AnnS(ϕ(M)), then AnnR⊲⊳fJ (M ⊲⊳ϕ JN) =

AnnR(M) ⊲⊳f J. Moreover, R ⊲⊳f J/AnnR⊲⊳fJ(M ⊲⊳ϕ JN) ∼= R/AnnR(M).

P r o o f. (i) The statement follows easily from the definition.

(ii) By (i), AnnR⊲⊳fJ (M ⊲⊳ϕ JN) ⊆ AnnR(M) ⊲⊳f J . For the converse, let

(r, f(r) + j) ∈ AnnR(M) ⊲⊳f J . For every (m,ϕ(m) + n) ∈ M ⊲⊳ϕ JN , we have

rm = 0 = ϕ(rm), since r ∈ AnnR(M). By the assumption, J ⊆ AnnS(ϕ(M)) ⊆

AnnS(JN), and so jϕ(m) = 0 = jn. Note that f(r)n = 0, by Remark 3.11. There-

fore, (r, f(r) + j) ∈ AnnR⊲⊳fJ (M ⊲⊳ϕ JN). Also,

R ⊲⊳f J

AnnR⊲⊳fJ (M ⊲⊳ϕ JN)
=

R ⊲⊳f J

AnnR(M) ⊲⊳f J
∼=

R

AnnR(M)
,

by Proposition 2.1. �
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Corollary 3.13. Let JN ⊆ ϕ(M), and J ⊆ AnnS(ϕ(M)). Then AnnR(M) ∈

Spec(R) if and only if AnnR⊲⊳fJ(M ⊲⊳ϕ JN) ∈ Spec(R ⊲⊳f J).

P r o o f. This follows from Proposition 3.12 and Fact 2.3. �

Corollary 3.14. Let M and JN be Noetherian R-modules. Then the following

statements hold.

(i) Let JN ⊆ ϕ(M) and J ⊆AnnS(ϕ(M)). Then dimR⊲⊳fJ(M ⊲⊳ϕ JN) = dimR(M).

(ii) Let J ⊆ AnnS(N). Then dimR⊲⊳fJ (M ⊲⊳ϕ JN) = dimR(M).

P r o o f. (i) By Proposition 3.3, M ⊲⊳ϕ JN is a Noetherian (R ⊲⊳f J)-module.

Now the assertion follows from Proposition 3.12.

(ii) It follows from (i). �

Recall that an R-module L is called a strongly cotorsion module if Ext1R(F,L) = 0

for all R-modules F with finite flat dimension. One can easily show that if L is

a strongly cotorsion R-module, then Exti>1
R (F,L) = 0 for all R-modules F with

finite flat dimension. The terminology of strongly cotorsion modules was introduced

by Xu in [15] as a special case of cotorsion modules introduced by Enochs in [9]

as a generalization of injectivity for modules. In the following, we investigate the

strongly cotorsion property of the dth local cohomology module M ⊲⊳ϕ JN , where

d = dimR⊲⊳fJ(M ⊲⊳ϕ JN), which gives a generalization of [13], Theorem 2.2.

Theorem 3.15. Let (R,m) be a Noetherian local ring, and let J be a finitely gen-

erated R-module such that Spec(S) = V (J). Then Hd
m⊲⊳fJ

(M ⊲⊳ϕ JN) is a strongly

cotorsion R-module if and only if the R-modules Hd
m(M) and Hd

m(JN) are strongly

cotorsion, where d = dimR⊲⊳fJ(M ⊲⊳ϕ JN).

P r o o f. By Proposition 2.1, R ⊲⊳f J is a Noetherian local ring with maximal ideal

m ⊲⊳f J . In the following, the first R-isomorphism follows from [2], Theorem 4.2.1,

and the second one is induced by Proposition 3.5.

Hd
m⊲⊳fJ(M ⊲⊳ϕ JN) ∼= Hd

m(M ⊲⊳ϕ JN) ∼= Hd
m(M ⊕ JN) ∼= Hd

m(M)⊕Hd
m(JN).

For any R-module F with finite flat dimension, we have

Ext1R(F,H
d
m⊲⊳fJ(M ⊲⊳ϕ JN)) ∼= Ext1R(F,H

d
m(M))⊕ Ext1R(F,H

d
m(JN)),

and so the assertion holds. �

In the following, we investigate the Cohen-Macaulay property of the (R ⊲⊳f J)-

module M ⊲⊳ϕ JN . First, we consider the depth of M ⊲⊳ϕ JN .
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Remark 3.16. Let f : (R,m) → (S, n) be a homomorphism of Noetherin local

rings and letM be an S-module which is finitely generated as an R-module. Suppose

that p ∈ AssS(M), and let x ∈ M with AnnS(x) = p. Then f induces an embedding

R/(p ∩ R) → S/p ∼= Sx which makes S/p a finitely generated R/(p ∩ R)-module.

Therefore, p 6= n implies that p ∩ R 6= m. Using this fact, one can show that

depthR(M) = depthS(M).

Theorem 3.17. Let R and S be Noetherian local rings, and let J be a Noetherian

R-module. Then the following statements hold.

(i) Let M and JN be Noetherian R-modules. Then depthR⊲⊳fJ (M ⊲⊳ϕ JN) =

depthR(M ⊲⊳ϕ JN).

(ii) Let M be a Noetherian R-module. Then depthR⊲⊳fJ (M) = depthR(M).

(iii) Let JN be a Noetherian R-module. Then depthR⊲⊳fJ(JN) = depthR(JN) =

depthS(JN).

P r o o f. We just prove item (i). The proofs of the other items are similar.

(i) By Proposition 2.1, R ⊲⊳f J is a Noetherian local ring. Also, M ⊲⊳ϕ JN

is a finitely generated (R ⊲⊳f J)-module by [8], Proposition 3.2. So, the assertion

follows from Remark 3.16. �

Theorem 3.18. Let R and S be Noetherian local rings, and let M and J be

Noetherian R-modules such that J ⊆ AnnS(N). Then the (R ⊲⊳f J)-module

M ⊲⊳ϕ JN is Cohen-Macaulay if and only if the R-module M is Cohen-Macaulay.

P r o o f. By Theorem 3.17, depthR⊲⊳fJ(M ⊲⊳ϕ JN) = depthR(M ⊲⊳ϕ JN). Also,

depthR(M ⊲⊳ϕ JN) = min{depthR(M), depthR(JN)} = depthR(M), by Proposi-

tion 3.5. Using Corollary 3.14 (ii), we get the assertion. �

Remark 3.19. Let JN = 0. Then M ⊲⊳ϕ JN = {(m,ϕ(m)) : m ∈ M}. It

is easy to check that M ⊲⊳ϕ JN is isomorphic to M as both (R ⊲⊳f J)-modules

and R-modules. Now, assume that R and S are Noetherian local rings, and let M

and J be Noetherian R-modules. Then the (R ⊲⊳f J)-module M ⊲⊳ϕ JN is Cohen-

Macaulay if and only if the R-module M ⊲⊳ϕ JN is Cohen-Macaulay. Also, the

R-module M is Cohen-Macaulay if and only if the (R ⊲⊳f J)-module M is Cohen-

Macaulay, by Theorem 3.18.

Corollary 3.20. Let R and S be Noetherian local rings, and let M and J be

Noetherian R-modules such that J ⊆ AnnS(N). Then dimR⊲⊳fJ(M ⊲⊳ϕ JN) =

dimR(M ⊲⊳ϕ JN), provided that M is a Cohen-Macaulay R-module.
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P r o o f. By Theorem 3.18, depthR⊲⊳fJ(M ⊲⊳ϕ JN) = dimR⊲⊳fJ(M ⊲⊳ϕ JN).

Also, depthR⊲⊳fJ(M ⊲⊳ϕ JN) = depthR(M ⊲⊳ϕ JN), by Theorem 3.17. Now, Re-

mark 3.19 proves the claim. �

Corollary 3.21. Let JN = 0. Then AnnR⊲⊳fJ (M) = AnnR⊲⊳fJ(M ⊲⊳ϕ JN) =

AnnR(M) ⊲⊳f J . In addition, AnnR(M) ∈ Spec(R) if and only if AnnR⊲⊳fJ(M) ∈

Spec(R ⊲⊳f J).

P r o o f. The assertions are induced by Proposition 3.12, Remark 3.19, and

Fact 2.3. �

Recall that an R-module M is called prime if for all r ∈ R and m ∈ M , the

condition rm = 0 implies that m = 0 or rM = 0. For more details, see [14]. In the

following, we study the prime property of the (R ⊲⊳f J)-module M ⊲⊳ϕ JN .

Proposition 3.22. Let JN = 0. Then M ⊲⊳ϕ JN is a prime (R ⊲⊳f J)-module

if and only if M is a prime R-module.

P r o o f. Let M ⊲⊳ϕ JN = {(m,ϕ(m)) : m ∈ M} be a prime (R ⊲⊳f J)-module,

and let 0 6= r ∈ R, 0 6= m ∈ M such that rm = 0. Then

(0, 0) 6= (r, f(r)) ∈ R ⊲⊳f J and (0, 0) 6= (m,ϕ(m)) ∈ M ⊲⊳ϕ JN.

Also, (r, f(r))(m,ϕ(m)) = (rm,ϕ(rm)) = (0, 0). Therefore, for all (a, ϕ(a)) ∈

M ⊲⊳ϕ JN we have

(r, f(r))(a, ϕ(a)) = (ra, ϕ(ra)) = (0, 0).

Hence, rM = 0, as desired. The converse is also established in a similar way. �
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