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Abstract. Let G = (V,E), V = {v1,va,...,vn}, be a simple connected graph with n ver-
tices, m edges and a sequence of vertex degrees di > do > ... > dn. Denote by A
and D the adjacency matrix and diagonal vertex degree matrix of G, respectively. The
signless Laplacian of G is defined as L" = D + A and the normalized signless Laplacian
matrix as £ = D~Y2LYD~1/2. The normalized signless Laplacian spreads of a con-
nected nonbipartite graph G are defined as r(G) = fy;r/fy;{' and I(G) = fy;r — v}, where

'yi" = 7;' Z .2 'y,J{ > 0 are eigenvalues of L. We establish sharp lower and upper
bounds for the normalized signless Laplacian spreads of connected graphs. In addition, we
present a better lower bound on the signless Laplacian spread.
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MSC 2020: 15A18, 05C50

1. INTRODUCTION

Let G = (V,E),V = {v1,v2,...,0,}, be a simple connected graph with n vertices,
m edges and a sequence of vertex degrees A = dy > dy > ... 2 d, = > 0,
d; = d(v;). By ¢ ~ j we denote the adjacency of vertices v; and v; in graph G.

Let A = (@ij)nxn and D = diag(di,do,...,d,) be the adjacency and the diag-
onal degree matrix of G, respectively. Then L = D — A is the Laplacian matrix
of G. Because graph G is assumed to be connected, it has no isolated vertices and
therefore the matrix D~/2 is well-defined. The normalized Laplacian is defined
as L = D V2LD"Y2 = [ - D Y2AD"Y? = [ — R. Here I is the unity matrix,
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and R = D~Y/2AD~'/2? the Randi¢ matrix, see [6]. Further, denote by Lt = D 4 A
and £t = D™Y2LtD"1/2 = [ + D-Y2AD~Y? = ] 4+ R signless Laplacian and
normalized signless Laplacian matrix, respectively. For more information on these
matrices one can refer to [10], [12].

Eigenvalues of matrix £, v; =275 = ... > 7,1 = 7, = 0 are called normalized
Laplacian eigenvalues of G. Some well known properties of these eigenvalues are
(see [28])

n—1 n—1
(1.1) Y v =n and Y (%)’ =n+2R.(G),
i=1 i=1

where

.Rla;)__zzzdih

i~ ]
is the general Randi¢ index R_1, see e.g., [8], [26].
Eigenvalues of matrix Lt, v > 2 > ... > 7, > 0, are called the signless Laplacian
eigenvalues of G. Some well known properties of signless Laplacian eigenvalues are,
see [13]

(1.2) Z% =2m and Z'yf = Mi(G) + 2m,
i=1 i=1

where .
M(G) =) d;
i=1

is the first Zagreb index, see [20].

The signless Laplacian spread of a graph G is defined as sp+ (G) = v1 —n, see [22].
For details and several lower and upper bounds on s;+(G), see [1], [23].

The eigenvalues of matrix £, 'yf > 'y; > ... 25 >0, are normalized signless
Laplacian eigenvalues of G. The following identities are valid for them, see [9]:

(1.3) Z'y;r =n and Z('y:r)Q =n+2R_1(G).
i=1 i=1

The normalized Laplacian and normalized signless Laplacian eigenvalues are, re-
spectively, of the form, see [18], [21]

(1.4) v =1—on—it1 and ~ =1+p¢ fori=12,...,n,

where 1 = 91 > 02 > ... > 0, are Randié matrix eigenvalues, see [6], [12], [21].

The normalized Laplacian spread is defined by sz (G) = v; — 7,,_1, see [7], [19].
In [16], the Randi¢ spread is introduced as sg(G) = g2 — gn. It is also observed that
sc(G) = sr(Q), see [2], [19]. For more details on normalized Laplacian (Randié)
spread, see [2], [17], [24].
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The normalized signless Laplacian spreads of a connected nonbipartite graph G
are defined as r(G) = 75 /v,f and I(G) = 75 — ;. Recall that the normalized
Laplacian and normalized signless Laplacian eigenvalues of bipartite graphs coin-
cide, see [4]. Then, for bipartite graphs, ;7 = v, = 0, see [10]. Therefore, the
normalized signless Laplacian spreads of a connected bipartite graph G are consid-
ered as 7(G) =75 /7,_1 and [(G) =73 — 7,1

In this paper, we obtain sharp lower and upper bounds for the normalized signless
Laplacian spreads of connected graphs. Moreover, we present a better lower bound
on the signless Laplacian spread.

2. PRELIMINARIES

In this section we recall some known results about graph spectra and analytical
discrete inequalities, which will be used later.

Lemma 2.1 ([18]). For any connected graph G, the largest normalized signless
Laplacian eigenvalue is
+ _ 2
T :

Lemma 2.2 ([18]). Let G be a graph of order n > 2 with no isolated vertices.

Then 9
n—
S ===

Y2 =7,

n—1
if and only if G 2 K,,.

Lemma 2.3 ([5]). Let G be a connected nonbipartite graph with n > 3 vertices.
Then’yj' >0 fori=1,2,...,n.

Lemma 2.4 ([4]). If G is a bipartite graph, then the eigenvalues of L and L
coincide.

Lemma 2.5 ([15]). Let G be a connected graph with n > 2 vertices. Then
Vo =73 =...=7,_; ifand only if G =2 K,, or G = K 4.

Lemma 2.6 ([23]). Let G be a simple connected graph with n > 2 vertices. Then

(2.1) sp4(Q) < \/Z(n(Ml(G) J;Qm) - 4m2).
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Let us note that (2.1) was also proven in [1]. Besides, it was proven that equality
holds if and only if G = K, /3 ,,/2, for n even. In the same paper the following was

proven.

Lemma 2.7 ([1]). Let G be a simple connected graph with n > 2 vertices. Then

(2.2) 504(G) > %\/n(Ml(G) T 2m) — dm?.

Denote by t(G) the total number of spanning trees of G, and by G x G5 the Carte-
sian product of graphs G7 and Gs. In [14] the following quantity was introduced:
2t(G X KQ)
t1(G) = ———=.
1( ) t(G)
Lemma 2.8 ([12]). Let G be a connected graph with n vertices, m edges and t(GQ)
spanning trees. Then
n—1
_ _ 2mi(@)
det L~ = = .
¢ 1+ =5

i=1

Lemma 2.9 ([4]). If G is a connected bipartite graph with n vertices, m edges
and t(G) spanning trees, then

2mt(QG)

+ _ - _
det LT =det L™ = otD

If G is a connected nonbipartite graph with n vertices, then

. 4t (Q)
det £1 = = )
et L Zl:[l% det D

Lemma 2.10 ([10]). Let G be a bipartite graph of order n. Then~y; =2—7, _;,,
fori=1,2,...,n.

For the real number sequences a = (a;) and b = (b;), ¢ = 1,2,...,n, in [3] (see
also [25]) the following result was proven.

Lemma 2.11 ([3]). Let a = (a;) and b= (b;), i = 1,2,...,n be two real number
sequences with the properties a < a; < A and b < b; < B. Then

n n

(2.3) zn:aibi — %Zazzbz
i=1 i=1 i=1

1mn

<t-am-n[3) (- 2[3])
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The expression (2.3) can be observed in an equivalent, more appropriate form.
Namely, when n is even, the expression

is equal to
(m) = =
aln) = 7
while for n odd we have ( 1( 0
n — n -+
o(n) = 4n?

Thus, we obtain

if n is even,

1

(1)t 4 1) B 4
2n2 N -1 1

" % if n is odd.

Having this in mind, inequality (2.3) can be considered as

n n n
nZaibi—ZaiZbi <na
i=1

i=1 i=1

(2.5) n)(A — a)(B — b).

Lemma 2.12 ([11]). Let a = (a;), i = 1,2,...,n, be a positive real number
sequence with the property a1 > as > ... > a, > 0. Then

(2.6) n(rzé;l all/n /( (E \/Z»

with equality if as = ... = ap_1 = %(al + ap).

3. MAIN RESULTS

In the next theorem we determine a lower bound for the normalized signless Lapla-
cian ratio spread r(G) = 75 /7,7 in terms of R_;(G) and n.

Theorem 3.1. Let G be a connected nonbipartite graph with n > 3 vertices.
Then

oy V20 —1DR_(G)—n++/(n—1)(n+2R1(G) -4\’
(3.1) r(G)_—>( — )

g

S+

Equality holds if and only if G = K.
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Proof. For every i,i=2,3,...,n,

(v =)t —4ih) <o,

that is
(3.2) () 3 < O+
Summing up the above inequality over i, i = 2,3, ..., n, gives
n n
> (i +727n21 CEIE A D PEAS
i=2 =2

Then, by Lemma 2.1 and equation (1.3)

(n+2R_1(G) —4)+ (n — 1)y < (n—2)(v3 +%1).

By arithmetic-geometric mean inequality, AM-GM (see e.g. [25]), we have

2y/(n = 1)(n +2R_1(G) — Ay 1t < (n =23 +7),

that is

(33) /72 'yn 4n—1)(n+2R_1(G) — 4) .
’Yn '72 (n - 2)2

Since

from (3.3) we have that

(3.5) \/Z _ \/77 2(n — 1)R 1(G) — n)
'Yn '72 (n—2)2

Now, from (3.3) and (3.5) we obtain

\/2 (n—1)R_1(G) — n V(n—1)(n+2R_1(G) — 4)

n—2 n—2

)

§

from which we arrive at (3.1).

Equality in (3.2) holds if and only if v; € {75 ,'y } for i = 3,...,n — 1. Equality
n (3.3), that is in (3.5), holds if and only if v = ... = 4}, This implies that
equality in (3.1) holds if and only if 75 = ... = 4,7, that is, by Lemma 2.2, if and

only if G = K,,.
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Corollary 3.2. Let G be a connected nonbipartite graph with n > 3 vertices.
Then

L (VA — 1A + /ln—D(n+ (n - DA))
r(@) = 'y_z' > (n—2)2A '

Equality holds if and only if G =2 K.

Proof. In [27] it was proven that

n n
(3.6) 3K S R_4(G) < %
From the left-hand part of (3.6) and (3.1) the required result is obtained. O

Considering the proof techniques in Theorem 3.1 with Lemmas 2.4 and 2.5, we
get the following result.

Theorem 3.3. Let G be a connected bipartite graph with n > 3 vertices. Then

(3.7 (G = % % > <\/n+2R_1(G)_4+\/2<R—1<G>—1>>2.

WL e n—2 n—2

Equality holds if and only if G 2 K, 4, p+ q¢ = n.

By Lemma 2.10 and Theorem 3.3, we have:

Corollary 3.4. Let G be a connected bipartite graph with n > 3 vertices. Then

2
1+ (v +2R1(G) = 4)/(n—2) + VRER(G) —1)/(n—2)°

+ _ —_
Tn—1 = Tn—1 <

Equality holds if and only if G = K, 4, p+ q¢ = n.

In the next theorem we determine an upper bound for the normalized signless
Laplacian ratio spread r(G) = 75 /7 in terms of det L+ = #;(G)/det D and

parameter n.

Theorem 3.5. Let G be a simple connected nonbipartite graph with n > 3
vertices. Then

+ o — o1 n— 2\ 1 2
I T (=) IRRICE R ) )

Equality holds if and only if G = K.
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Proof. Note that by Lemma 2.3, %‘+ > 0,47 =1,2,...,n for any connected
nonbipartite graph G. Further, inequality (2.6) can be observed in the following

<n—1><§§jij)u<n 5z ( (\/37 \/Z»% 5

For a; = fy;r, 1= 2,...,n, the above inequality becomes

S /72 / 2“" 2
1/(n—1
D) T

From Lemma 2.1 and equation (1.3) we have

4(n —2)"" /’72 'Yn
(n_l)n_l(% i 1% ’Yn '72

According to the above we have that

+ N 8((n—2)/(n—1))"!

From the above and (3.4) we get

Y " —2)/(n— 1)) — det £*
o ﬁ[ iyt aacr

Now, from (3.9) and (3.10) we obtain

o n—2)/(n—1))""1 2((n—2)/(n—1))»"1 —det L+
\/; S \/ det L+ + \/ det L+ ’

Inequality (3.8) is obtained from the above 1nequahty and Lemma 2.9.

form:

Equality in (3.9) holds if vf = ... =y | = 5(72 + ), which implies that
equality in (3.8) holds if 75 = ... = 7;". From Lemma 2.2 it follows that the
equality in (3.8) holds if and only if G = K. O

Considering the techniques in Theorem 3.5 with Lemmas 2.4, 2.5, 2.8 and 2.9, we
obtain the following result for bipartite graphs:

Theorem 3.6. Let G be a simple connected bipartite graph with n > 2 vertices
and m edges. Then

T _ 2
_ Y2 _ Y det D 5 g _ 2mt(G)
(@) YL v 2mt(G) V2 detD )~

Equality holds if G = Kp 4, p+q = n.
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By Lemma 2.10 and Theorem 3.6, we get:

Corollary 3.7. Let G be a connected bipartite graph with n > 2 vertices. Then

2
1+ (det D/2mt(G)) (V2 + /2 — 2mt(G)/ det D)*

V1=V 2

Equality holds if and only if G =2 K, 4, p+ q¢ = n.

We now consider the normalized signless Laplacian linear spread [(G) of a con-
nected graph G. At first, we state the following remark.

Remark 3.8. From equation (1.4) we conclude that normalized signless Lapla-
cian linear spread coincides with normalized Laplacian (Randié) spread. Then, the
results derived for normalized signless Laplacian linear spread can be immediately
re-stated for normalized Laplacian (Randi¢) spread and vice versa.

By Theorem 4 of [19] and Remark 3.8, we directly have the following result.

Theorem 3.9. Let G be a connected nonbipartite graph with n > 3 vertices.
Then

22(n—DR_1(G) —n).

n—1

(3.11) 1G) = vt </
Equality holds if and only if G = K.

Corollary 3.10. Let G be a connected nonbipartite graph with n > 3 vertices.
Then
2n(n—1-19)
o(n—1)

IG) =15 — 7 <

Equality holds if and only if G &£ K.

Proof. The required result is obtained from (3.11) and the right-hand side
of (3.6). O

Remark 3.11. The inequality analogous to (3.11), but for signless Laplacian
eigenvalues, y1 = ¥2 > ... = v, > 0, was proven in [23].

Theorem 3.12. Let G be a connected bipartite graph with n > 3 vertices. Then
(3.12) UG) = 'Y;r - 'y'rerfl =% — Vo1 S2VR(G) - 1.
Equality holds if and only if G = K, 4, p +q = n.
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Proof. By Lagrange’s identity (see for example [25]), we have that

(n—2)i(ﬁ)2—<if)= PGP

2<i<j<n—1

From the above we get

— n—1 2 n—2
313) (12307 P () = o i L P07 7)),
=2 i=2 i=3
On the other hand, we have that
1
(3.14) (7 =7+ (O — ) 2 508 — )

Now, from (3.13) and (3.14) we obtain

(n—Q)Ti(vf (Z%) > (n_Z)(vi—%il)Q-

Thus, from Lemma 2.1 and equation (1.3)

(n—2)(n+2R 1(G) —4) — (n -2 > "= 2(5F —F )2,

wherefrom (3.12) is obtained.

Equality in (3.13) holds if and only if 7" € {v5,v } for i = 3,...,n — 2.
On the other hand, equality in (3.14) holds if and only if 7" = %(72 +t )
for i = 3,...,n — 2. This implies that equality in (3.12) holds if and only if
vy = ... = vl_,, which means, by Lemmas 2.4 and 2.5, that equality in (3.12)
holds if and only if G = K, ,. O

By Lemma 2.10 and Theorem 3.12, we have:

Corollary 3.13. Let G be a connected bipartite graph with n > 3 vertices. Then

Yo =7 <1+ VRa(G)—1 and ~f =7, ,>1-R(G)-1

with equalities if and only if G =2 Kp, 4, p+q = n.
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By Remark 3.9 of [24] and Remark 3.8, we directly have:

Theorem 3.14. Let G be a connected nonbipartite graph with n > 3 vertices.
Then

1 Y +>
(3.15) UG) =% = 2

1 \/2(n ~1DR_1(G) —n

where
an—1)= i(l—%)

Equality holds if and only if G =2 K.
Theorem 3.15. Let G be a connected bipartite graph with n > 3 vertices. Then

2(R1(G) = 1)

Y, Y Y D
(3.16) UG) =7 =M1 = Y2 = Va1 2 (n—2)a(n—2)

Equality holds if and only if G =2 K, 4, p+ q¢ = n.

Proof. Fora; =b;,i=2,...,n— 1, inequality (2.5) becomes

(n—z)faf— (Sao

(n —2)%a(n — 2)(A —a)>.

=2 1=2
For a; = 'y;r, i=2,...,n—1,a=7",, A=~y, the above inequality transforms
into
n—1 —
617) (-2 Y () (Z ) < 2t -2 i)
i=2

Then by Lemma 2.1 and equation (1.3), we get
(n—2)(n+2R_1(G) = 4) = (n = 2)* < (n = 2)*a(n — 2)(75 —7%_1)*
After rearrangement of the above, we obtain
2(n = 2)(R-1(G) = 1) < (n = 2)%a(n = 2)(vf —71_1)%

from which (3.16) is obtained.
Equality in (3.17) holds if and only if 75" = ... = 7;"_,. Then, by Lemmas 2.4
and 2.5, it follows that equality in (3.16) holds if and only if G = K, ,. O
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By Lemma 2.10 and Theorem 3.15, we have:

Corollary 3.16. Let G be a connected bipartite graph with n > 3 vertices. Then

_ R.1(G) -1 B R_1(G)—1
g >1 + = <1-
')/2 ')/2 + \/2(n_2)a(n_2) and ’Yn—l ’Yn—l \/2(n—2)a(n—2)’

with equalities if and only if G =2 K, 4, p+ ¢ = n.

Considering the proof techniques in Theorem 3.15 with equation (1.2), we arrive at:

Theorem 3.17. Let G be a connected graph with n > 2 vertices. Then

1 M1 (G) + 2m) — 4m?
(3.18) sL+(G)>—\/”( 1(G) +2m) - 4m?
n a(n)
Remark 3.18. Since a(n) < 1 for any n, we have that

514(Q) > e > 2 /ol (G) + 2m) — i,

1 \/n(Ml(G) +2m) — 4m?

which means that inequality (3.18) is stronger than (2.2) when n is odd.
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