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Abstract. We study the mapping property of the commutator of Hardy-Littlewood max-
imal function on Triebel-Lizorkin spaces. Also, some new characterizations of the Lipschitz
spaces are given.
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1. INTRODUCTION

The purpose of this article is first, to obtain the boundedness of commutators of
Hardy-Littlewood maximal function from Lebesgue spaces to Triebel-Lizorkin spaces,
and second, to give the characterization of Lipschitz space via the boundedness
results (precise definitions are given in the next section).

We briefly summarize some classical and recent works in the literature, which
lead to the results presented here. A well known result of Coifman, Rochberg and
Weiss (see [2]) states that the commutator

b, T](f) := 0T (f) = T(bf)

is bounded on some LP, 1 < p < oo, if and only if b € BMO, where T is the Calderén-
Zygmund operator with smooth homogeneous kernels. A particular case of the result
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of Janson (see [4]) states that for 1 < p < ¢ < oo with 1/¢=1/p—a/n, b € Lip,, if
and only if [b, T'] is bounded from L? to LY. In addition, in [13], Zhang proved that the
commutator of Hardy-Littlewood maximal function is bounded from L? to L? if and
only if the symbol belongs to Lip,, where 1/q = 1/p—a/n. Specially, using Sobolev-
Besov embedding, Paluszyniski in [8] obtained that for 1 < p < co and 0 < a < 1,
b € Lip,, if and only if [b, T] is bounded from L? to the homogeneous Triebel-Lizorkin
spaces F];’ »>°. Paluszynski’s idea was novel for the study about the boundedness of
commutators from L to F> and shed new light on the characterization of the
Lipschitz space via commutators.

On the other hand, it is well known that maximal operators play a key role in
differentiation theory, where they are used in obtaining almost everywhere conver-
gence for certain integral averages. An interesting question is raised: Can we extend
Paluszynski’s result to the commutator of Hardy-Littlewood maximal function? In
this paper, we give an affirmative answer as follows. It should be pointed out that,
in the study of the mapping properties of commutators on Triebel-Lizorkin spaces,
some of the techniques employed in [8] cannot be applied to Hardy-Littlewood

maximal function.

Theorem 1.1. Let 0 < o < n/(n+1) and 1/(1 —«a) < p < n/a. Then the
following statements are equivalent:

(al) b€ Lipy;

(a2) M, is a bounded operator from L* to F;"‘X’.

Theorem 1.2. Letm > 2,0 < a <n/((n+1)m) and 1/(1 — ma) < p < n/(ma).
Then the following statements are equivalent:
(bl) b€ Lip,;
(b2) My, is a bounded operator from LP to F;”a’oo.

The subsequent investigations about multilinear operators in the late 70s have
added to the success of Calderén’s work on commutators. A classical bilinear esti-
mate, the so-called Kato-Ponce commutator estimate (see [6]), is crucial in the study
of the Navier-Stokes equations. In the multilinear setting, commutators of Calderén-
Zygmund operators and fractional integrals started to receive attention only a few
years ago. Characterization of commutators of multilinear operators have just began
to be studied, see [1], [11], [12]. In this paper, we will characterize the boundedness
of commutators of bilinear Hardy-Littlewood maximal operator from the product of
Lebesgue spaces to Triebel-Lizorkin spaces.
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Theorem 1.3. Let b = (by,bs), 0 < o < 1 and 1/(1 — ) < p1, py < oo such
that 1 < p < n/a, where 1/p = 1/p1 + 1/p2. Then the following statements are
equivalent:

(c1) by,bs € Lip,;
(c2) M; is a bounded operator from LP* x LP? to F;"‘X’.

2. DEFINITIONS AND PRELIMINARIES

Definition 2.1. For a locally integrable function f, the Hardy-Littlewood max-
imal function M is defined by

M) = s oz [ 1]

B>x

We recall the definitions of commutators of the Hardy-Littlewood maximal func-
tion.

Definition 2.2. Let m € N. For a locally integrable function b, the commutator
of the Hardy-Littlewood maximal function is defined by

M(1)(@) = sup = [ (b = bl )]

B>x

the high-order commutator of the Hardy-Littlewood maximal function is defined by

My (/) () = sup |Ti| /B Ib(z) — b(y) ™ £ ()] dy.

B>z

In 2009, Lerner, Ombrosi, Pérez, Torres and Trujillo-Gonzalez in [7] introduced
the following multilinear maximal function that adapts to the multilinear Calderén-
Zygmund theory. In this paper, we only consider the bilinear case. A similar argu-
ment also works for the multilinear cases.

Definition 2.3. For a collection of locally integrable functions f = (f1, f2), the
bilinear maximal function M is defined by

M _SupH|B|/|f’L yl|dyl

Box

We now give the definition of the commutator related to the bilinear maximal
function.
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Definition 2.4. For two collections of locally integrable functions f = (f1, f2)
and b = (b1,b2), the commutator Mj is defined by

My(F)() = S Mo, () (o),
where =
My, +(F)(x) = sup ﬁ /B /B 1bs(2) — b Cwe) [T 1 5 )| s .

B3x j=1

Definition 2.5. Let 0 < a <1 and 0 < p < co. A locally integrable function f
is said to belong to the Campanato space Cq p if

1 1 ) p
sgp—@'a/n(@ /Q (@) — fol dx) ,

where fo = Q™" [, f(2) dz.
Definition 2.6. Let 0 < a < 1. The Lipschitz space Lip,, is a set of functions f

such that A B — J(@)
T+ —J(x
[flleip,, = sup — < 0.
2, hER™ hs£0 ||

Campanato spaces are a useful tool in the regularity theory of PDEs due to their
better structures, which allows us to give an integral characterization of the spaces of
Lipschitz continuous functions. This leads to a generalization of the classical Sobolev
embedding theorem. We refer the reader to Triebel’s books (see [9], [10]) for more
concrete definition and properties of Triebel-Lizorkin spaces on R™. This kind of
function spaces is closely related to some other function spaces, such as Sobolev and
Besov spaces. All these spaces are basic for many branches of mathematics such as
harmonic analysis, PDE, functional analysis and approximation theory.

Next, we will use the following characterizations of relevant function spaces.

Lemma 2.1.
(a) For0 < o<1 and 0 < p < oo we have

1ol o [ )~ bl ! (1 JRCCRE |pd)1/p
i ~ Ssup ———— X)) — T~ sup ————— —_— xT) — X
Lip,, Bp B[/ [, B Bp 1B/ B[ /5 B

with the obvious changes when p = co.
(b) For0 < a<1and1 < p < oo we have

1l g =

1
e
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Proof. The first equivalence in (a) can be found in [3], pages 14 and 38, the
second equivalence can be found in [5] for 1 < p < oo and in [11] for 0 < p < 1, and
the proof of (b) in [5]. O

3. PrROOFS oF THEOREMS 1.1, 1.2 AND 1.3

We now proceed with the proofs of Theorems 1.1, 1.2 and 1.3.

Proof of Theorem 1.1.  (al) = (a2): It is easy to see that M} is bounded
from LP to LY with 1 <p < oo and 1/¢g=1/p — a/n when b € Lip,,. Indeed, noting
that for any =z € R™,

My (f)(@) < [1blLip, Ma(f)(2),

where

Ma(9)@) = s e [ 1w,

we obtain that for f € LP,
My(f)(z) < oo a.e.

Let B be a fixed ball. Without loss of generality for any z, ' € B we may assume
that

z#a', My(f)(a') < My(f)(z) and My(f)(z) < oo.
Thus, for any € > 0 there is a ball By := B(zg,r) 3 « such that

1

(3.1) My (f)(x) — B /s

[b(x) = b(y)[f(y)|dy <e.
Since &’ € B(xo,r + |z — 2'|) =: Ba, we deduce that
(32 G L ) = bl W)l dy < M) )

By (3.1) and (3.2), we have

My(f)(x)
|B|/ D)7 ()l dy - |B|/ D)7 ()l dy +
< o) — b(a >||B| 50y + 5y [ 1) = bl W)l dy
- (5 L 1) = by <

To estimate for My(f)(x) — My(f)(a’), we need the following result.
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Claim 3.1. Let 0 < a <1, 1/(1 —a) < s < p and z,2’ € R™ with x # z’. For
any ball By := B(zo,7) 3 « and Bg := B(x,r + |z — 2'|), there exists a constant C
such that

/ 1 , .
‘@ 5 [b(x")—=b(y)|| f(y)| dy— |B | Bz| (") =b()||f ()| dy| < Claz—z'|“M(f)(z),

where M,(f)(x) = (M(|f]*)(2))"/*.

Proof. There are two possibilities as follows, and then we use different tech-
niques to analyze each part.
Case 1: r < |z — a'|. Then r + |z — 2’| < 2|x — 2/|, which implies that

‘ﬁ p, " TPl = |B|/ DIl >|dy\
s ‘E B ba") - b(y)Hf(y)ldy‘
1 !/
i ‘@ By [b(a") — b(y)llf(y)|dy‘

< CIBo|*/"M(f) (@) < Cla — /| M (f)(a).

Case 2: r > |r — 2'|. We can compute

o [ ) b= 5 [ e sty >|dy\
<| 3 Bl|<> b)) dy — |B|/ DIl >|dy\
‘|Bz|/ wllfwldy = |B|/ w)IIf >|dy}
=1 + 1.

By the fact that z,y € By and |z — 2’| < r, we obtain that
2 —y| <o — 2’|+ |z —y[ < 3r
In addition, we can conclude that |Bs| — |B1| < Cr" |z — 2/|. In fact, if n = 1,
we get |Ba| — |B1| = 2|z — 2’| immediately. If n > 2, it follows from |Bs| — |B1| &~
(r+ ]z —'|)" — r"™ and the differential mean value theorem that
(r+]z—2)" —r" =ne" o —2'| < Or" Yz — 2|
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for some £ € (r,r + |z — 2'|). Therefore,

_ML no_ |z — /| o/n
L= =5 B S, M) Il dy < OByl M () (2)

< Clo —2/|"M(f)(x).

For any 1/(1 —a) < s < p we have o < 1/, then

1 C
Iy < —— b(@") = b(y)I f(y dy<7/ f(y)ldy
TN 32\31|( ) = bW)IIf ()] B/ 32\31| ()]
Bs| — |Bi|)"/*
< WL By (1) (w) < Clo— o/ 12001 @),
|BQ| /s'—a/n
Thus, we obtain the desired result. O

Set € = |z — 2/|*M,(f)(z). Then Claim 3.1 gives us that
| My (f)(2) = My(f)(@")] < Cla — 2|* M (f) ().

Therefore, it follows from Lemma 2.1 that

| (F) e

wp e [ @) — (475 dr

Lr
< |su |B|2+a/n/ / M) = M) |
wp o [ M@ de| < CIMOL)lar < €l

Thus, the proof of (al) = (a2) is completed.
(a2) = (al): Let B be any fixed ball. For any = € B,

B3 ) =bol < g [ 1) b alu)dy < Mis) @)
We set ¢ such that 1/p — 1/g = a/n. By Sobolev-Besov embedding,

[Flze = [l o2 < CII-|

F;x,oo7

which shows that M is bounded from L? to L?. Then inequality (3.3) shows that

q
( / |b<x>—b3|qu> < [My(x8)lle < Cllxsllr < CIBIYP.
B
From Lemma 2.1 we get b € Lip,,. O
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Proof of Theorem 1.2. (bl) = (b2) is similar as the proof of (al) = (a2).
(b2) = (bl): From the fact that

Ib(z) — b < |Ti| /B Ib(z) — b(y)| dy

1 . 1/m
< (E [ @) = )" xnto) dy)
< (M) (@)™

We set ¢ such that 1/p — 1/q¢ = a/n. By Sobolev-Besov embedding,

Iz = 1l go= < Ol

F;nu,oo s

which shows that Mj ,, is bounded from L? to L2. Then

1/mgq
(/B |b(x) — bp|™ dx) <My (xm)IIS™ < Cllxslls™ < C1BY™.

This shows that b € Lip,. d

Proof of Theorem 1.3. (cl) = (c2): From the fact that

Mo, 1 (f1; f2)(2) < [[b1]|Lip, Ma(f1, f2) (@),

where M., is the bilinear fractional maximal operator

2

1
Mo ()(x) = sup |B|*/" H = / | fi(y:)| dy;.
B>z =1 | | B
Then we obtain that for f; € LP* and fy € LP2,

My 1 (f1, f2)(x) < oo ae.

Let B be a fixed ball. Without loss of generality, for any z, 2’ € B we may assume
that

x 7é xlv Mbl,l(flva)(x/) < Mb171(f17f2)(x) and Mbl,l(flaf2)(x) < Q.
Thus, for any £ > 0 there is a ball By := B(zg,r) 3 « such that
1
B4) Mo £)@) =15z [ [ o) = bl o)l o) s e < =
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Since &’ € B(xo,r + |z — 2'|) =: Ba, we deduce that

65) o [ [ 1) = b Al ()] s dve < Moy (s, f2)(e),
|B2|* /B, /B,
By (3.4) and (3.5), we have

My, 1 (f1, f2) (@) — My, 1(f1, f2)(2)

<o [ ) b1 s

_ﬁ/B 5 b1 (") = b1 (yo)[If1 ()l f2(y2) dys dya + €

<@ =g [ ] 16 d

bt [ ) = ) s

1

B W /32 B b1 (2") = b (yo)[|f1(y1) | f2(y2)] dyr dy2 + €.

We claim that there exists a constant C such that for 1/(1 — a) < s < min{p1, p2},

go) [ [ [relnpnle) el ) () i due
Cle — 2|
< %wm(m)m(h)(x»

Then, we conclude that

|Mo, 1 (f1, f2)(x) — Mo, 1(f1, f2) (@)

< Clz — o' [*M(f1)(x)M(f2)(z) + €
/ / XB: (Y1)XB: (y2)  xB.(y1)XB, (Y2)
Bs /B,

|B11%, | Ba?
x [b1(z") — b1 (y1) |H|fz (yi)| dy1 dys
i=1

< Cla = 2'["M,(f1)(2) Ms(f2) ().

Using the same argument as above, we conclude that

(Mo, 2(f1, f2)(2) = Mo, 2(f1, f2)(2")] < Cla — 2'|* M (f2) (2) M (f2)(2)-
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This shows that

IM(fr, f2) (@) = Mg(f1, f2)(@)] < Cla — 2/ |*M(f1) () M (f2) (@),

which implies that

[Mg(f1s f2)ll oo &

Sup |B|1+a/n/|M (f1, f2)(@) = (Mz(f1), f2) B| dz

Lr

Sup |B|2+a/n//|M fl,fQ ) E(flaf2)($')|da:’dx

Lr
sup / M (f1)(z)Ms(f2)(x) dx
|B| L
HM( My(f2)llee < Cllfillzen [l f2]l ez
Thus, the proof of (c1) = (c2) is completed. O

Now we give the proof of inequality (3.6).
Proof of (3.6).

Case 1: r < |z — a'|. Then r + |z — 2’| < 2|2 — 2’|, which implies that

it

xB: (Y1)xB: (¥2) X8 (Y1)xB. (y2)
TBE TR \H'fz )l dyn dz

/B /B X31 (y1)xB, (y2) N XB. (Y1)X B (Y2) )H|fl (40)] dyn dy
2 2

|B1[? | B2|?
< CM(f1)(@)M(f2)(x)
. |x /|Ot

\CW (f1)(@)M(f2)(z).

Case 2: r > |x — 2'|. Notice that by adding and subtracting

X5, (Y1) x5 (y2)
| fi(yi)| dy1 dya
Lz /BQ |B |2 H ’ ’

and
/B/B%#HVzMIdyldyz’
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we can compute

it

XB1\Y1)XB:1\Y2)  XB2\¥1)XB: (y2)
e - e \Hm )l dy dy:

“Jutn
Sl
Sl

=:1I; + IIs + IIs.

XB1\Y1)XB,\Y2)  XB:(Y1)XB y2
e - \Hm (v0)l dy

XB: (Y)xB: (¥2)  xB (Y1) xB: (y2) ‘
I I )| dys d
|BQ|2 |B |2 |f1 Yi | Y1 Ay2

XB: (Y1)XB, (y2)  xB.(y1)XB, (Y2) ‘
I I )| dy; d
|B2|2 |B |2 |f’L y’L | yl y2

For I1; we simply have

_ |B2|2 - |Bl|2 . 1
I, = |Bs 2 1B |2 /B1 /B1 | f1(y)|I f2(y2)| dyr dy=
<= Hum@m e < Rt M @M @)

We now move on to the control of II5. For 1/(1 — a) < s < min{py, p2} we arrive at

1 1
f < 5 /B | /B Bl < g [l (@

|z — 2’|

<oz rl
|BQ|a/n

M (f1) (@) M (f2)(x).

By applying the same argument as for IIs, we have that

T /|Ot

tly < CE= T M) @) M, ().

Thus, we obtain the desired result.
(c2) = (cl): Let B be any fixed ball. For any x € B,

|b1<x>—<b1)3|<@ /B /B b2 (2)—bu (525 (92) x5 (v2) dyn dyo S Mo, 1 (x5 X5) ().

Meanwhile, we can obtain

2

> Ibi(z) = (bi) 5] < M(xs, x) ().
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By Sobolev-Besov embedding, we have M; is bounded from LP* x LP? to L? with
1/p1+1/p2 —1/q = a/n. Then

2 1/q
([ - astar) < Clanlun sl < i,
Bi=1
This shows that b1, bs € Lip,,. O
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