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Abstract. Recently, motivated by Anderson, Dumitrescu’s S-finiteness, D.Bennis, M. El
Hajoui (2018) introduced the notion of S-coherent rings, which is the S-version of coherent
rings. Let R =

⊕

α∈G

Rα be a commutative ring with unity graded by an arbitrary commu-

tative monoid G, and S a multiplicatively closed subset of nonzero homogeneous elements
of R. We define R to be graded-S-coherent ring if every finitely generated homogeneous
ideal of R is S-finitely presented. The purpose of this paper is to give the graded version of
several results proved in D.Bennis, M. El Hajoui (2018). We show the nontriviality of our
generalization by giving an example of a graded-S-coherent ring which is not S-coherent
and as a special case of our study, we give the graded version of the Chase’s characterization
of S-coherent rings.
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1. Introduction

This section is devoted to some conventions and a recall of some standard back-

ground terminology. Throughout this paper all rings are commutative with unity,

and all modules are unital. The symbol G will denote a commutative monoid (that is,

a commutative monoid, written additively, with an identity element denoted by 0),

and all the graded rings and modules are graded by G. The symbol S will be a mul-

tiplicatively closed subset of nonzero homogeneous elements of R.

If R is a ring and M is an R-module, M is called S-finite if there exists a finitely

generated submodule N of M such that sM ⊆ N for some s ∈ S; this notion was

introduced by Anderson and Dumitrescu, see [3]. According to [7], E is called an

S-finitely presented R-module if there exists an exact sequence 0 → F1 → F0 →

E → 0 of R-modules such that F0 is a finitely generated free R-module and F1 is
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S-finite. Any finitely presented R-module is an S-finitely presented R-module, while

the converse is false in general; for more results and details, the reader can refer to [7],

Section 2. A finitely generated R-module M is said to be an S-coherent R-module

if every finitely generated R-submodule of M is an S-finitely presented R-module;

and a ring R is said to be an S-coherent ring if R is S-coherent as an R-module.

The concept of coherent rings is one of the most significant notions in homological

algebra. Because of its importance, there have been many generalizations to the

notion of coherent rings. Some of them are to the context of graded rings, see [4]–[6].

According to [5], a graded ring R is said to be a graded-coherent ring if every

finitely generated homogeneous ideal of R is a finitely presented ideal of R. Clearly,

every coherent graded ring is a graded-coherent ring, but the converse is false, see [5],

Example 3.2. In this paper we are interested in the graded version of S-coherent

modules and rings, which are called, respectively, graded-S-coherent modules and

graded-S-coherent rings, see Definition 3.1. In Section 3, we introduce and study the

notion of graded-S-coherent rings and the more general notion of graded-S-coherent

modules (over an arbitrary graded ring). Our main aims in this section are to

characterize graded-S-coherentmodules and graded-S-coherent rings and to establish

some of their basic properties. For rings, we have S-coherent ⇒ graded-S-coherent

and graded-coherent⇒ graded-S-coherent with neither implication being reversible.

2. Preliminaries

This section will be devoted to a standard recall of different basic notions and

properties that are related to graded ring theory. For more details, we refer the

reader to [8], Chapter II, Section 11, pages 163–176.

Let G be a grading commutative monoid written additively with an identity ele-

ment denoted by 0. By a graded ring R, we mean a ring graded by G, that is, a direct

sum of subgroups Rα of R such that RαRβ ⊆ Rα+β for every α, β ∈ G. The set

h(R) =
⋃

α∈G

Rα is the set of homogeneous elements of R. A nonzero element x ∈ R

is called homogeneous if it belongs to one of the Rα’s, homogeneous of degree α if

x ∈ Rα. Every z ∈ R may be written uniquely as a sum z = zαi
+ . . . + zαn

of

homogeneous elements zαi
∈ Rαi

, where α1, . . . , αn are distincts; zαi
is called the

homogeneous component of degree αi of z. If G is cancellative, then R0 is a subring

of R (clearly 1 ∈ R0) and every Rα is an R0-module.

By a graded R-module M , we mean an R-module graded by G, that is, a direct

sum of subgroups Mα of M such that RαMβ ⊆ Mα+β for every α, β ∈ G. The set

h(M) =
⋃

α∈G

Mα is the set of homogeneous elements of M .
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A graded R-module M is called a graded-free R-module (gr-free) if there exists

a basis (mi)i∈I ofM consisting of homogeneous elements. Note that any graded-free

R-module is a free R-module; the converse is false, see [15], page 21. When G is

cancellative, then Mα are R0-modules. Obviously, R is a graded R-module.

Let R and R′ be two graded rings, a ring homomorphism f : R → R′ is called

graded if f(Rα) ⊆ R′
α for all α ∈ G. A graded ring isomorphism is a bijective

graded ring homomorphism. Let M and M ′ be two graded R-modules and let

v : M → M ′ be an R-module homomorphism and β ∈ G; v is called graded of de-

gree β if v(Mα) ⊆ Mα+β for all α ∈ G. An R-module homomorphism v : M → M ′

is called graded if there exists β ∈ G such that v is graded of degree β. A graded

R-module isomorphism is a bijective graded R-module homomorphism of degree 0.

If v 6= 0 and G is cancellative, the degree of v is then determined uniquely. An exact

sequence of graded R-modules is an exact sequence, where the R-modules and the

R-module homomorphisms in question are graded.

A submodule N of M is called homogeneous if N =
⊕

α∈G

(N ∩ Mα). It is well

known that the following are equivalent for a submodule N of M :

(1) N is homogeneous;

(2) the homogeneous components of every element of N belong to N ;

(3) N is generated by homogeneous elements.

A homogeneous submodule of R is called a homogeneous ideal of R. If N is a ho-

mogeneous submodule of a graded R-module M , then M/N is a graded R-module,

where (M/N)α := (Mα + N)/N . If I is a homogeneous ideal of a graded ring R,

then R/I is a graded ring, where (R/I)α := (Rα + I)/I.

Let R1 and R2 be two graded rings. Then R = R1 × R2 is a graded ring with

homogeneous elements h(R) =
⋃

α∈G

Rα, where Rα = (R1)α × (R2)α for all α ∈ G. It

is well known that an ideal of R1 ×R2 is of the form I1 × I2 for some ideals I1 of R1

and I2 of R2. Also, it is easily seen that I1 × I2 is a homogeneous ideal of R1 × R2

if and only if I1, I2 are homogeneous ideals of R1 and R2, respectively.

Let R be a graded ring and letM be a graded R-module. If the grading monoid G

is a group and if S is a multiplicatively closed set of homogeneous elements of R,

then S−1R is a graded ring and S−1M is a graded S−1R-module, where (S−1R)i =

{r/s : r ∈ Rj , s ∈ Rk∩S and j−k = i} and (S−1M)i = {m/s : m ∈ Mj, s ∈ Rk ∩S

and j − k = i}.

Assume that the grading monoid is a cancellative torsion-free monoid. Let R be

a graded ring. Then R is called a graded-Noetherian ring (gr-Noetherian ring) if it

satisfies the ascending chain condition (a.c.c.) on homogeneous ideals; equivalently,

if each homogeneous prime ideal of R is finitely generated, see [16], Lemma 2.3. Ob-

viously, a Noetherian graded ring is a gr-Noetherian ring, while gr-Noetherian rings
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need not be Noetherian. It is known that the monoid ring A[X ;G] over a ring A is

a Noetherian ring (gr-Noetherian ring) if and only if A is a Noetherian ring and G

(each ideal of G) is finitely generated, see [11], Theorem 7.7, page 75, [16], Theo-

rem 2.4. Hence, if Q is the additive group of rational numbers and D is a Noetherian

ring, the group ring, A = D[X ;Q], is a gr-Noetherian ring but not a Noetherian ring.

3. Graded-S-coherent rings

This section initiates the study of graded-S-coherent modules and rings. We begin,

following the classical case, by giving the definition of graded-S-coherent modules.

Definition 3.1. A graded R-module M is said to be graded-S-coherent if it

is finitely generated and every finitely generated homogeneous submodule of M is

S-finitely presented. And a graded ring R is said to be graded-S-coherent, if it is

graded-S-coherent as a graded R-module; that is, if every finitely generated homo-

geneous ideal of R is S-finitely presented.

We next collect some immediate classes of graded-S-coherent modules and rings.

Remark 3.2. Let R be a graded ring. Then the following statements hold:

(1) Every finitely generated homogeneous R-submodule of a graded-S-coherent

R-module is graded-S-coherent.

(2) Recall from [5] that an R-module M is said to be graded-coherent if it is

finitely generated and every finitely generated homogeneous submodule of M

is finitely presented. Clearly, any graded-coherent R-module is a graded-S-

coherent R-module since every finitely presented module is S-finitely presented.

Hence, all graded-Noetherian ring (see [9]), graded-valuation domain (see [1]),

and graded Prüfer domain (see [2]) are graded-S-coherent rings.

(3) Obviously, every S-coherent graded R-module is a graded-S-coherent R-module

and every S-coherent graded ring is a graded-S-coherent ring. But the converse

is not true in general, as shown by the following example.

Example 3.3. If A is a countable direct product of Q[[t, u]]’s, consider the poly-

nomial ring graded by N via (A[X ])n = AXn for every n ∈ N, and let S = {1}.

Then A[X ] is graded-S-coherent but not S-coherent.

P r o o f. By [5], Example 3.2, the polynomial ring A[X ] is graded-coherent and

then it is graded-S-coherent, but it is not S-coherent. In fact, by [17], Proposition 18,

A[X ] is not coherent since there exists an ideal I which is not finitely generated and

it is the intersection of two finitely generated ideals. Now, since S = {1}, I is not

even S-finite, and then A[X ] is not S-coherent by [7], Theorem 3.8 (3). �
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The following result studies the behavior of graded-S-coherence of graded modules

in short exact sequences. It is the graded version of [7], Proposition 3.2.

Proposition 3.4. Let 0 → P
α

−→ N
β

−→ M → 0 be an exact sequence of graded

R-modules. Then the following statements hold:

(1) If P is finitely generated, N is graded-S-coherent and β has a cancellable degree,

then M is graded-S-coherent.

(2) IfM is graded-coherent, P is graded-S-coherent and α has a cancellable degree,

then N is graded-S-coherent.

(3) If N is graded-S-coherent and P is finitely generated, then P is graded-S-

coherent.

P r o o f. (1) Since N is finitely generated and β : N → M is surjective, we

have that M is finitely generated. Let M1 be a finitely generated homogeneous

submodule of M . Since β has a cancellable degree, the submodule β−1(M1) of N is

homogeneous, and we have the following exact sequence of graded R-modules:

0 → P → β−1(M1) → M1 → 0.

Now, β−1(M1) is finitely generated since M1 and P are so. Therefore, since N is

graded-S-coherent, β−1(M1) is S-finitely presented and so using [7], Theorem 2.4 (4),

M1 is S-finitely presented, as desired.

(2) Since M and P are finitely generated modules, we have that N is finitely

generated. Now, let N1 be a finitely generated homogeneous submodule of N .

Since α has a cancellable degree, consider the exact sequence of graded R-modules

0 → Ker(β|N1
)

α
−→ N1

β
−→ β(N1) → 0. Then, since β(N1) is a finitely generated ho-

mogeneous submodule of the graded-coherent moduleM , β(N1) is finitely presented.

Hence, Ker(β|N1
) is finitely generated, and since P is graded-S-coherent, Ker(β|N1

)

is S-finitely presented since it is homogeneous. Therefore, by [7], Theorem 2.4 (2),

N1 is S-finitely presented.

(3) This is an immediate consequence of Remark 3.2 (1). �

Remark 3.5. Let G be an abelian group, R be a graded ring and S a multi-

plicatively closed subset of R0. Then, recall from [14] that R is said to be graded

S-Noetherian if every homogeneous ideal of R is S-finite. Note that every graded

S-Noetherian ring is graded-S-coherent. Indeed, this follows by applying Proposi-

tion 2.3 of [7] and from the fact that when R is graded S-Noetherian, every finitely

generated graded R-module is graded S-Noetherian.

We next give our definition which generalizes the definition in [14].
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Definition 3.6. Let R be a graded ring and S a multiplicatively closed subset

of homogeneous elements of R (not necessarily of R0). Then R is said to be graded-

S-Noetherian if every homogeneous ideal of R is S-finite.

The next result presents the graded version of Proposition 2 (f) in [3]. For an

ideal I of R, IRS ∩R means the S-saturation of I.

Proposition 3.7. Let G be a group, R be a graded ring and S ⊆ R a multiplica-

tively closed subset of homogeneous elements of R. Then R is graded-S-Noetherian

if and only if RS is graded-Noetherian and for every finitely generated homogeneous

ideal I of R, IRS ∩R = (I : s) for some s ∈ S.

P r o o f. Suppose that R is graded-S-Noetherian and choose a homogeneous

ideal J of RS . Then there exists an ideal I of R such that I ∩ S = ∅ and J = IRS .

Then note that IRS ∩R is a homogeneous ideal of R which is graded-S-Noetherian,

then there exists s ∈ S such that s(IRS ∩R) ⊆ K ⊆ IRS ∩R for a finitely generated

ideal K of R. This implies that

[s(IRS ∩R)]RS = IRS ⊆ KRS ⊆ [IRS ∩R]RS = IRS .

Thus, J = KRS is finitely generated, that is, RS is a graded-Noetherian ring. Now,

suppose that I is a finitely generated homogeneous ideal of R. Then it is clear that

(I : s′) ⊆ IRS ∩ R for every s′ ∈ S. Put J = IRS ∩ R. Then J is S-finite, there

exist x1, x2, . . . , xn ∈ R and t ∈ S such that tJ ⊆ Rx1 + . . . + Rxn ⊆ J. Since

xi ∈ J = IRS ∩ R, we get tixi ∈ I for some ti ∈ S, where i = 1, 2, . . . , n. Fix

s = tt1t2 . . . tn. Then note that for every x ∈ J we have sx ∈ I, which implies that

J ⊆ (I : s), as needed.

For the reverse implication, assume that RS is graded-Noetherian and let J be

a homogeneous ideal of R. Then JRS ∩ R = LRS ∩ R for a finitely generated

homogeneous ideal L ⊆ J . If s ∈ S satisfies LRS ∩R = (L : s), then sJ ⊆ L, which

completes our proof. �

The following proposition investigates a change of rings result.

Proposition 3.8. Let ϕ : R → L be a graded ring homomorphism,M be a graded

L-module and S a multiplicatively closed subset of homogeneous elements of R such

that 0 /∈ ϕ(S). Then if the graded R-module L is finitely generated andM is graded-

S-coherent as an R-module, then M is graded-ϕ(S)-coherent as an L-module.

P r o o f. Let N be a finitely generated homogeneous L-submodule of M . Then

so is N as an R-submodule ofM . Hence, N is S-finitely presented over R sinceM is

graded-S-coherent over R, then, by [7], Proposition 2.6, N is ϕ(S)-finitely presented

over L since the R-module L is finitely generated. �
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Proposition 3.9. Let R be a graded ring, I be an S-finite homogeneous ideal

of R, where S is a multiplicatively closed subset of homogeneous elements ofR andM

be a graded R/I-module. Assume that I∩S = ∅ so that V := {s+I ∈ R/I; s ∈ S} is

a multiplicatively closed subset of homogeneous elements of R/I. Then the following

statements hold:

(1) M is graded-V -coherent as an R/I-module if and only if it is graded-S-coherent

as an R-module.

(2) If R is a graded-S-coherent ring, then R/I is a graded-V -coherent ring. The

converse holds if R/I is a graded-V -coherent ring and I is graded-S-coherent

as an R-module.

P r o o f. (1) (⇒) Let M be a graded-V -coherent R/I-module and let N

be a finitely generated submodule of M . Since M is graded-V -coherent as an

R/I-module, N is V -finitely presented R/I-module. Now, since I is S-finite, by [7],

Proposition 2.7, N is S-finitely presented R-module and so M is graded-S-coherent

R-module.

(⇐) Similar to the proof of the direct implication.

(2) The direct implication follows from (1). The reverse implication is a direct

application of Proposition 3.4 (2). �

The following theorem clarifies the situation for the product of graded S-coherent

modules.

Theorem 3.10. Let Mi be a graded Ri-module and Si a multiplicatively closed

set of homogeneous elements of Ri for i = 1, 2, . . . , n. Suppose that R = R1 ×

R2 × . . .×Rn, M = M1 ×M2 × . . .×Mn and S = S1 ×S2 × . . .× Sn. The following

statements are equivalent.

(1) Mi is a graded-Si-coherent Ri-module for each i = 1, 2, . . . , n.

(2) M is a graded-S-coherent R-module.

P r o o f. By mathematical induction on n, it suffices to prove the case n = 2.

(1) ⇒ (2): Suppose that N is a finitely generated homogeneous submodule of M.

Then we can write N = N1×N2 for a finitely generated homogeneous submodule Ni

ofMi for each i = 1, 2. Since Mi is a graded-Si-coherent Ri-module for each i = 1, 2,

there exists an exact sequence of Ri-modules 0 → Ki
αi−→ Fi

βi

−→ Ni → 0, where Ki

is Si-finite and Fi is finitely generated free Ri-module. Put K = K1 × K2, F =

F1 × F2. Consider the R-homomorphisms α1 × α2 : K → F defined by α(k1, k2) =

(α1(k1), α2(k2)) and also β1 × β2 : F → N defined by β(f1, f2) = (β1(f1), β2(f2)).

Then 0 → K
α1×α2−→ F

β1×β2

−→ N → 0 is an exact sequence of R-modules, where K is

S-finite and F is finitely generated free. Thus, N is S-finitely presented, namely, M

is a graded-S-coherent R-module.
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(2) ⇒ (1): Suppose thatM is a graded-S-coherentR-module. Consider the graded

ring epimorphism π1 : R → R1. Note that R1 is a finitely generated R-module

and 0 /∈ π1(S) = S1. Take a finitely generated homogeneous N1 of M . Then

N = N1× (0) (∼= N1) is a finitely generated homogeneous submodule of M. Since M

is a graded-S-coherent R-module, N (∼= N1) is an S-finitely presented R-module.

Then by [7], Proposition 2.6, N1 (∼= N) is an S1-finitely presentedR1-module. There-

fore, M1 is a graded-S1-coherent R1-module. Likewise, M2 is a graded-S2-coherent

R2-module.

�

As a consequence of the previous theorem, we have the following result.

Corollary 3.11. Let R =
n
∏

i=1

Ri be a direct product of graded rings Ri (n ∈ N)

and S =
n
∏

i=1

Si be a cartesian product of multiplicatively closed sets Si of homoge-

neous elements of Ri. Then R is graded-S-coherent if and only if Ri is graded-Si-

coherent for every i ∈ {1, . . . , n}.

Before giving the following two remarks, we first recall from [13] the idealiza-

tion construction. For a ring R and an R-module E (both not necessarily non-

trivially graded), the trivial ring extension of A by E is the ring A := R ∝ E,

whose underlying group is A ⊕ E with multiplication defined by (r, e)(r′, e′) =

(rr′, re′ + r′e).

Remark 3.12.

(1) As a particular case of Remark 3.2 (2), any graded-coherent ring is a graded-

S-coherent ring, see [5]. The converse is not true in general. Consider the

graded ring A = Z ∝ (Z2)
(N) with its natural Z2-grading; A0 = Z ∝ 0 and

A1 = 0 ∝ (Z2)
(N) and consider the multiplicative set of homogeneous ele-

ments S = {2n : n ∈ N} ∝ 0. Since (2, 0) is a homogeneous element and

(0 : (2, 0)) = 0 ∝ (Z2)
(N) is not a finitely generated ideal, then, according to [5],

Theorem 3.3, A is not graded-coherent. Then, taking any homogeneous ideal I

of A, we have that (2, 0)I is finitely generated. Hence, A is graded-S-Noetherian

and so graded-S-coherent by Remark 3.5.

(2) Recall from [7], Remark 3.4 (3) that if M is an S-finitely presented R-module,

then MS is a finitely presented RS-module. Thus, if R is a graded-S-coherent

ring, RS is a graded-coherent ring.

Now, we give the graded version of the S-counterpart of the classical Chase’s

result [10], Theorem 2.2. For reference purposes, it will be helpful to recall the

following elementary lemma.
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Lemma 3.13 ([12], Lemma 2.3.1). Let R be a ring, let I = (u1, u2, . . . , ur)

be a finitely generated ideal of R (r ∈ N) and let a ∈ R. Set J = I + Ra. Let F be

a free module on generators x1, x2, . . . , xr+1 and let 0 → K → F
f

−→ J → 0 be an

exact sequence with f(xi) = ui (1 6 i 6 r) and f(xr+1) = a. Then there exists an

exact sequence 0 → K ∩ F ′ → K
g
→ (I : a) → 0, where F ′ =

r
⊕

i=1

Rxi.

Theorem 3.14. Let R be a graded ring. The following assertions are equivalent:

(1) R is graded-S-coherent.

(2) (I : a) is an S-finite ideal of R for every finitely generated homogeneous ideal I

of R and for every homogeneous element a ∈ R.

(3) (0 : a) is an S-finite ideal of R for every homogeneous element a ∈ R and the

intersection of two finitely generated homogeneous ideals of R is an S-finite

ideal of R.

P r o o f. (1) ⇒ (2): Let I be a finitely generated homogeneous ideal of R and

let a be a homogeneous element of R. Then J = I + Ra is a finitely generated

homogeneous ideal of the graded-S-coherent ring R, and so J = I +Ra is S-finitely

presented. Then there exist an exact sequence of R-modules

0 → L → K → J → 0,

where L is S-finite. Thus, by Lemma 3.13, there exists a surjective homomorphism

L → (I : a) which makes (I : a) an S-finite ideal.

(2) ⇒ (1): Let I =
n
∑

i=1

Rri be a finitely generated homogeneous ideal of R. We

use induction on n to prove that I is S-finitely presented. For n = 1 we consider

the exact sequence of R-modules: 0 → (0 : r1) → R → I → 0. By hypothesis (2),

(0 : r1) is S-finite and so I is S-finitely presented, as desired.

For n > 1, let J =
n−1
∑

i=1

Rri. Consider the exact sequences of R-modules: 0 →

ker f →֒ Rn f
→ I → 0 and 0 → ker g →֒ Rn−1 g

→ J → 0 with f(ej) = g(ej) = rj ,

1 6 j 6 n − 1 and f(en) = rn, where (ej)
n
j=1 is the canonical basis of R

n. Then,

by Lemma 3.13, there exists an R-module homomorphism α : ker f → (J : rn) such

that the sequence of R-modules 0 → ker g →֒ ker f
α
→ (J : rn) → 0 is exact. By

hypothesis (2), (J : rn) is S-finite, and by induction hypothesis, J is S-finitely

presented, so that ker g is S-finite. Therefore, ker f is S-finite, so that I is S-finitely

presented, as desired.

(1) ⇒ (3): Consider the exact sequence of R-modules: 0→(0 : a) → R → Ra → 0,

where a is a homogeneous element of R. Since Ra is a finitely generated homogeneous

ideal of the graded-S-coherent ring R, Ra is S-finitely presented. Therefore (0 : a) is
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S-finite, by [7], Proposition 2.3 as desired. Then, let I and J be two finitely generated

homogeneous ideals of R. Then so is I + J and hence I + J is S-finitely presented

since R is graded-S-coherent. Therefore, I ∩ J is S-finite, by [7], Corollary 2.5.

(3) ⇒ (1): Let I =
n
∑

i=1

Rri be a finitely generated homogeneous ideal of R. We use

induction on n to show that I is S-finitely presented.

For n = 1, we consider the exact sequence of R-modules: 0 → (0 : r1) → R →

I → 0. By hypothesis (3), (0 : r1) is S-finite and so I is S-finitely presented,

as desired. Let n > 1. By induction hypothesis,
n−1
∑

i=1

Rri and Rrn are S-finitely pre-

sented and, by hypothesis (3), the intersection
(n−1
∑

i=1

Rri

)

∩Rrn is S-finite. Therefore,

I =
n−1
∑

i=1

Rri +Rrn is S-finitely presented, by [7], Corollary 2.5, as desired. �

Recall from [15] that a homogeneous ideal M of a graded ring R is said to be

a maximal homogeneous ideal if it is maximal among proper homogeneous ideals;

equivalently, if every nonzero homogeneous element ofR/M is invertible and a graded

ring is said to be graded-local if it has a unique maximal homogeneous ideal.

Proposition 3.15. Assume that the grading monoid G is cancellative and

let (R,M) be a graded-local ring such that M2 = 0 and S be a multiplicatively

closed set of homogeneous elements of R. The following statements are equivalent.

(1) R is a graded-S-coherent ring.

(2) (0 : x) is an S-finite ideal for every homogeneous element x ∈ R.

(3) M is S-finite.

P r o o f. (1) ⇒ (2): Follows from Theorem 3.14.

(2) ⇒ (3): Assume that M is not zero. Choose 0 6= x ∈ M ∩ h(R). Since xM = 0,

we have M ⊆ (0 : x) ⊆ M, that is, M = (0 : x). Then by assumption, M is an

S-finite ideal.

(3) ⇒ (1): Suppose that M is S-finite and I is a finitely generated homoge-

neous ideal of R. Assume that {a1, a2, . . . , an} is a minimal generator set of homo-

geneous elements of I. Consider the exact sequence 0 → Kerβ →֒ Rn β
−→ I → 0,

where β : Rn → I is defined by β(x1, x2, . . . , xn) = x1a1 + x2a2 + . . .+ xnan. Since

M2 = 0, we can easily get
n
∏

i=1

M ⊆ Kerβ. Let (x1, x2, . . . , xn) ∈ Kerβ be a ho-

mogeneous element. Then x1a1 + x2a2 + . . . + xnan = 0. Assume that for some i,

xi /∈ M. Then we have that xi is a unit, so we have ai = −x−1
i (x1a1 + x2a2 + . . .+

xi−1ai−1+xi+1ai+1+. . .+xnan). This gives I = (a1, a2, . . . , ai−1, ai+1, . . . , an), which
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is a contradiction. So we have Kerβ ⊆
n
∏

i=1

M, that is,
n
∏

i=1

M = Kerβ (since G is a

cancellative monoid and so β has a cancellable degree, thus Kerβ is a homogeneous

submodule and so every element of Kerβ is a sum of its homogeneous elements).

Since M is S-finite, so is
n
∏

i=1

M = Kerβ. Thus, I is S-finitely presented, that is, R

is a graded-S-coherent ring. �

We end this section with the following result, which studies the transfer of graded-

S-coherence under localizations.

Proposition 3.16. Assume that the grading monoid G is a group and let R be

a graded ring. If R is a graded-S-coherent ring, then RV is a graded-SV -coherent

ring for every multiplicative set V of homogeneous elements of R.

P r o o f. RV is a graded ring since G is a group and V is a multiplicative set of

homogeneous elements of R. Now, let J be a finitely generated homogeneous ideal

of RV . Then there is a finitely generated homogeneous ideal I of R such that J = IV .

Since R is graded-S-coherent, I is S-finitely presented. Then, by [7], Lemma 3.10,

the homogeneous ideal J = I
⊗

R

RV of RV is SV -finitely presented, as desired. �
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