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Abstract. Let R be a unital ∗-ring. For any a, s, t, v, w ∈ R we define the weighted
w-core inverse and the weighted dual s-core inverse, extending the w-core inverse and the
dual s-core inverse, respectively. An element a ∈ R has a weighted w-core inverse with the
weight v if there exists some x ∈ R such that awxvx = x, xvawa = a and (awx)∗ = awx.
Dually, an element a ∈ R has a weighted dual s-core inverse with the weight t if there exists
some y ∈ R such that ytysa = y, asaty = a and (ysa)∗ = ysa. Several characterizations
of weighted w-core invertible and weighted dual s-core invertible elements are given when
weights v and t are invertible Hermitian elements. Also, the relations among the weighted
w-core inverse, the weighted dual s-core inverse, the e-core inverse, the dual f -core inverse,
the weighted Moore-Penrose inverse and the (v, w)-(b, c)-inverse are considered.

Keywords: inverse along an element; {e, 1, 3}-inverse; {f, 1, 4}-inverse; weighted Moore-
Penrose inverse; (v, w)-(b, c)-inverse; w-core inverse; dual v-core inverse
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1. Introduction

In 2010, Baksalary and Trenkler in [1] introduced the generalized inverse A−
̺∗,x of

a complex matrix, which was initially investigated by Rao and Mitra in [24]. They

called it the core inverse in [1]. Also, the dual core inverse (see [1]) was given. Then

Rakić et al. in [23] generalized the core inverse and the dual core inverse of complex

matrices to an element in a unital ∗-ring. Later, several types of extended core

inverses, such as DMP inverses (see [14]), core-EP inverses (see [22]) (a.k.a. pseudo

core inverses in rings, see [10]), e-core inverses (see [18]), pseudo e-core inverses (see

[27]) andW -weighted core-EP inverses (see [9]) are introduced. Recently, the present

authors in [28] introduced the w-core inverse in a ∗-semigroup. It should be noted
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that one of the main properties of the w-core inverse is that it encompasses several

well-known outer inverses such as the core inverse, the e-core inverse, the core-EP

inverse and the Moore-Penrose inverse.

An involution a 7→ a∗ in a ring R is an anti-isomorphism of degree 2, that is,

(a∗)∗ = a, (a+ b)∗ = a∗ + b∗ and (ab)∗ = b∗a∗ for all a, b ∈ R. Further, R is called

a unital ∗-ring if R is a unital ring with involution. An element a ∈ R is Hermitian

if a∗ = a.

The aim of this paper is to introduce a class of weighted edition of w-core inverses

in a unital ∗-ring R, called the weighted w-core inverse. Also, the weighted dual

s-core inverse is defined. Several properties of them and relations with other types of

generalized inverses are derived. For instance, it is shown that a is weighted w-core

invertible with weight e if and only if w is invertible along a and a is {e, 1, 3}-invertible

for any a, w, e ∈ R with e an invertible Hermitian element. Also, it is proved that a

is weighted w-core invertible with weight e if and only if there exists an (unique)

idempotent p ∈ R such that (ep)∗ = ep, pa = 0 and u = p+ aw ∈ R−1. Then, new

characterizations for both weighted w-core invertibility and weighted dual v-core

invertibility are given by units, and their expressions are shown. Finally, we present

the relations between weighted w-core inverses with weight v and Drazin’s recently

introduced (v, w)-(b, c)-inverses in a ring R, see [8].

This paper is organized as follows. In Section 2, we give the definitions of weighted

w-core inverses and weighted dual s-core inverses. Then, several properties of them

are presented. In particular, it is proved in Theorem 2.8 that for any a, v, w ∈ R, a

is weighted w-core invertible with weight v if and only if there exists a unique x ∈ R

such that awxva = a, awxvx = x and (awx)∗ = awx. In Section 3, the existence

criteria for the weighted w-core inverse and the weighted dual s-core inverse are

derived provided that weights v and t are invertible Hermitian elements in rings. In

what follows, we assume that e and f are invertible Hermitian elements in R. Also,

we characterize both the weighted w-core invertible and the weighted dual s-core

invertible elements by units. In Section 4, the relations among the weighted w-core

inverse, the weighted dual s-core inverse, the e-core inverse, the dual f -core inverse,

the weighted Moore-Penrose inverse and the (v, w)-(b, c)-inverse are derived.

For the convenience of readers, some basic concepts of generalized inverses are

presented below.

Let R be an associative ring with unity 1. An element a ∈ R is called (von

Neumann) regular if there exists x ∈ R such that axa = a. Such an x is called

an inner inverse of a, and is denoted by a−. By a{1} we denote the set of all

inner inverses of a. The left annihilator and right annihilator of a are defined by
0a = {x ∈ R : xa = 0} and a0 = {x ∈ R : ax = 0}, respectively. It is known from [23]

that aR = bR implies 0a = 0b, and dually Ra = Rb implies a0 = b0.
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An element a ∈ R is Drazin invertible (see [6]) if there exists x ∈ R and a nonnega-

tive integer k such that ax = xa, xax = x and ak = ak+1x. Such x is called a Drazin

inverse of a. It is unique if it exists. The smallest nonnegative integer k is called

the Drazin index of a, and is denoted by ind(a). If ind(a) = 1, the Drazin inverse

of a is the group inverse of a, and it is denoted by a#. By RD and R# we denote

the sets of all Drazin invertible and group invertible elements in R, respectively. It

is well known (see [11]) that a ∈ R# if and only if a ∈ a2R ∩ Ra2. In particular, if

a = a2x = ya2 for some x, y ∈ R, then a# = yax = y2a = ax2.

In 2011, Mary introduced the concept of the inverse along an element. Later,

Drazin extended the inverse along an element to the inverse along two elements, i.e.,

the (b, c)-inverse, see [7]. Given any a, b, c ∈ R, an element a ∈ R is called

(b, c)-invertible if there exists some y ∈ R satisfying y ∈ (bRy) ∩ (yRc), yab = b and

cay = c. The (b, c)-inverse of a is unique if it exists. It is known from [7] that a is

(b, c)-invertible if and only if yay = y, yR = bR and Ry = Rc if and only if b ∈ Rcab

and c ∈ cabR. In particular, a is invertible along d if and only if a is (d, d)-invertible

if and only if d ∈ dadR∩Rdad. The inverse of a along d is unique if it exists, and is

denoted by a‖d. By R‖d we denote the set of all invertible elements along d. In The-

orem 11 of [15], and Corollary 3.4 of [16], Mary showed that a ∈ R# if and only if a‖a

exists if and only if 1‖a exists. In these cases, a‖a = a# and 1‖a = aa#. One also

knows from Theorem 2.2 of [16] that if d = dadx = ydad for some x, y ∈ R, then a‖d =

dx = yd. More results on the inverse along an element can be referred to [2], [3], [4].

Throughout this paper, R is a unital ∗-ring. Recall that an element a ∈ R is

called weighted Moore-Penrose invertible (see [21]) if there exists an element x ∈ R

such that

(1) axa = a,

(2) xax = x,

(3) (eax)∗ = eax,

(4) (fxa)∗ = fxa,

where e and f are two invertible Hermitian elements, and such an x is called

a weighted Moore-Penrose inverse of a. It is unique if it exists, and is denoted

by a†e,f . Moreover, any x ∈ R satisfying (1) axa = a and (3) (eax)∗ = eax is

called an {e, 1, 3}-inverse of a, and is denoted by a
(1,3)
e . Also, any x ∈ R satisfy-

ing (1) axa = a and (4) (fxa)∗ = fxa is called an {f, 1, 4}-inverse of a, and is de-

noted by a
(1,4)
f . The sets of all weighted Moore-Penrose invertible, {e, 1, 3}-invertible

and {f, 1, 4}-invertible elements in R are denoted by R†
e,f , R

{1,3}
e and R

{1,4}
f , re-

spectively. In particular, a ∈ R†
e,f if and only if a ∈ R

{1,3}
e ∩ R

{1,4}
f . In this

case, a†e,f = a
(1,4)
f aa

(1,3)
e . If e = f = 1, then the weighted Moore-Penrose in-

verse is just the classical Moore-Penrose inverse (see [20]), the {e, 1, 3}-inverse is
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the {1, 3}-inverse and the {f, 1, 4}-inverse is the {1, 4}-inverse. The Moore-Penrose

inverse, {1, 3}-inverse and {1, 4}-inverse of a are denoted by a†, a(1,3) and a(1,4),

respectively. We denote by R†, R{1,3} and R{1,4} the sets of all Moore-Penrose

invertible, {1, 3}-invertible and {1, 4}-invertible elements in R, respectively.

Following [23], an element a ∈ R is core invertible if there exists some x ∈ R such

that axa = a, xR = aR and Rx = Ra∗. Dually, if there exists an element y ∈ R such

that aya = a, yR = a∗R and Ry = Ra, then y is called a dual core inverse of a. The

core (or dual core) inverse of a is unique if it exists, and is denoted by a©# (or a©#).

By R©# and R©# we denote the sets of all core invertible and dual core invertible

elements in R, respectively. Moreover, they proved in [23], Theorem 2.14 that the

core inverse x of a can be characterized by the unique solution of the following

five equations:

axa = a,(1)

xax = x,(2)

ax2 = x,(3)

xa2 = a,(4)

(ax)∗ = ax.(5)

Dually, the dual core inverse y of a can be expressed by the unique solution of the

following five equations:

aya = a,(1′)

yay = y,(2′)

y2a = y,(3′)

a2y = a,(4′)

(ya)∗ = ya.(5′)

Given any a, e ∈ R, a is called e-core invertible (see [18]) if there exists some x ∈ R

such that axa = a, xR = aR and Rx = Ra∗e. The e-core inverse of a is unique if it

exists, and is denoted by a©#e . Further, the writers in [18] characterized the existence

of the e-core inverse of a ∈ R by the unique element x satisfying ax2 = x, xa2 = a

and (eax)∗ = eax. Dually, they showed that the dual f -core inverse of a is the unique

element af,©# satisfying (af,©#)
2a = af,©#, a

2af,©# = a and (faf,©#a)
∗ = faf,©#a. More

results on e-core inverses and dual f -core inverses can be referred to [18] and [26].

Assume that S is a ∗-semigroup, that is a semigroup with an involution ∗ satisfying

(x∗)∗ = x and (xy)∗ = y∗x∗ for every x, y ∈ S. The present authors in [28] recently

introduced the w-core inverse by three equations in S, extending the classical core

inverses. Given any a, w ∈ S, we say that a is w-core invertible (see [28]) if there
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exists some x ∈ S such that awx2 = x, xawa = a and (awx)∗ = awx. Such an x

is called a w-core inverse of a. Moreover, the w-core inverse of a is unique if it

exists, and is denoted by a©#w . Dually, the dual v-core inverse of a (see [28]), when

exists, is denoted by the unique av,©# such that (av,©#)
2va = av,©#, avaav,©# = a and

(av,©#va)
∗ = av,©#va. Therein, it is proved in Theorems 2.6 and 2.18 of [28] that a is

w-core invertible if and only if w is invertible along a and a is {1, 3}-invertible, and a

is dual v-core invertible if and only if v is invertible along a and a is {1, 4}-invertible.

It is known that a ∈ R# if and only if a ∈ a2R ∩ Ra2 if and only if 1 is invertible

along a. From the above, one knows that the core inverse is extended to the w-core

inverse of quadratic level. More results on w-core inverses can be referred to [29].

As usual, the sets of all e-core invertible, dual f -core invertible, w-core invertible

and dual v-core invertible elements in R are denoted by R©#
e , Rf,©#, R

©#
w and Rv,©#,

respectively.

2. Weighted w-core inverses and weighted dual s-core inverses

We begin this section with the weighted w-core inverse and the weighted dual

s-core inverse of an element in a unital ∗-ring.

Definition 2.1. Let a, v, w ∈ R. The element a has a weighted w-core inverse

with weight v if there exists x ∈ R such that

(1) awxvx = x,

(2) xvawa = a,

(3) (awx)∗ = awx.

Such an x is called a weighted w-core inverse of a with weight v.

By Definition 2.1, one can observe that the weighted w-core inverse with weight 1

coincides with the w-core inverse and the weighted 1-core inverse with weight 1

coincides with the core inverse. The existence of weighted 1-core inverse with weight e

coincides with the existence of e-core inverse, see Corollary 4.6 below.

As was stated in [28], all core invertible elements are w-core invertible. However,

the converse statement may not be true. Herein, we claim that all w-core invertible

elements are weighted w-core invertible. In general, the weighted w-core invertibility

of an element does not imply its w-core invertibility as Example 2.2 below shows.

Example 2.2. Let R = M2(C) be the ring of all 2 by 2 complex matri-

ces and let the involution ∗ be the transpose. Suppose A =
[

i 0

1 0

]

, V =
[

0 1

1 1

]

and W =
[

1 0

0 1

]

∈ R. Then A is weighted W -core invertible with weight V and
[

(i+2)/5 (−2i+1)/5

(1−2i)/5 (−2−i)/5

]

is the weighted W -core inverse of A with weight V . However,

A /∈ RA∗A, i.e., A /∈ R{1,3} (see Lemma 3.1 below), and hence A /∈ R©#
W and A /∈ R©#.
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In [28], the w-core inverse of a ∈ R is characterized by five equations. It is natural

to consider whether we can characterize the weighted w-core inverse by the solution

of five equations. Indeed, Proposition 2.3 below illustrates this assumption.

Proposition 2.3. Let a, v, w, x ∈ R. Then the following conditions are equiva-

lent:

(i) awxvx = x and xvawa = a;

(ii) awxva = a, xvawx = x, awxvx = x and xvawa = a.

P r o o f. (ii) ⇒ (i) It is obvious.

(i) ⇒ (ii) Assume that awxvx = x and xvawa = a. Then we have a = xvawa =

(awxvx)vawa = awxv(xvawa) = awxva and x = awxvx = (xvawa)wxvx =

xvaw(awxvx) = xvawx, as required. �

Proposition 2.3 states that the weighted w-core inverse x of a with the weight v

can be characterized by the solution of the following five equations.

Proposition 2.4. Let a, v, w, x ∈ R. Then the following conditions are equiva-

lent:

(i) x is the weighted w-core inverse of a with weight v;

(ii) awxva = a, xvawx = x, awxvx = x, xvawa = a and (awx)∗ = awx.

First and most fundamentally, the following result is presented.

Theorem 2.5. Let a, v, w ∈ R. If a is weighted w-core invertible with weight v,

then it has a unique weighted w-core inverse with weight v.

P r o o f. Suppose that x, y ∈ R are two weighted w-core inverses of a with

weight v. By Proposition 2.4, we have awxva = a = awyva, xvawx = x, yvawy = y,

awxvx = x, awyvy = y, xvawa = a = yvawa, (awx)∗ = awx and (awy)∗ = awy.

Then we get

x = xvawx = xv(awyva)wx = xvaw(awyvy)vawx = (xvawa)wyvyvawx

= (awyvy)vawx = yvawx = (yvawy)vawx = yv(awy)∗vawx

= yvy∗w∗(awxva)∗vawx = yvy∗w∗a∗v∗(awxva)wx = yvy∗w∗a∗v∗awx

= yv(awxvawy)∗ = yv(awy)∗ = yvawy = y.

Hence, a has a unique weighted w-core inverse with weight v. �

As Theorem 2.5 above shows, the weighted w-core inverse of a with weight v is

unique if it exists, and is denoted by a©#v,w. We denote by R
©#
v,w the set of all weighted

w-core invertible elements with weight v in R.

In what follows, we give the definition of the weighted dual s-core inverse with

weight t in a ring R.
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Definition 2.6. Let a, s, t ∈ R. The element a has a weighted dual s-core inverse

with weight t if there exists x ∈ R such that

(1′) xtxsa = x,

(2′) asatx = a,

(3′) (xsa)∗ = xsa.

Such an x is called a weighted dual s-core inverse of a with weight t.

The weighted dual s-core inverse of a with weight t is unique if it exists, and is

denoted by as,t,©#. We denote by Rs,t,©# the set of all weighted dual s-core invertible

elements with weight t in R.

The following result presents the relationship between the weighted w-core inverse

and the weighted dual s-core inverse in R.

Proposition 2.7. Let a, v, w ∈ R. Then a is weighted dual s-core invertible with

weight t if and only if a∗ is weighted s∗-core invertible with weight t∗. In this case,

(as,t,©#)
∗ = (a∗)©#t∗,s∗ .

P r o o f. Suppose x ∈ R is the weighted dual s-core inverse of a with weight t.

It follows from xtxsa = x, asatx = a and (xsa)∗ = xsa that a∗s∗x∗t∗x∗ = x∗,

x∗t∗a∗s∗a∗ = a∗ and (a∗s∗x∗)∗ = a∗s∗x∗ by taking the involution. Therefore, x∗ is

the weighted s∗-core inverse of a∗ with weight t∗. �

Let Mn×n(C) be the ring of all n× n matrices over the complex field C with con-

jugate transpose as involution. Given A ∈ Mn×n(C) with the core inverse existing,

Wang and Liu in Theorem 2.1 of [25] proved the fact that A©# is the unique solution

of AXA = A, AX2 = X and (AX)∗ = AX in Mn×n(C). In fact, one also can see

from the proof of Theorem 2.1 of [25] that its converse statement also holds without

the existence of A©#. We next generalize this result to the weighted w-core inverse

in a unital ∗-ring.

Theorem 2.8. Let a, w, v ∈ R. Then a ∈ R©#
v,w if and only if there exists a unique

x ∈ R such that awxva = a, awxvx = x and (awx)∗ = awx. In this case, a©#v,w = x.

P r o o f. We first assume a ∈ R©#
v,w. Then we have awa

©#
v,wva = a, awa©#v,wva

©#
v,w =

a©#v,w and (awa©#v,w)
∗ = awa©#v,w. Hence, the existence is proved. We next prove the

uniqueness. For any x ∈ R satisfying awxva = a, awxvx = x and (awx)∗ = awx,

we have

x = awxvx = (a©#v,wvawa)wxvx = a©#v,wvaw(awxvx) = a©#v,wvawx

= a©#v,wv(awx)
∗ = a©#v,wv(awa

©#
v,wvawx)

∗ = a©#v,wvx
∗w∗a∗v∗awa©#v,w

= a©#v,wvx
∗w∗a∗v∗aw(a©#v,wvawa

©#
v,w) = a©#v,wv(awa

©#
v,wvawx)

∗vawa©#v,w

= a©#v,wv(awx)
∗vawa©#v,w = a©#v,wv(awxva)wa

©#
v,w = a©#v,wvawa

©#
v,w = a©#v,w.
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Conversely, assume that there exists a unique x ∈ R such that awxva = a,

awxvx = x and (awx)∗ = awx. Define y = a − xvawa + x, then awyvy =

aw(a− xvawa+ x)v(a− xvawa+ x) = a− xvawa+ x, awy = aw(a− xvawa+ x) =

awx = (awx)∗ = (awy)∗ and awyva = aw(a−xvawa+x)va = a. As for the unique-

ness of x, we obtain x = y = a− xvawa + x, i.e., a = xvawa, as required. �

3. Characterizations of weighted w-core inverses

and weighted dual s-core inverses

In this section, we mainly investigate characterizations and representations of the

weighted w-core inverse with weight e and the weighted dual s-core inverse with

weight f in unital ∗-rings.

We begin with an auxiliary lemma.

Lemma 3.1 ([27], Propositions 2.1 and 2.2). Let a, e, f ∈ R. We have the follow-

ing results:

(i) a is {e, 1, 3}-invertible if and only if a ∈ Ra∗ea. Moreover, if a = xa∗ea for

some x ∈ R, then x∗e is an {e, 1, 3}-inverse of a;

(ii) a is {f, 1, 4}-invertible if and only if a ∈ af−1a∗R. Moreover, if a = af−1a∗y

for some y ∈ R, then f−1y∗ is an {f, 1, 4}-inverse of a.

Theorem 3.2. Let a, e, w ∈ R. Then the following conditions are equivalent:

(i) a is weighted w-core invertible with weight e;

(ii) there exists x ∈ R such that awxex = x, xeawa = a, (awx)∗ = awx, awxea = a

and xeawx = x;

(iii) there exists x ∈ R such that awxea = a, xR = aR and Rx = Ra∗;

(iv) there exists x ∈ R such that awxea = a, 0x = 0a, and x0 = (a∗)0;

(v) there exists x ∈ R such that awxea = a, 0x = 0a, and (a∗)0 ⊆ x0;

(vi) w ∈ R‖a and a ∈ R
{1,3}
e .

In this case, a©#e,w = w‖aa
(1,3)
e e−1.

P r o o f. (i) ⇒ (ii) by taking v = e in Proposition 2.4.

(ii) ⇒ (iii) Given (ii), x = awxex implies x ∈ aR, which together with a =

xeawa ∈ xR guarantees xR = aR. Note that xeawx = x and (awx)∗ = awx. Then

x = xeawx = xe(awx)∗ = xex∗w∗a∗ ∈ Ra∗. Also, by awxea = a and (awx)∗ = awx

we have a∗ = (awxea)∗ = a∗eawx ∈ Rx. Therefore, Rx = Ra∗.

(iii) ⇒ (iv) and (iv) ⇒ (v) are clear.
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(v) ⇒ (vi) Given (v), from awxea = a we have (1 − awxe)a = 0 and thus

1 − awxe ∈ 0a. As 0x = 0a, (1 − awxe)x = 0, i.e., x = awxex. This means

a = awxea = aw(awxex)ea ∈ awaR. Also, from awxea = a we obtain a∗ =

(awxea)∗ = a∗e(awx)∗ and 1 − e(awx)∗ ∈ (a∗)0, which together with (a∗)0 ⊆ x0

ensures x(1−e(awx)∗) = 0, i.e., x = xe(awx)∗. So, awx = (awx)e(awx)∗ , which im-

plies (awx)∗ = awx. Thus, a∗ = a∗e(awx)∗ = a∗eawx and a = awxea = (awx)∗ea =

x∗w∗a∗ea ∈ Ra∗ea. By Lemma 3.1 we have a ∈ R
{1,3}
e . Again, applying (a∗)0 ⊆ x0

and 0x = 0a, we have a = xeawa ∈ Rawa. Therefore, w ∈ R‖a and a ∈ R
{1,3}
e .

(vi) ⇒ (i) Note that w ∈ R‖a and a ∈ R
{1,3}
e . To prove a is weighted w-core

invertible with weight e, it is sufficient to prove that x = w‖aa
(1,3)
e e−1 is the weighted

w-core inverse of a with weight e. Indeed, we have:

(1) Since w ∈ R‖a implies w‖a ∈ aR, we have w‖a = as for some s ∈ R. Hence,

aa
(1,3)
e w‖a = aa

(1,3)
e as = as = w‖a.

So, awxex = aw(w‖aa
(1,3)
e e−1)e(w‖aa

(1,3)
e e−1) = (aww‖a)a

(1,3)
e w‖aa

(1,3)
e e−1=

aa
(1,3)
e w‖aa

(1,3)
e e−1 = (aa

(1,3)
e w‖a)a

(1,3)
e e−1 = w‖aa

(1,3)
e e−1 = x.

(2) Note also that w ∈ R‖a. Then w‖a ∈ Ra and w‖aa
(1,3)
e a = taa

(1,3)
e a = ta = w‖a

for some t ∈ R. So, xeawa = w‖aa
(1,3)
e e−1eawa = (w‖aa

(1,3)
e a)wa = w‖awa = a.

(3) (awx)∗ = (aww‖aa
(1,3)
e e−1)∗ = (aa

(1,3)
e e−1)∗ = (e−1(eaa

(1,3)
e )e−1)∗ = e−1 ×

(eaa
(1,3)
e )∗e−1 = e−1eaa

(1,3)
e e−1 = awx.

The proof is completed. �

We can also prove an analogous result relating to the weighted dual s-core inverse

with weight f in a ring R.

Theorem 3.3. Let a, f, s ∈ R. Then the following conditions are equivalent:

(i) a is weighted dual s-core invertible with weight f ;

(ii) there exists x ∈ R such that xfxsa = x, asafx = a, (xsa)∗ = xsa, afxsa = a

and xsafx = x;

(iii) there exists x ∈ R such that afxsa = a, xR = a∗R and Rx = Ra;

(iv) there exists x ∈ R such that afxsa = a, 0x = 0(a∗) and x0 = a0;

(v) there exists x ∈ R such that afxsa = a, 0(a∗) ⊆ 0x and x0 = a0;

(vi) s ∈ R‖a and a ∈ R
{1,4}
f−1 .

In this case, as,f,©# = f−1a
(1,4)
f−1 s

‖a.

Remark 3.4. Replacing f by f−1 in Theorem 3.3 above, we obtain that

a ∈ Rs,f−1,©# if and only if s ∈ R‖a and a ∈ R
{1,4}
f . In this case, as,f−1,©# = fa

(1,4)
f s‖a.

This result will be used frequently in the sequel.
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Lemma 3.5 ([16], Theorem 2.1). Let a, d ∈ R. Then the following conditions are

equivalent:

(i) a ∈ R‖a;

(ii) a ∈ daR and da ∈ R#;

(iii) a ∈ Rad and ad ∈ R#.

In this case, a‖d = d(ad)# = (da)#d.

Applying Lemma 3.5, we obtain the following new representations of the weighted

w-core inverse and the weighted dual s-core inverse in R.

Proposition 3.6. Let a, e, f, w, s ∈ R. We have the following results:

(i) a ∈ R©#
e,w if and only if w ∈ R‖a and a ∈ R

{1,3}
e . In this case, a©#e,w =

a(wa)#a
(1,3)
e e−1 = (aw)#aa

(1,3)
e e−1.

(ii) a ∈ Rs,f−1,©# if and only if s ∈ R‖a and a ∈ R
{1,4}
f .

In this case, as,f−1,©# = fa
(1,4)
f a(sa)# = fa

(1,4)
f (as)#a.

In 2018, Li and Chen in Theorem 2.10 of [13] proved that a ∈ R©# if and only if

a ∈ R(a∗)na ∩ Ran. The present authors in Theorem 2.10 of [28] illustrated that

a ∈ R©#
w if and only if a ∈ R[(aw)∗]na ∩ R(aw)n−1a. Inspired by these, we aim to

characterize the weighted w-core invertibility by ideals, and to give its corresponding

expressions.

Theorem 3.7. Let a, e, w ∈ R and n > 2 be a positive integer. Then the following

conditions are equivalent:

(i) a ∈ R©#
e,w;

(ii) awR = aR and aw ∈ R©#
e ;

(iii) a ∈ R[(aw)∗]nea ∩R(aw)n−1a.

In this case, a©#e,w = (aw)©#e e−1.

P r o o f. (i) ⇒ (ii) Assume that a ∈ R©#
e,w and x = a©#e,w. Then, by Theorem 3.2,

we have xeawa = a, awxex = x and (awx)∗ = awx, which imply xeawaw = aw,

awxexe = xe and (eawxe)∗ = eawxe, and hence aw ∈ R©#
e and xe is the e-core

inverse of aw, i.e., xe = (aw)©#e and x = (aw)©#e e−1. From Theorem 3.2, it is known

that a ∈ R©#
e,w if and only if w ∈ R‖a and a ∈ R

{1,3}
e . Since w ∈ R‖a, it follows that

aR = awaR ⊆ awR.

(ii) ⇒ (iii) As aw ∈ R©#
e , there exists some y ∈ R such that awy2 = y, y(aw)2 =

aw, (eawy)∗ = eawy, awyaw = aw and yawy = y. Note that aR = awR, then

a = awt for some t ∈ R and thus a = awt = y(aw)2t = yawa = y(y(aw)2)a =

y2(aw)2a = y2(y(aw)2)awa = y3(aw)3a = . . . = yn−1(aw)n−1a ∈ R(aw)n−1a. Also,
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a = awt = awyawt = awya = e−1(eawy)a = e−1(eawy)∗a = e−1y∗(aw)∗ea =

e−1(awy2)∗(aw)∗ea = e−1(y2)∗((aw)∗)2ea = e−1(y)∗(awy2)∗((aw)∗)2ea = e−1 ×

(y3)∗((aw)∗)3ea = . . . = e−1(yn)∗((aw)∗)nea ∈ R((aw)∗)nea, as required.

(iii) ⇒ (i) Note that a ∈ R[(aw)∗]nea, then there exists r ∈ R such that

a = r[(aw)∗]nea = r[(aw)∗]n−1w∗a∗ea.

So, a ∈ R
{1,3}
e and (r[(aw)∗]n−1w∗)∗e = w(aw)n−1r∗e ∈ a{e, 1, 3} by Lemma 3.1.

Moreover, a = aa
(1,3)
e a = a(w(aw)n−1r∗e)a ∈ awaR.

Note also that a ∈ R[(aw)∗]nea ∩ R(aw)n−1a. Then a ∈ Ra∗ea ∩ Rawa, which

combines with a ∈ awaR to ensure that a is weighted w-core invertible with weight e

by Lemma 3.1 and Theorem 3.2. �

We next investigate the existence of the weighted w-core inverse of an element by

idempotents and units. First, we give the following lemma.

Lemma 3.8 ([5]). Let a, b ∈ R. Then ab ∈ RD if and only if ba ∈ RD. In this

case, (ba)D = b((ab)D)2a.

Theorem 3.9. Let a, e, w ∈ R. The following conditions are equivalent:

(i) a ∈ R©#
e,w;

(ii) there exists a unique idempotent p ∈ R such that (ep)∗ = ep, pa = 0 and

u = p+ aw ∈ R−1;

(iii) there exists an idempotent p ∈ R such that (ep)∗ = ep, pa = 0 and

u = p+ aw ∈ R−1.

In this case, a©#e,w = u−1(1− p)e−1.

P r o o f. (i) ⇒ (ii) Suppose that a ∈ R©#
e,w. Then by Theorem 3.7 we have

awR = aR and aw ∈ R©#
e . Let x = (aw)©#e and p = 1 − awx. Then, p2 = p and

(ep)∗ = ep. From awR = aR we have pa = pawt = (1−awx)awt = 0 for some t ∈ R.

Define v = x+ 1 − xaw. By a direct check, we have vu = (x + 1 − xaw)(p + aw) =

(x+ 1− xaw)(1 − awx+ aw) = 1 = (1− awx+ aw)(x+ 1− xaw) = uv. Therefore,

u ∈ R−1 and v is the inverse of u.

Next, we prove the uniqueness of p. Let q ∈ R be the idempotent satisfying

(eq)∗ = eq, qa = 0 and u = q + aw ∈ R−1, we have (1− q)(q + aw) = aw and hence

1− q = aw(q + aw)−1. Then p(1− q) = paw(q + aw)−1 = 0, i.e., p = pq.

Similarly, we have (1 − p)(p + aw) = aw and q = qp. So, ep = epq = (epq)∗ =

((ep)e−1(eq))∗ = eqe−1ep = eqp = eq, i.e., p = q.

(ii) ⇒ (iii) is obvious.
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(iii) ⇒ (i) Given (iii), we have paw = (pa)w = 0 and aw ∈ R©#
e . Indeed, suppose

x = (p+aw)−1(1−p), we have 1−p = aw(p+aw)−1 and p = p(p+aw)−1. Then we

can easily check that x(aw)2 = aw, awx2 = x and (eawx)∗ = eawx. Clearly, x is the

e-core inverse of aw. Hence, to prove a ∈ R©#
e,w, it suffices to prove that awR = aR

by Theorem 3.7.

Since p + aw ∈ R−1 and pa = 0, we have R(p + aw)a = (R(p + aw))a = Ra

and R(p + aw)a = R(pa + awa) = Rawa. Then Ra = Rawa ⊆ Rwa ⊆ Ra and

hence Ra = Rwa = Rawa = (Rwa)wa = R(wa)2 and wa = t(wa)2 for some

t ∈ R. From aw ∈ R©#
e we have aw ∈ R# ⊆ RD. Then we have wa ∈ RD by

Lemma 3.8. Let ind(wa)=k, we have (wa)k+1R = (wa)kR. Pre-multiplying the

equation (wa)k+1R = (wa)kR by tk−1 gives tk−1(wa)k+1R = tk−1(wa)kR. Hence,

we have (wa)2R = waR since wa = t(wa)2.

We conclude that wa ∈ R#. By Lemma 3.5, combining with wa ∈ R# and

Rwa = Ra, we get w ∈ R‖a and so aR = awaR = awR. �

Applying Theorems 3.2 and 3.3, we can get the following result.

Proposition 3.10. Let a, w, s ∈ R. Then a ∈ R©#
e,w ∩ Rs,f−1,©# if and only if

w, s ∈ R‖a and a ∈ R†
e,f .

We next characterize the existence criteria of both the weighted w-core invertible

and the weighted dual s-core invertible elements by units. We first present some

known results.

Lemma 3.11 ([12]). Given a, b ∈ R, 1 + ab is invertible if and only if 1 + ba is

invertible. Moreover, (1 + ba)−1 = 1− b(1 + ab)−1a.

Lemma 3.12 ([16], Theorem 3.2 and [17], Theorem 1.3). Let a ∈ R and d ∈ R

be regular with d− ∈ d{1}. The following conditions are equivalent:

(i) a ∈ R‖d;

(ii) u = da+ 1− dd− ∈ R−1;

(iii) v = ad+ 1− d−d ∈ R−1.

In this case, a‖d = u−1d = dv−1.

Lemma 3.13 ([27], Theorem 2.5 and Corollary 2.9). Let e, f ∈ R and a ∈ R be

regular with a− ∈ a{1}. The following conditions are equivalent:

(i) a ∈ R
†
e,f ;

(ii) a ∈ af−1a∗eaR;

(iii) a ∈ Raf−1a∗ea;

(iv) u = af−1a∗e+ 1− aa− ∈ R−1;

(v) v = f−1a∗ea+ 1− a−a ∈ R−1.
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In this case, a
†
e,f = f−1(eax)∗ = (yaf−1)∗e = (u−1af−1)∗e = f−1(eav−1)∗, where

x, y ∈ R satisfy a = af−1a∗eax = yaf−1a∗ea.

Theorem 3.14. Let a, e, f, s, w ∈ R with a− ∈ a{1}. If s ∈ R‖a, then the

following conditions are equivalent:

(i) a ∈ R©#
e,w ∩Rs,f−1,©#;

(ii) w ∈ R‖a and a ∈ R†
e,f ;

(iii) u = awasaf−1a∗e+ 1− aa− ∈ R−1;

(iv) v = asawaf−1a∗ea+ 1− aa− ∈ R−1;

(v) u′ = af−1a∗eawas+ 1− aa− ∈ R−1;

(vi) v′ = af−1a∗easaw + 1− aa− ∈ R−1.

In this case, a©#e,w = (v′)−1af−1a∗easa(u−1awasaf−1)∗ and as,f−1,©# = f(u−1 ×

awasaf−1)∗e(u′)−1af−1a∗eawa.

P r o o f. (i) ⇔ (ii) It follows from Theorems 3.2 and 3.3.

(ii)⇒ (iii) Note that s, w ∈ R‖a. Then by Lemmas 3.11 and 3.12 we have awaa−+

1 − aa− ∈ R−1 and asaa− + 1 − aa− ∈ R−1. Lemma 3.13 shows that af−1a∗e +

1 − aa− ∈ R−1 provided that a ∈ R†
e,f . Hence, (awaa

− + 1 − aa−)(asaa− + 1 −

aa−)(af−1a∗e+ 1− aa−) = awasaf−1a∗e+ 1− aa− = u ∈ R−1.

(iii) ⇒ (ii) Since u = awasaf−1a∗e + 1 − aa− ∈ R−1, it follows that ua =

awasaf−1a∗ea and a = u−1awasaf−1a∗ea ∈ Raf−1a∗ea. Then by Lemma 3.13 we

have a ∈ R†
e,f , a

†
e,f = (u−1awasaf−1)∗e and af−1a∗e+1−aa− ∈ R−1. The assump-

tion s ∈ R‖a implies asaa−+1−aa− ∈ R−1 by Lemmas 3.11 and 3.12. Therefore, by

u = awasaf−1a∗e+1−aa− = (awaa−+1−aa−)(asaa−+1−aa−)(af−1a∗e+1−aa−),

we can get awaa−+1−aa− = u(af−1a∗e+1−aa−)−1(asaa−+1−aa−)−1 ∈ R−1, and

consequently, aw+ 1− aa− ∈ R−1, which guarantees that w ∈ R‖a by Lemmas 3.11

and 3.12.

(ii) ⇔ (iv) ⇔ (v) ⇔ (vi) can be proved by a similar way of (ii) ⇔ (iii).

We next give the representations of a©#e,w and as,f−1,©#. Since v
′ = af−1a∗easaw+

1 − aa− ∈ R−1, we get v′a = af−1a∗easawa and a = (v′)−1af−1a∗easawa. Simi-

larly, by u′ = af−1a∗eawas+1−aa− ∈ R−1, we have u′a = af−1a∗eawasa and a =

(u′)−1af−1a∗eawasa. As w‖a and s‖a exist, then w‖a = (v′)−1af−1a∗easa and s‖a =

(u′)−1af−1a∗eawa. So, a©#e,w = w‖aa
(1,3)
e e−1= w‖aa†e,f e

−1= (v′)−1af−1a∗easa×

(u−1awasaf−1)∗ and as,f−1,©# = fa
(1,4)
f s‖a = fa†e,fs

‖a = f(u−1awasaf−1)∗e×

(u′)−1af−1a∗eawa. �

According to Lemma 3.12 and Theorem 3.14, we easily obtain characterizations

for both weighted w-core invertible elements with weight e and weighted dual s-core

invertible elements with weight f−1 by means of the inverse along an element in R.
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Corollary 3.15. Let a, e, f, s, w ∈ R with a− ∈ a{1}. If s ∈ R‖a, then the

following conditions are equivalent:

(i) a ∈ R©#
e,w ∩Rs,f−1,©#;

(ii) w ∈ R‖a and a ∈ R†
e,f ;

(iii) wasaf−1a∗e ∈ R‖a;

(iv) sawaf−1a∗ea ∈ R‖a;

(v) f−1a∗eawas ∈ R‖a;

(vi) f−1a∗easaw ∈ R‖a.

In this case, a©#e,w = (wasaf−1a∗e)‖aa
(1,3)
e e−1 and as,f−1,©# = fa

(1,4)
f (f−1a∗eawas)‖a.

Setting s = w in Theorem 3.14, we get the following characterization of both the

weighted w-core invertible elements with weight e and weighted dual w-core invertible

elements with weight f−1 by units.

Theorem 3.16. Let e, f, w ∈ R and a ∈ R be regular with a− ∈ a{1}. Then the

following conditions are equivalent:

(i) w ∈ R‖a and a ∈ R†
e,f ;

(ii) a ∈ R©#
e,w ∩Rw,f−1,©#;

(iii) u = awaf−1a∗e+ 1− aa− ∈ R−1;

(iv) v = f−1a∗eawa+ 1− a−a ∈ R−1;

(v) s = waf−1a∗ea+ 1− a−a ∈ R−1;

(vi) t = af−1a∗eaw + 1− aa− ∈ R−1.

In this case, a©#e,w = t−1af−1a∗ and af−1,w,©# = a∗eas−1.

P r o o f. (i) ⇔ (ii) It follows from Theorems 3.2 and 3.3.

(i) ⇒ (iii) Since a ∈ R†
e,f , one can get that af−1a∗e + 1 − aa− ∈ R−1 by

Lemma 3.13. Also, by Lemmas 3.11 and 3.12, w ∈ R‖a implies aw+ 1− aa− ∈ R−1

and hence awaa− + 1 − aa− ∈ R−1. Therefore, (awaa− + 1 − aa−)(af−1a∗e + 1 −

aa−) = awaf−1a∗e+ 1− aa− = u ∈ R−1.

(iii) ⇒ (i) As u = awaf−1a∗e + 1 − aa− ∈ R−1, we have ua = awaf−1a∗ea and

hence a = u−1awaf−1a∗ea ∈ Raf−1a∗ea. Then by Lemma 3.13 we have a ∈ R†
e,f ,

a†e,f = (u−1awaf−1)∗e and af−1a∗e+1−aa− ∈ R−1. Therefore, awaa−+1−aa− =

u(af−1a∗e + 1 − aa−)−1 ∈ R−1, which implies aw + 1 − aa− ∈ R−1, i.e., w ∈ R‖a

by Lemma 3.12.

(iii) ⇔ (v) It is obvious by Lemma 3.11.

Analogously, we can prove (i) ⇔ (iv) ⇔ (vi). Note that w‖a = (aw)#a and

t = af−1a∗eaw + 1 − aa−, we have aw = t−1af−1a∗e(aw)2 and hence (aw)# =
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(t−1af−1a∗e)2aw. It follows from Theorems 3.2 and 3.3 that

a©#e,w = w‖aa(1,3)e e−1 = (t−1af−1a∗e)2awaa(1,3)e e−1

= (t−1af−1a∗e)2aw(aww‖a)a(1,3)e e−1

= (t−1af−1a∗e)(t−1af−1a∗e(aw)2)w‖aa(1,3)e e−1

= t−1af−1a∗e(aww‖a)a(1,3)e e−1 = t−1af−1a∗eaa(1,3)e e−1

= t−1a(e−1eaa(1,3)e af−1)∗ = t−1a(af−1)∗ = t−1af−1a∗.

Note also that s = waf−1a∗ea + 1 − a−a and w‖a = a(wa)#, then we have

wa = (wa)2f−1a∗eas−1 and (wa)# = wa(f−1a∗eas−1)2. As a consequence,

aw,f−1,©# = fa
(1,4)
f w‖a = fa

(1,4)
f awa(f−1a∗eas−1)2

= fa
(1,4)
f (w‖awa)wa(f−1a∗eas−1)2

= fa
(1,4)
f w‖a((wa)2f−1a∗eas−1)f−1a∗eas−1

= fa
(1,4)
f (w‖awa)f−1a∗eas−1 = fa

(1,4)
f af−1a∗eas−1

= (eaf−1fa
(1,4)
f a)∗as−1 = (ea)∗as−1 = a∗eas−1.

The proof is completed. �

Corollary 3.17. Let a, e, f, w ∈ R with a− ∈ a{1}. Then the following conditions

are equivalent:

(i) w ∈ R‖a and a ∈ R†
e,f ;

(ii) a ∈ R©#
e,w ∩Rw,f−1,©#;

(iii) waf−1a∗e ∈ R‖a;

(iv) f−1a∗eaw ∈ R‖a;

(v) a ∈ awaf−1a∗eaR ∩Rawaf−1a∗ea;

(vi) a ∈ af−1a∗eawaR∩Raf−1a∗eawa. In this case, a©#e,w = af−1a∗eax(yawaf−1)∗,

aw,f−1,©# = a∗eax, w‖a = awa(f−1a∗eax)2, a†e,f = f−1(yawa)∗e, where x, y ∈

R satisfy a = awaf−1a∗eax = yawaf−1a∗ea.

P r o o f. The results above can be easily obtained by Lemma 3.12 and Theo-

rem 3.16. The representations for the a©#e,w, aw,f−1,©#, w
‖a and a†e,f are given below.

As waf−1a∗e ∈ R‖a, we have a = awaf−1a∗eax and a = yawaf−1a∗ea for some

x, y ∈ R. From a = awaf−1a∗eax we obtain wa = (wa)2f−1a∗eax and hence

(wa)# = wa(f−1a∗eax)2. Then w‖a = a(wa)# = awa(f−1a∗eax)2. Since a =

yawaf−1a∗ea ∈ Ra∗ea, we have (yawaf−1)∗e ∈ a{e, 1, 3} by Lemma 3.1. Therefore,

a†e,f = a
(1,4)
f aa(1,3)e = f−1fa

(1,4)
f a(yawaf−1)∗e

= f−1(yawaf−1fa
(1,4)
f a)∗e = f−1(yawa)∗e.
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Applying Theorems 3.2 and 3.3, we get

a©#e,w = w‖aa(1,3)e e−1 = awa(f−1a∗eax)2a(1,3)e e−1

= (awaf−1a∗eax)f−1a∗eax(yawaf−1)∗ee−1

= af−1a∗eax(yawaf−1)∗,

aw,f−1,©# = fa
(1,4)
f w‖a = fa

(1,4)
f awa(f−1a∗eax)2

= fa
(1,4)
f (awaf−1a∗eax)f−1a∗eax

= fa
(1,4)
f af−1a∗eax = (af−1fa

(1,4)
f a)∗eax = a∗eax.

�

In 2011, Mary in [15] told us that a‖a
∗

= a†, and it can be easily seen that a ∈ R†

if and only if (a∗)‖a exists. Setting w = a∗ in Theorem 3.16, we can easily obtain

the following result, whose proof is left to the reader.

Corollary 3.18. Let a ∈ R. Then the following conditions are equivalent:

(i) a ∈ R©#
e,a∗ ∩Ra∗,f−1,©#;

(ii) a ∈ R†
e,f ∩R†.

In this case, a©#e,a∗ =(a†)∗a†e−1, aa∗,f−1,©#=fa†(a†)∗, a†=(a©#e,a∗ea)∗=(afaa∗,f−1,©#)
∗

and a†e,f = f−1aa∗,f−1,©#a
∗aa∗a©#e,a∗e.

4. Relations with other generalized inverses

In this section, the relations among the weighted w-core inverse, the weighted dual

s-core inverse, the (v, w)-(b, c)-inverse, the e-core inverse, the dual f -core inverse and

the weighted Moore-Penrose inverse are investigated. For given complex tensorsM,

N , B, C, the (M,N )-weighted (B, C)-inverse of a tensor was firstly defined by Mosić

et al. in [19], extending the notation of (B, C)-inverse of a complex tensor. In [8],

Drazin introduced the (v, w)-(b, c)-inverse in a semigroup. Given any semigroup S

and any a, b, c, v, w, y ∈ S, an element a is the (v, w)-(b, c)-invertible (see [8]) if there

exists y ∈ R such that y ∈ bSwy ∩ yvSc, yvawb = b and cvawy = c (and two

other cases of mutual equivalence are also introduced). The (v, w)-(b, c)-inverse of a

is unique if it exists, and is denoted by a
(b,c)
v,w . By R

(b,c)
v,w we denote the set of all

(v, w)-(b, c)-invertible elements in R.

More results on (v, w)-(b, c)-inverses can be referred to [8], [19].

Lemma 4.1 ([8], Proposition 2.3). Let a, b, c, v, w, y ∈ R. Then the following

statements are equivalent:
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(i) y is the (v, w)-(b, c)-inverse of a;

(ii) y is the (b, c)-inverse of vaw.

One can apply Lemma 4.1 to transform study about (v, w)-(b, c)-inverses into the

corresponding study about (b, c)-inverses.

Next, we present the relationship between the (v, w)-(b, c)-inverse and the weighted

w-core inverse of a with weight v in R.

Theorem 4.2. Let a, v, w, s, t ∈ R. Then we have:

(i) If a ∈ R©#
v,w, then a ∈ R

(a,a∗)
(v,w) and a

(a,a∗)
(v,w) = a©#v,w.

(ii) If a ∈ Rs,t,©#, then a ∈ R
(a∗,a)
(s,t) and a

(a∗,a)
(s,t) = as,t,©#.

P r o o f. (i) Suppose that a ∈ R©#
v,w and x = a©#v,w. It follows from Proposition 2.4

and Theorem 3.2 that xvawx = x, xR = aR and Rx = Ra∗. Therefore, x is

(v, w)-(a, a∗)-invertible of a by Lemma 4.1.

(ii) can be proved similarly. �

In view of Theorem 4.2, we naturally want to know whether a is weighted w-core

invertible with weight v when it is (v, w)-(a, a∗)-invertible. If not, under what condi-

tions can it be established. A counterexample and a characterization are given below.

Example 4.3. Let R be the ring of all 2 × 2 complex matrices with transpose

as the involution ∗. Suppose v =
[

1 1

0 1

]

, w =
[

1 −1

0 1

]

and a =
[

1 0

0 1

]

∈ R. Then a

is (v, w)-(a, a∗)-invertible and a
(a,a∗)
(v,w) =

[

1 0

0 1

]

. If a is weighted w-core invertible

with weight v and x = a©#v,w, from the equation xvawa = a by Definition 2.1, we

can get x = a©#v,w =
[

1 0

0 1

]

, but awx =
[

1 −1

0 1

]

6= (awx)∗, which is a contradiction.

Thus, a /∈ R©#
v,w.

Theorem 4.4. Let a, v, w, s, t ∈ R. Then:

(i) If v is Hermitian, then a is weighted w-core invertible with weight v if and

only if a is (v, w)-(a, a∗)-invertible. In this case, the (v, w)-(a, a∗)-inverse of a

coincides with the weighted w-core inverse of a with weight v.

(ii) If t is Hermitian, then a is weighted dual s-core invertible with weight t if and

only if a is (s, t)-(a∗, a)-invertible. In this case, the (s, t)-(a∗, a)-inverse of a

coincides with the weighted dual s-core inverse of a with weight t.

P r o o f. (i) The “only if” part follows from Theorem 4.2. Thus, it suffices

to prove the “if” part. Suppose a is (v, w)-(a, a∗)-invertible and x ∈ R is the

(v, w)-(a, a∗)-inverse of a. Then by Lemma 4.1, x is the (a, a∗)-inverse of vaw.

Hence, we have xvawa = a, a∗vawx = a∗ and x ∈ aR.
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By a∗ = a∗vawx and v∗ = v, we get a = (awx)∗va, and thus awx = (awx)∗vawx,

i.e., (awx)∗ = awx. Therefore a = (awx)∗va = awxva. Since x ∈ aR, we get

x = at = awxvat = awxvx for some t ∈ R. Thus, x is the weighted w-core inverse

of a with weight v.

(ii) The proof is similar to the proof of (i). �

We next give the connection between the e-core inverse and the weighted w-core

inverse with weight e. Before this, the following lemma is presented.

Lemma 4.5 ([18], Theorems 2.1 and 2.2). Let a, e, f ∈ R. Then we have the

following results:

(i) a ∈ R©#
e if and only if a ∈ R# ∩R

{1,3}
e . In this case, a©#e = a#aa

(1,3)
e .

(ii) a ∈ Rf,©# if and only if a ∈ R# ∩R
{1,4}
f . In this case, af,©# = a

(1,4)
f aa#.

Proposition 4.6. Let a, e ∈ R. Then the following conditions are equivalent:

(i) a ∈ R©#
e ;

(ii) a ∈ R# ∩R
{1,3}
e ;

(iii) a ∈ R©#
e,1;

(iv) a ∈ R©#
e,a;

(v) there exists some x ∈ R such that axea = a, xR = aR and Rx = Ra∗;

(vi) there exists some y ∈ R such that a2yea = a, yR = aR and Ry = Ra∗.

In this case, a©#e = aa©#e,ae = a©#e,1e, a
©#
e,1 = a©#e e−1 and a©#e,a = a#a©#e e−1.

P r o o f. By Definition 2.1, Theorem 3.2 and Lemma 4.5, we can easily get the

equivalences of (i) to (vi). We next give the representations of a©#e , a
©#
e,1 and a©#e,a.

One observes that x, y ∈ R satisfying conditions (v) and (vi) are the weighted

1-core inverse of a with weight e and the weighted a-core inverse of a with weight e,

respectively. Then x = 1‖aa
(1,3)
e e−1 = a#aa

(1,3)
e e−1 = a©#e e−1 and y = a‖aa

(1,3)
e e−1 =

a#a
(1,3)
e e−1 = a#a#aa

(1,3)
e e−1 = a#a©#e e−1. So, a©#e = a©#e,1e and a©#e = a#aa

(1,3)
e =

aa#a©#e = aa©#e,ae. �

Proposition 4.7. Let a, f ∈ R. Then the following conditions are equivalent:

(i) a ∈ Rf,©#;

(ii) a ∈ R# ∩R
{1,4}
f ;

(iii) a ∈ R1,f−1,©#;

(iv) a ∈ Ra,f−1,©#;

(v) there exists some x ∈ R such that afxa = a, xR = a∗R and Rx = Ra;

(vi) there exists some y ∈ R such that afya2 = a, yR = a∗R and Ry = Ra.

In this case, af,©# = f−1a1,f−1,©# = f−1aa,f−1,©#a, a1,f−1,©# = faf,©# and aa,f−1,©# =

faf,©#a
#.
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The following result proves that the weighted f−1a∗e-core invertibility with

weight e and the weighted dual f−1a∗e-core invertibility with weight f−1 of a are

consistent with the weighted Moore-Penrose invertibility.

Proposition 4.8. Let a, e, f ∈ R. Then the following conditions are equivalent:

(i) a ∈ R†
e,f ;

(ii) a ∈ R©#
e,f−1a∗e;

(iii) a ∈ Rf−1a∗e,f−1,©#.

In this case, a†e,f = (a©#e,f−1a∗eeaf
−1)∗e = f−1(eaf−1af−1a∗e,f−1,©#)

∗, a©#e,f−1a∗e =

e−1(a†e,f )
∗fa†e,fe

−1 and af−1a∗e,f−1,©# = fa†e,fe
−1(a†e,f )

∗f .

P r o o f. (i) ⇒ (ii) Given a ∈ R†
e,f , by Lemma 3.13, we have a ∈ af−1a∗eaR

and a ∈ Raf−1a∗ea, and hence (f−1a∗e) ∈ R‖a. It is clear that a ∈ R†
e,f gives

a ∈ R
{1,3}
e . Therefore a ∈ R©#

e,f−1a∗e.

(ii) ⇒ (iii) By Theorem 3.2, we know that a ∈ R©#
e,f−1a∗e implies (f

−1a∗e) ∈ R‖a

and hence a ∈ af−1a∗eaR ∩ Raf−1a∗ea and a ∈ R†
e,f by Lemma 3.13. From Theo-

rems 3.2 and 3.3, it is known that a ∈ R©#
e,f−1a∗e if and only if both (f−1a∗e)‖a and

a
(1,3)
e exist if and only if (f−1a∗e)‖a exists if and only if both (f−1a∗e)‖a and a

(1,4)
f

exist if and only if a ∈ Rf−1a∗e,f−1,©#.

(iii) ⇒ (i) Assume that y ∈ R is the weighted dual f−1a∗e-core inverse of a with

weight f−1. Then we have a = a(f−1a∗e)af−1y ∈ af−1a∗eaR by Definition 2.6.

Therefore, a ∈ R†
e,f and f−1(eaf−1y)∗ is the weighted Moore-Penrose inverse of a

by Lemma 3.13.

Herein, the representations for the a†e,f , a
©#
e,f−1a∗e and aa,f−1,©# can be easily cal-

culated by Theorems 3.2 and 3.3 and Lemma 3.13.

If a ∈ R©#
e,f−1a∗e, then a = a©#e,f−1a∗eeaf

−1a∗ea ∈ Raf−1a∗ea, and hence a ∈ R
†
e,f

and a
†
e,f = (a©#e,f−1a∗eeaf

−1)∗e by Lemma 3.13. If a ∈ R
†
e,f , then a

†
e,f = f−1(eax)∗,

where x ∈ R satisfies a = af−1a∗eax ∈ af−1a∗eaR. By Theorems 3.2 and 3.3,

we obtain a©#e,f−1a∗e = (f−1a∗e)‖aa
(1,3)
e e−1 = axa

(1,3)
e e−1 = ((ax)∗)∗a

(1,3)
e e−1 =

(fa
†
e,fe

−1)∗a
†
e,fe

−1 = e−1(a
†
e,f )

∗fa
†
e,fe

−1.

Similarly, af−1a∗e,f−1,©# = fa
†
e,fe

−1(a
†
e,f )

∗f . �

Lemma 4.1 above tells us the relationship between (v, w)-(b, c)-inverses and

(b, c)-inverses. It is well known that the (b, c)-inverse encompasses the inverse

along an element. Then we obtain that a is the (v, w)-(d, d)-invertible if and only if

vaw is (d, d)-invertible if and only if vaw is invertible along d.
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The following theorem illustrates that the equivalence relations among the

weighted w-core inverse, the weighted dual s-core inverse and the weighted inverse

along an element.

Theorem 4.9. Let a, w, s, e, f ∈ R and let a ∈ R†
e,f . Then:

(i) a is weighted w-core invertible with weight e if and only if eaw is invertible along

af−1a∗. In this case, the weighted w-core inverse of a with weight e coincides

with the inverse of eaw along af−1a∗.

(ii) a is weighted dual s-core invertible with weight f if and only if saf is invertible

along a∗ea. In this case, the weighted dual s-core inverse of a with weight f

coincides with the inverse of saf along a∗ea.

P r o o f. (i) Suppose that a is weighted w-core invertible with weight e and

x ∈ R is the weighted w-core inverse of a with weight e. By Theorem 3.2, we have

awxea = a, xeawx = x, xeawa = a, awxex = x and (awx)∗ = awx.

We next prove that x is the inverse of eaw along d = af−1a∗. Assuming x = a©#e,w,

we have

(1) xeawd = xeawaf−1a∗ = (xeawa)f−1a∗ = af−1a∗ = d and deawx =

af−1a∗eawx = af−1a∗e(awx)∗ = af−1(awxea)∗ = af−1a∗ = d,

(2) x = awxex = (af−1fa†e,fa)wxex = af−1(fa†e,fa)
∗wxex = af−1a∗(a†e,f )

∗

f∗wxex = d(a†e,f )
∗f∗wxex ∈ dR,

(3) x = xeawx = xe(awx)∗ = xe(wx)∗a∗ = xe(wx)∗(af−1fa†e,fa)
∗ = xe(wx)∗ ×

(fa†e,fa)
∗f−1a∗ = xe(wx)∗fa†e,faf

−1a∗ = xe(wx)∗fa†e,fd ∈ Rd. Therefore x is the

inverse of eaw along af−1a∗.

For the converse, to illustrate that a is weighted w-core invertible with weight e, it

suffices to find an element y ∈ R (indeed, y = (eaw)‖af
−1a∗

) satisfying awy = (awy)∗,

yeawa = a and awyey = y. Note that yeawaf−1a∗ = af−1a∗ = af−1a∗eawy and

y ∈ af−1a∗R, consequently y = af−1a∗t for some t ∈ R. Then we have

(1) awy = (e−1eaa†e,fa)wy = e−1(eaa†e,f )
∗awy = e−1(a†e,f )

∗a∗eawy = e−1 ×

(f−1fa†e,faa
†
e,f )

∗a∗eawy = e−1(a†e,f )
∗fa†e,f (af

−1a∗eawy) = e−1(a†e,f )
∗fa†e,fa×

f−1a∗ = e−1(af−1fa†e,faa
†
e,f )

∗ = e−1(aa†e,f )
∗ = e−1(eaa†e,f )

∗e−1, i.e., (awy)∗ = awy,

(2) yeawa = yeaw(aa†e,fa) = yeawa(f−1fa†e,fa) = yeawaf−1(fa†e,fa)
∗ =

(yeawaf−1a∗)(a†e,f )
∗f = af−1a∗(a†e,f )

∗f = af−1(fa†e,fa)
∗ = aa†e,fa = a,

(3) awyey = awye(af−1a∗t) = (e−1(aa†e,f )
∗)eaf−1a∗t = e−1(eaa†e,f )

∗af−1a∗t =

e−1eaa†e,faf
−1a∗t = af−1a∗t = y. So, y is the weighted w-core inverse of a with

weight e.

(ii) can be proved similarly. �

As a consequence of Theorem 4.9, we have the following corollary.
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Corollary 4.10 ([28], Theorem 2.25). Let a, w, v ∈ R and a ∈ R†. Then:

(i) a ∈ R©#
w if and only if aw is invertible along aa

∗. In this case, the w-core inverse

of a coincides with the inverse of aw along aa∗.

(ii) a ∈ Rv,©# if and only if va is invertible along a
∗a. In this case, the dual v-core

inverse of a coincides with the inverse of va along a∗a.
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