Czechoslovak Mathematical Journal

Qiannan Zhang; Huan Yang
Remarks on the balanced metric on Hartogs triangles with integral exponent
Czechoslovak Mathematical Journal, Vol. 73 (2023), No. 2, 633-647

Persistent URL: http://dml.cz/dmlcz/151679

Terms of use:

© Institute of Mathematics AS CR, 2023

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized

documents strictly for personal use. Each copy of any part of this document must contain these
Terms of use.

This document has been digitized, optimized for electronic delivery and
O stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz


http://dml.cz/dmlcz/151679
http://dml.cz

Czechoslovak Mathematical Journal, 73 (148) (2023), 633—647

REMARKS ON THE BALANCED METRIC ON HARTOGS
TRIANGLES WITH INTEGRAL EXPONENT

QIANNAN ZHANG, HUAN YANG, Qingdao

Received May 16, 2022. Published online February 14, 2023.

Abstract. In this paper we study the balanced metrics on some Hartogs triangles of
exponent y € 7T, ie.,

Qn(7) = {z=(21,--.,22) €C": |21|"/7 < |z < ... < |zn| <1}

equipped with a natural Kihler form w = $(i/7)00®y, with

g()
n—1

O (2) = —paln(lz2*" —|z1)?) = Y pin(lziea | — 2i1%) — pnln( = [2]%),
=2

where = (p1,...,4n), t; > 0, depending on n parameters. The purpose of this paper
is threefold. First, we compute the explicit expression for the weighted Bergman kernel
function for (Qn (), g(r)) and we prove that g(u) is balanced if and only if ©1 > 1 and yu
is an integer, u; are integers such that u; > 2 for all ¢ =2,...,n — 1, and ppn > 1. Second,
we prove that g(u) is Kdhler-Einstein if and only if g3 = po = ... = pn = 2X, where A
is a nonzero constant. Finally, we show that if g(u) is balanced then (Q,(v), (1)) admits
a Berezin-Engli§ quantization.
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1. INTRODUCTION

Suppose that M is a domain in C", let ® be a strictly plurisubharmonic function
on M. Therefore, we can endow M with a Kéhler metric g, associated with a Kéhler

V—1 )50,
21

form w expressed as

w =
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The function @ is also called Kihler potential of g. For o > 0 consider the complex
Hilbert space H, (M) defined as

Ho (M) = {f c 000 = [ IrPes(-an} < oo},

where O(M) denotes the space of holomorphic functions on M. If H, (M) # {0}, let
K, (z,Z) be the weighted reproducing kernel of H,(M). Then we give the definition
of balanced metric.

Definition 1.1. The metric ag on M is said to be a balanced metric if Rawns-
ley’s e-function defined by

E(ag)(2) = exp{—a®}K,(2,2) (2 € M)

is constant on M.

One should notice that Rawnsley’s e-function depends only on the Kihler form w,
not on the choice of the Kéihler potential ®. Moreover, this terminology can be
naturally extended to the more general setting of functions replaced by sections of
line bundle (e.g., see [5]). In this setting, Rawnsley’s e-function is also called the
weighted Bergman kernel.

As far as we know, the notation “balanced” may be firstly used by Donaldson [9]
in the case of a compact polarized Kédhler manifold, who also showed that there exist
balanced metrics on any compact projective Kihler manifold with finite automor-
phism group. Then Arezzo-Loi [1] generalized the definition of balanced metric to the
noncompact setting. Furthermore, there is also an asymptotic expansion for €4 4)(2)

in terms of the parameter «;, namely
Elag)(2) ~a" +a1(2)a ! +ag(z)a 2+ ..

as n — oo. This was proved for compact manifolds by Catlin [6] and Zelditch [22],
and for noncompact manifolds by Ma-Marinescu [17], [18]. In some particular case
it was also proved by Englis [10], [11]. Furthermore, the coefficients a;(z) depend on
the curvature and its covariant derivatives of the metric g (e.g., [18]).

In the past decades, there were many deep studies of the existence and uniqueness
of balanced metrics in the compact case. Unfortunately, much less seems to be known
concerning existence and uniqueness of balanced metrics in noncompact manifolds,
even on the domains in C"™.

In 2012, Loi-Zedda [16] gave the necessary and sufficient conditions for the exis-
tence of balanced metrics on Cartan-Hartogs domains. Feng-Tu [13] firstly showed
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the existence of balanced metrics on nonhomogeneous domain. Afterward, Bi-Feng-
Tu [2] proved the existence of balanced metrics for a class of unbounded nonhomo-
geneous domains. For more studies about balanced metrics, the reader is referred
o [12], [15], and [20]. Recently, Bi-Su [4] showed that there exist balanced metrics
on generalized Hartogs triangles. In their paper, they also posed a question whether
one can find balanced metrics on generalized Hartogs triangles with exponent ~.

Following this line, we consider the so-called Hartogs triangles of exponent v in C™,
which are defined by

(L1)  Qu) = {z= (21, v20) € |7 < Jza] <. <zl < 1),

where 7 is a positive constant. Throughout this paper, we assume that ~ is a positive
integer. Then we can define a strictly plurisubharmonic function ®,,(z1,...,z2,)
on €, (v) which is expressed by

(1.2)

n—1
On(21, 00, 20) = (|22 = [21%) = > wln(zia ] = [2]%) = paln(1 = |20 ),
=2

where p; > 0 (1 <@ < n). Therefore, the associated Kéhler form Wy(u) 18

—_

Then we can give the sufficient and necessary conditions for the metric g(u) to be
balanced.

Theorem 1.2. The Kéhler metric g(u) on Hartogs triangles €,,(vy) of exponent -y
is balanced if and only if p1 > 1 and ~yu; is an integer, u; are integers such that
;=2 foralli=2,....n—1, and p, > 1.

The existence of Kéhler-Einstein metric on various manifolds has been one of the
central problems in complex geometry. When M is a homogeneous domain, it is
well-known that the Bergman metric of M is a Ké&hler-Einstein metric. But for
a nonhomogeneous domain, this is still an open problem. Therefore, from this point,
it is natural to study the existence of Kihler-Einstein metric on Hartogs triangles of
exponent 7.

Theorem 1.3. The Hartogs triangles (Q,(7),g(1)) of exponent -y are Kéhler-
Einstein manifolds if and only if 41 = pe = ... = pu, = 2\, where X is a nonzero
constant.
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By definition, when pu; = 2, j = 1,...,n, g(u) reduces to the Bergman met-
ric. Therefore by the above theorem, one can see that the Bergman metric on
(Qn(7), g(p)) is also a Kihler-Einstein metric. Furthermore, we know that the exis-
tence of Kihler-Einstein metric is closely related to the existence of solution of the
Monge-Ampere equation (see [7]). From the proof of Theorem 1.3, we can also con-
struct an explicit solution of the Monge-Ampere equation on €2, (7). More precisely,
we prove the following result:

Theorem 1.4. Forv >0, u; > 0,4 =1,...,n, the function

1 n—1
¥(z) = 1 vz *" ] lzi41]? = pa In(| 22> = [21]?)
=2

n—1
=3 pin(|zia]? = |2i]%) = po In(1 = |20 ))
=2

is the explicit solution of the Monge-Ampére equation

det(afj% ) = et

with the boundary condition ®(z) = oo, z € 9Q,(7), on Hartogs triangles Q,(vy) if
and only if v =y ...y, i = 2/(n+1).

As we get to this point, another interesting question arises: can one find a canon-
ical metric on K&hler manifolds such that the metric is both balanced and Ké&hler-
Einstein? One can check that the Bergman metric on the unit ball is balanced
and Kihler-Einstein. Moreover, Bi-Hou [3] obtained similar results on generalized
Hartogs triangles with exponent v = 1. Therefore the following result can also be
regarded as a natural generalization of Bi-Hou’s result. In fact, by Theorem 1.2
and 1.3, we can easily get the following corollary.

Corollary 1.5. The metrics g(u) on §2,(7y) are both Kéhler-Einstein and balanced
if and only if 1 = ... = pun > 2 are integers. In particular, the Bergman metric on
Hartogs triangles Q,,(y) is both Kéhler-Einstein and balanced.

Moreover, the relations between the holomorphic isometric immersion and the
balanced metric also imply the following result.
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Corollary 1.6. If:

(i) au; are integers such that au; > 2 for alli=1,...,n— 1 and au, > 1, a > 0,
(il) p1 = po2 = ... =y, = 2, where X is a nonzero constant,

then Hartogs triangles (,(7), ag(n)) of exponent ~ are Kéhler-Einstein submani-
folds of the infinite dimensional complex projective space CIP™.

Furthermore, once we find the existence of balanced metric on (£2,,(v), g(1)), we
can also establish the Berezin-Engli§ quantization on (€2, (7), g()) by using the ideas
in Bi-Su [4]. Recently, Hou-Bi [14] showed that the generalized Hartogs triangle
endowed with the K&dhler metric admits a Berezin quantization by using Calabi’s
diastasis function and Rawnsley’s e-function.

Corollary 1.7. Let Q,(v) be Hartogs triangles of exponent ~y endowed with the
Kéhler metric g(p). If p; are positive rational numbers for alli = 1,...,n — 1 and
tn > 0, then (Q,(7), g(p)) admits a Berezin-Englis quantization.

The paper is organized as follows. In Section 2, we present some results which
is helpful for calculating the explicit forms of the weighted Bergman kernel. In
Section 3, we give the proofs of Theorem 1.2, Theorem 1.3, and Theorem 1.4.
In Section 4, we complete the proof of the corresponding applications, mainly the
proof of Corollary 1.7.

2. PRELIMINARIES
Firstly, we give several vital lemmas.

Lemma 2.1. Let (2,,(7),g(u)) be Hartogs triangles of exponent . Then we have

n—1
|22 > 2417 1
2.1 det(g(u)) = i " '
(2.1) (9(n)) = m (|z2|?Y — |21]2)? };[2 s (|zit1|? = |Zi|2)2M (1= |2zn]?)?

Proof. By definition, we have

0%,

and
n—1
O (2) = —paln(|zo* = [21?) = Y paln(|zi1* = |2)*) = paln(1 = |2 ]?).
i=2
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From a direct calculation, we can see that

911(0)  g13(m) .. 0
92.1(1)  923(1) 0
(2.2) 9(1) = (9i7 (1)) nxn = : 5 : ’
0 0 In—1.a(1)
0 0 In,n (1)
where
() = 22 (1) = ok
91,18 H1 (222 — |zl|2)2’ 91,2\ 7#1Z_2(|22|27 _ |Z1|2)2’
() = 21|Z2|2V
92,1\ Y1 22(|22?7 — |Zl|2)27
o |z1|?z2|? 2 |23]2
) — + :
92,2(1) = 1y (|22]2 — |21]2)2 Hz (|23]% = |22]?)?
Zn_1%
In-1,a(1) = —fin-1 2 . 2)2’
(|Zn| - |Z’ﬂ*1| )
|Zn—1|2 1

n,n = Hn— + Un .
gnn() = (T, TR TR

By a straightforward computation, it is not difficult to obtain that

detg(u)) = ju 22 Hu eonl” 1
B A |
(o2 — P AL Mo = [P T el

O

Lemma 2.2 (see D’Angelo [8], Lemma 1). Suppose a € (R4)"™. Then we have

/ V) - Ha) /S @ o) = 2,

2%|al’

For a € (Ry)™, B(«) is defined by

H?:l (o)
L(lal)

where I is the usual Euler gamma function. Here dV is the Euclidean n-dimensional

pla) =

volume form, do is the Euclidean (n — 1)-dimensional volume form, and the sub-
script + means that all the variables are positive.
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Lemma 2.3 (see D’Angelo [8], Lemma 2). Let z = (z1,...,z,) € (R)", ||z]|> < 1
and s € R with s > 0. Then we have

(al+9) o _ 1
2 T @ D"~ A=

qeN™

Lemma 2.4. Let z = (21,...,2n) € Qu(7) and p = (p1,...,pn) € Z™. Then we
have

n

n i
12772 = [ [(ea)Bpr+1, 51 =1) HB< p1+u1)+2(pj+uj)—m+1,m—1)7
=2

i=1 j=2

where B(p,q) = fol 2P~1(1 — )91 dw is the beta function.

Proof. By definition, we can see that

(2.3)
1 w™
P12 — = 2p —d,
12#12s = — o) |27 exp {=®n}—
1 n—1
== 1217 (|22 = [z )" T (ziga® = l2®) (1 = |2n]?)H
Qn () i=2
-1
B q |zig1]? 1
X ; dm(z
TP —TaP? LA w1

where dm(z) is the Euclidean measure. To calculate it, we first introduce polar
coordinates and then the right-hand side of formula (2.3) becomes

n
2p1+1,2 2\ 1 —2,2p2 +27+1 _
[T2e [ B9 R — By e
- 0<ty "<tz <. <t, <1
x H P2 2R (] 2y 2y L dty,.
Next, set s; = t? (1 < j < n)and then we get

n
g (5] — a1 2 (5 — )22
=1

0<s1/ <8< <8 <1

X H sf"’H(sHl — si)“"_stl"H(l — 5,)"" 2 dsy ... dsy,
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Consequently, we obtain

n s; o
Hz””%gb = H,LL'L/ sfl(sg — 51)H1—2 dsl/ 812)2+7(83 _ 82);@—2 dsy
" i=1 0 0
n—1 Sit1 1
X H / 55)"'4_1(51'-{-1 — Si)//«i*Q dsz/ 5€L7L+1(1 _ Sn)u",Q ds,
i=3 /0 0

n 1 D1 pn1—2 S3
B HM/ (S_i) (1 B 5_“1/> d(%) / 512)2+V(p1+“1)(53 — 59)"2 7 dsy
; 0 ‘52 So Sg

=1 0
n—1 Sig1 o 1
Pi i—2 n+1 n—2
X / 57T (841 — sa)H dsi/ sb L — s,)" ds,,
i=3 70 0
: > (p1-+1)
p2+vy(P1+p1 2—2
= [+ -1 [ s (33— 52)" 2 dsy
i=1 0
n—1 Sit1 ) 1
pit+ i—2 n+1 n—2
X / 57T (si41 — sa)H dsi/ sPr (1 — 5,)Pn 2 dsy,.
i=3 70 0

Similarly, we get

n 1
So \P2+7(P1+H1) S9\H2—2 /89
12712, = 1By + 1 m — 1)/0 (—) (1 — —) d(—)

. S3 S3 S3
=1

« /84 S§3+1)2+H2+’Y(p1+u1)(84 i 83)“372 dss
0
n=1l rsigy 1
X H / sf"'“(s”l T dsi/ sPr (1 — 5,) "2 ds,,
i=4 70 0
n
= [[wiBpr+ 1,1 — DBz +y(p1 + pa) + 1, 12 — 1)
i=1

S4
P3+p2+p2+y(p1+u1) —2
></ gpoThRTHE T (54 — s3)M3 7% dss
0

n—1

Si+1 1
pit+1 i—2 n+1 n—2
X H / 87T (Si1 — si)H dsi/ sPaTH1 — sp)H ds,,.
i=4 70 0

Therefore, by induction, we conclude that

1712, = TJwB@:+1.m - 1)
i=1

x HB<7(p1 )+ (0 ) — s+ - 1>-
=2

Jj=2
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Furthermore, by the proof of the above lemma, we can get the following result.

Remark 2.5. Hg, (Q.(7)) # {0} if and only if p; > 1 foralli=1,...,n

3. PROOFS OF MAIN THEOREMS

Now we give the proof of the existence of balanced metric.

Proof of Theorem 1.2. According to the definition of balanced metric, if

£(1,9)(2) = exp{—®, } K1(z,%)

is a constant, then the metric g(u) is balanced. So we need to calculate the Bergman
kernel K;(z,z). It is easy to see that {zp/||zp||L(2Dn} forms a complete orthonormal
basis of Hi(,(7)), where the multi-index p = (p1,...,pn) ranges over all integers
that satisfy the following inequality for alli =1,... n,

7/@1+Z/@j—ui>0, where k1 = p1 + p1, K5 =p;j + 1.
j=2

Let N denote the set of all the multi-indices p = (p1, ..., p,) satisfying such inequal-
ities. Hence by Lemma 2.4, we have

T Dl SR
T2, Hz i A Bl L —1)

Ly s
n—1 3(7“1+E?=2 Kj _Mn—’_lvﬂn_ ]-)
Pn=—7K1—2 7 5 Kj
Notice that
i |zn|2pn
ST CTTED ST
n— j=2 J
= |z | 2O TS S ky) Z |2 [P
Zn J J
B(m +1,pn — 1)
2(vr1+2055 Ky L'(m + pin) 2m
— [2al” Z= e
n—1 1
— *2(7514’2 —9 Iij) _ 1
= |Zn J n - .
2 ( >(1 e
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Thus, we obtain

1 pn — 1 > |21 2P
K1 z,E =
(=:2) [Tisy pi (1= |zp]?)pn plz::() B(p1+ 1,1 — 1)
n—1
y i |Zn71|2pn71|Zn|*2(751+2‘7:2 Kj)

n—1 :
Pro1=—K1— 3 5 Kj Bk + Zj=2 Kj = bn—1+ 1 1 — 1)

Similarly, we can see that

i 2 |2pn71|z |~2(rm 25 )
gz, Bk S Ky — o1+ 1 o1 — 1)
n—1= j=2 R
> 2m
_ —2(vRi 07 K5) [, [~ 2hn1 |Zn—1/2n|
Zn— J Zn
|2n—1] |2n| mz::O B(m+1,pn_1 —1)
n: 1
_ —2(vr1+>2 ~:22 Kj) —2pn—1 -1
Zn— J Zn n .
| 1| | | (‘LL 1 )(1_ |Zn_1/22n|2)“”_1
Then we get
Kl(z f) _ 1 (:u”ﬂ B 1)(“”*1 B 1) 1

I DY (e P ) T e Ay P e PR

S D |
p1:0 B(pl + 17M1 - 1)

o0

Z |2n— 2|2pn_2|z 71|*2(7H1+E;;22 ;)

X .

Proa=—vR1—3 "8 Kj B(’ym + Z 2 Fj = =2+ 1 ptn—z = 1)
n—aT— j=2 "J

Therefore, by induction, we conclude that

n -1
_ - o(ui—1) 3 1 1
Ki(z,2) = 1L 275 . - T -
Hi:l M o ( |ZZ/ZZ+1| i ( |Zn| )

x H i |21 [P | 2| 21
|zi +1|2”’

B(p1+17/'[/1_1)

L=

-1
_ Hi:1(ﬂi -1 h 1 1
H?:1 Ma i (1= lzi/zip1[P)Ps (1 = [2p]?)pn
1 1
X
H |Zz+1|2”7 2927 (1 = |21 [ /[ 22[*7) 1

_ Hi:1(ﬂi —1) 1:[ 1 .
| (T |21| |Zz+1|2 |2i|? )k (1 — |zn|?)kn
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Now, we are able to show that

H:‘L:1(:Ui —-1)
H?:1 i

is a positive constant, which means that the metric g(u) is balanced.

£1,9)(2) = exp{=Pn} K1 (2,2) =

On the other hand, assume that g(u) is balanced. Then there exists a constant
C (> 0) satisfying

n—1
Ki(2,7) = Cexp{®n} = Oz — [21]) 7 [T (21 [P = [2al) 74 (1 = |zn[*) 7.
=2
By Lemma 2.3, we obtain
(lzi41]? = 2i) Z pz T ) |2 2P |z | 2Pt H),
T(u)0(pi + 1)

Thus for any p; € N, considering the coefficient of |z1|?"! in the expansion of K1(z, %),
we can see that there exists a constant C' such that the corresponding coefficient

equals
F( pz + Mz s (s s
C 21177 29 2%1 2| %P | zi4 (pitpi)

o0

L'(pn + pn) 2p
X S L
Z L (pn)T(pn + 1)|Z |

Notice that z]" belongs to the basis of H1(Q2,(7)) and p; (1 < i < n) are integers,
and then we get that

YH1 = P2 — 7P1-

Similarly we also can get that foralli =2,...,n—1,
Hi = Pi+1 — Pi-
Then we conclude that yuq, po, ..., un—1 are forced to be integers. The proof is

complete. O
Proof of Theorem 1.3. Recall that a Kéhler metric g is said to be a Kéhler-

Einstein metric if Ric; = Aw, for some nonzero constant A. Furthermore, we know
that the Ricci curvature Ricy is given in local coordinates by
0% In(det(g(p)))
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Then by a direct calculation, we get

Ricy 1(p) Ricyp(p) ... 0
Ricy 1(p) Ricya(p) ... 0
(3.2) Ricy = (Ric;j)nxn = )
0 0 Ricp—1,7(1)
0 0 Ricy, 7 (1)
where
. | 22|27 . Zi1|zaY
R 1 = 2— R 5 = —2
1C1’1(/J/) (|22|2'Y — |21|2)2, 1C1,2(:U’) 72_2(|22|2'Y — |21|2)2,
. z1za*
Ricy 1 =-2 ,
2,1(#’) 722(|22|2’Y _ |Zl|2)2
20, |27—2 |23
Rico (1) = o221l 122 3 7
2200 =2 — e T el - )
. Zn—1%n . |Zn*1|2 1
Ricp—1,n =-2 , Ricyn =2 +2 .
e e (P ERT R N P EA (R PR

Comparing (2.2) and (3.2), we can easily find that the metric g(u) is Kédhler-
Einstein if and only if
Pl = ... = [y = 2],
where A is a nonzero constant. The proof is finished. O

Proof of Theorem 1.4. According to the definition and by a straightforward
calculation, we get

-1
(n+1)®" _ U|Z2|27 H?zg |Zi+1|2

(J22[27 = Jza[2) Do TS (i [2 — [l ) (4D (1 — [z [2) (D

By (1.2), we have

1

D'(2) — @ (2) = —

n—1
|z [ lze1]?
=2

n—1
since Inv|23]?7 [] |2i41/? are pluriharmonic terms. Hence, we have
i=2
90D’ = JOD,,.

It follows that -

det(@iigz_j) = det(g(p)).

Then by Lemma 2.1, we can see that ®'(z) is the explicit solution of the Monge-

Ampere equation on Hartogs triangles Q,(v) if and only if v = py ... pn, p; =
2/(n+ 1). The proof is finished. O

644



4. PROOFS OF COROLLARIES

In order to prove Corollary 1.7 we briefly recall some results on the Berezin-
Engli§ quantization. Suppose that (M, g) is a Kihler manifold with a global Kihler
potential, Engli§ [10] gave a sufficient condition for (M, g) admitting the Berezin-
Englis quantization.

Theorem 4.1 (see [10]). Let M be a Kdhler manifold with a global defined Kéhler
potential. If:

(I) The function exp{—Dy(z,w)} is globally defined on M x M,
exp{—Dy(z,w)} <1, exp{—Dy(z,w)} =1

if and only if z = w, where Dy(z,w) denotes Calabi’s diastasis function.
(II) There exists a subset E C R™ which has oo in its closure such that Rawnsley’s
e-function €, 4)(2) is a positive constant for a € E.

Then (M, g) admits a Berezin-Engli§ quantization.

Lemma 4.2 (Lemma 3 in [21]). Let (M, g) be a noncompact Kéhler manifold.
Suppose that (M,g) admits a holomorphic isometric immersion into the infinite
dimensional complex space 12(C) through an injective mapping f. Then (M,g)
satisfies the condition (1) of Theorem 4.1.

Proof of Corollary 1.7. By the proof of Corollary 1.6, we know that (£2,,(7), g(1))

can be a Kihler (not necessarily Einstein) submanifold of CP*°. Furthermore, the
immersion f: Q,(y) = CP> can be written as

f=1..,2..1

where the multi-index p = (p1,...,pn) ranges all integers such that

7
’y/ﬁ—l—Zlij—ui?O, 1=1,...,n.
j=2

Therefore, we have f(2,(7)) C [*(C) and f is an injective mapping. In fact,
one only needs to notice that the immersion f is constructed by the orthonormal
basis of some Hilbert space. Then Lemma 4.2 yields that (2,,(7), g(u)) satisfies the
condition (I) of Theorem 4.1.

In the following, we prove that (2,(7),g(u)) also satisfies the condition (II). In
fact, the methods came from [4]. For completeness, we write it down.

Let E C R* be a set defined by

E ={aeNT: au; > 2 are integers for 1 <k <n —1 and au, > 1}.
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Since py for all 1 < k < n — 1 are positive rational numbers and p,, > 0, we obtain
that co is in the closure of the subset F. If a € E, we can get that auy for all
1 <k <n-—1 are integers and au, > 1. Thus by Theorem 1.2, we conclude that
ag(u) is a balanced metric on Q, (), which means that €(; 44(,))(2) is a constant
for any a € E. Then by Lemma 3.2 in Yang-Bi [19], we have that €, g¢.))(2) is
a constant for any o € E. It follows that E satisfies the condition (II) of Theorem 4.1.
Therefore, we conclude that (2, (7), g(¢)) admits the Berezin-Engli§ quantization by
Theorem 4.1. The proof is complete. ([

Acknowledgments. We sincerely thank the referees, who have read the paper
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