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Abstract. We define several sorts of mappings on a poset like monotone, strictly mono-
tone, upper cone preserving and variants of these. Our aim is to study in which posets some
of these mappings coincide. We define special mappings determined by two elements and
investigate when these are strictly monotone or upper cone preserving. If the considered
poset is a semilattice then its monotone mappings coincide with semilattice homomorphisms
if and only if the poset is a chain. Similarly, we study posets which need not be semilattices
but whose upper cones have a minimal element. We extend this investigation to posets
that are direct products of chains or an ordinal sum of an antichain and a finite chain. We
characterize equivalence relations induced by strongly monotone mappings and show that
the quotient set of a poset by such an equivalence relation is a poset again.

Keywords: poset; directed poset; semilattice; chain; monotone; strictly monotone; upper
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1. Introduction

Partially ordered sets, shortly posets, are relational structures which occur fre-

quently both in various areas of mathematics and in applications. Posets have been

studied from numerous points of view depending on their application. One possible

approach is to consider various mappings on a given poset and check when they

coincide. Examples of such mappings are monotone mappings, cone preserving map-

pings, filter preserving mappings, etc. If the poset in question is of a particular form,

e.g., if it is a semilattice or lattice, we can consider also homomorphisms. If a poset
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is directed then it can be converted into a so-called directoid, i.e., a groupoid with

one binary operation. Homomorphisms of such directed posets were already investi-

gated by the first author in [2]. For a bit more general relational structures, so-called

quasiordered sets, cone preserving mappings were studied in [4]. Homomorphisms of

semilattices were investigated by Berrone in [1].

Based on the mentioned results, we introduce a list of interesting mappings on

posets and find out how the fact, that some of the mappings from this list coincide

or satisfy some special assumptions, influences the structure of the poset.

We do not consider the research on this topic to be finished. We rather consider

our paper as a starting point which could inspire other authors to go on in this

direction. We are convinced that the algebraic theory of posets is of fundamental

importance in the whole of mathematics.

2. Elementary concepts and results

Let P := (P,6) be a poset, A,B ⊆ P and a, b ∈ P . Then A 6 B should mean

x 6 y for all (x, y) ∈ A×B. Instead of A 6 {b}, {a} 6 B and {a} 6 {b} we simply

write A 6 b, a 6 B and a 6 b, respectively. The sets

L(A) := {x ∈ P : x 6 A},

U(A) := {x ∈ P : A 6 x}

are called the lower and upper cone of A, respectively. Instead of L(A ∪ B),

L(A ∪ {b}), L({a} ∪ B), L({a, b}) and L({a}) we simply write L(A,B), L(A, b),

L(a,B), L(a, b) and L(a), respectively. In a similar way we proceed for U and in

analogous cases. Moreover, put L∗(a) := (L(a)) \ {a} and U∗(a) := (U(a)) \ {a}.

P is called up-directed if U(x, y) 6= ∅ for all x, y ∈ P . The subset A of P is called

a filter of P if x ∈ A and x 6 y imply y ∈ A. Let FilP denote the set of all filters

of P. For every a ∈ P , the set [a) := {x ∈ P : a 6 x} is a filter of P, the so-called

principal filter generated by a. Note that [a) = U(a).

R em a r k 2.1. If P is a poset then (FilP,⊆) is a complete lattice with the

smallest element ∅ and greatest element P and

∨

i∈I

Fi =
⋃

i∈I

Fi,
∧

i∈I

Fi =
⋂

i∈I

Fi

for every family Fi, i ∈ I, of filters of P.

A mapping f : P → P is called
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(i) monotone if x 6 y implies f(x) 6 f(y),

(ii) strictly monotone if x < y implies f(x) < f(y),

(iii) upper cone preserving if f(U(x, y)) = U(f(x), f(y)) for all x, y ∈ P ,

(iv) strictly upper cone preserving if f(U(x, y)) = U(f(x), f(y)) for all x, y ∈ P with

x 6= y,

(v) strongly upper cone preserving if f(U(x, y)) = U(f(x), f(y)) for all x, y ∈ P

with f(x) 6= f(y).

Observe that for a monotone f we have f(L(x, y)) ⊆ L(f(x), f(y)) and f(U(x, y)) ⊆

U(f(x), f(y)) for all x, y ∈ P .

Throughout the paper, we consider only non-void posets.

In the following, for every poset (P,6) and every element a ∈ P , let fa denote the

constant mapping from P to P with value a.

Using the mapping fa which is evidently monotone, we can characterize up-

directed posets having a maximal element as follows.

Lemma 2.2. Let P = (P,6) be a poset and a ∈ P . Then P is up-directed and a

is the maximal element of P if and only if fa is upper cone preserving.

P r o o f. Let b, c ∈ P . If P is up-directed and a maximal then

fa(U(b, c)) = {a} = U(a) = U(a, a) = U(fa(b), fa(c))

showing that fa is upper cone preserving. Conversely, if fa is upper cone preserving

then

fa(U(b, c)) = U(fa(b), fa(c)) = U(a, a) = U(a) ⊇ {a} 6= ∅,

U(a) = U(a, a) = U(fa(a), fa(a)) = fa(U(a, a)) = {a}

showing that P is up-directed and that a is maximal. �

Several elementary facts on cone preserving mappings are stated in the next

lemma.

Lemma 2.3. Let P = (P,6) be a poset and f : P → P . Then the following

properties hold:

(i) f is monotone if and only if f(U(x)) ⊆ U(f(x)) for all x ∈ P ,

(ii) if f is upper cone preserving then it is monotone and f(F ) ∈ FilP for all

F ∈ FilP,

(iii) if every monotone mapping from P to P is upper cone preserving then |P | = 1,

(iv) if f is monotone then f(L(A)) ⊆ L(f(A)) and f(U(A)) ⊆ U(f(A)) for all A ⊆ P .
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P r o o f. (i) This is obvious.

(ii) Assume f to be upper cone preserving. Then

f(U(x)) = f(U(x, x)) = U(f(x), f(x)) = U(f(x)) for all x ∈ P

and hence f is monotone according to (i). Moreover, if F ∈ FilP then

f(F ) = f
(

⋃

x∈F

U(x)
)

=
⋃

x∈F

f(U(x)) =
⋃

x∈F

f(U(x, x))

=
⋃

x∈F

U(f(x), f(x)) =
⋃

x∈F

U(f(x)) ∈ FilP.

(iii) This follows from Lemma 2.2 by observing that every constant mapping is

monotone.

(iv) If f is monotone and a ∈ f(L(A)) then there exists some b ∈ L(A) with

f(b) = a and since f is monotone we have a = f(b) ∈ L(f(A)). The statement for U

follows by duality. �

E x am p l e 2.4. Consider the poset depicted in Figure 1.

a b

c d

1

Figure 1.

Then f : P → P defined by

f(x) :=

{

c if x ∈ {a, b, c},

1 otherwise

is upper cone preserving and hence monotone according to Lemma 2.3 (ii). This poset

is not a singleton and thus there exists a monotone mapping which is not upper cone

preserving according to Lemma 2.3 (iii). The mapping g : P → P defined by

g(x) :=

{

b if x = a,

x otherwise

is monotone, but not upper cone preserving since

g(U(a, b)) = g({c, d, 1}) = {c, d, 1} 6= {b, c, d, 1} = U(b) = U(b, b) = U(g(a), g(b)).
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In the next proposition we prove that injective mappings preserving principal

filters are upper cone preserving.

Proposition 2.5. Let (P,6) be a poset. Then every injective mapping f : P → P

satisfying f([x)) = [f(x)) for all x ∈ P is upper cone preserving.

P r o o f. If a, b ∈ P and f : P → P is injective and satisfies f([x)) = [f(x)) for

all x ∈ P then f(U(a)) = U(f(a)) and

f(U(a, b)) = f(U(a) ∩ U(b)) = f(U(a)) ∩ f(U(b))

= U(f(a)) ∩ U(f(b)) = U(f(a), f(b)).

�

3. Mappings determined by two elements

In the following, for every poset (P,6) and every a, b ∈ P with a 6= b, let fab

denote the mapping from P to P defined by

fab(x) :=

{

b if x = a,

x otherwise.

The question when the mapping fab is strictly monotone is answered in the next

proposition.

Proposition 3.1. Let (P,6) be a poset and a, b ∈ P with a 6= b. Then fab is

strictly monotone if and only if a ‖ b, L∗(a) ⊆ L∗(b) and U∗(a) ⊆ U∗(b).

P r o o f. Obviously, fab is strictly monotone if and only if a ‖ b (since b < b is

impossible) and for all x ∈ P the following implications hold:

a < x ⇒ b < x,(1)

x < a ⇒ x < b.(2)

Now (1) and (2) are equivalent to U∗(a) ⊆ U∗(b) and L∗(a) ⊆ L∗(b), respectively.

�

Similarly, we can ask when the mapping fab is upper cone preserving. The answer

is as follows.

Theorem 3.2. Let P = (P,6) be a poset and a, b ∈ P with a 6= b. Then fab is

upper cone preserving if and only if a is a minimal element of P and U∗(a) = U(b).
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P r o o f. Let c, d ∈ P \ {a}. First assume fab to be upper cone preserving. Then

b 6 a would imply

a ∈ U(b) = U(b, b) = U(fab(a), fab(a)) = fab(U(a, a)) = fab(U(a)) = U∗(a) ∪ {b}

and hence a = b, a contradiction. Therefore b 66 a. Now

b ∈ U(b) = U(b, b) = U(fab(a), fab(b)) = fab(U(a, b)) = U(a, b) ⊆ U(a)

since a /∈ U(a, b) and hence a 6 b, i.e., a < b. Now c < a would imply

a ∈ U(c) = U(c, c) =U(fab(c), fab(c)) = fab(U(c, c)) = fab(U(c)) = ((U(c))\{a})∪{b}

and hence a = b, a contradiction. This shows that a is minimal. Moreover,

U∗(a) = fab(U(a)) = fab(U(a, a)) = U(fab(a), fab(a)) = U(b, b) = U(b)

since b ∈ U∗(a). Conversely, assume a to be minimal and U∗(a) = U(b). Then a < b

and c, d 66 a. Therefore a /∈ U(a, c) and a /∈ U(c, d). We have

fab(U(a, a)) = fab(U(a)) = U∗(a) = U(b) = U(b, b) = U(fab(a), fab(a)),

fab(U(a, c)) = U(a, c) = U(b, c) = U(fab(a), fab(c)),

fab(U(c, d)) = U(c, d) = U(fab(c), fab(d))

and hence fab is upper cone preserving. �

It should be remarked that U∗(a) = U(b) implies a ≺ b. Namely, from b ∈ U(b) =

U∗(a) we conclude a < b. If there would exist some c ∈ P with a < c < b then

c ∈ U∗(a) = U(b), a contradiction. This shows a ≺ b.

Some posets with strictly monotone mappings which are not upper cone preserving

are in the next assertion. One of them is depicted in Figure 1.

Corollary 3.3. Let (P,6) be a poset containing two elements a and b with a ‖ b

satisfying L∗(a) ⊆ L∗(b) and U∗(a) ⊆ U∗(b). Then fab is strictly monotone and it is

not upper cone preserving.

P r o o f. The mapping fab is strictly monotone by Proposition 3.1 and it is not

upper cone preserving by Theorem 3.2. �

In Theorem 3.2 we characterized when the mapping fab is upper cone preserving.

Now we show when this mapping is strictly upper cone preserving.

Theorem 3.4. Let (P,6) be a poset and a, b ∈ P with a 6= b. Then fab is strictly

upper cone preserving if and only if |L(a)| 6 2 and U∗(a) = U(b).
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P r o o f. First assume fab to be strictly upper cone preserving. Then b 6 a

would imply

a ∈ U(b) = U(b, b) = U(fab(a), fab(b)) = fab(U(a, b)) = fab(U(a)) = U∗(a) ∪ {b}

and hence a = b, a contradiction. Therefore b 66 a. Now

b ∈ U(b) = U(b, b) = U(fab(a), fab(b)) = fab(U(a, b)) = U(a, b) ⊆ U(a)

since a /∈ U(a, b), and hence a 6 b, i.e., a < b and therefore U(b) ⊆ U∗(a). If

c ∈ U∗(a) then

c ∈ U(c) = fab(U(c)) = fab(U(a, c)) = U(fab(a), fab(c)) = U(b, c) ⊆ U(b)

showing U∗(a) ⊆ U(b). Altogether, we obtain U∗(a) = U(b). Now |L(a)| > 2 would

imply that there exist d, e ∈ P with d 6= e and d, e < a, and hence

fab(U(d, e)) = (U(d, e)) \ {a} 6= U(d, e) = U(fab(d), fab(e))

contradicting the fact that fab is strongly upper cone preserving. Hence |L(a)| 6 2.

If, conversely, |L(a)| 6 2 and U∗(a) = U(b) and g, h ∈ P \ {a} then

fab(U(a, g)) =

{

fab(U(a)) = U∗(a) = U(b) = U(b, g) = U(fab(a), fab(g)) if g 6 a,

U(a, g) = U(b, g) = U(fab(a), fab(g)) if g 66 a,

fab(U(g, h)) = U(g, h) = U(fab(g), fab(h)) if g 6= h

and hence fab is strictly upper cone preserving. �

4. Chains

The following statement asserts that a monotone mapping on a chain is upper

cone preserving if and only if the range of this mapping is a filter of this chain.

Proposition 4.1. Let C = (C,6) be a chain and f : C → C monotone. Then f

is upper cone preserving if and only if f(C) ∈ FilC.

P r o o f. Observe that f(C) ∈ FilC if and only if U(f(x)) ⊆ f(C) for all x ∈ C.

Let a ∈ C. If f is upper cone preserving then

U(f(a)) = U(f(a), f(a)) = f(U(a, a)) ⊆ f(C).
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Conversely, assume U(f(x)) ⊆ f(C) for all x ∈ C. Since f is monotone, we have

f(U(a)) ⊆ U(f(a)) according to Lemma 2.3 (i). Now let b ∈ U(f(a)). If b = f(a)

then b ∈ f(U(a)). Now assume b > f(a). Since b ∈ U(f(a)) ⊆ f(C), there exists

some c ∈ C with f(c) = b. Now c 6 a would imply b = f(c) 6 f(a), a contradiction.

Hence c ∈ U(a) and therefore b = f(c) ∈ f(U(a)). This shows U(f(a)) ⊆ f(U(a))

and hence f(U(a)) = U(f(a)). Now, for x, y ∈ C we have

U(f(x), f(y)) =

{

U(f(y)) = f(U(y)) = f(U(x, y)) if x 6 y,

U(f(x)) = f(U(x)) = f(U(x, y)) otherwise,

i.e., f is upper cone preserving. �

Another interesting question concerns posets which are semilattices. Because every

semilattice homomorphism is a monotone mapping, we can ask when every monotone

mapping of a given semilattice into itself is a homomorphism. Using the method

developed by Berrone (see [1]), we can prove the following result.

Theorem 4.2. A join-semilattice (P,∨) is a chain if and only if every monotone

mapping from P to P is a homomorphism.

P r o o f. Let P = (P,∨) be a join-semilattice and a, b ∈ P . If P is a chain and f

a monotone mapping from P to P then

f(a ∨ b) =

{

f(b) = f(a) ∨ f(b) if a 6 b,

f(a) = f(a) ∨ f(b) otherwise

and hence f is a homomorphism. Now assume P is not a chain. Then there exist

c, d ∈ P with c ‖ d. Define g : P → P by

g(x) :=

{

c if x < c ∨ d,

c ∨ d otherwise.

Assume a 6 b. If a < c∨d then g(a) = c 6 g(b). If a 6< c∨d then b 6< c∨d and hence

g(a) = c ∨ d = g(b). This shows that g is monotone. But g is not a homomorphism

since

g(c ∨ d) = c ∨ d 6= c = c ∨ c = g(c) ∨ g(d).

We have proved that there exists a monotone mapping from P to P that is not a

homomorphism. �
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By duality, Theorem 4.2 also holds for meet-semilattices and hence also for lattices.

In addition, the theorem allows us to determine some monotone mappings of direct

products of chains that are homomorphisms of this product. To see them, we need

the following concepts.

For i = 1, 2 let fi : Ai → Bi. Then f1 × f2 denotes the mapping from A1 ×A2 to

B1 ×B2 defined by

(f1 × f2)(x1, x2) := (f1(x1), f2(x2)) for all (x1, x2) ∈ A1 ×A2.

A mapping g : A1 × A2 → B1 × B2 is called directly decomposable if there exist

g1 : A1 → B1 and g2 : A2 → B2 with g1 × g2 = g. The direct product of two posets

(P1,61) and (P2,62) is the poset (P1 × P2,6) defined by

(x1, x2) 6 (y1, y2) ⇔ x1 61 y1 and x2 62 y2 ((x1, x2), (y1, y2) ∈ P1 × P2).

Let P be a direct product of chains. As proved in [3], every lattice homomorphism

from P to P is directly decomposable since P is a lattice and the variety of lattices

is congruence distributive. We can ask if monotone directly decomposable mappings

from P to P are lattice homomorphisms. The following corollary of Theorem 4.2

gives a positive answer.

Corollary 4.3. Let (C1,6), (C2,6) be chains, (P,6) := (C1,6)× (C2,6) and f

a monotone directly decomposable mapping from P to P . Then f is a lattice homo-

morphism.

P r o o f. If f = f1 × f2 with fi : Ci → Ci for i = 1, 2 then f1, f2 are monotone

and, by Theorem 4.2, also (semi-)lattice homomorphisms which implies that f is a

(semi-)lattice homomorphism, too. �

Direct decomposability of homomorphisms was investigated by the authors and

Goldstern in [3]. For mappings which need not be homomorphisms we cannot use

methods involved in congruence distributive varieties. A simple characterization of

directly decomposable mappings is formulated in the following lemma.

Lemma 4.4. Let A1, A2, B1, B2 be non-void sets and f : A1 × A2 → B1 × B2

and for i = 1, 2, let pi denote the projection of B1 ×B2 onto Bi. Then the following

statements are equivalent:

(i) f is decomposable,

(ii) p1(f(x1, x2)) = p1(f(x1, y2)) and p2(f(x1, x2)) = p2(f(y1, x2)) for all x1, y1 ∈ A1

and x2, y2 ∈ A2.
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P r o o f. (i) ⇒ (ii): If f = f1 × f2 then

p1(f(x1, x2)) = p1(f1(x1), f2(x2)) = f1(x1) = p1(f1(x1), f2(y2)) = p1(f(x1, y2)),

p2(f(x1, x2)) = p2(f1(x1), f2(x2)) = f2(x2) = p2(f1(y1), f2(x2)) = p2(f(y1, x2))

for all x1, y1 ∈ A1 and x2, y2 ∈ A2.

(ii) ⇒ (i): Let a1 ∈ A1 and a2 ∈ A2 and for i = 1, 2 define fi : Ai → Bi by

f1(x1) := p1(f(x1, a2)) for all x1 ∈ A1,

f2(x2) := p2(f(a1, x2)) for all x2 ∈ A2.

Because of (ii), f1 and f2 are well-defined and

f(x1, x2) = (p1(f(x1, x2)), p2(f(x1, x2)))

= (p1(f(x1, a2)), p2(f(a1, x2))) = (f1(x1), f2(x2))

for all (x1, x2) ∈ A1 ×A2, i.e., f = f1 × f2. �

Instead of join-semilattices we can investigate posets whose upper cones U(x, y)

have a minimal element. Of course, every join-semilattice has this property, but

there are many other examples of such posets, e.g. all finite up-directed posets.

Theorem 4.5. If (P,6) is a poset, a, b ∈ P , a ‖ b and U(a, b) has a minimal

element then there exists a monotone mapping f from P to P with f(U(a, b)) 6=

U(f(a), f(b)) and hence there exists a monotone mapping from P to P which is not

strictly upper cone preserving.

P r o o f. Let (P,6) be a poset and a, b, c ∈ P , and assume a ‖ b and that c is

the minimal element of U(a, b). Define f : P → P by

f(x) :=

{

a if x < c,

c otherwise.

Let d, e ∈ P with d 6 e. If d < c then f(d) = a 6 f(e). If d 6< c then e 6< c and hence

f(d) = c = f(e). This shows that f is monotone. We have a, b 6 c. Since a = c would

imply b 6 c = a and b = c would imply a 6 c = b, we have a, b < c and therefore

a ∈ U(a) = U(a, a) = U(f(a), f(b)). Now assume f(U(a, b)) = U(f(a), f(b)). Then

a ∈ f(U(a, b)) and hence there exists some g ∈ U(a, b) with f(g) = a. Since c is a

minimal element of U(a, b) we have g 6< c and hence a = f(g) = c, a contradiction.

Therefore f(U(a, b)) 6= U(f(a), f(b)). �
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Corollary 4.6. If (P,6) is an up-directed poset which is not a chain and which

satisfies the Descending Chain Condition then there exists a monotone mapping

from P to P which is not strictly upper cone preserving and hence not upper cone

preserving.

On the other hand, if the poset in question is a chain, we can give a necessary and

sufficient condition for a monotone mapping to be upper cone preserving.

5. Ordinal sums and equivalence relations

We have seen that the Descending Chain Condition together with the property that

every monotone mapping is strictly upper cone preserving forces an up-directed poset

to be a chain. It seems that our conditions are too restrictive. In fact, if we replace

monotone mappings by strictly monotone ones, we can obtain a richer structure of

posets in which strictly monotone mappings are strongly upper cone preserving.

The ordinal sum of two posets (A,6) and (B,6) with A∩B = ∅ is the poset with

the base set A∪B where the order inside A and inside B coincides with the original

one and A < B, i.e., every element of A is below every element of B. Now, we can

state the following result.

Proposition 5.1. Every strictly monotone mapping on the ordinal sum of an

antichain and a finite chain is strongly upper cone preserving.

P r o o f. If f is a strictly monotone mapping on the ordinal sum (P,6) of an

antichain (A,6) and a finite chain (C,6), a, b ∈ P and f(a) 6= f(b) then f(A) ⊆ A,

f(x) = x for all x ∈ C and

f(U(a, b)) =











f(C) = C = U(f(a), f(b)) if a, b ∈ A,

f(U(b)) = U(b) = U(f(a), b) = U(f(a), f(b)) if a ∈ A and b ∈ C,

U(a, b) = U(f(a), f(b)) if a, b ∈ C.

�

E x am p l e 5.2. Examples of such ordinal sums are visualized in Figure 2.

(a) (b) (c)

Figure 2.

207



Every mapping f : A → B induces an equivalence relation Θ on A by defining

(x, y) ∈ Θ if f(x) = f(y). This equivalence relation is called the kernel of f , usually

denoted by ker f . The question when for a given poset (P,6) and a given mapping

f : P → P the quotient set P/(ker f) is again a poset is answered in the next theorem.

Let (P,6) and (Q,6) be posets and f : P → Q. Recall that f is called strongly

monotone if it is monotone, and a, b ∈ P and f(a) 6 f(b) imply that there exist

a′, b′ ∈ P with f(a′) = f(a), f(b′) = f(b) and a′ 6 b′.

Definition 5.3. Let P = (P,6) be a poset. An equivalence relation Θ on P is

called an S-equivalence on P if it satisfies the following two conditions:

(i) If a, b, b′, c ∈ P , a 6 b, b′ 6 c and (b, b′) ∈ Θ then there exist a′ ∈ [a]Θ and

c′ ∈ [c]Θ with a′ 6 c′,

(ii) if a, a′, b, b′ ∈ P , a 6 b, b′ 6 a′ and (a, a′), (b, b′) ∈ Θ then (a, b) ∈ Θ.

Theorem 5.4. Let P = (P,6) be a poset, f : P → P strongly monotone and Θ

an S-equivalence on P and define [a]Θ 6 [b]Θ if there exist a′ ∈ [a]Θ and b′ ∈ [b]Θ

with a′ 6 b′. Then

(i) ker f is an S-equivalence on P,

(ii) (P/Θ,6) is a poset and x 7→ [x]Θ is strongly monotone.

P r o o f. (i) Put Φ := ker f and assume a, b, b′, c ∈ P , a 6 b, b′ 6 c and (b, b′) ∈ Φ.

Then

f(a) 6 f(b) = f(b′) 6 f(c).

Since f is strongly monotone there exist a′, c′ ∈ P with f(a′) = f(a), f(c′) = f(c)

and a′ 6 c′. Hence a′ ∈ [a]Φ, c′ ∈ [c]Φ and a′ 6 c′ proving (i) of Definition 5.3. Next

assume a, a′, b, b′ ∈ P , a 6 b, b′ 6 a′ and (a, a′), (b, b′) ∈ Φ. Then

f(a) 6 f(b) = f(b′) 6 f(a′) = f(a)

and hence f(a) = f(b), i.e., (a, b) ∈ Φ proving (ii) of Definition 5.3.

(ii) We consider the binary relation 6 on P/Θ. Obviously, 6 is reflexive. As-

sume a, b ∈ P , [a]Θ 6 [b]Θ and [b]Θ 6 [a]Θ. Then there exist a′, a′′ ∈ [a]Θ and

b′, b′′ ∈ [b]Θ with a′ 6 b′ and b′′ 6 a′′. Since (a′, a′′), (b′, b′′) ∈ Θ, we conclude by (ii)

of Definition 5.3 that (a′, b′) ∈ Θ. This shows [a]Θ = [a′]Θ = [b′]Θ = [b]Θ proving

antisymmetry of 6. Now assume a, b, c ∈ P , [a]Θ 6 [b]Θ and [b]Θ 6 [c]Θ. Then there

exist a′ ∈ [a]Θ, b′, b′′ ∈ [b]Θ and c′ ∈ [c]Θ with a′ 6 b′ and b′′ 6 c′. Since (b′, b′′) ∈ Θ,

we conclude by (i) of Definition 5.3 that there exist a′′ ∈ [a′]Θ and c′′ ∈ [c′]Θ with

a′′ 6 c′′. Now a′′ ∈ [a]Θ and c′′ ∈ [c]Θ which shows [a]Θ 6 [c]Θ proving transitivity

of 6. Altogether, (P/Θ,6) is a poset. Clearly, x 7→ [x]Θ is monotone and by the

definition of 6 on P/Θ, this mapping is strongly monotone. �
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E x am p l e 5.5. Consider the poset P = (P,6) visualized in Figure 3.

a b

c d

1

0

Figure 3.

Let f : P → P be defined by

x 0 a b c d 1
f(x) 0 a a c c 1

and put Θ := ker f . Then f is strongly monotone, Θ = {0}2∪{a, b}2∪{c, d}2∪{1}2

is an S-equivalence on P and (P/Θ,6) = ({[0]Θ, [a]Θ, [c]Θ, [1]Θ},6) is again a poset

where [0]Θ < [a]Θ < [c]Θ < [1]Θ.

6. Conclusion

Posets were and are studied from various points of view and by means of a num-

ber of methods. In our paper we compared several mappings used in posets and

investigated when they coincide in dependence of the structure of the poset P in

question. In particular, we investigated monotone mappings, strictly monotone map-

pings, upper cone preserving mappings, strictly upper cone preserving mappings,

principal filter preserving mappings and mappings determined by two elements. We

showed that every injective principal filter preserving mapping is upper cone pre-

serving (Proposition 2.5). We characterized when the mapping determined by two

elements is upper cone preserving (Theorem 3.2) or strictly upper cone preserving

(Theorem 3.4). In particular, if P is a chain then every monotone mapping whose

range is a filter is upper cone preserving (Proposition 4.1) and a join-semilattice is a

chain if and only if every monotone mapping is a homomorphism (Theorem 4.2). As

special cases we treated posets which are ordinal sums of an antichain and a finite

chain. We also determined a relationship between strongly monotone mappings and

S-equivalences. In future, it should be of some interest to classify posets where some

other kinds of mappings coincide with those mentioned above.

A c k n ow l e d g em e n t . The authors are grateful to the anonymous referee

whose valuable comments helped to increase the quality of the paper.
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