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GENERALIZED SYNCHRONIZATION-BASED PARTIAL
TOPOLOGY IDENTIFICATION OF COMPLEX NETWORKS

Xueqin Zhang, Yunru Zhu, and Yuanshi Zheng

In this paper, partial topology identification of complex networks is investigated based on
synchronization method. We construct the response networks consisting of nodes withsim-
plerdynamics than that in the drive networks. By constructing Lyapunov function, sufficient
conditions are derived to guaranteepartial topology identificationby designing suitable con-
trollers and parameters update laws.Several numerical examples are provided to illustrate the
effectiveness of the theoretical results.

Keywords: complex network, partial topology identification, generalized outer synchro-
nization

Classification: 93D15, 93C05

1. INTRODUCTION

In recent years, there has been an increasing amount of research on complex networks,
including the synchronization and control of complex networks, etc. [11,14,21,26,31–33,
35–37]. Most studies on complex networks have an implicit assumption that the network
topology is known. However, in many real-world situations, the network topology is often
unknown or difficult to measure. Therefore, topology identification of complex networks
is very important and meaningful.

Different methods for topology identification of complex networks have been studied.
In [9], Bayesian estimation was used to study the relationship between yeast proteins.
In 2006, a synchronization-based topology identification method was proposed [27]. Af-
ter that, many interesting topology identification results based on synchronization have
been obtained [20, 22]. In [20], the topology identification of complex networks with
delayed weighted coupling was studied. In [22], the authors investigated the identifi-
cation of coupled neural networks with multiple state couplings or multiple delay state
couplings. Based on the dynamic evolution of the network, a new method for identifying
discrete dynamic network topology was proposed [7]. To identify the topology of net-
works with time-varying node systems, an adaptive method was proposed [30]. In [8],
the topology of complex networks was identified for the first time from an optimization
perspective. In [25], Granger causality test was proposed for network with stochastic
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perturbations. In [23], the piecewise approximation technique was employed in the par-
tial Granger causality test to detect interactions among nonlinear time series affected
by hidden variables. Since there are some engineered complex dynamic networks in-
cluding multi-layer networks, for example, communication rumor and communication
epidemic spreading networks, multi-layer network has become an important research di-
rections [1,2,5,6,10,16–18,28]. Therefore, topology identification of multi-layer networks
is necessary. [17] considered the topology identification of two-layer undirected networks
using an auxiliary system method. Wang et al. [18] considered the topology identifica-
tion for two-layer networks with coupled time delays and stochastic perturbations using
stochastic differential correlation tools. In addition to the above methods, many other
methods have been proposed for topology identification of complex networks, such as
compressive sensing [19], node knockout [13], recurrence [12,15], et al.

Many of the methods discussed above are used to identify the entire topology of com-
plex networks, but we may only be interested in the partial topology of the network at
times. For example, in an interpersonal network, one only wants to know the relation-
ship among a small number of people, not the whole network, or in an infectious disease
network, we are only interested in a part of the network that is closely connected to
the source of infection. However, there are few scholars on the partial topology iden-
tification of complex networks, so it is very necessary to identify the partial topology
of complex networks. [38] firstly puts forward the method of identifying partial network
topology. On the basis of [38], [4] considers the case with stochastic perturbations and
time delay. It is noted that in the method of [4, 38], the node dynamics of the response
network need to be the same as the node dynamics of the drive network, which will be
very costly when the node dynamics of the drive network are very complex or has a
high dimension. In order to solve this problem, generalized synchronization method is
employed in the paper, where the node dynamics of the constructed response network
can be simpler than that of the drive network. Firstly, a response network is constructed
in which the node dynamics are simpler than those in the drive network. Secondly, an
effective controller and an adaptive updating law are designed to achieve partial gen-
eralized outer synchronization and unknown topology identification. By constructing
Lyapunov function, the sufficient conditions for achieving topology identification are
given. Finally, the effectiveness and feasibility of the proposed method are verified by
numerical simulations.

The rest of the paper is organized as follows. In Section II, we introduce the network
models and some important preliminaries. Section III gives our main results. In Sec-
tion IV, several numerical simulations are provided to illustrate the effectiveness of the
theoretical findings. Finally, Section V gives some conclusions.

Notation: we use Rn and Rn×m to denote the n-dimensional Euclidean space and
the set of all the n×m-dimensional real matrices, respectively, ||x|| denotes the 2-norm
of a vector. Let Φ : Rn → Rm be a continously differentiable vector mapping function
of u = (u1, u2, . . . , un)T to v = Φ(u) = (v1, v2, . . . , vm)T . Then the Jacobian Matrix can
be defined

DΦ(u) =


∂v1

∂u1
. . . ∂v1

∂un

...
. . .

...
∂vm

∂u1
. . . ∂vm

∂un

 .
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2. PROBLEM DESCRIPTION

Consider a complex network consisting of N dynamical nodes described as follows:

ẋi = fi(xi) + ε

N∑
j=1

aijΓ1xj , i = 1, 2, . . . , N, (1)

where xi = (xi1, xi2, . . . , xin)T ∈ Rn is the state of ith node, fi : Rn → Rn is the
dynamics of the ith node, Γ1 is the inner coupling matrix, and ε(ε > 0) is the coupling
strength. If there exists an edge from node j(j 6= i) to node i, then aij > 0, otherwise,
aij = 0. A = (aij)N×N is the unknow weight configuration matrix, and the diagonal
elements of matrix A are defined as

aii = −
N∑

j=1,j 6=i

aij , i = 1, 2, . . . , N.

For simplicity, network(1) is referred to as the drive network.
In this paper, partial topology identification of the network is considered. Without

loss of generality, we identify the couplings among s(1 ≤ s ≤ N) nodes in a complex
network. The response network is constructed as follows:

ẏi = gi(yi) + ε

s∑
j=1

bijΓ2yj + εDΦi(xi)

N∑
j=s+1

bijΓ1xj + ui, i = 1, 2, . . . , s, (2)

where yi = (yi1, yi2, . . . , yim)T ∈ Rm is the state of ith node, gi : Rm → Rm is the dy-
namics of the ith node, Φi(xi) : Rn → Rm is a continously differentiable vector mapping
function, Γ2 is the inner coupling matrix, and Bs×N = (bij)s×N is the estimation of the
unknown weight configuration matrix As×N .

Definition 2.1. The network (1) and network (2) are said to achieve partial generalized
outer synchronization, if

lim
t→∞

s∑
i=1

||yi(t)− Φi(xi(t))|| = 0.

When s = N , the two networks achieve generalized outer synchronization. In addition,
if Φi(xi(t)) = xi(t), the two networks have achieved partial complete outer synchroniza-
tion.

Assumption 2.2. Suppose there exists a positive constant αi such that the function
gi satisfies the following inequality

||gi(z1)− gi(z2)|| ≤ αi||z1 − z2||

for any z1 and z2.

Assumption 2.3. Suppose thatDΦi(xi)Γ1x1, DΦi(xi)Γ1x2, . . . , DΦi(xi)Γ1xN (i = 1, 2,
. . . , s) are linearly independent on the orbit {xi}Ni=1 of the outer synchronization mani-
fold {yi = Φi(xi)}si=1.
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3. MAIN RESULTS

Using the partial generalized outer synchronization method and designing controllers
and update laws to identify the partial network topology is mainly introduced in this
section.

Theorem 3.1. Suppose Assumption 2.2 and 2.3 hold, and the designed controllers and
update laws are as follows:

ui = DΦi(xi)fi(xi)− gi(Φi(xi))− ε
s∑

j=1

bijΓ2yj

+ εDΦi(xi)

s∑
j=1

bijΓ1xj − kiei,

ḃij = −εeTi DΦi(xi)Γ1xj ,

k̇i = eTi ei,

(3)

where ei = yi − Φi(xi), 1 ≤ i ≤ s, 1 ≤ j ≤ N . Then the network (1) and network (2)
achieve partial generalized outer synchronization, and the unknown weight configuration
matrix As×N can be identified by the estimation matrix Bs×N in the response network.

P r o o f . According to (1) and (2), the error system can be written as:

ėi = gi(yi) + ε

s∑
j=1

bijΓ2yj + εDΦi(xi)

N∑
j=s+1

bijΓ1xj

+DΦi(xi)fi(xi)− gi(Φi(xi))− ε
s∑

j=1

bijΓ2yj

+ εDΦi(xi)

s∑
j=1

bijΓ1xj − kiei −DΦi(xi)fi(xi)− εDΦi(xi)

N∑
j=1

aijΓ1xj

= gi(yi)− gi(Φi(xi)) + εDΦi(xi)

N∑
j=1

(bij − aij)Γ1xj − kiei,

(4)

where 1 ≤ i ≤ s, 1 ≤ j ≤ N .

Consider the Lyapunov candidate function as follows:

V =
1

2

s∑
i=1

eTi ei +
1

2

s∑
i=1

N∑
j=1

(bij − aij)2 +
1

2

s∑
i=1

(ki − k∗)2, (5)
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where k∗ is a positive constant. Then we can obtain

V̇ =

s∑
i=1

eTi ėi +

s∑
i=1

N∑
j=1

(bij − aij)ḃij +

s∑
i=1

(ki − k∗)k̇i

=

s∑
i=1

eTi (gi(yi)− gi(Φi(xi)) + εDΦi(xi)

N∑
j=1

(bij − aij)Γ1xj − kiei)

+

s∑
i=1

N∑
j=1

(bij − aij)(−εeTi DΦi(xi)Γ1xj) +

s∑
i=1

(ki − k∗)eTi ei

=

s∑
i=1

eTi (gi(yi)− gi(Φi(xi)))−
s∑

i=1

k∗eTi ei

≤ αeT e− k∗eT e
= (α− k∗)eT e,

where e = (eT1 , e
T
2 , . . . , e

T
s ), α = max1≤i≤s{αi}. Let k∗ = α + 1, one gets V̇ ≤ −eT e.

Namely, V̇ ≤ 0. Let M be the set of all points satisfying V̇ = 0. Obviously, M =
{(ei, bij , ki)||ei = 0, i = 1, 2, . . . , s}. Based on the LaSalle’s invariance principle, it has
that limt→∞ yi(t) − Φi(xi(t)) = 0, which implies that the network (1) and network (2)
achieve partial generalized outer synchronization. According to (3) and error system
(4), we further get

M = {(ei, bij , ki)||ei = 0, ḃij = 0, k̇i = 0, DΦi(xi)

N∑
j=1

(bij(t)− aij)Γ1xj = 0}.

Under Assumption 2.3, DΦi(xi)
∑N

j=1(bij(t)−aij)Γ1xj = 0 if and only if bij(t)−aij = 0.
According to the LaSalle’s invariance principle, we have limt→∞ bij(t) − aij = 0, that
is, the unknown weight configuration matrix As×N can be identified by the estimation
matrix Bs×N in the response network. The proof is completed. �

Remark 3.2. In our method, if we take s = N , the whole topology can be identified.
Hence, our work is more general compared with the work just on the whole topology
identification [29].

Remark 3.3. For large scale networks, when identifying the partial topology, the con-
structed response network can be composed of nodes with simpler dynamics. It is
especially suitable for complex or high-dimensional node dynamics in the drive network.

Remark 3.4. The unknown weight configuration matrix A does not need to be sym-
metric or irreducible, nor does the estimation matrix B.

The response network (2) has the virtue of using only a part of nodes’s state infor-
mation. However, it results in the more complex controller ui, shown in (3). In order to
make the controller simple, we modify the response network (2) as follows:

ẏi = gi(yi) + εDΦi(xi)

N∑
j=1

bijΓ1xj + ui, i = 1, 2, . . . , s. (6)
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Theorem 3.5. Suppose Assumption 2.2 and 2.3 hold, and the designed controllers and
update laws are as follows:

ui = DΦi(xi)fi(xi)− gi(Φi(xi))− kiei,
ḃij = −εeTi DΦi(xi)Γ1xj ,

k̇i = eTi ei,

(7)

where 1 ≤ i ≤ s, 1 ≤ j ≤ N . Then network (1) and network (6) achieve partial
generalized outer synchronization, and the unknown weight configuration matrix As×N
can be identified by the estimation matrix Bs×N in the response network.

P r o o f . The error system is as follows:

ėi = gi(yi) + εDΦi(xi)

N∑
j=1

bijΓ1xj +DΦi(xi)fi(xi)

− gi(Φi(xi))− kiei −DΦi(xi)fi(xi)− εDΦi(xi)

N∑
j=1

aijΓ1xj

= gi(yi)− gi(Φi(xi)) + εDΦi(xi)

N∑
j=1

(bij − aij)Γ1xj − kiei,

where 1 ≤ i ≤ s, 1 ≤ j ≤ N .
Consider the Lyapunov candidate function as follows:

V =
1

2

s∑
i=1

eTi ei +
1

2

s∑
i=1

N∑
j=1

(bij − aij)2 +
1

2

s∑
i=1

(ki − k∗)2.

The rest of the proof is the same as Theorem 3.1, so it is omitted. �

In response network (2), if m = n, we can take Φi(xi) = xi, and the inner coupling
matrix Γ2 = Γ1. Thus, the response network (2) can be rewritten as follows:

ẏi = gi(yi) + ε

s∑
j=1

bijΓ1yj + ε

N∑
j=s+1

bijΓ1xj + ui, i = 1, 2, . . . , s. (8)

Then the following corollary can be obtained.

Corollary 3.6. Suppose Assumption 2.2 and 2.3 hold, and the controllers and update
laws are designed as follows:

ui = fi(xi)− gi(xi)− kiei,
ḃij = −εeTi Γ1yj , 1 ≤ j ≤ s,
ḃij = −εeTi Γ1xj , s+ 1 ≤ j ≤ N,
k̇i = eTi ei,

(9)
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where 1 ≤ i ≤ s. Then network (1) and network (8) achieve partial complete outer
synchronization, and the unknow partial topology can be identified.

For network (8), if take gi = fi(i = 1, 2, . . . , s), the following corollary is obtained.

Corollary 3.7. Suppose Assumption 2.2 and 2.3 hold, and the controllers and update
laws are designed as follows:

ui = −kiei,
ḃij = −εeTi Γ1yj , 1 ≤ j ≤ s,
ḃij = −εeTi Γ1xj , s+ 1 ≤ j ≤ N,
k̇i = eTi ei.

(10)

Then network (1) and network (8) achieve partial complete outer synchronization, and
the unknow partial topology can be identified.

4. SIMULATION EXAMPLE

In this section, several simulation examples are used to illustrate the validity of our
theoretical results. For simplicity, let Γ1 and Γ2 be identity matrix.

Example 1: Suppose there are 6 nodes in the unknown drive network, but we are only
interested in coupling the first 3 nodes.

Consider a drive network consisiting of 6 nodes as follows:

ẋi = fi(xi) + 0.1

6∑
j=1

aijxj , i = 1, 2, 3, 4, 5, 6, (11)

where

A =


−6 3 2 1 0 0
2 −5 1 1 1 0
0 4 −5 1 0 0
0 0 0 −1 1 0
0 2 0 0 −2 0
1 0 0 0 0 −1

 ,

and the following hyperchaotic Lü system [3] is chosen as the node dynamics :

fi(xi) =


36(xi2 − xi1) + xi4
−xi1xi3 + 20xi2
xi1xi2 − 3xi3
xi1xi3 + 1.3xi4

 .
The response network consists of 3 nodes is as follow:

ẏi = gi(yi) + 0.1

3∑
j=1

bijyj + 0.1DΦi(xi)

6∑
j=4

bijxj + ui, i = 1, 2, 3, (12)
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where the following Lorenz system [34] is chosen as the node dynamics :

gi(yi) =

 10(yi2 − yi1)
28yi1 − yi2 − yi1yi3

yi1yi2 − 8
3yi3

 .
Therefore, the dynamic dimensions of the nodes in the drive network and the response
network are not the same. Let Φi(xi) = (0.2ixi1, xi2 + 2 + 0.2xi4, xi3 − 1)T , one has

DΦi(xi) =

0.2i 0 0 0
0 1 0 0.2
0 0 1 0

 .
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(a) Time evolution of b1j(1 ≤ j ≤ 6)
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(b) Time evolution of b2j(1 ≤ j ≤ 6)
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(c) Time evolution of b3j(1 ≤ j ≤ 6)

Fig. 1. Identification of partial topology for drive network(11) where

the response network is (12).
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Fig. 2. The partial identification error of (11) and (12).

(a) Time evolution of b1j(1 ≤ j ≤ 25) (b) Time evolution of b2j(1 ≤ j ≤ 25)

(c) Time evolution of b3j(1 ≤ j ≤ 25)

Fig. 3. Identification of partial topology for drive network(13) where

the response network is (14).
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Here we use the controllers and update laws (3). Figure 1 shows that B3×6 esti-
mates the partial topology of the drive network. From Figure 2, we can see that the
identification error of the partial network topology tends to zero.

Example 2: A typical star network with 25 nodes is used to verify our conclusions.
That is, a11 = −24, aii = −1(2 ≤ i ≤ 25), ai1 = 1(2 ≤ i ≤ 25), a1j = 1(2 ≤ j ≤ 25),
and the rest of aij is 0. We are only interested in coupling the first 3 nodes. The drive
network is as follows:

ẋi = fi(xi) + 0.1

25∑
j=1

aijxj , i = 1, 2, . . . , 25, (13)

and unlike Example 1, the response network is as follows:

ẏi = gi(yi) + 0.1DΦi(xi)

25∑
j=1

bijΓ1xj + ui, i = 1, 2, 3. (14)

The node dynamics of the response network and drive network are the same as in
Example 1, and Φi(xi) is the same as in Example 1.

Controllers and update laws (7) is used here. Figure 3 shows that B3×25 estimates the
partial topology of the drive network. It can be seen from Figure 4 that the identification
error of the partial network tends to zero.

Fig. 4. The partital identification error of (13) and (14).
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Example 3: Here, we consider the case that the response network and the drive
network achieve partial complete outer synchronization, i. e.,Φi(xi) = xi. The drive
network consists of 6 nodes. The response network form is the same as 8. Similarly,
consider the coupling of the first 3 nodes.

The following Lü system [24] is chosen as the node dynamics of the drive network:

fi(xi) =

 36(xi2 − xi1)
−xi1xi3 + 20xi2
xi1xi2 − 3xi3

 ,
and the node dynamics in the response network and A are the same as in Example 1.

Fig. 5. The partital synchronization error of (11) and (12).

Due to Φi(xi) = xi, one has

DΦi(xi) =

1 0 0
0 1 0
0 0 1

 .
Here we use the controllers and update laws (9). As can be seen from Figure 5, the

partial synchronization error of the two networks tends to zero. Figure 6 shows that
B3×6 estimates the partial topology of the drive network.
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(a) Time evolution of b1j(1 ≤ j ≤ 6)
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(b) Time evolution of b2j(1 ≤ j ≤ 6)
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(c) Time evolution of b3j(1 ≤ j ≤ 6)

Fig. 6. Identification of partial topology for drive network(11) where

the response network is (12).

5. CONCLUSION

This paper studied the partial topology identification problem for complex networks. A
response network with node of simpler dynamics than that in the drive network was
constructed. Suitable controllers and parameters update laws were designed for partial
generalized outer synchronization. Based on Lyapunovfunction, sufficient conditions
were obtained to guarantee partial topology identification of complex networks. This
method is cost-effective and can also identify the whole topology of complex networks.
Future works will also pay attention to partial topology identification problem because
of practical requirements.
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