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Abstract. We introduce equivariant formal deformation theory of associative algebra
morphisms. We also present an equivariant deformation cohomology of associative algebra
morphisms and using this we study the equivariant formal deformation theory of associative
algebra morphisms. We discuss some examples of equivariant deformations and use the
Maurer-Cartan equation to characterize equivariant deformations.
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1. Introduction

Origin of the idea of deformation theory goes back to a paper of Riemann on

abelian functions published in 1857. Kodaira and Spencer initiated deformation

theory of complex analytic structures, see [9], [10], [11]. Gerstenhaber introduced al-

gebraic deformation theory in a series of papers, see [2], [3], [4], [5], [6]. He studied the

deformation theory of associative algebras. Deformation theory of associative algebra

morphisms was introduced by Gerstenhaber and Schack, see [7], [8]. Nijenhuis and

Richardson introduced deformation theory of Lie algebras, see [15], [16]. Deformation

theory of dialgebras has been studied in [12]. Recently, the deformation theory of

dialgebra morphisms and Leibniz algebra morphisms have been treated in [13], [17].

Equivariant deformation theory of associative algebras has been studied in [14].

In this paper, we introduce the equivariant deformation cohomology of associative

algebra morphisms and equivariant formal deformation theory of associative algebra

morphisms. We use the equivariant deformation cohomology of associative algebra

morphisms to study the equivariant formal deformation theory. Organization of the
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paper is as follows. In Section 2, we recall some definitions and results. In Sec-

tion 3, we introduce equivariant deformation complex and equivariant deformation

cohomology of an associative algebra morphism. In Section 4, we present equivari-

ant deformation of an associative algebra morphism. In this section we prove that

obstructions to equivariant deformations are cocycles. We give an example of the

equivariant deformation of associative algebra morphisms. In Section 5, we study

the equivalence of two equivariant deformations and rigidity of an equivariant asso-

ciative algebra morphism. In Section 6, we discuss the Maurer-Cartan equation and

use it to characterize equivariant deformations. We give a geometric interpretation

of equivariant deformations of associative algebra morphisms in this section. Some

of the ideas in this section are motivated by the results in [1], [16].

2. Preliminaries

In this section, we recall definitions of associative algebra, associative algebra

morphisms, Hochschild cohomology and equivariant deformation cohomology of an

associative algebra. Also, we recall definitions of a module over an associative algebra

and module over an associative algebra morphism. Throughout the paper we denote

a fixed field by k and a finite group by G.

Definition 2.1. An associative algebra A is a k-module equipped with a k-bi-

linear map µ satisfying

µ(a, µ(b, c)) = µ(µ(a, b), c)

for all a, b, c ∈ A.

Let A be an associative k-algebra. A bimodule M over A is a k-module M with

two actions (left and right) of A, µ : A×M →M and µ : M×A→M (for simplicity

we denote both the actions by same symbol, one can distinguish both of them from

the context) such that µ(x, µ(y, z)) = µ(µ(x, y), z) whenever one of x, y, z is fromM

and others are from A.

LetA andB be associative k-algebras. An associative algebra morphism ϕ : A→B

is a k-linear map satisfying

ϕ(µ(a, b)) = µ(ϕa, ϕb)

for all a, b ∈ A.

Example 2.1. Let Mn(C) be the collection of all n × n matrices with entries

in C. Then Mn(C) is an associative algebra over C with respect to addition and

multiplication of matrices.
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Example 2.2. Let X be a nonempty set and A be the set of all complex valued

functions defined on X . Then A is an associative algebra over C with respect to +

and · defined by

(α+ β)(x) = α(x) + β(x), (α · β)(x) = α(x)β(x)

for all α, β ∈ A, x ∈ C.

Example 2.3. Let V be a vector space over k. Define the tensor module by

T (V ) = k ⊕ V ⊕ . . .⊕ V ⊗n ⊕ . . .

The tensor module T (V ) is an associative algebra with the concatenation product

T (V )⊗ T (V ) → T (V ) given by

v1 . . . vp ⊗ vp+1 . . . vp+q = v1 . . . vpvp+1 . . . vp+q .

Definition 2.2. Let A be an associative k-algebra andM be a bimodule over A.

Let Cn(A;M) = homk(A
⊗n,M) for all integers n > 0. Also, define a k-linear map

δn : Cn(A;M) → Cn+1(A;M) given by

δnf(x1, . . . , xn+1) = x1f(x2, . . . , xn+1) +

n∑

i=1

(−1)if(x1, . . . , xixi+1, . . . , xn+1)

+ (−1)n+1f(x1, . . . , xn)xn+1.

This gives a cochain complex (C∗(A;M), δ), cohomology of which is denoted

by H∗(A;M) and called as Hochschild cohomology of A with coefficients in M .

Then A is a bimodule over itself in an obvious way. So we can consider the

Hochschild cohomology H∗(A;A).

Let A be an associative k-algebra with product µ(a, b) = ab and G be a finite

group. The group G is said to act on A from the left if there exists a function

ϕ : G×A→ A, (g, a) 7→ ϕ(g, a) = ga

satisfying the following conditions:

(1) ex = x for all x ∈ A, where e ∈ G is the group identity.

(2) g1(g2x) = (g1g2)x for all g1, g2 ∈ G and x ∈ A.

(3) For every g ∈ G, the left translation ϕg = ϕ(g, ) : A→ A, a→ ga is a linear map.

(4) For all g ∈ G and a, b ∈ A, µ(ga, gb) = gµ(a, b) = g(ab), that is, µ is equivariant

with respect to the diagonal action on A×A.
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The action above is denoted by (G,A), see [14]. Put

Cn
G(A;M) = {c ∈ Cn(A;M) : c(gx1, . . . , gxn) = gc(x1, . . . , xn) ∀ g ∈ G}.

An element in Cn
G(A;M) is called an invariant n-cochain. Clearly, Cn

G(A;M) is

a submodule of Cn(A;M).

From [14] we have following lemma.

Lemma 2.1. If an n-cochain c is invariant then δn(c) is also invariant. In other

words,

c ∈ Cn
G(A;M) ⇒ δn(c) ∈ Cn+1

G (A;M).

From [14], we have (C∗
G(A;M), δ) is a cochain complex. Cohomology of this

complex is called an equivariant deformation cohomology of A.

Definition 2.3. Let A and B be associative k-algebras, and ϕ : A→ B be an as-

sociative algebra morphism. LetM andN be k-modules. A k-linear map T : M → N

is said to be a left (or right) module over ϕ if following conditions are satisfied.

(1) M and N are left (or right) modules over A and B, respectively.

(2) T is a left (or right) A-module morphism when N is viewed as a left (or right)

A-module by virtue of the morphism ϕ : A→ B.

A k-linear map T : M → N is said to be a bimodule over ϕ if T is a left as well

as right module over ϕ.

From [14], we recall equivariant deformation of an associative algebra morphism.

Definition 2.4. Let A be an associative k-algebra with a (G,A) action. Put

At =
{ ∞∑
i=0

ait
i : ai ∈ A

}
. An equivariant formal one-parameter deformation of A is

a k-bilinear multiplication mt : At ×At → At satisfying the following properties:

(1) mt(a, b) =
∞∑
i=0

mi(a, b)t
i for all a, b ∈ A, where mi : A × A → A are k-bilinear

and m0(a, b) = ab is the original multiplication on A, and mt is associative.

(2) For every g ∈ G, mi(ga, gb) = gmi(a, b) for all a, b ∈ A, i > 1, that is mi ∈

HomG
k (A⊗A,A) for all i > 1.

3. Equivariant deformation complex of an associative

algebra morphism

In this section, we introduce equivariant deformation complex of an associative

algebra morphism. In the subsequent sections we show that the second and third

cohomologies of this complex control deformation.
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Definition 3.1. LetG be a finite group, A andB be associative algebras with ac-

tions (G,A) and (G,B), respectively. A G-equivariant associative algebra morphism

ϕ : A→ B is defined to be an associative algebra morphism such that ϕ(ga) = gϕ(a)

for all a ∈ A, g ∈ G.

Next, we give some examples of G-equivariant associative algebra morphisms.

Example 3.1. Let X , Y be G-sets and f : Y → X be a G-equivariant map.

Let A = {α : X → R}, B = {α : Y → R} be the vector spaces of all real valued

functions on X , Y , respectively. Observe that A, B are associative algebras with the

product αβ(x) = α(x)β(x). As in [14], G acts on A and B by (g, α) 7→ gα, where

(gα)(x) = α(gx). Define ϕ : A → B by ϕ(α)(y) = α(fy) for all y ∈ Y , α ∈ A.

Clearly, ϕ is a G-equivariant associative algebra morphism.

Example 3.2. Consider the associative algebraMn(C) discussed in Example 2.1.

Let U , V be unitary matrices in Mn(C) such that U is self inverse and UV = V U.

Consider a Z2 action on Mn(C) given by 0̄P = P, 1̄P = UPU∗ = UPU. Here Q∗

denotes the conjugate transpose of any matrix Q in Mn(C). Now define a map

ϕ : Mn(C) → Mn(C) by

ϕ(P ) = V PV ∗

for all P ∈ Mn(C). Clearly, ϕ is a Z2-equivariant associative algebra morphism. In

particular, we can choose U =
(

0 −1

−1 0

)
and V =

(
0 1

1 0

)
and get a Z2-equivariant

associative algebra morphism ϕ : M2(C) → M2(C). Let ψ be the restriction of

this ϕ on M2(R). Observe that for any P ∈ M2(R), x ∈ R
2, ψP (xt) is obtained

by reflecting x through the line u − v = 0, then applying P , and again reflecting

through the same line.

Definition 3.2. Let ϕ : A → B be a G-equivariant associative algebra mor-

phism.

(1) An equivariant left (or right) module over ϕ is defined to be a G-equivariant

k-linear map T : M → N which is a left (or right) module over ϕ.

(2) An equivariant bimodule over ϕ is defined to be a G-equivariant k-linear map

T : M → N which is a bimodule over ϕ. In particular, ϕ is an equivariant

bimodule over itself.

Definition 3.3. Let ϕ : A→ B be aG-equivariant associative algebra morphism

and T : M → N be an equivariant bimodule over ϕ. We put

Cn
G(ϕ;T ) = Cn

G(A;M)⊕ Cn
G(B;N)⊕ Cn−1

G (A;N)

for all n ∈ N and C0
G(ϕ;T ) = 0. Also, we define dn : Cn

G(ϕ;T ) → Cn+1
G (ϕ;T ) by

dn(u, v, w) = (δnu, δnv, Tu− vϕ− δn−1w)
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for all (u, v, w) ∈ Cn
G(ϕ;T ). Here δ

n’s denote coboundaries of the cochain com-

plexes C∗
G(A;M), C∗

G(B;N) and C∗
G(A;N), Tu denotes the composition T ◦ u of T

and u, and the map vϕ : A⊗n → N is defined by vϕ(x1, x2, . . . , xn) = v(ϕ(x1),

ϕ(x2), . . . , ϕ(xn)). From Lemma 2.1, one can easily verify that d
n is well defined.

Proposition 3.1. (C∗
G(ϕ;T ), d) is a cochain complex.

P r o o f. We have

dn+1dn(u, v, w) = dn+1(δnu, δnv, Tu− vϕ− δn−1w)

= (δn+1δnu, δn+1δnv, T (δnu)− (δnv)ϕ− δn(Tu− vϕ− δn−1w)).

One can easily see that δn(Tu − vϕ) = T (δnu) − (δnv)ϕ. So, since δn+1δnu =

δn+1δnv = δn+1δnw = 0, we have dn+1dn = 0. Hence, we obtain the result. �

We call the cochain complex (C∗
G(ϕ, ϕ), d) as the equivariant deformation complex

of ϕ and the corresponding cohomology as the equivariant deformation cohomol-

ogy of ϕ. We denote the equivariant deformation cohomology by Hn
G(ϕ, ϕ), that is

Hn
G(ϕ, ϕ) = Hn(C∗

G(ϕ, ϕ), d). The next proposition relates H
∗
G(ϕ, ϕ) to H

∗
G(A,A),

H∗
G(B,B) and H∗

G(A,B).

Proposition 3.2. If Hn
G(A,A) = 0, Hn

G(B,B) = 0 and Hn−1
G (A,B) = 0, then

Hn
G(ϕ, ϕ) = 0.

P r o o f. Let (u, v, w) ∈ Cn
G(ϕ, ϕ) be a cocycle, that is d

n(u, v, w) = (δnu, δnv,

ϕu − vϕ − δn−1w) = 0. This implies that δnu = 0, δnv = 0, ϕu− vϕ− δn−1w = 0.

Hn
G(A,A) = 0 ⇒ u = δn−1u1, and H

n
G(B,B) = 0 ⇒ δn−1v1 = v for some u1 ∈

Cn−1
G (ϕ, ϕ) and v1 ∈ Cn−1

G (ϕ, ϕ). So 0 = ϕu−vϕ−δn−1w = ϕ(δn−1u1)−(δn−1v1)ϕ−

δn−1w = δn−1(ϕu1)−δ
n−1(v1ϕ)−δ

n−1w = δn−1(ϕu1−v1ϕ−w). So ϕu1−v1ϕ−w ∈

Cn−1
G (A,B) is a cocycle. Now, Hn−1

G (A,B) = 0 ⇒ ϕu1 − v1ϕ − w = δn−2w1 ⇒

ϕu1 − v1ϕ− δn−2w1 = w. Thus, (u, v, w) = (δn−1u1, δ
n−1v1, ϕu1 − v1ϕ− δn−2w1) =

dn−1(u1, v1, w1) for some (u1, v1, w1) ∈ Cn−1
G (ϕ, ϕ). Thus, every cocycle in Cn

G(ϕ, ϕ)

is a coboundary. Hence, we conclude that Hn
G(ϕ, ϕ) = 0. �

4. Equivariant deformation of an associative algebra morphism

Definition 4.1. Let A and B be associative k-algebras with actions (G,A) and

(G,B), respectively. An equivariant deformation of a G-equivariant associative al-

gebra morphism ϕ : A→ B is a triple (µt, νt, ϕt), in which:

(1) µt =
∞∑
i=0

µit
i is an equivariant formal one-parameter deformation for A.
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(2) νt =
∞∑
i=0

νit
i is an equivariant formal one-parameter deformations for B.

(3) ϕt : At → Bt is a G-equivariant associative algebra morphism of the form ϕt =
∞∑
i=0

ϕit
i, where ϕi : A→ B are G-equivariant associative algebra morphisms for

all i > 0 and ϕ0 = ϕ.

Therefore, a triple (µt, νt, ϕt), as given above, is an equivariant deformation of ϕ

provided the following properties are satisfied.

(i) µt(µt(a, b), c) = µt(a, µt(b, c)) for all a, b, c ∈ A;

(ii) µi(ga, gb) = gµi(a, b) for all a, b ∈ A and g ∈ G;

(iii) νt(νt(a, b), c) = νt(a, νt(b, c)) for all a, b, c ∈ B;

(iv) νi(ga, gb) = gνi(a, b) for all a, b ∈ B and g ∈ G;

(v) ϕt(µt(a, b)) = νt(ϕt(a), ϕt(b)) for all a, b ∈ A;

(vi) ϕi(ga) = gϕi(a) for all a ∈ A and g ∈ G.

The conditions (i), (iii) and (v) are equivalent to the following conditions.

∑

i+j=r

µi(µj(a, b), c) =
∑

i+j=r

µi(a, µj(b, c)) ∀ a, b, c ∈ A, r > 0.(4.1)

∑

i+j=r

νi(νj(a, b), c) =
∑

i+j=r

νi(a, νj(b, c)) ∀ a, b, c ∈ B, r > 0.(4.2)

∑

i+j=r

ϕi(µj(a, b)) =
∑

i+j+k=r

νi(ϕj(a), ϕk(b)) ∀ a, b ∈ A, r > 0.(4.3)

Now we define equivariant deformations of finite order.

Definition 4.2. Let A and B be associative k-algebras with actions (G,A)

and (G,B), respectively. An equivariant deformation of order n of a G-equivariant

associative algebra morphism ϕ : A→ B is a triple (µt, νt, ϕt), in which:

(1) µt =
n∑

i=0

µit
i is an equivariant formal one-parameter deformation of order n

for A.

(2) νt =
n∑

i=0

νit
i is an equivariant formal one-parameter deformation of order n

for B.

(3) ϕt : At → Bt is a G-equivariant associative algebra morphism of the form ϕt =
n∑

i=0

ϕit
i, where ϕi : A→ B is a G-equivariant associative algebra morphism for

all i > 0 and ϕ0 = ϕ.

Example 4.1. Let ϕ : Mn(C) → Mn(C) be the G-equivariant associative alge-

bra morphism as defined in Example 3.2. Define ϕ1 : Mn(C) →Mn(C) by

ϕ1(P ) = ϕ(UP ).
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Also, define µ1 : Mn(C)⊗Mn(C) →Mn(C) by

µ1(P,Q) = Uµ(UP,UQ).

Put µt = µ + µ1t, νt = µ and ϕt = ϕ + ϕ1t, where µ is the matrix multiplication

in Mn(C). We have

µ1(1P, 1Q) = UPU∗QU∗,(4.4)

1µ1(P,Q) = UPU∗QU∗,(4.5)

(µ+ µ1t)((µ+ µ1t)(P,Q), R)(4.6)

= PQR+ {µ1(P,Q)R + µ1(PQ,R)}t+ µ1(µ1(P,Q), R)

= PQR+ {PUQR+ PQUR}t+ PUQURt2,

(µ+ µ1t)(P, (µ + µ1t)(Q,R))(4.7)

= PQR+ {µ1(P,QR) + Pµ1(Q,R)}t+ µ1(P, µ1(Q,R))t
2

= PQR+ {PQUR+ PUQR}t+ PUQURt2,

(ϕ+ ϕ1t)(µ+ µ1t)(P,Q)(4.8)

= V PQV ∗ + {V UPQV ∗ + V PUQV ∗}t+ V UPUQV ∗t2,

(ϕ+ ϕ1t)(P )(ϕ + ϕ1t)(Q)(4.9)

= V PQV ∗ + {V PUQV ∗ + V UPQV ∗}t+ V UPUQV ∗t2,

(ϕ+ ϕ1t)(1P ) = UV PV ∗ + UUV PV ∗U∗t = 1(ϕ+ ϕ1t)(P ).(4.10)

From the expressions (4.4)–(4.10), we conclude that (µt, νt, ϕt) is a Z2-equivariant

formal deformation of ϕ of order 1.

Remark 4.1.

⊲ For r = 0, the conditions (4.1)–(4.3) are equivalent to the fact that A and B are

associative algebras and ϕ is an associative algebra morphism, respectively.

⊲ For r = 1, (4.1)–(4.3) are equivalent to δ2µ1 = 0, δ2ν1 = 0 and ϕµ1 − ν1ϕ −

δ1ϕ1 = 0. Thus, for r = 1, (4.1)–(4.3) are equivalent to saying that (µ1, ν1, ϕ1) ∈

C2
G(ϕ, ϕ) is a cocycle. In general, for r > 2, (µr, νr, ϕr) is just a 2-cochain

in C2
G(ϕ, ϕ).

Definition 4.3. The 2-cochain (µ1, ν1, ϕ1) in C
2
G(ϕ, ϕ) is called the infinitesimal

of equivariant deformation (µt, νt, ϕt). In general, if (µi, νi, ϕi) = 0 for 1 6 i 6

n − 1 and (µn, νn, ϕn) is a nonzero cochain in C
2
G(ϕ, ϕ), then (µn, νn, ϕn) is called

n-infinitesimal of deformation (µt, νt, ϕt).

Proposition 4.1. The infinitesimal (µ1, ν1, ϕ1) of the equivariant deformation

(µt, νt, ϕt) is a 2-cocycle in C2
G(ϕ, ϕ). In general, the n-infinitesimal (µn, νn, ϕn) is

a cocycle in C2
G(ϕ, ϕ).
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P r o o f. For n = 1, the proof is obvious from Remark 4.1. For n > 1, the proof

is similar. �

We can write the equations (4.1), (4.2) and (4.3) for r = n+1 using the definition

of coboundary δ as

δ2µn+1(a, b, c) =
∑

i+j=n+1
i,j>0

µi(µj(a, b), c)− µi(a, µj(b, c)) ∀ a, b, c ∈ A,(4.11)

δ2νn+1(a, b, c) =
∑

i+j=n+1
i,j>0

νi(νj(a, b), c)− νi(a, νj(b, c)) ∀ a, b, c ∈ B,(4.12)

ϕ(µn+1(a, b))− νn+1(ϕ(a), ϕ(b)) − δ1ϕn+1(a, b)(4.13)

=
∑′

νi(ϕj(a), ϕk(b))−
∑

i+j=n+1
i,j>0

ϕi(µj(a, b))

for all a, b ∈ A, where

(4.14)
∑′

=
∑

i+j=n+1
i,j>0
k=0

+
∑

j+k=n+1
j,k>0
i=0

+
∑

k+i=n+1
k,i>0
j=0

+
∑

i+j+k=n+1
i,j,k>0

.

By using the equations (4.11), (4.12) and (4.13) we have

(4.15)

d2(µn+1, νn+1, ϕn+1)(a, b, c, x, y, z, p, q)

=

( ∑

i+j=n+1
i,j>0

µi(µj(a, b), c)− µi(a, µj(b, c)),
∑

i+j=n+1
i,j>0

νi(νj(x, y), z)− νi(x, νj(y, z)),

∑′

νi(ϕj(p), ϕk(q)) −
∑

i+j=n+1
i,j>0

ϕi(µj(p, q))

)

for all a, b, c, p, q ∈ A and x, y, z ∈ B.

Define a 3-cochain Fn+1 by

(4.16)

Fn+1(a, b, c, x, y, z, p, q)

=

( ∑

i+j=n+1
i,j>0

µi(µj(a, b), c)− µi(a, µj(b, c)),
∑

i+j=n+1
i,j>0

νi(νj(x, y), z)− νi(x, νj(y, z)),

∑′

νi(ϕj(p), ϕk(q))−
∑

i+j=n+1
i,j>0

ϕi(µj(p, q))

)
.

Lemma 4.1. The 3-cochain Fn+1 is invariant, that is Fn+1 ∈ C3
G(ϕ, ϕ).
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P r o o f. To prove that Fn+1 is invariant we show that

Fn+1(ga, gb, gc, gx, gy, gz, gp, gq) = gFn+1(a, b, c, x, y, z, p, q)

for all a, b, c, p, q ∈ A and x, y, z ∈ B. From Definition 4.1, we have

µi(ga, gb) = gµi(a, b), νi(gx, gy) = gνi(x, y), ϕi(ga) = gϕi(a)

for all a, b ∈ A and x, y ∈ B. So, we have, for all a, b, c, p, q ∈ A and x, y, z ∈ B,

Fn+1(ga, gb, gc, gx, gy, gz, gp, gq)

=

( ∑

i+j=n+1
i,j>0

µi(µj(ga, gb), gc)− µi(ga, µj(gb, gc)),

∑

i+j=n+1
i,j>0

νi(νj(gx, gy), gz)− νi(gx, νj(gy, gz)),

∑′

νi(ϕj(gp), ϕk(gq))−
∑

i+j=n+1
i,j>0

ϕi(µj(gp, gq))

)

=

( ∑

i+j=n+1
i,j>0

µi(gµj(a, b), gc)− µi(ga, gµj(b, c)),

∑

i+j=n+1
i,j>0

νi(gνj(x, y), gz)− νi(gx, gνj(y, z)),

∑′

νi(gϕj(p), gϕk(q)) −
∑

i+j=n+1
i,j>0

ϕi(gµj(p, q))

)

=

( ∑

i+j=n+1
i,j>0

gµi(µj(a, b), c)− gµi(a, µj(b, c)),

∑

i+j=n+1
i,j>0

gνi(νj(x, y), z)− gνi(x, νj(y, z)),

∑′

νi(ϕj(p), ϕk(q))−
∑

i+j=n+1
i,j>0

gϕi(µj(p, q))

)

= gFn+1(a, b, c, x, y, z, p, q).

So we conclude that Fn+1 ∈ Cn
G(ϕ, ϕ). �

Definition 4.4. The 3-cochain Fn+1 ∈ Cn
G(ϕ, ϕ) is called the (n+ 1)st obstruc-

tion cochain for extending the given equivariant deformation of order n to an equiv-

ariant deformation of ϕ of order (n+1). From now on, we denote Fn+1 by Obn+1(ϕt).
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We have the following result.

Theorem 4.1. The (n+ 1)st obstruction cochain Obn+1(ϕt) is a 3-cocycle.

P r o o f. We have

d3Obn+1 = (δ3(O1), δ
3(O2), ϕO1 −O2ϕ− δ2(O3)),

where O1, O2 and O3 are given by

O1(a, b, c) =
∑

i+j=n+1
i,j>0

{µi(µj(a, b), c)− µi(a, µj(b, c))},

O2(x, y, z) =
∑

i+j=n+1
i,j>0

{νi(νj(x, y), z)− νi(x, νj(y, z))},

O3(p, q) =
∑′

νi(ϕj(p), ϕk(q))−
∑

i+j=n+1
i,j>0

ϕi(µj(p, q)).

From [14], we have δ3(O1) = 0, δ3(O2) = 0. So, to prove that d3Obn+1 = 0, it remains

to show that ϕO1 − O2ϕ − δ2(O3) = 0. To prove that ϕO1 − O2ϕ − δ2(O3) = 0 we

use similar ideas as have been used in [13] and [17]. We have

(4.17)

(ϕO1 −O2ϕ)(x, y, z) =
∑

i+j=n+1
i,j>0

ϕµi(µj(x, y), z)−
∑

i+j=n+1
i,j>0

ϕµi(x, µj(y, z))

−
∑

i+j=n+1
i,j>0

νi(νj(ϕx, ϕy), ϕz) +
∑

i+j=n+1
i,j>0

νi(ϕx, νj(ϕy, ϕz))

and

(4.18)

δ2(O3)(x, y, z) =
∑′

ν0(ϕ(x), νi(ϕj(y), ϕk(z)))−
∑

i+j=n+1
i,j>0

ν0(ϕ(x), ϕi(µj(y, z)))

−
∑′

νi(ϕj(µ0(x, y)), ϕk(z)) +
∑

i+j=n+1
i,j>0

ϕi(µj(µ0(x, y), z))

+
∑′

νi(ϕj(x), ϕk(µ0(y, z)))−
∑

i+j=n+1
i,j>0

ϕi(µj(x, µ0(y, z)))

−
∑′

ν0(νi(ϕj(x), ϕk(y)), ϕ(z)) +
∑

i+j=n+1
i,j>0

ν0(ϕi(µj(x, y)), ϕ(z)).
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From (4.3), we have

(4.19) ϕjµ0(x, y) =
∑

α+β+γ=j
α,β,γ>0

να(ϕβ(x), ϕγ(y))−
∑

p+q=j
16q6j

ϕpµq(x, y).

Substituting the expression for ϕjµ0 from (4.19) into the third sum on the right hand

side of (4.18) we can rewrite it as

(4.20) −
∑′

νi(ϕj(µ0(x, y)), ϕk(z)) = −
∑′

α+β+γ=j
α,β,γ>0

νi(να(ϕβ(x), ϕγ(y)), ϕk(z))

+
∑′

p+q=j
16q6j

νi(ϕpµq(x, y), ϕk(z)).

Here the first sum of (4.20) is given by

(4.21)
∑′

α+β+γ=j
α,β,γ>0

=
∑

i+α+β+γ=n+1
i,(α+β+γ)>0

k=0

+
∑

α+β+γ+k=n+1
(α+β+γ),k>0

i=0

+
∑

k+i=n+1
k,i>0

α=β=γ=0

+
∑

i+α+β+γ+k=n+1
i,(α+β+γ),k>0

,

the second sum of (4.20) is given by

(4.22)
∑′

p+q=j
16q6j

=
∑

i+p+q=n+1
i,q>0,p>0

k=0

+
∑

p+q+k=n+1
q,k>0,p>0

i=0

+
∑

i+j+k=n+1
i,q,k>0,p>0

.

The first sum of (4.19) splits into four sums. The first one of these four sums splits as

(4.23) −
∑

i+α+β+γ=n+1
i,(α+β+γ)>0

k=0

νi(να(ϕβ(x), ϕγ(y)), ϕk(z))

= −
∑

i+α=n+1
i,α>0

νi(να(ϕ(x), ϕ(y)), ϕ(z))

−
∑

i+α+β+γ=n+1
i,(β+γ)>0
α,β,γ>0

νi(να(ϕβ(x), ϕγ(y)), ϕ(z)).

The first sum on the rhs of (4.23) appears as the third sum on the rhs of (4.17). By

applying a similar argument to the fifth sum on the rhs of (4.18) and using (4.3)
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on ϕkµ0(y, z), one can rewrite it as

(4.24)
∑′

νi(ϕj(x), ϕkµ0(y, z)) =
∑′

α+β+γ=j
α,β,γ>0

νi(ϕj(x), να(ϕβ(y), ϕγ(z)))

−
∑′

p+q=k
16q6j

νi(ϕj(x), ϕpµq(y, z)).

As above the first sum on the rhs of (4.24) is a sum of four sums similar to (4.21)

except that the roles of j and k are interchanged. One of these four terms splits as

(4.25)
∑

i+α+β+γ=n+1
i,(α+β+γ)>0

k=0

νi(ϕj(x), να(ϕβ(y), ϕγ(z)))

=
∑

i+α=n+1
i,α>0

νi(ϕ(x), να(ϕ(y), ϕ(z)))

+
∑

i+α+β+γ=n+1
i,(β+γ)>0
α,β,γ>0

νi(ϕ(x), να(ϕβ(y), ϕγ(z))).

The first sum on the rhs of (4.25) appears as the fourth sum on the rhs of (4.17). In

the fourth sum on the rhs of (4.18), we use (4.1) to substitute for µj(µ0(x, y), z) to

obtain

(4.26)∑

i+j=n+1
i,j>0

ϕiµj(µ0(x, y), z) =
∑

i+j=n+1
i,j>0

ϕiµj(x, µ0(y, z) +
∑

i+j+k=n+1
i,k>0,j>0

ϕiµj(x, µk(y, z))

−
∑

i+j+k=n+1
i,k>0,j>0

ϕiµj(µk(x, y), z).

The first sum on the rhs of (4.26) cancels with the sixth sum on the rhs of (4.18).

The Second sum on the rhs of (4.26) splits as

(4.27)
∑

i+j+k=n+1
i,k>0,j>0

ϕiµj(x, µk(y, z)) =

n∑

k=1

∑

i+j+k=n+1
i,j>0

ϕiµj(x, µk(y, z)

− ϕ
∑

j+k=n+1
j,k>0

µj(x,muk(y, z)).
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The second sum on the rhs of (4.27) appears as the second sum on the rhs of (4.17).

Also, by using (4.3) the first sum on the rhs of (4.27) splits as

(4.28)

n∑

k=1

∑

i+j+k=n+1
i,j>0

ϕiµj(x, µk(y, z) =

n∑

k=1

∑

α+β+γ+k=n+1
α,β,γ>0

να(ϕβ , ϕγµk(y, z))

=
∑

i+j=n+1
i,j>0

ν0(ϕ(x), ϕiµj(y, z))

+
∑′

p+q=k
i6q6k

νi(ϕj(x), ϕpµq(y, z)).

In the last line the two terms cancel with the second terms on the rhs of (4.18)

and (4.24), respectively. The third term on the rhs of (4.27) splits as

(4.29) −
∑

i+j+k=n+1
i,k>0,j>0

ϕiµj(µk(x, y), z) = −
∑

i+j=n+1
i,j>0

ν0(ϕiµj(x, y), ϕ(z))

−
∑′

p+q=j
16q6j

νi(ϕpµq(x, y), ϕk(z))

+
∑

j+k=n+1
j,k>0

ϕµj(µk(x, y), z).

On the rhs of (4.29), the last term cancels with the first sum on the rhs of (4.17), the

first sum cancels with the last sum on the rhs of (4.18) and the second term cancels

with the second sum on the rhs of (4.20). From our previous arguments we have

(4.30)

ϕO1 −O2ϕ− δ2(O3)(x, y, z)

=
∑′

{ν0(ϕ(x), νi(ϕj(y), ϕk(z)))− ν0(νi(ϕj(x), ϕk(y), ϕ(z)))}

+
∑

i+α+β+γ=n+1
i,(β+γ)>0
α,β,γ>0

{νi(ϕ(x), να(ϕβ(y), ϕγ(z))− νi(να(ϕβ(x), ϕγ(y), ϕ(z))}

−

{ ∑

α+β+γ+k=n+1
(α+β+γ),k>0

i=0

+
∑

k+i=n+1
k,i>0

α=β=γ=0

+
∑

i+α+β+γ+k=n+1
i,(α+β+γ),k>0

}
νi(να(ϕβ(x), ϕγ(y)), ϕk(z))

+

{ ∑

α+β+γ+j=n+1
(α+β+γ),j>0

i=0

+
∑

i+j=n+1
i,j>0

α=β=γ=0

+
∑

i+j+α+β+γ=n+1
i,j,(α+β+γ)>0

}
νi(ϕj(x), να(ϕβ(y), ϕγ(z))).
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We can write the above equation more compactly as

(4.31) ϕO1 −O2ϕ− δ2(O3)(x, y, z)

=
∑

{νi(ϕα(x), νj(ϕβ(y), ϕγ(z)))− νi(νj(ϕα(x), ϕβ(y)), ϕγ(z))},

where

(4.32)
∑

=
∑

i+j+α+β+γ=n+1
16α+β+γ6n
i,j,α,β,γ>0

+
∑

α+β=n+1
α,β>0
i,j,γ=0

+
∑

β+γ=n+1
β,γ>0
i,j,α=0

+
∑

α+γ=n+1
α,γ>0
i,j,β=0

+
∑

α+β+γ=n+1
α,β,γ>0
i,j=0

.

It follows from (4.31) and (4.2) that the sum on the rhs of (4.31) is 0 and hence

ϕO1 −O2ϕ− δ2(O3) = 0. This finishes the proof of the theorem. �

Theorem 4.2. Let (µt, νt, ϕt) be an equivariant deformation of ϕ of order n.

Then (µt, νt, ϕt) extends to an equivariant deformation of order n+ 1 if and only if

the cohomology class of the (n+ 1)st obstruction Obn+1(ϕt) vanishes.

P r o o f. Suppose that an equivariant deformation (µt, νt, ϕt) of ϕ of order n

extends to an equivariant deformation of order n+ 1. This implies that (4.1), (4.2)

and (4.3) are satisfied for r = n+ 1. Observe that this implies

Obn+1(ϕt) = d2(µn+1, νn+1, ϕn+1).

So the cohomology class of Obn+1(ϕt) vanishes. Conversely, suppose that the coho-

mology class of Obn+1(ϕt) vanishes, that is Obn+1(ϕt) is a coboundary. Let

Obn+1(ϕt) = d2(µn+1, νn+1, ϕn+1)

for some 2-cochain (µn+1, νn+1, ϕn+1) ∈ C2
G(ϕ, ϕ). Take

(µ̃t, ν̃t, ϕ̃t) = (µt + µn+1t
n+1, νt + νn+1t

n+1, ϕt + ϕn+1t
n+1).

Observe that (µ̃t, ν̃t, ϕ̃t) satisfies (4.1), (4.2) and (4.3) for 0 6 r 6 n+1. So (µ̃t, ν̃t, ϕ̃t)

is an equivariant extension of (µt, νt, ϕt) of order n+ 1. �

Corollary 4.1. If H3
G(ϕ, ϕ) = 0, then every 2-cocycle in C2

G(ϕ, ϕ) is an infinites-

imal of some equivariant deformation of ϕ.
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5. Equivalence of equivariant deformations

Let (µt, νt, ϕt) and (µ̃t, ν̃t, ϕ̃t) be two equivariant deformations of ϕ. Recall

from [14] that an equivariant formal isomorphism between the equivariant defor-

mations µt and µ̃t of an associative algebra A is a k[[t]]-linear G-automorphism

Ψt : A[[t]] → A[[t]] of the form Ψt =
∑
i>0

ψit
i, where each ψi is an equivariant k-linear

map A → A, ψ0(a) = a for all a ∈ A and µ̃t(Ψt(a),Ψt(b)) = Ψtµt(a, b) for all

a, b ∈ A.

Definition 5.1. An equivariant formal isomorphism (µt, νt, ϕt) → (µ̃t, ν̃t, ϕ̃t)

is a pair (Ψt,Θt), where Ψt : A[[t]] → A[[t]] and Θt : B[[t]] → B[[t]] are equivariant

formal isomorphisms from µt to µ̃t and from νt to ν̃t, respectively, such that

ϕ̃t ◦Ψt = Θt ◦ ϕt.

Two equivariant deformations (µt, νt, ϕt) and (µ̃t, ν̃t, ϕ̃t) are said to be equiva-

lent if there exists an equivariant formal isomorphism (Ψt,Θt) from (µt, νt, ϕt) to

(µ̃t, ν̃t, ϕ̃t).

Definition 5.2. Any equivariant deformation of ϕ : A → B that is equivalent

to the deformation (µ0, ν0, ϕ) is said to be the trivial deformation.

Theorem 5.1. The cohomology class of the infinitesimal of an equivariant defor-

mation (µt, νt, ϕt) of ϕ : A→ B is determined by the equivalence class of (µt, νt, ϕt).

P r o o f. Let (Ψt,Θt) from (µt, νt, ϕt) to (µ̃t, ν̃t, ϕ̃t) be an equivariant formal

isomorphism. So, we have µ̃tΨt = Ψt ◦ µt, ν̃tΘt = Θt ◦ νt, and ϕ̃t ◦ Ψt = Θt ◦ ϕt.

This implies that µ1 − µ̃1 = δψ1, ν1 − ν̃1 = δθ1, and ϕ1 − ϕ̃1 = ϕψ1 − θ1ϕ. So we

have d1(ψ1, θ1, 0) = (µ1, ν1, ϕ1)− (µ̃1, ν̃1, ϕ̃1). This finishes the proof. �

6. Maurer-Cartan equation and geometric interpretation

of deformations

We recall the following definition:

Definition 6.1. A finite group G is said to act on a vector space A from the left

if there exists a function

ϕ : G×A→ A, (g, a) 7→ ϕ(g, a) = ga

satisfying the following conditions:

(1) ex = x for all x ∈ A, where e ∈ G is the group identity.

(2) g1(g2x) = (g1g2)x for all g1, g2 ∈ G and x ∈ A.

(3) For every g ∈ G, the left translation ϕg = ϕ(g, ) : A→ A, a→ ga is a linear map.
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Let A be vector spaces with an action of a group G. Define a linear map

⊙ : Cm+1
G (A;B) ⊗ Cn+1

G (A;B) → Cm+n+1
G (A;B)

by

η⊙ψ(x1, . . . , xm+n+1) =
n∑

i=1

(−1)(i−1)nη(x1, . . . , xi−1, ψ(xi, . . . , xi+n), . . . , xm+n+1).

One can easily verify that C∗
G(A;B) =

∞⊕
i=0

Ci
G(A;B) is a graded associative algebra

with respect to the operation ⊙. Put

[η, ψ]MG = η ⊙ ψ − (−1)mnψ ⊙ η

for η ∈ Cm+1
G (A;B), ψ ∈ Cn+1

G (A;B). Write Li = Ci+1
G (A;A) and L =

∞⊕
i=0

Li. Then

(L, [ , ]MG, 0) is a differential graded Lie algebra with an action of G.

Definition 6.2. A Maurer-Cartan element in a differential graded Lie algebra(
L =

⊕
i∈Z

Li, [ , ], δ
)
is an element in ψ ∈ L1 such that

(6.1) δψ +
1

2
[ψ, ψ] = 0.

The equation (6.1) is called the Maurer-Cartan equation.

We have the following characterization of G-equivariant associative algebra struc-

ture on a vector space A in terms of Maurer-Cartan elements.

Theorem 6.1. An element µ ∈ C2
G(A;A) is a G-equivariant associative algebra

structure on A if and only if it is a Maurer-Cartan element, that is

[µ, µ]MG = 0.

Assume that A is a finite dimensional vector space with an action of a finite

group G. Observe that introducing coordinates (structure constants) the equation

µ(a, µ(b, c)) = µ(µ(a, b), c) becomes a set of quadratic polynomial equations with

variables as structure constants and µ(ga, gb) = gµ(a, b) corresponds to a set of linear

polynomial equations with variables as structure constants. Hence, the solution set of

the equations µ(a, µ(b, c)) = µ(µ(a, b), c) and µ(ga, gb) = gµ(a, b) forms an algebraic

variety LG,A of C
2
G(A;A).
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Let A and B be associative algebras with an action of a group G. Let ϕ : A→ B

be a G-equivariant associative algebra morphism. Define a linear map

⋄ : Cm
G (A;B)⊗ Cn

G(A;B) → Cm+n
G (A;B)

by

η ⋄ ψ(x1, . . . , xm+n) = η(x1, . . . , xm)ψ(xm+1, . . . , xn).

Clearly, C∗
G(A;B) =

∞⊕
i=0

Ci
G(A;B) is a graded associative algebra with respect to the

operation ⋄. Now, put [η, ψ] = η ⋄ψ− (−1)mnψ ⋄ η for η ∈ Cm
G (A;B), ψ ∈ Cn

G(A;B).

Then (C∗
G(A;B), [ , ]) is a graded Lie algebra. Define a linear map D : Cn

G(A;B) →

Cn+1
G (A;B) by

Dψ(x1, . . . , xn+1) =

n∑

i=1

(−1)iψ(x1, . . . , xixi+1, . . . , xn+1).

By direct computation one can verify that (C∗
G(A;B), [ , ], D) is a differential graded

Lie algebra with an action of G.

We have the following characterization of a G-equivariant associative algebra mor-

phism from A to B in terms of Maurer-Cartan elements.

Theorem 6.2. Let A and B be associative algebras. An element ψ ∈ C1
G(A;B)

is a G-equivariant associative algebra morphism from A to B if and only if it is

a Maurer-Cartan element, that is

Dψ +
1

2
[ψ, ψ] = 0.

Let (A, µ) and (B, ν) be associative k-algebras with actions (G,A) and (G,B),

respectively. Let ϕ : A → B be a G-equivariant associative algebra morphism. Let

µt =
∞∑
i=0

µit
i, νt =

∞∑
i=0

νit
i, ϕt =

∞∑
i=0

ϕit
i, where µi ∈ C2

G(A;A), νi ∈ C2
G(B;B),

ϕi ∈ C1
G(A;B) for i > 0 and µ0 = µ, ν0 = ν, ϕ0 = ϕ. Write

µ̃t = µt − µ0, ν̃t = νt − ν0, ϕ̃t = ϕt − ϕ0.

Using Theorems 6.1, 6.2 and the definition of equivariant deformation we obtain the

following result.

Theorem 6.3. Let (µt, νt, ϕt) be an equivariant formal deformation if and only

if µt and νt satisfy the Maurer-Cartan equation (6.1) and ϕt satisfies the equation

(6.2) ϕt(µ(a, b))− ν(ϕt(a), ϕt(b))− {ν̃t(ϕt(a), ϕt(b))− ϕt(µ̃t(a, b))} = 0.
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Let A and B be two finite dimensional vector spaces with an action of a finite

group G. Denote by LG(A;B) the space of all G-equivariant linear maps from A

to B. Let µ and ν be G-equivariant associative algebra structures on vector spaces A

and B, respectively. Put

MG,µ,ν = {ψ ∈ LG(A,B) : ψ(µ(a, b)) = ν(ψ(a), ψ(b))}.

Consider a distribution MG of the trivial vector bundle LG,A × LG,B × LG(A;B)

defined as

MG = {(µ, ν, ϕ) ∈ LG,A × LG,B × LG(A;B) : ϕ ∈MG,µ,ν}.

Remark 6.1. In the equation (6.2), ϕt(µ(a, b))− ν(ϕt(a), ϕt(b)) is the left hand

side of the Maurer-Cartan equation (6.1) for the differential graded Lie algebra

(C∗
G(A;B), [ , ], D). It is not surprising because the deformation given by the Maurer-

Cartan equation of the differential graded Lie algebra (C∗
G(A;B), [ , ], D) corresponds

to a deformation along a fiber ofMG. Since we have considered a deformation which

is not necessarily confined in a particular fiber of MG the term {ν̃t(ϕt(a), ϕt(b)) −

ϕt(µ̃t(a, b))} appears in the equation (6.2).

Next example gives a geometric interpretation of deformations and formal defor-

mations.

Example 6.1. Let G be a finite group and A, B be finite dimensional vector

spaces. Let ϕ : (A, µ) → (B, ν) be a G-equivariant associative algebra morphism.

Clearly, any curve γ(t) = (µt, νt, ϕt) in the distribution MG of LG,A × LG,B ×

LG(A;B) such that γ(0) = (µ, ν, ϕ) is an equivariant deformation of ϕ. If the

curve γ(t) is analytic, then the deformation comes out to be equivariant formal

deformation.
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