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Abstract. We introduce equivariant formal deformation theory of associative algebra
morphisms. We also present an equivariant deformation cohomology of associative algebra
morphisms and using this we study the equivariant formal deformation theory of associative
algebra morphisms. We discuss some examples of equivariant deformations and use the
Maurer-Cartan equation to characterize equivariant deformations.
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1. INTRODUCTION

Origin of the idea of deformation theory goes back to a paper of Riemann on
abelian functions published in 1857. Kodaira and Spencer initiated deformation
theory of complex analytic structures, see [9], [10], [11]. Gerstenhaber introduced al-
gebraic deformation theory in a series of papers, see [2], [3], [4], [5], [6]. He studied the
deformation theory of associative algebras. Deformation theory of associative algebra
morphisms was introduced by Gerstenhaber and Schack, see [7], [8]. Nijenhuis and
Richardson introduced deformation theory of Lie algebras, see [15], [16]. Deformation
theory of dialgebras has been studied in [12]. Recently, the deformation theory of
dialgebra morphisms and Leibniz algebra morphisms have been treated in [13], [17].
Equivariant deformation theory of associative algebras has been studied in [14].

In this paper, we introduce the equivariant deformation cohomology of associative
algebra morphisms and equivariant formal deformation theory of associative algebra
morphisms. We use the equivariant deformation cohomology of associative algebra
morphisms to study the equivariant formal deformation theory. Organization of the
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paper is as follows. In Section 2, we recall some definitions and results. In Sec-
tion 3, we introduce equivariant deformation complex and equivariant deformation
cohomology of an associative algebra morphism. In Section 4, we present equivari-
ant deformation of an associative algebra morphism. In this section we prove that
obstructions to equivariant deformations are cocycles. We give an example of the
equivariant deformation of associative algebra morphisms. In Section 5, we study
the equivalence of two equivariant deformations and rigidity of an equivariant asso-
ciative algebra morphism. In Section 6, we discuss the Maurer-Cartan equation and
use it to characterize equivariant deformations. We give a geometric interpretation
of equivariant deformations of associative algebra morphisms in this section. Some
of the ideas in this section are motivated by the results in [1], [16].

2. PRELIMINARIES

In this section, we recall definitions of associative algebra, associative algebra
morphisms, Hochschild cohomology and equivariant deformation cohomology of an
associative algebra. Also, we recall definitions of a module over an associative algebra
and module over an associative algebra morphism. Throughout the paper we denote
a fixed field by k and a finite group by G.

Definition 2.1. An associative algebra A is a k-module equipped with a k-bi-
linear map p satisfying

/.L(Cl, (b, C)) = p(u(a, b)7 c)

for all a,b,c € A.

Let A be an associative k-algebra. A bimodule M over A is a k-module M with
two actions (left and right) of A, u: Ax M — M and p: M x A — M (for simplicity
we denote both the actions by same symbol, one can distinguish both of them from
the context) such that p(z, u(y, 2)) = p(p(z,y), z) whenever one of z, y, z is from M
and others are from A.

Let A and B be associative k-algebras. An associative algebra morphism ¢: A— B
is a k-linear map satisfying

¢(u(a,b)) = p(pa, b)

for all a,b € A.

Example 2.1. Let M,(C) be the collection of all n x n matrices with entries
in C. Then M,(C) is an associative algebra over C with respect to addition and
multiplication of matrices.
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Example 2.2. Let X be a nonempty set and A be the set of all complex valued
functions defined on X. Then A is an associative algebra over C with respect to +
and - defined by

(a+0)(z) = a(z) + f(z), (a-f)(z) = alr)f(x)

forall a, 8 € A, z € C.

Example 2.3. Let V' be a vector space over k. Define the tensor module by
TV)=koVa..aV¥a...

The tensor module T'(V') is an associative algebra with the concatenation product
T(V)@T(V)— T(V) given by

V... Vp Q@Uptl..-Uptqg =V1...VUpUpt1--.Upiq-

Definition 2.2. Let A be an associative k-algebra and M be a bimodule over A.
Let C™(A; M) = homy(A®™, M) for all integers n > 0. Also, define a k-linear map
§": C"(A; M) — C™T1(A; M) given by

n

0" f(x1, ..y Tny1) =21 f (X2, .oy Tpg1) + Z(—l)if(xl, ey LTy e ey Tt
i=1

+ (=D (21, T Tt

This gives a cochain complex (C*(A4;M),d), cohomology of which is denoted
by H*(A; M) and called as Hochschild cohomology of A with coefficients in M.
Then A is a bimodule over itself in an obvious way. So we can consider the
Hochschild cohomology H*(A4; A).

Let A be an associative k-algebra with product p(a,b) = ab and G be a finite
group. The group G is said to act on A from the left if there exists a function

p: Gx A=A, (9,a) = o(g,a) = ga

satisfying the following conditions:

(1) ex =z for all z € A, where e € G is the group identity.

(2) g1(g22) = (g192)x for all g1,92 € G and x € A.

(3) For every g € G, the left translation ¢, = ¢(g,): A — A, a — ga is alinear map.

(4) For all g € G and a,b € A, p(ga, gb) = gu(a,b) = g(ab), that is, y is equivariant
with respect to the diagonal action on A x A.
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The action above is denoted by (G, A), see [14]. Put
C&(A; M) ={ce C"(A;M): c(gz1,...,92n) = gc(z1,...,2,) Vg € G}.

An element in CA(A; M) is called an invariant n-cochain. Clearly, CZ(A; M) is
a submodule of C"(A4; M).

From [14] we have following lemma.

Lemma 2.1. If an n-cochain c is invariant then §"(c) is also invariant. In other

words,
ce CEH(A; M) = 0"(c) € CgH(A;M).

From [14], we have (C}(A;M),0) is a cochain complex. Cohomology of this
complex is called an equivariant deformation cohomology of A.

Definition 2.3. Let A and B be associative k-algebras, and ¢p: A — B be an as-
sociative algebra morphism. Let M and N be k-modules. A k-linearmapT: M — N
is said to be a left (or right) module over ¢ if following conditions are satisfied.

(1) M and N are left (or right) modules over A and B, respectively.
(2) T is a left (or right) A-module morphism when N is viewed as a left (or right)
A-module by virtue of the morphism ¢: A — B.

A k-linear map T: M — N is said to be a bimodule over ¢ if T is a left as well

as right module over ¢.

From [14], we recall equivariant deformation of an associative algebra morphism.

Definition 2.4. Let A be an associative k-algebra with a (G, A) action. Put
oo .
A = {Z a;t": a; € A}. An equivariant formal one-parameter deformation of A is
i=0
a k-bilinear multiplication m:: A; x Ay — A, satisfying the following properties:

(1) my(a,b) = > my(a,b)t® for all a,b € A, where m;: A x A — A are k-bilinear
i=0
and mo(a,b) = ab is the original multiplication on A, and m; is associative.

(2) For every g € G, m;(ga,gb) = gm;(a,b) for all a,b € A, i > 1, that is m; €
Hom{ (A ® A, A) for all i > 1.

3. EQUIVARIANT DEFORMATION COMPLEX OF AN ASSOCIATIVE
ALGEBRA MORPHISM

In this section, we introduce equivariant deformation complex of an associative
algebra morphism. In the subsequent sections we show that the second and third
cohomologies of this complex control deformation.
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Definition 3.1. Let G be a finite group, A and B be associative algebras with ac-
tions (G, A) and (G, B), respectively. A G-equivariant associative algebra morphism
¢: A — Bis defined to be an associative algebra morphism such that ¢(ga) = gp(a)
foralla € A, g € G.

Next, we give some examples of G-equivariant associative algebra morphisms.

Example 3.1. Let X, Y be G-sets and f: ¥ — X be a G-equivariant map.
Let A = {a: X — R}, B = {a: Y — R} be the vector spaces of all real valued
functions on X, Y, respectively. Observe that A, B are associative algebras with the
product afB(x) = afx)s(z). Asin [14], G acts on A and B by (g,a) — go, where
(9a)(z) = a(gx). Define p: A — B by p(a)(y) = a(fy) for all y € Y, a € A.
Clearly, ¢ is a G-equivariant associative algebra morphism.

Example 3.2. Consider the associative algebra M,, (C) discussed in Example 2.1.
Let U, V be unitary matrices in M, (C) such that U is self inverse and UV = VU.
Consider a Z5 action on M,,(C) given by 0P = P, 1P = UPU* = UPU. Here Q*
denotes the conjugate transpose of any matrix @ in M,(C). Now define a map
¢ My(C) — M,(C) by

o(P)=VPV*
for all P € M, (C). Clearly,  is a Zs-equivariant associative algebra morphism. In
-10 10
associative algebra morphism ¢: M(C) — M>(C). Let ¢ be the restriction of
this ¢ on M>(R). Observe that for any P € Ms(R), x € R%, ¢ P(z!) is obtained

by reflecting = through the line u — v = 0, then applying P, and again reflecting
through the same line.

particular, we can choose U = ( 0 _1) and V = (0 1) and get a Zs-equivariant

Definition 3.2. Let ¢: A — B be a G-equivariant associative algebra mor-
phism.
(1) An equivariant left (or right) module over ¢ is defined to be a G-equivariant
k-linear map T': M — N which is a left (or right) module over .
(2) An equivariant bimodule over ¢ is defined to be a G-equivariant k-linear map
T: M — N which is a bimodule over . In particular, ¢ is an equivariant
bimodule over itself.

Definition 3.3. Let ¢: A — B be a G-equivariant associative algebra morphism
and T: M — N be an equivariant bimodule over . We put

Ci(p:T) = CG(A; M) @ CG(B; N) @ g™ (A; N)
for all n € N and C%(p; T) = 0. Also, we define d": CZ(¢;T) — CT (p;T) by
d™ (u, v, w) = (6"u, 6™, Tu — v — 6" 1w)
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for all (u,v,w) € C&(p;T). Here 6™’s denote coboundaries of the cochain com-
plexes CE(A; M), CL(B; N) and Cf(A; N), Tu denotes the composition T' o u of T'
and u, and the map vp: A®" — N is defined by vp(z1,xa,...,2,) = v(p(x1),
o(z2),...,¢(x,)). From Lemma 2.1, one can easily verify that d" is well defined.

Proposition 3.1. (C&(p;T),d) is a cochain complex.
Proof. We have

d" T d™ (u, v, w) = d"TH (6" u, 0™, Tu — vo — 6" Lw)

= (6" 5", 66", T(6™u) — (6™0)p — 6™ (Tu — ve — 6" *w)).

One can easily see that 6"(Tu — vp) = T(6"u) — (6"v)p. So, since §"T16"u =
7ty = §7 6w = 0, we have d*T1d"™ = 0. Hence, we obtain the result. O

We call the cochain complex (C& (g, ), d) as the equivariant deformation complex
of ¢ and the corresponding cohomology as the equivariant deformation cohomol-
ogy of ¢. We denote the equivariant deformation cohomology by HZ(p, ¢), that is
HE(p,0) = H"(CL(p,9),d). The next proposition relates H (o, ) to HE(A, A),
H:(B, B) and H5(A, B).

Proposition 3.2. If HZ(A, A) = 0, H%(B,B) = 0 and H}, '(A, B) = 0, then
HE(p, ) = 0.

Proof. Let (u,v,w) € C&(p,¢) be a cocycle, that is d"(u,v,w) = (6"u,d"v,
ou — v — 6" 1w) = 0. This implies that 6"u = 0, §"v = 0, pu — vy — 6" tw = 0.
HZX(A,A) =0 = u=¢6"1u, and HZ(B,B) = 0 = §" vy = v for some u; €
C2 g, p) and vy € C27 (i, ). S0 0 = pu—vp—8""1w = (6" Tuy)— (8" 1v1)p—
8" tw = 6" Hpur) — 0" (v19) — 6" tw = 6" L (pug — v —w). So pu —vip—w €
C’g_l(A,B) is a cocycle. Now, Hg_l(A,B) =0= gu; —vip—w = " 2w =
ouy —v19 — 6" 2wy = w. Thus, (u,v,w) = (" tuy, d" vy, pu; —vip — " 2w;) =
d"Y(uy,v1,wy) for some (u1,v1,wy) € Cgil(ga, ). Thus, every cocycle in CZ (¢,

D‘S

is a coboundary. Hence, we conclude that HZ(p, ¢) = 0.

4. EQUIVARIANT DEFORMATION OF AN ASSOCIATIVE ALGEBRA MORPHISM

Definition 4.1. Let A and B be associative k-algebras with actions (G, A) and
(G, B), respectively. An equivariant deformation of a G-equivariant associative al-
gebra morphism ¢: A — B is a triple (u¢, v, ¢t), in which:

(oo}

(1) py = > pt! is an equivariant formal one-parameter deformation for A.
i=0
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0 .
(2) vy = > v;t* is an equivariant formal one-parameter deformations for B.
i=0
(3) ¢+ Ar — By is a G-equivariant associative algebra morphism of the form ¢; =

§ @;t’, where @;: A — B are G-equivariant associative algebra morphisms for
zﬂloi > 0 and g = .
Therefore, a triple (us, V¢, ¢t), as given above, is an equivariant deformation of ¢
provided the following properties are satisfied.
(1) pe(pe(a,b),c) = pe(a, pe(b, c)) for all a, b, c € A;
ii) wi(ga,gb) = gpi(a,b) for all a,b € A and g € G;
(iil) v((a,d),c) = vi(a, 4 (b, c)) for all a,b,c € B;
) vi(ga, gb) = gvi(a,b) for all a,b € B and g € G;
) ee(pe(a, b)) = vi(pi(a), i (b)) for all a,b € A;
(vi) pi(ga) = gpi(a) for all a € A and g € G.

The conditions (i), (iii) and (v) are equivalent to the following conditions.

(41) Z Mi(Mj(a,b),C) = Z ,u'i(aa,u'j(bvc)) Va,b,ce A, r >0

i+j=r i+j=r
(4.2) Z v;(vj(a,b),c) = Z vi(a,vj(b,c)) Ya,b,ce B, r>=0.
i+j=r i+j=r
(4.3) Y wili(a) = Y vilpila),er) VabeA r>0
i+j=r i+j+k=r

Now we define equivariant deformations of finite order.

Definition 4.2. Let A and B be associative k-algebras with actions (G, A)
and (G, B), respectively. An equivariant deformation of order n of a G-equivariant
associative algebra morphism ¢: A — B is a triple (u¢, V4, ), in which:

(1) we = Z pit’ is an equivariant formal one-parameter deformation of order n

for A
(2) vy = E v;t' is an equivariant formal one-parameter deformation of order n
i=0
for B.

(3) ¢i: Ay — By is a G-equivariant associative algebra morphism of the form ¢; =
n .
> it where ¢;: A — B is a G-equivariant associative algebra morphism for
i=0

all i > 0 and g = ¢.

Example 4.1. Let ¢: M, (C) — M,(C) be the G-equivariant associative alge-
bra morphism as defined in Example 3.2. Define ¢1: M, (C) — M, (C) by

p1(P) = o(UP).
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Also, define pq: M, (C) ® M, (C) — M, (C) by

(P, Q) = Un(UP,UQ).
Put uy = p+ wit, vy = p and py = p + p1t, where p is the matrix multiplication
in M, (C). We have
(4.4) w1 (1P, 1Q) = UPUQU™,
(4.5) 1w (P,Q) =UPU*QU",
(4.6) (14 pmt) (1 + mt)(P,Q), R)
= PQR+ {in(P, Q)R+ (PQ, R)}t + pn (11 (P, Q), R)
= PQR + {PUQR + PQUR}t + PUQUR??,
(4.7) (14 pat) (P, (1 + pmat)(Q, R))
= PQR+ {in(P,QR) + Ppa(Q, R)}t + i (P, i (Q, R))#*
= PQR + {PQUR + PUQR}t + PUQU R,

(4.8) (o +@1t)(p+ pat) (P, Q)
= VPQV* +{VUPQV* + VPUQV*}t + VUPUQV*#?,
(4.9) (o +e1t)(P) (e + ¢1t)(Q)

= VPQV* + {VPUQV* + VUPQV*}t + VUPUQV*#,
(4.10) (@4 @t)(1P) =UVPV* + UUVPV*U*t = 1(¢ + ¢1t)(P).

From the expressions (4.4)—(4.10), we conclude that (pu, v, @¢) is a Zz-equivariant
formal deformation of ¢ of order 1.

Remark 4.1.

> For r = 0, the conditions (4.1)—(4.3) are equivalent to the fact that A and B are
associative algebras and ¢ is an associative algebra morphism, respectively.

> For 7 = 1, (4.1)—(4.3) are equivalent to 6%u; = 0, 6%v1 = 0 and pu; — v1p —

5@y = 0. Thus, for r = 1, (4.1)—(4.3) are equivalent to saying that (u1,v1, 1) €

C%(p,p) is a cocycle. In general, for r > 2, (i, v, @) is just a 2-cochain

in CZ (¢, ¢)-

Definition 4.3. The 2-cochain (u1, v1, 1) in CZ4(p, ¢) is called the infinitesimal
of equivariant deformation (u¢, vy, ¢:). In general, if (u;, v, ;) = 0 for 1 < i <
n —1 and (fn, Vn, n) is a nonzero cochain in C% (g, @), then (i, Vn, ¢n) is called
n-infinitesimal of deformation (u¢, V4, ¢t ).

Proposition 4.1. The infinitesimal (u1,v1,91) of the equivariant deformation
(e, Ve, 1) is a 2-cocycle in C&(yp, o). In general, the n-infinitesimal (i, Vp, pn) is
a cocycle in CZ(p, ¢).
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Proof. For n =1, the proof is obvious from Remark 4.1. For n > 1, the proof
is similar. 0

We can write the equations (4.1), (4.2) and (4.3) for r = n+ 1 using the definition
of coboundary § as

(4.11) 8%pny1(a,b,c) = Z wi(pi(a,b),e) — pila, pj(b,c)) Ya,bce A,

itj=n+1
4,7>0

(4.12) 8*vyy1(a,b,c) = Z vi(vj(a,b),c) — vi(a,vj(b,c)) Va,bc€ B,

i+j=n+1
4,§>0

(413)  @(pnt1(a,b)) — vaii(e(a), o(b) — 6 @nyi(a,b)
=Y wvileia),er®) = D> wilpia,b))

i+j=n+1
4,j>0

for all a,b € A, where

!

SR > I SR SR 5
itj=n+l  jtk=n+l kti=ntl  itjtk=ntl
4,5>0 4,k>0 k,i>0 4,5,k>0
k=0 i=0 3=0

By using the equations (4.11), (4.12) and (4.13) we have

(4.15)

d2(,un+17 Vn+1, SDnJrl)(av ba C,x,Y,2,p, Q)

_< Z ﬂi(ﬂj(aab)vc)_ﬂi(avﬂj(bvc))a Z I/i(l/j(x,y),z)—l/i(l',l/j(y,Z)),

i+j=n+1 i+j=n+1
4,j>0 {7>0
!
S v ohgn(@) - Y sai(mp,q)))
itj=n+1
7,7>0

for all a,b,¢,p,q € A and x,y,z € B.
Define a 3-cochain F, ;1 by

(4.16)

Fn+1(a7 b,c,z, Y, %, P, Q)

_< Z Mi(ﬂj(avb)ac)_ﬂi(avﬂj(bvc))a Z Vi(yj(xay)vz)_Vi(xal/j(yaz))a

i+j=n+1 i+j=n+1
4,j>0 i,5>0
!
S e ) or@) - saiwj(p,q))).
i+j=n+1
3,7>0

Lemma 4.1. The 3-cochain F,, is invariant, that is F,, 11 € C2(, ¢).
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Proof. To prove that Fj,;; is invariant we show that
Frni1(ga, gb, gc, 9%, 9y, 92, 9p, 90) = 9Fni1(a,b,¢, 2y, 2,p, q)
for all a,b,¢,p,q € A and z,y, z € B. From Definition 4.1, we have
pi(ga, gb) = gpi(a,b), vi(gr, gy) = gvi(z,y), ¢i(ga) = gpi(a)

for all a,b € A and x,y € B. So, we have, for all a,b,¢,p,q € A and x,y,z € B,

Fr11(ga, gb, gc, gz, 9y, 92, gp, 99)
=< > pilpi(ga, gb), go) — pilga, 1 (gb, ge)),

i+j=n+1
1,7>0
> vilvi(gz, ), 92) — vilgz,vi(gy, 92)),
itj=n+1
2,7>0
/
> vileigp) erlga) = > w(uj(gp,gq))>
i+j=n+1
1,7>0

—( > milgps(a,b), go) — pilga, g (b, ©)),

i+j=n+1

2,7>0

> vilgy(a,y), 92) — vilge, gvi(y, 2)),
i+j=n+1

1,7>0

/
> vilgei)ger(@) — Y wilans(p, q)))
i+j=n+1
2,7>0
= ( > gpilpsa,b),e) — guila, ui(b, ¢)),

i+j=n+1

1,7>0

> grilvi(,y), 2) — griz, vy, 2)),
itj=n+1

2,7>0

/
> vilei)en@) = Y geilus(p, q)))
i+j=n+1
1,7>0
= anJrl(av ba ¢T,Y,2,D, Q)
So we conclude that F,,11 € C&(p, ). O

Definition 4.4. The 3-cochain F,, 11 € C%(p, ¢) is called the (n + 1)st obstruc-
tion cochain for extending the given equivariant deformation of order n to an equiv-
ariant deformation of ¢ of order (n+1). From now on, we denote F;, 11 by Ob,, 11 ().
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We have the following result.

Theorem 4.1. The (n + 1)st obstruction cochain Ob,1(p) is a 3-cocycle.

Proof. We have

dPO0by,1 =

where O1, Oy and Os are given by

> {nilpi(a,b),c) -

i+j=n+1
4,5>0

= Y {ny(ay),2) -

z+] n+1
4,5>0

/

> vilei(p). exlq)) -

1(a,b,c) =

2(z,y, 2

03(pa Q) =

(6°(01),6%(02), 0O1 —

Oz — 52(03))7

:ui(av Hj (b7 C))}a
(CL’ I/J (yv ))}7

> eilui(p.g)).

i+j=n+1

1,5 >0

From [14], we have §3(0;) = 0, 63(O2) = 0. So, to prove that d*Ob,, 1 = 0, it remains

to show that ©O; — Oy — 62(03) = 0. To prove

that ©O; — Oz — 6%(03) = 0 we

use similar ideas as have been used in [13] and [17]. We have

(4.17)
(@01 = O29)(w,y,2) = > opilpj(x,y),2) —
i+j=n+1
4,7 >0
= Y vyl o),
i+j=n+1
7,7>0
and
(4.18)

/

6%(03)(z,y,2) = Y wolp(x), vi(w;(y), pu(2)) =

=3 viles (ol 9)) n(2)) +
+ Z v; 90]
- ZI vo(vi(p;(2), ¢

)s Pr(po(y,2))) —

W) e+ Y

> epil, iy, 2))
i+j=n+1
1,7>0

)+ Y

i+j=n+1
4,5>0

vi(pz, vi(py, p2))

Z VO(SO(Q:)?SOZ(M](Z/WZ)))
sk

Z ei(pj(po(z, ), 2))

’L+j n+1
4,5>0

> il poly, )

i+j=n+1

1,5 >0
vo (i (ki (. ), (2))-
i+j=n+1

1,5 >0
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From (4.3), we have

(4.19) pio(@,y) = D> vales@), oy () — Y epuql@,y).

atfB+y=j pta=j
a,B,720 1<q<y

Substituting the expression for ¢; o from (4.19) into the third sum on the right hand
side of (4.18) we can rewrite it as

!/

(4.20) —Z/w(@j(uo(%y)),wk(@)=— > vilvales(@), o4 (1)), 0k (2))

atpB+y=j
a,B8,720

+ Z, I/’i(sap:u‘Q(xvy)asak(Z)).

pt+aq=j
1<g<y

Here the first sum of (4.20) is given by

/

gy Y = Y+ Y+ Y Y

atB+y=j itatfty=nt+l  offtytk=ntl  kti=ntl  itatfty+k=ntl
a,B8,720 i,(a+B+v)>0 (a+B+7),k>0 kﬁﬂ>0 0 i,(a+B+7),k>0
k=0 i=0 a=f=y=

the second sum of (4.20) is given by

/

(4.22) o= > o+ >+ Y,

ptq=j  itprg=n+l  pigtk=n+l  it+jt+k=n+l
1<q<y 1,q>0,p=20 q,k>0,p>0 1,4,k>0,p20
k=0 i=0

The first sum of (4.19) splits into four sums. The first one of these four sums splits as

(4.23) =Y vilvales(@), ey (), en(2))

ita+p+y=n+1
i,(a+B+v)>0
k=0

= — Z Vi(”a(@(x)aso(y))7<p(z))

i+a=n+1
i,a>0

_ S vilales(@), oy (1) 0(2)).

i+a+p+y=n+1
i,(B4+7)>0
a,B,720

The first sum on the rhs of (4.23) appears as the third sum on the rhs of (4.17). By
applying a similar argument to the fifth sum on the rhs of (4.18) and using (4.3)
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on oy, z), one can rewrite it as

(4.24) S v @) ormom ) = Y vilei(@), vales) oy (2)))

atpf+y=j
a,B,720

N Z/ vi((2), ephq(y, 2))-

pta=k
1<g<y

As above the first sum on the rhs of (4.24) is a sum of four sums similar to (4.21)
except that the roles of j and k are interchanged. One of these four terms splits as

(4.25) Y i), valps(y) 04(2)))

i+a+p+y=n+1
i,(a+B+7)>0
k=0

= Y vile@),valey),(2)))

ita=n+1
i,a>0

+ > wle@),vales(y), y(2))-

i+a+p+y=n+1
i,(B4+7)>0
a,,720

The first sum on the rhs of (4.25) appears as the fourth sum on the rhs of (4.17). In
the fourth sum on the rhs of (4.18), we use (4.1) to substitute for p;(uo(x,y), 2) to
obtain

(4.26)
> emlio(e,y)2) = Y eim(mpe(y, )+ Y gy, 2))
itj—nt1 itj=nt1 it j+h=n+1
4,7>0 4,7>0 i,k>0,720
= > einm(@y), 2).
itjtk=n+1
i, k>0,j20

The first sum on the rhs of (4.26) cancels with the sixth sum on the rhs of (4.18).
The Second sum on the rhs of (4.26) splits as

(4.27) S ey 2) =Y > (@ pn(y, 2)

i+j+k=n+1 k=1 i+j+k=n+1

i,k>0,5>0 0,520
- E g (m, mug(y, 2)).

Jj+k=n+1

7,k>0
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The second sum on the rhs of (4.27) appears as the second sum on the rhs of (4.17).
Also, by using (4.3) the first sum on the rhs of (4.27) splits as

428) > > i)=Y > vales ey, 2))

k=1i+j+k=n+1 k=1 a+p+vy+k=n+1
1,j20 a,3,720

= Z VO(SO(J"))SOMUJ(yaZ))
i+j=n+1
3,7>0

+ Z/ vi(p; (), opriq(y, 2))-

pt+a=k
iSq<k

In the last line the two terms cancel with the second terms on the rhs of (4.18)
and (4.24), respectively. The third term on the rhs of (4.27) splits as

(4.29) - Y eimim(@y), ) = — Y voleins(x,y),(2))
itjth=n+1 i+j=n+1
1,k>0,720 4,7>0

3 vl ), ou(2)

pt+q=j
1<g<y

+ Y enil(@,y), 2).

jtk=n+1
4,k>0
On the rhs of (4.29), the last term cancels with the first sum on the rhs of (4.17), the
first sum cancels with the last sum on the rhs of (4.18) and the second term cancels
with the second sum on the rhs of (4.20). From our previous arguments we have
(4.30)
P01 — O2p = 6%(03) (2,9 2)

= Z/{VOGP(J?% vi(pj (), ¢x(2))) — vo(vie; (), vk (y), v(2)))}
+ Y {ie@),vales ), o4 (2) — vilvales(x), 04 (1), 0(2))}

i+a+B+y=n+l
iv(IB“F'Y) >0
a,3,720

—{ > + o)+ > }w(va(s%(w),sov(y))wpk(Z))

at+B+ytk=n+l  k+ti=n+1 i+a+pB+y+k=n+1
(a+B+7),k>0 k,i>0 i,(a+B+7),k>0
i=0 a=p=y=0

+{ o ot X ) }wm(x),ua«oﬁ(y),mz))).

a+B+y+j=n+l  i+j=n+l  it+jtat+B+y=n+l
(a+B+7),5>0 1,j>0 i,5,(a+B+~)>0
=0 a:ﬂ:f\/:()
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We can write the above equation more compactly as

(4.31) ©0O1 — Oz — 52(03)(x, Y, 2)
= {¥i(pa(@),v;(98(y), +(2))) — vi(vj(pa(@), 05(1)), o+ (2))},

432 S= ¥ + ¥ + ¥ + ¥ + ¥

i+j+at+B+y=n+l a+B=n+1 B+y=n+l aty=n+l a+B+y=n+l
1<a+B+y<n a,B>0 B,7>0 a,y>0 a,B8,7>0
i,5,0,8,720 1,3,7=0 1,J,0=0 i,5,8=0 t,j=0

It follows from (4.31) and (4.2) that the sum on the rhs of (4.31) is 0 and hence
001 — Oz — §%(03) = 0. This finishes the proof of the theorem. O

Theorem 4.2. Let (u, v, :) be an equivariant deformation of ¢ of order n.
Then (put, v, 1) extends to an equivariant deformation of order n + 1 if and only if
the cohomology class of the (n + 1)st obstruction Ob,+1(p:) vanishes.

Proof. Suppose that an equivariant deformation (u, v, ¢:) of ¢ of order n
extends to an equivariant deformation of order n + 1. This implies that (4.1), (4.2)
and (4.3) are satisfied for r = n + 1. Observe that this implies

Oby1(pt) = do(fint1, Vng1s Prt1)-

So the cohomology class of Ob,,11(p;) vanishes. Conversely, suppose that the coho-
mology class of Ob,,11(¢t) vanishes, that is Ob,41(¢:) is a coboundary. Let

Obnt1 () = da(pint1, Vnt1, Pnt1)
for some 2-cochain (pin+1, Vn+1, Pnt1) € Ca(p, ). Take
(Bt Dy @) = (o + pn 1t v+ v 1t 0 + oppat™ ).

Observe that (i, vy, p¢) satisfies (4.1), (4.2) and (4.3) for 0 < r < n+1. So (i, Vt, Pr)
is an equivariant extension of (u¢, v, ¢¢) of order n + 1. O

Corollary 4.1. If H3(p,¢) = 0, then every 2-cocycle in C% (¢, ¢) is an infinites-
imal of some equivariant deformation of .
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5. EQUIVALENCE OF EQUIVARIANT DEFORMATIONS

Let (ut,vt,¢) and (g, Vs, @) be two equivariant deformations of . Recall
from [14] that an equivariant formal isomorphism between the equivariant defor-
mations p; and f; of an associative algebra A is a E[[t]]-linear G-automorphism

W, A[lt]] — A[[t]] of the form W, = Y 4;t, where each v; is an equivariant k-linear
>0

map A — A, ¢¥o(a) = a for all @ € A and 1 (¥¢(a), U(b)) = Uyue(a,b) for all

a,be A

Definition 5.1. An equivariant formal isomorphism (u, ve, 1) — (i, Ve, 91)
is a pair (U, 0;), where U,: A[t]] — A[t]] and ©,: BJ[t]] — B[] are equivariant
formal isomorphisms from p; to zi; and from vy to 7y, respectively, such that

proWy =040 p;.
Two equivariant deformations (u, v, p:) and (f, U4, @¢) are said to be equiva-
lent if there exists an equivariant formal isomorphism (U¢, ©;) from (¢, ve, ¢¢) to
(Fit, U, ).
Definition 5.2. Any equivariant deformation of ¢: A — B that is equivalent
to the deformation (uo, v, ) is said to be the trivial deformation.

Theorem 5.1. The cohomology class of the infinitesimal of an equivariant defor-
mation (ut, ve, p1) of o1 A — B is determined by the equivalence class of (i, Vi, ).
Proof. Let (U;,0;) from (pue, v, 1) to (g, vt, $r) be an equivariant formal
isomorphism. So, we have 1;¥; = U; o yy, 7;0; = O 014, and @; o Uy = Oy o ;.
This implies that pu1 — 1 = 091, v1 — 7 = 661, and 1 — P71 = Y1 — B1p. So we
have d!(11,61,0) = (u1,v1,91) — (fi1, 71, $1). This finishes the proof. O

6. MAURER-CARTAN EQUATION AND GEOMETRIC INTERPRETATION
OF DEFORMATIONS
We recall the following definition:
Definition 6.1. A finite group G is said to act on a vector space A from the left
if there exists a function
p: Gx A=A, (g,a) = ¢(g,a) =ga

satisfying the following conditions:

(1) ex =z for all z € A, where e € G is the group identity.

(2) g1(g22) = (g192)x for all g1,92 € G and x € A.

(3) For every g € G, the left translation ¢, = ¢(g,): A — A, a — ga is alinear map.
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Let A be vector spaces with an action of a group G. Define a linear map
®: O (A; B) ® CLTY(A; B) — Cf " H(A; B)

by

n

NOY(TL, - Tmyny1) = Z(—l)(i_l)"n(ﬂvla s T (T Tign) - T 1)

i=1

One can easily verify that C%(4; B) = @CL(A; B) is a graded associative algebra
with respect to the operation ®. Put =0

[, Ylme =n0Y = (=1)""pOn

forn € C’g”rl(A;B), NS C’ngl(A;B). Write L; = Cgrl(A;A) and L = @ L;. Then
(L[, |ac,0) is a differential graded Lie algebra with an action of G. ~°
Definition 6.2. A Maurer-Cartan element in a differential graded Lie algebra

(L =L, ] 5) is an element in 1 € L; such that
iz

(6.1) 50+ 5[] = .

The equation (6.1) is called the Maurer-Cartan equation.

We have the following characterization of G-equivariant associative algebra struc-
ture on a vector space A in terms of Maurer-Cartan elements.

Theorem 6.1. An element u € C%(A; A) is a G-equivariant associative algebra
structure on A if and only if it is a Maurer-Cartan element, that is

[ plme = 0.

Assume that A is a finite dimensional vector space with an action of a finite
group G. Observe that introducing coordinates (structure constants) the equation
w(a, w(b,c)) = p(p(a,d),c) becomes a set of quadratic polynomial equations with
variables as structure constants and u(ga, gb) = gu(a, b) corresponds to a set of linear
polynomial equations with variables as structure constants. Hence, the solution set of
the equations p(a, u(b, ¢)) = u(p(a,b),c) and p(ga, gb) = gu(a, b) forms an algebraic
variety Lg, 4 of C%(4; A).
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Let A and B be associative algebras with an action of a group G. Let p: A — B
be a G-equivariant associative algebra morphism. Define a linear map

o: CF (4; B)® C(A; B) — C¥"(4; B)

by
NOB@1, s Emim) =A@, r TPt 1y ).

0 .
Clearly, C%(A; B) = @ C4(A; B) is a graded associative algebra with respect to the

i
operation o. Now, put [, ¥] =noy— (—=1)""pon for n € CF(A; B), v € C&(A; B).
Then (CE(A; B),[,]) is a graded Lie algebra. Define a linear map D: C%(A; B) —
C&H(A; B) by

Dw(xla s 7xn+1) = Z(_l)zw(‘xla ce ey LT 1y e 7xn+1)'

i=1

By direct computation one can verify that (C%(A4; B), [, ], D) is a differential graded
Lie algebra with an action of G.

We have the following characterization of a G-equivariant associative algebra mor-
phism from A to B in terms of Maurer-Cartan elements.

Theorem 6.2. Let A and B be associative algebras. An element ¢ € CL(A; B)
is a G-equivariant associative algebra morphism from A to B if and only if it is
a Maurer-Cartan element, that is

Dy + [, 9] = 0.

Let (A, p) and (B,v) be associative k-algebras with actions (G, A) and (G, B),
respectively. Let ¢: A — B be a G-equivariant associative algebra morphism. Let

pe = Yo pitt, v = Yo vit', g = Y pit’, where p; € CE(A;A), v; € C&(B;B),
i=0 i=0 i=0
; € CL(A; B) for i > 0 and po = p, vo = v, po = . Write

He = e — flo, U=V — 1y, Pr= Ot — Po.

Using Theorems 6.1, 6.2 and the definition of equivariant deformation we obtain the
following result.

Theorem 6.3. Let (u¢, v, 1) be an equivariant formal deformation if and only
if py and vy satisty the Maurer-Cartan equation (6.1) and ¢, satisfies the equation

(6.2) pi(p(a, b)) — vipi(a), p1(b)) = {wilpi(a), (b)) — wilp(a; b))} = 0.
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Let A and B be two finite dimensional vector spaces with an action of a finite
group G. Denote by Lg(A; B) the space of all G-equivariant linear maps from A
to B. Let p and v be G-equivariant associative algebra structures on vector spaces A
and B, respectively. Put

Ma v = {9 € La(A, B): ¢(u(a,b)) = v(y(a), (b))}

Consider a distribution Mg of the trivial vector bundle Lo 4 X Lo B X La(A; B)
defined as

MG = {(M, v, (p) S EG,A X EG,B X Lg(A;B): (TS MG,H,V}'

Remark 6.1. In the equation (6.2), ¢:(p(a, b)) —v(pi(a), v (b)) is the left hand
side of the Maurer-Cartan equation (6.1) for the differential graded Lie algebra
(C&(A; B),[, ], D). It is not surprising because the deformation given by the Maurer-
Cartan equation of the differential graded Lie algebra (Cg(A; B), [, ], D) corresponds
to a deformation along a fiber of M. Since we have considered a deformation which
is not necessarily confined in a particular fiber of M¢ the term {7:(p¢(a), e (D)) —
ot (it (a, b))} appears in the equation (6.2).

Next example gives a geometric interpretation of deformations and formal defor-
mations.

Example 6.1. Let G be a finite group and A, B be finite dimensional vector
spaces. Let ¢: (A,u) — (B,v) be a G-equivariant associative algebra morphism.
Clearly, any curve v(t) = (u¢, V4, ) in the distribution Mg of Lg a4 X La.B X
Lc(A; B) such that v(0) = (u,v,¢) is an equivariant deformation of ¢. If the
curve 7(t) is analytic, then the deformation comes out to be equivariant formal
deformation.
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