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Abstract. Let U be the two-parameter quantized enveloping algebra Uy s(sl2) and F(U)
the locally finite subalgebra of U under the adjoint action. The aim of this paper is to
determine some ring-theoretical properties of F(U) in the case when rs~ ! is not a root of
unity. Then we describe the annihilator ideals of finite dimensional simple modules of U by
generators.
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1. INTRODUCTION

Let H be a Hopf algebra over a field k with a comultiplication A, a counit € and
an antipode S. For any h € H we write A(h) = > h() ® h(z). The adjoint action
of H is defined by

(adh)a =Y h@yaS(he) for ha € H,

which makes H a left H-module algebra. Let F(H) be the set of all elements on
which the adjoint action is locally finite, i.e., F(H) = {z € H: dimy(ad H)z < co}.
It is known that F(H) is a subalgebra and a submodule of H under the adjoint
action, see [9], Corollary 2.3. Hence, we call F(H) the locally finite subalgebra
of H. Kolb et al. in [12] proved that F(H) is always a left coideal subalgebra
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of H. For virtually cocommutative H (i.e., H being finitely generated as module
over a cocommutative Hopf subalgebra), Kolb et al. in [12] showed that F'(H) is
a Hopf subalgebra of H. If H is finite dimensional, then it is clear that F(H) = H.
So there has been significant attention to infinite dimensional Hopf algebras. When
H = kG is a group algebra, it is known that F(H) = kA, the subgroup algebra
of the FC-center A = A(G) = {g € G: ¢ has finitely many G-conjugates}. The
A-notation for FC-centers was introduced by Passman (see [16]) and should not be
confused with the comultiplication notation. When H = U(g) is the enveloping
algebra of a finite dimensional Lie algebra g, the adjoint action is locally finite. In
particular, when g is semisimple, the action plays a fundamental role in the study of
all prime ideals of U(g), see [8], [9], [10]. Catoiu in [7] proved that U (slz) is a principal
ideal ring and gave all prime (primitive, maximal) ideals. Afterwards, Li and Zhang
in [13], [14] studied the structure of F'(H), where H is the quantized enveloping
algebra U,(slz) and ¢ is not a root of unity, and they showed that U,(sls) is also
a principal ideal ring. Burdik et al. in [6] found a new basis of Uy (sl2) and determined
the decomposition of U, (slz) under the adjoint action in the case when ¢ is not a root
of unity. In recent years, we made use of the adjoint action to study an important
class of Hopf algebras, called finite dimensional pointed Hopf algebras of rank one,
see [18], [20]. We proved that this class of Hopf algebras are principal ideal rings and
gave a complete list of all annihilator ideals of indecomposable modules. Particularly,
we described all ideals of the Radford Hopf algebras (which are special examples of
finite dimensional pointed Hopf algebras of rank one) and gave the classification of
all ideals of 8-dimensional and 9-dimensional Radford Hopf algebra, see [19], [21].

In this paper we consider the two-parameter quantum group U = U, s(sl2) in the
sense of [4], [5]. Two-parameter general linear and special linear quantum groups were
introduced by Takeuchi, see [17]. As is shown in [5], U, s(sl,,) is a Drinfeld double
of a Borel-type subalgebra, and there is an R-matrix which comes from the dou-
ble construction and which reduces to the standard R-matrix for the one-parameter
quantum group U,(sl,,) (a quotient of U, ,~1(sl,)). When rs~! is not a root of unity,
it is easy to see that the adjoint action is not locally finite. The aim of this paper
is to study the structure of F(U) under the adjoint action and give the classifica-
tion of annihilator ideals of finite dimensional simple modules of U. Moreover, we
characterize all ideals of finite codimension.

Throughout, we work over an algebraically closed field k of characteristic zero
with r,s € k\ {0}. Unless otherwise stated, all modules are finite-dimensional left
modules; all maps are k-linear; ® means ®g. Denote by Z(U) the center of U and
by Z(F(U)) the center of F(U). We assume that the reader has a passing familiarity
with the basics of Hopf algebras and representation theory; see [1], [2], [11], [15] for
background.
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2. PRELIMINARIES

In this section, we recall the definition and some basic properties of U = U, 4(sl2).
Let k be an algebraically closed field of characteristic 0 and k* the set of all
nonzero elements of k viewed as a multiplicative group. In what follows, we as-
sume that r, s € k* and rs~! is not a root of unity. Recall that the two-parameter
quantized enveloping algebra U is the associative algebra over k generated by ele-

+1

ments e, f,wt!, (W) associated with the following relations, see [4], [5]:

(R1) w*!, (w)*?! all commute with one another and ww™! = w'(w')~! =1,
(R2) we =7rs tew, wf =r~tsfw, we=r"tsew 'f =rs fuw,
(R3) e, f] = (w = w)/(r = s).

It is well known that U has a Hopf algebra structure, where w®! and (w’)*! are
group-like elements, and the remaining coproducts are determined by

(2.1) Ale)=e®1+w®e, A(f)=10f+fv.
This forces the counit and antipode maps to be

(2.2) fw)=¢eW) =1, Sw)=w S(w')
(2.3) gle)=¢e(f)=0, Se)=-wte, S(f)

It is clear that U is an iterated Ore extension, and hence, U is a Noetherian do-
main with a k-basis {e! fiwk(w')™: i,5 € N, k,m € 7}, see [3], Theorem 3.2. By
Example 5.16 of [3], the center Z(U) of U has a basis of monomials {(ww’)'C7:
1€ Z, j €N}, where C is the Casimir element

sw+ rw’ fet rw + sw’
- =fe+ —~ .
(r—s)? (r—s)?

Thus, we have Z(U) = klww’, (ww’)~!][C]. Let

(2.4) C=ef+

r’t — g™

] = )l =l —1]...[1], m:%

r—Ss

By [4], Lemma 2.3, it follows that

lfnw _ rlfnw/

nyge n n—19%
(2.5) e"f = fe" + [n]e" ! p—

Let V be a U-module and A, u € k. Recall that a nonzero vector v € V is called
a weight vector with weight (A, p) if wv = Av and w'v = pv. A weight vector v
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is called a highest (or lowest) weight vector if ev = 0 (or fv = 0). Let UY be the
subalgebra of U generated by the elements w®?!, (w')*! and ¢: U® — k an algebra
homomorphism with (w’) = ¥ (w)r~"s" for some n > 0. By [4], Proposition 2.8,
there is an (n + 1)-dimensional simple U-module V(n,(w)) spanned by vectors
v, V1, . . ., Uy, and having U-action given by

(2.6) wv; = (w)r I shv;, w'vj = P(w)r Ty,

evj = P(w)r"lln+1=jlvj-1,  fuj=vin
for 0 < j < nand v_1 = v,41 = 0. Furthermore, any (n + 1)-dimensional simple
U-module is isomorphic to some V' (n, ¥ (w)). It is clear that vy (or v,) is the highest
(or lowest) weight vector with weight (¢(w), ¥ (w)r~™s™) (or (Y(w)r~"s™, Y (w))).

By [9], Lemma 2.2, we know that F(U) is a U-module algebra under the adjoint
action:

(adw)u = wuw™!, (adw')u = W'u(w) ™1,

(ade)u = eu —wuw e, (ad flu = (fu —uf)(w)™*
for any w € U. As is shown in [4], Remark 3.9, not all finite dimensional U-modules
are completely reducible. But we should point out that all finite dimensional

U-submodules of U under the adjoint action are completely reducible. We write it
as the following proposition.

Proposition 2.1. All finite dimensional U-submodules of U under the adjoint
action are completely reducible.

Proof. Note that U is generated by e, f, w®!, (ww')*! with relations (R1),
(R2), (R3) and ww’ € Z(U). For any u € U,

(ad(ww)u = (W u(ww) ™ =u, (ad(ww’) Hu = (ww')  u(ww’) = u.

So the eigenvalue of ww’ is always 1. We may take ww’ as 1. Hence, any U-submodule
of U under the adjoint action can be viewed as a U, (sls)-module, where ¢ = (rs~1)'/2.
It is well known that all finite dimensional Uy (sl2)-modules are completely reducible.
Therefore, we finish the proof. U

We end this section by giving the following lemmas which are useful in the sequel.

Lemma 2.2. Forn > 1 and 0 < i < n we have

el =L

Proof. It is clear by induction. O
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Lemma 2.3. If n > 1, then

n
(3
i=0 =0

A(en) _ zn:sfi(nfi) |:’I’L:| enfiwi ® ei7 A(fn) _ Zsfi(nfi) |:7::| fi ® fnfi(w/)i.

Proof. For n =1, the above equations are (2.1). Suppose that n > 1 and
n—1 n—1
A(en—l) — Z S—i(n—l—i) |: . :| en— =i ® et
i=0 !
Then by Lemma 2.2, it follows that

n—1
X X -1 o )
A(en) =(e®1+w®e) (Z g~ i(n—1-19) |:n . :| eIl ez)

2
=0
n—1
o o i ln—=1 L .
ZE Sz(nlz)|: ‘ :|en Wi et
7
=0
n

g—i(n—1-i) [n - 1} (,rs—l)n—l—ien—l—iwi+1 ® ett!
)

_|_
sUTJL

1=

=e"R1+w'®e"
iy n—1 n—1
—i(n—1—1) - —i(n—1),.n—1i - n—i, i i
—l-;(s [ ; ]—l—s r [i_1}>e w®e

n—1
— "1+ w" Qe + Z sfi(nfi) |:’I’L:| el ®€i
i=1

n
_ Zs—i(n—i) [”} il @ el
i=0 v

The argument for the second equation can be done similarly. O

3. STRUCTURE OF F(U)

It is clear that Z(U) C F(U). We claim that the adjoint action is not locally
finite. For n > 0 and m € Z we have

(ade)(e"w ™) = e(e"w™ ™) —w(e"w Mw e = (1 — (rsTH )" ™,

If n > m, then e"w™™ ¢ F(U). Let [u] = (adU)u be the U-submodule generated
by w € U. Then we have the following proposition.
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Proposition 3.1. For n > 0 we have

"™ = [ () "] 2 (7] 2 V2, 7757,

Proof. Since the (2n + 1)-dimensional U-module with the highest weight
(r"s~™, r~"s™) is isomorphic to V(2n,r"s™"), we only need to show that (w™'e)" is
" r~"s"™) and the action of f on (w™'le)”
is nilpotent. It is clear that (adw)(w™le)” = r"s " (w le)", (adw’)(w™te)® =
r~"s"(wte)" and (ade)(w~le)™ = 0. Hence, (w™le)" is the highest weight vector
with weight (r"s~",7~"s"). Note that (ad f)(w™le) = (r'sfe—ef)(ww’)~t. Hence,

the highest weight vector with weight (r"s~

(ad f2(we) = (F( s fe — ef)(ww!) 7 = (s fe — ef)(we) L)) !
= —(rs) 2! fleow') !

and (ad f)?(w~'e) = 0. By Lemma 2.3 and induction, we have

(ad [)2" (w7 e)" = (ad f2 (w7 ) (w0 e))
2n+1

=) st [%;L 1} ((ad f) (w™te)" H)((ad )2 (adw') (wLe))
=0
2n+1
= Y i [Q”j 1} ((ad f) (@ "e)" 1) ((ad f)>" 1~ (wle)) = 0.
=0
Hence, the action of f on (w~!e)” is nilpotent and [e"w™™] = [(wle)"] =

V(2n,r"s~™). Noticing that for n > 2,

2n
(ad f)*" (W le) =Y s [2;1} ((ad f)“(w™te)" ) ((ad £)*“(adw') (w™'e))
=0

= >t o [ (e (a7 )
=0
(ad f)2n72(w716)n71 _ (—1)"71(7“8)7(7171)2 [2n _ 2]' fnfl(ww/)lfn.

By induction, we have

(ad (e = () |2

X e ) (= (rs) T2 flww) )
= (=1)"(rs) ™ [2n]! f™(ww') ™.

} (—1)"Y(rs)~ (D72 — 2!
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It follows that f™(ww’)™™ is the lowest weight vector with weight (r~"s", r"s™").
Note that ww’ € Z(U). It follows that f™ is the lowest weight vector with weight
(r="s™,r"s™™) and [e"w "] = [ (ww') "] = [f7]. O

We use the following proposition to describe all simple submodules of F(U) under
the adjoint action.

Proposition 3.2. Let V be any simple U-submodule of F(U) under the adjoint
action. Then V = [he™w™] = [e"w™"] = V(2n,r"s™") for some 0 # h € Z(U)
andn > 1.

Proof. Suppose that V is an (I + 1)-dimensional simple U-submodule of F(U).
Note that any (I+ 1)-dimensional simple U-module is isomorphic to some V (I, 9 (w)),
where ¢: U — k is an algebra homomorphism with 1 (w’) = ¥ (w)r~'s'. We may
assume that u = Y ajjpme’ fIwF(W)™ € V is the highest weight vector with

i,3,k,m

weight (1(w), 1 (w)r~!s!) for the action of adw and adw’. It follows that

Z Qijrm (s~ T el R (W)™ = 9h(w) Z aijeme’ fIwk (W™,

i,4,k,m ,4,k,m
Z Qijrm (17 18) el flP (W)™ = p(w)r!s! Z Qijeme’ fIwk (W)™,
,4,k,m ,4,k,m

This implies (rs~1)"7 = ¢(w) and (r~1s)"~7 = h(w)r~'s’. Hence, (rs~1)2-2-1 = 1.

1

Since rs™" is not a root of unity, we have 2i — 2§ = [, which implies that i > j

and [ is even. So we can rewrite u in the form Y e"*7 fig; for some polynomials

g; € kjw*!, (w)*!] and I = 2n. According to (2.4]1), we can replace each factor ef
by the Casimir element C modulo a polynomial in k[w®!, (w’)*!]. Therefore, we
rewrite u in the form e"g(C) for some polynomial g(C) € k[w*!, (w’)*][C]. Noticing
that (ade)u = 0, we have

1 n,—n,n

ee"g(C) = we"g(Clw™ e =1"s""e"g(C)e.

Since U has no zero divisors, it implies

Noting that C € Z(U), we obtain that ¢g(C) has the form w~™h for some h € Z(U).
Hence, u = he"w ™™ and V' = [he™w™"]. Since he"w ™" is also the highest weight vec-
tor with weight (r"s~",r~"s"), we have [he"w™ "] = [e"w "] =V (2n,r"s™"). O
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Corollary 3.3. Let u,v € F(U) be two weight vectors. Then u and v are both
the highest weight vectors if and only if uv is the highest weight vector.

Proof. Let u, v be the highest weight vectors. Then by Proposition 3.2, it
is clear that wv is the highest weight vector. Conversely, assume that u and v are
weight vectors with weight (r°s=¢,r~¢s°) and (r?s~¢,r~9s%), respectively. Note
that u,v € F(U). There exist a,b € N such that (ade)®u # 0, (ade)*™u = 0,
(ade)bv # 0 and (ade)**1v = 0. By Lemma 2.3 we have

a+b b
(ad e) T (uv) = Zs‘““*‘bﬂ) [a—;— } (ad e® =) u(ad e')v
i=0

b
= pbegmab=be [a—;}— } (ad e)®u(ad e)bv
a+b

+ 7Aacsfabfac
a

] (ad e)’u(ad e)®v.
This implies that (ade)?™(uv) # 0. Since (ad e)(uv) = 0, we have a + b = 0, which
implies a = b = 0. Hence, u and v are both the highest weight vectors. (I

Now we characterize the unit group of F(U).

Proposition 3.4. The unit group of F(U) is equal to {a(ww’')": a € k*, n € Z}.

Proof. Let u be any invertible element in F(U). Since 1 is the highest weight
vector with weight (1,1) and w and w’ are group-like elements, it follows that u
and u~! are weight vectors. According to Corollary 3.3, both u and u~! are the
highest weight vectors with weight (1,1). By Proposition 3.2, we have u € Z(U).
Since w is invertible, u € {a(ww’)™: a € k*, n € Z}. It is obvious that each element
of {a(ww")™: a € k*, n € Z} is invertible in F(U). O

m
Proposition 3.5. Suppose u = > h;e™w ™, where 0 # h; € Z(U),1 <i<m

andny > ng > ... > n,y,. Then =1
] = Dl = Plemw ™)
i=1 i=1
Proof. Obviously, we have
(3.1) [u] ) [hiew ™).
i=1

Since h; € Z(U) for 1 < i < m, by Proposition 3.1, it follows that
hee™es™] 2 [ &V (2ny, 17057,

722



Note that the integers n; are pairwise distinct. It follows that the right-hand side
of (3.1) is a sum of non-isomorphic simple modules, and hence it is direct. For the

converse inclusion, since ny > ng > ... > n,,, we have
(ad )2 u = (ad f)?™ (hre™w™™) € [u].

According to Proposition 3.1, (ad f)?"! (hje™w ") is the lowest weight vector with
weight (r~m1s"™1 r™1g7™) in the simple module [he™*w™"]. This implies that

hie™Mw™™ € [ul.

Similarly, one can show that h;e™w™™ € [u] for 1 < i < m. Thus,

m

Z[hie""w_""’] C [u].

i=1

In order to depict the elements in F(U), we need the following lemma.

Lemma 3.6. We have [w™!] = [ew ! @ [C(ww') 7] and [w'] = [ew!] @ [C].

Proof. From the proof of Proposition 3.1, we know that ew™! is the highest
weight vector and

(ad flew™' = (1 — rs*1)<ef + %) (ww')™1,

(ad f)lew™ = —s72[2)! fww)Y,  (ad f)*ew™ = 0.
Hence, [ew™!] is spanned by

ew ™, (ef—f—%)(ww')l, flww) ™t

By direct calculations, we have
(ade)w™ = (1 —rts)ew™, (adflw™t =1 —rs ) f(wd) 7t

(ade)f(ww) ™t = (1 —r"ts) (ef + )(ww’)_l.

s(w—w)

Then [w™1] is spanned by w™!, ew ™!, f(ww') "t and (ef+s(w — ')/ (r — 5)?)(ww') L.

Since
i =

(r - 5)?

r+s

Clww)™t,
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it follows that [w™!] C [ew ™! @ [C(ww’)~1]. Since

Clww) ! = (:j;pml + (ef + %)(ww’)l €lw ™+ [ew™] = [w Y,

we have that [w™1] = [ew @ [C(ww’)1]. Note that w’ = w™(ww') and ww’ € Z(U).
The second equation holds. ([

Proposition 3.7. F(U) contains the elements ‘w7 (w')* and fiw=t(w')¢ for
az20,b+c>0andj+k>=1i>=0.

Proof. By Proposition 3.1 and Lemma 3.6, we have
ew Hew, fwh W ww € F(U).
Since F(U) is a subalgebra of U, it is clear that the assertion holds. O

Corollary 3.8. We have Z(F(U)) = Z(U).

Proof. Since Z(U) C F(U), wehave Z(U) C Z(F(U)). Takeany u € Z(F(U)).

By Proposition 3.7, ew™!, f, w™! and w’ are contained in F(U). Hence, uew™! =

ew 'u and uw™! = wlu. So we have uew ™! = euw!. Since U has no zero divisors,

it follows that ue = eu. Thus, u € Z(U). Therefore, Z(F(U)) C Z(U). O

4. ANNIHILATOR IDEALS OF FINITE DIMENSIONAL SIMPLE MODULES

The aim of this section is to determine all annihilator ideals of finite dimensional
simple modules of U. We first describe all ideals of U by using the structure of F(U).
Then we classify the annihilator ideals of finite dimensional simple modules by gen-
erators. Moreover, we characterize all ideals of finite codimension.

Proposition 4.1. Let I be any nonzero ideal of U. Then there exist t > 0,
ni,no,...,nt € N and hy, ha, ..., hy € Z(U) such that

I= (hlenl,hgenz, ey htent).

Proof. Since U is a Noetherian ring, each ideal of U is finitely generated. It suf-
fices to show that the assertion holds for I = (uy,us,...,us) foru; € U,1 <4 < s. By
Proposition 3.7, ew™ !, ew’, f,w™l,w’ € F(U). Tt follows that e® fow=¢(w')¢ € F(U)
for a,b € N, ¢,d € Z and 0 < a < ¢+ d. Thus, there exists I € N such that
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wiw (W) € F(U) for 1 <i < s. It follows that we may write I = (uy,ua,...,us)
foru; € F(U), 1 <i < s. By Propositions 2.1 and 3.2, we have that [u;] is completely

reducible and i

] = 3 lhige™sw),

J=

where h;; € Z(U), ki > 0,1 < j < ki, 1 <i<s. It is clear [u;] C (u;). Hence,

—

(hire™ hige™2, ... hy, e %) C (u;).
Conversely,

ki

u; € [uz] = Z[hijemjw_nij] - (hile"“,hige"”, ceey hikiemk’?).

=1

So we have
I = (hijiem’ji : hzﬁ S Z(U), 1<y < ki, 1 <i< S).

Renumber h;;, and e™i, 1 < j; < ki, 1 <9< s,as hy,ha,...hy and e, e™2, ..., e,
Thus, we finish the proof. O

For h € Z(U), denote by (h) the ideal of Z(U) generated by h. To describe the
ideals of U more precisely, we give the following theorem.

Theorem 4.2. Let I be any nonzero ideal of U. Then there exist t > 0, ny >
ng>...>n =20, m; =1, hy, € Z(U) for 1 < j; < my, 1 <i <t such that

I=(hye™: 1<j; <m;, 1 <i<t),

where
(h11y -y hamy) 2 (ho1, -y hama) 2 oo 2 {1y ooy g, )

Proof. According to Proposition 4.1, there exist ¢t > 0, n; > 0, m; > 1,
hij, € Z(U) for 1 < j; < my, 1 < i < t such that

(4.1) I= (hijie""’: hzﬁ S Z(Uv)7 1< <my, 1 <1< t).

After rearranging the generators, we may assume that ny > ns > ... > n; > 0. Note
that

nt— Ne— n n
hﬂe t 1;~~~;htmte t—1 6(/11516 f,...,htmte t)

ng— ne— n n
Q (ht,Lle t 17~~~7ht71,mt,16 t 1,htle ‘,...,htmte t).
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We have

nt— nt— n n
(htfl,le ! 17"'7ht71,mt,1e ! 1;htle t;"'ahtmte t)
_ Ng— Mg Mg Nt n n
= (ht,Lle t 1;~~~;ht71,mt,16 t l,htle t 17~~~;htmte t l,htle f,...,htmte t).
So one can replace the generators hy_1 1™, ..., ht—1m, €™ by
Nt — Nne—1 Nt— ne—1
]’Lt,Lle t 1, .. .,ht,LmFIG t ,hﬂe t 1, .. .,htmte t

It is clear that
(Pe—1,15- s P—tme 1 Ptts oo oy By ) 2 (s - o5 By )
Therefore, without loss of generality, we may assume that
(hi—11s s h—1me 1) 2 ity By, )-
Repeating this process with ¢t — 1 instead of ¢, we obtain
(ht—21y- s ht—amy o) 2 (he—11y ooy he—1m, )
and so on. So we can rewrite (4.1) as
I = (hij,e™: hy;, € Z(U), 1 < ji; <my, 1 <i <8,

where
<h11,.. -;h1m1> 2 <h21,.. -;h2m2> 2 e 2 <ht1,.. -;htmt>-

If
<hk71,1, ceey hk717mk_1> == <hk1, ceey hkmk>

for some k, then we can suppose
hi—1,: = githe1 + ... + Gimy Pim,,
for g;; € Z(U), 1 < i <mp—1, 1 <j < my. It follows that
hi—1:€" = (ginhi1€™ + ... + Gimy Rkm, €"F)e™ 17" € (hgie™, ..., hgm,e™*).

Thus, we can eliminate the generators hy_q 1€™',..., hx—1,m, €™ * of I. Since I
is finitely generated, the process will end in finitely many steps. Hence, we finish the
proof. O
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To characterize the ideals of finite codimension, we introduce a family of polyno-
mials. For n > 1, let

7“n+1817n—|—7’17n8n+1—|—27’8

W (C) =C? — "e Z(U).
on(C) e wi € Z(U)
Then we have the following lemma.

Lemma 4.3. For n > 1, we have
M) een@ e
(2) if 0 < m<mn, thene™ [ ¢i(C) € (e™).

i=m-+1
Proof. By (2.5) we have
Sl—nen—lW _ rl—nen—lw/ c (en)

It follows that

2 n—1 2

s2e w 5”+1r1_"e”_1ww' c (en)7 Sl—nrn—i-len—lww/ _ 7“26n_1(wl)2 c (en)

Hence

192 2, 2 2(,,1\2 ) !
en—lcQ _ en—l(ef+ ‘?’:jg;é) — n—15"W +r(:w_)s)z_ Srww mod(en)
_ enfl SnJrlrlfn ?_ Slr)l:lJrn + 28rww/ mod(en).
r—s

Thus, assertion (1) holds. In order to show (2), we use induction on n — m. If
m =n — 1, then it holds by (1). Assume that the result is true for m + 1, namely,

emtt H ©i(C) € (™).

i=m-+2

By (1) we have €™ ¢y, 11(C) € (e™+1). Hence,

e JI @@ =e"omn(©) [ wil€) ™) [[ w0

i=m-+1 1=m-42 1=m-42

n
Note that [] ¢i(C) € Z(U), so the assertion holds for m by induction hypothesis.
i=m-+2
O
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Proposition 4.4. If [ is an ideal of U of finite codimension, then there exist posi-
tive integers n, mi,ma, ..., My and h;;, € Z(U) for 1 < j; < m;, 1 < i < n such that

I=(e" hije" " hij, € Z(U), 1 < j; <my, 1 <i < n),
where

Z(U) 2 (hi1y- -y hamy) 2 (hoty ooy hams) 2 oo 2 (Bnty ooy P, )s

= =

and
n

(hits oy him,) 2< II

t=n—i+1

sﬁt(C)>-

Proof. Assume that e‘w™ ¢ I for some i € N. Since [e‘w™?] is a simple
U-module, it follows that [e‘w™¢ NI = 0. Thus, dimy U/ > dimy[ew™] > i.
Since I is of finite codimension, the set {i € N: e'w™" ¢ I} is finite. Let n =
min{i € N: e‘w™ € I'}. Then e"w™" € I. Hence, ¢" € I. By Lemma 4.3, we have

e I @@ e cr

t=n—1i+1
for 1 <7 < n. By Theorem 4.2, the assertion holds. O

In order to depict the annihilator ideal of simple module V (n, ¥ (w)), we need the
following lemma.

Lemma 4.5. Set R = k[r,yT!]. Suppose that h(x,y,y~!) € R satisfies
h(a,b,b=1) =0 for a € k and b € k*. Then it follows that

h(z,y,y~ ") € (x —a)R+ (y — b)R.

Proof. If h(z,y,y ') = 0, then it is clear that the assertion holds. If
h(z,y,y~ ') # 0, then there exists m € N such that y™h(x,y,y~!) is a polynomial of
variables z and y. Suppose that deg, y™h(z,y,y~ 1) =n > 0. We may assume that

Y@,y ) = (@ — @) i) + (@ — @) fa(y) + o+ fara(9)
for fi(y) € k[y], 1 <i < n+ 1. Noting that h(a,b,b~!) = 0, we have
0="0"h(a,b,b") = fui1(b).
Thus, y — b | fnt+1(y). Hence, it follows that
y"h(x,y,y ") € (x —a)R+ (y — b)R.
Since y is invertible in R, the assertion holds. O
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Theorem 4.6. Let ¢): U’ — k be an algebra homomorphism with ¥(w') =
Y(w)r~"s™ and ¥, = P(w)r " (r" Tt + st /(r — )2, Then the annihilator ideal of
simple module V (n, ¢ (w)) is

(", C — P, ww’ — P(w)?r~"s™).

Proof. By Proposition 4.1, let
I = (hie™ hoe™, ... hie™)

be the annihilator ideal of V(n, ¥ (w)), where h; € Z(U) and m; > 0 for 1 < i < ¢t.
Since V(n, ¥ (w)) has a k-basis vg, v1, ..., v, with U-action given by (2.6), it follows
that

e oy =0, (W oy = (@) H s o, = (@) s
and
Cv] ( rw + sw' )vj
—J+1c7 —n+j n+l—j
gl 1 oy + LTSRS,

(r—s)?
for 0 < j < n. Therefore,
(€™, C — P, ww’ — h(w)?r ") C 1.
For the converse inclusion, since I is the annihilator ideal of V'(n,1(w)), we have
hie™v; =0
for 1 <i<tand 0<j<n Ifm; >n+1 for some i, then it is clear that
hie™ € (e" ™) C (", C — P, ww’ — P(w)?r ™).

If 1 < m; < n, noting that e™iv; =0 for 0 < j < m; — 1, then we have h;vj_y,, =0
for m; < j < n. Since h; € Z(U) = klww’, (ww')~Y[C], we may rewrite h; in the
form h;(C,ww’, (ww')~1). Tt follows that

hz(wfww( )2 " nvw( ) rn —n) =0.
Thus, by Lemma 4.5 we have
€ (C — Y, ww’ — h(w)?r~ms™).
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Therefore,

hie™ € (C — Y, ww’ — h(w)?r~"s™) C (", C — , ww’ — h(w)?r ™).

If m; = 0, then we can prove

hie™ € (e" 1, C =y, ww’ — h(w)?r"s™)

in a similar way. Hence, I C (e"*1,C — ¢, ww’ — 1 (w)?r="s"). O
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