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Abstract. Let U be the two-parameter quantized enveloping algebra Ur,s(sl2) and F (U)
the locally finite subalgebra of U under the adjoint action. The aim of this paper is to
determine some ring-theoretical properties of F (U) in the case when rs

−1 is not a root of
unity. Then we describe the annihilator ideals of finite dimensional simple modules of U by
generators.
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1. Introduction

Let H be a Hopf algebra over a field k with a comultiplication ∆, a counit ε and

an antipode S. For any h ∈ H we write ∆(h) =
∑

h(1) ⊗ h(2). The adjoint action

of H is defined by

(adh)a =
∑

h(1)aS(h(2)) for h, a ∈ H,

which makes H a left H-module algebra. Let F (H) be the set of all elements on

which the adjoint action is locally finite, i.e., F (H) = {x ∈ H : dimk(adH)x < ∞}.

It is known that F (H) is a subalgebra and a submodule of H under the adjoint

action, see [9], Corollary 2.3. Hence, we call F (H) the locally finite subalgebra

of H . Kolb et al. in [12] proved that F (H) is always a left coideal subalgebra
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of H . For virtually cocommutative H (i.e., H being finitely generated as module

over a cocommutative Hopf subalgebra), Kolb et al. in [12] showed that F (H) is

a Hopf subalgebra of H . If H is finite dimensional, then it is clear that F (H) = H .

So there has been significant attention to infinite dimensional Hopf algebras. When

H = kG is a group algebra, it is known that F (H) = k∆, the subgroup algebra

of the FC-center ∆ = ∆(G) = {g ∈ G : g has finitely many G-conjugates}. The

∆-notation for FC-centers was introduced by Passman (see [16]) and should not be

confused with the comultiplication notation. When H = U(g) is the enveloping

algebra of a finite dimensional Lie algebra g, the adjoint action is locally finite. In

particular, when g is semisimple, the action plays a fundamental role in the study of

all prime ideals of U(g), see [8], [9], [10]. Catoiu in [7] proved that U(sl2) is a principal

ideal ring and gave all prime (primitive, maximal) ideals. Afterwards, Li and Zhang

in [13], [14] studied the structure of F (H), where H is the quantized enveloping

algebra Uq(sl2) and q is not a root of unity, and they showed that Uq(sl2) is also

a principal ideal ring. Burdík et al. in [6] found a new basis of Uq(sl2) and determined

the decomposition of Uq(sl2) under the adjoint action in the case when q is not a root

of unity. In recent years, we made use of the adjoint action to study an important

class of Hopf algebras, called finite dimensional pointed Hopf algebras of rank one,

see [18], [20]. We proved that this class of Hopf algebras are principal ideal rings and

gave a complete list of all annihilator ideals of indecomposable modules. Particularly,

we described all ideals of the Radford Hopf algebras (which are special examples of

finite dimensional pointed Hopf algebras of rank one) and gave the classification of

all ideals of 8-dimensional and 9-dimensional Radford Hopf algebra, see [19], [21].

In this paper we consider the two-parameter quantum group U = Ur,s(sl2) in the

sense of [4], [5]. Two-parameter general linear and special linear quantum groups were

introduced by Takeuchi, see [17]. As is shown in [5], Ur,s(sln) is a Drinfeld double

of a Borel-type subalgebra, and there is an R-matrix which comes from the dou-

ble construction and which reduces to the standard R-matrix for the one-parameter

quantum group Uq(sln) (a quotient of Uq,q−1(sln)). When rs
−1 is not a root of unity,

it is easy to see that the adjoint action is not locally finite. The aim of this paper

is to study the structure of F (U) under the adjoint action and give the classifica-

tion of annihilator ideals of finite dimensional simple modules of U . Moreover, we

characterize all ideals of finite codimension.

Throughout, we work over an algebraically closed field k of characteristic zero

with r, s ∈ k \ {0}. Unless otherwise stated, all modules are finite-dimensional left

modules; all maps are k-linear; ⊗ means ⊗k. Denote by Z(U) the center of U and

by Z(F (U)) the center of F (U). We assume that the reader has a passing familiarity

with the basics of Hopf algebras and representation theory; see [1], [2], [11], [15] for

background.
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2. Preliminaries

In this section, we recall the definition and some basic properties of U = Ur,s(sl2).

Let k be an algebraically closed field of characteristic 0 and k∗ the set of all

nonzero elements of k viewed as a multiplicative group. In what follows, we as-

sume that r, s ∈ k∗ and rs−1 is not a root of unity. Recall that the two-parameter

quantized enveloping algebra U is the associative algebra over k generated by ele-

ments e, f, ω±1, (ω′)±1 associated with the following relations, see [4], [5]:

(R1) ω±1, (ω′)±1 all commute with one another and ωω−1 = ω′(ω′)−1 = 1,

(R2) ωe = rs−1eω, ωf = r−1sfω, ω′e = r−1seω′, ω′f = rs−1fω′,

(R3) [e, f ] = (ω − ω′)/(r − s).

It is well known that U has a Hopf algebra structure, where ω±1 and (ω′)±1 are

group-like elements, and the remaining coproducts are determined by

(2.1) ∆(e) = e⊗ 1 + ω ⊗ e, ∆(f) = 1⊗ f + f ⊗ ω′.

This forces the counit and antipode maps to be

ε(ω) = ε(ω′) = 1, S(ω) = ω−1, S(ω′) = (ω′)−1,(2.2)

ε(e) = ε(f) = 0, S(e) = −ω−1e, S(f) = − f(ω′)−1.(2.3)

It is clear that U is an iterated Ore extension, and hence, U is a Noetherian do-

main with a k-basis {eif jωk(ω′)m : i, j ∈ N, k,m ∈ Z}, see [3], Theorem 3.2. By

Example 5.16 of [3], the center Z(U) of U has a basis of monomials {(ωω′)iCj :

i ∈ Z, j ∈ N}, where C is the Casimir element

(2.4) C = ef +
sω + rω′

(r − s)2
= fe+

rω + sω′

(r − s)2
.

Thus, we have Z(U) = k[ωω′, (ωω′)−1][C]. Let

[n] =
rn − sn

r − s
, [n]! = [n][n− 1] . . . [1],

[

n

i

]

=
[n]!

[i]! [n− i]!
.

By [4], Lemma 2.3, it follows that

(2.5) enf = fen + [n]en−1 s
1−nω − r1−nω′

r − s
.

Let V be a U -module and λ, µ ∈ k. Recall that a nonzero vector v ∈ V is called

a weight vector with weight (λ, µ) if ωv = λv and ω′v = µv. A weight vector v
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is called a highest (or lowest) weight vector if ev = 0 (or fv = 0). Let U0 be the

subalgebra of U generated by the elements ω±1, (ω′)±1 and ψ : U0 → k an algebra

homomorphism with ψ(ω′) = ψ(ω)r−nsn for some n > 0. By [4], Proposition 2.8,

there is an (n + 1)-dimensional simple U -module V (n, ψ(ω)) spanned by vectors

v0, v1, . . . , vn and having U -action given by

ωvj = ψ(ω)r−jsjvj , ω′vj = ψ(ω)r−n+jsn−jvj ,(2.6)

evj = ψ(ω)r−n[j][n+ 1− j]vj−1, fvj = vj+1

for 0 6 j 6 n and v−1 = vn+1 = 0. Furthermore, any (n + 1)-dimensional simple

U -module is isomorphic to some V (n, ψ(ω)). It is clear that v0 (or vn) is the highest

(or lowest) weight vector with weight (ψ(ω), ψ(ω)r−nsn) (or (ψ(ω)r−nsn, ψ(ω))).

By [9], Lemma 2.2, we know that F (U) is a U -module algebra under the adjoint

action:

(adω)u = ωuω−1, (adω′)u = ω′u(ω′)−1,

(ad e)u = eu− ωuω−1e, (ad f)u = (fu− uf)(ω′)−1

for any u ∈ U . As is shown in [4], Remark 3.9, not all finite dimensional U -modules

are completely reducible. But we should point out that all finite dimensional

U -submodules of U under the adjoint action are completely reducible. We write it

as the following proposition.

Proposition 2.1. All finite dimensional U -submodules of U under the adjoint

action are completely reducible.

P r o o f. Note that U is generated by e, f , ω±1, (ωω′)±1 with relations (R1),

(R2), (R3) and ωω′ ∈ Z(U). For any u ∈ U ,

(ad(ωω′))u = (ωω′)u(ωω′)−1 = u, (ad(ωω′)−1)u = (ωω′)−1u(ωω′) = u.

So the eigenvalue of ωω′ is always 1. We may take ωω′ as 1. Hence, any U -submodule

of U under the adjoint action can be viewed as a Uq(sl2)-module, where q = (rs−1)1/2.

It is well known that all finite dimensional Uq(sl2)-modules are completely reducible.

Therefore, we finish the proof. �

We end this section by giving the following lemmas which are useful in the sequel.

Lemma 2.2. For n > 1 and 0 6 i 6 n we have

si
[

n− 1

i

]

+ rn−i

[

n− 1

i− 1

]

=

[

n

i

]

.

P r o o f. It is clear by induction. �
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Lemma 2.3. If n > 1, then

∆(en) =
n
∑

i=0

s−i(n−i)

[

n

i

]

en−iωi ⊗ ei, ∆(fn) =
n
∑

i=0

s−i(n−i)

[

n

i

]

f i ⊗ fn−i(ω′)i.

P r o o f. For n = 1, the above equations are (2.1). Suppose that n > 1 and

∆(en−1) =

n−1
∑

i=0

s−i(n−1−i)

[

n− 1

i

]

en−1−iωi ⊗ ei.

Then by Lemma 2.2, it follows that

∆(en) = (e⊗ 1 + ω ⊗ e)

(n−1
∑

i=0

s−i(n−1−i)

[

n− 1

i

]

en−1−iωi ⊗ ei
)

=

n−1
∑

i=0

s−i(n−1−i)

[

n− 1

i

]

en−iωi ⊗ ei

+

n−1
∑

i=0

s−i(n−1−i)

[

n− 1

i

]

(rs−1)n−1−ien−1−iωi+1 ⊗ ei+1

= en ⊗ 1 + ωn ⊗ en

+
n−1
∑

i=1

(

s−i(n−1−i)

[

n− 1

i

]

+ s−i(n−i)rn−i

[

n− 1

i− 1

])

en−iωi ⊗ ei

= en ⊗ 1 + ωn ⊗ en +
n−1
∑

i=1

s−i(n−i)

[

n

i

]

en−iωi ⊗ ei

=

n
∑

i=0

s−i(n−i)

[

n

i

]

en−iωi ⊗ ei.

The argument for the second equation can be done similarly. �

3. Structure of F (U)

It is clear that Z(U) ⊆ F (U). We claim that the adjoint action is not locally

finite. For n > 0 and m ∈ Z we have

(ad e)(enω−m) = e(enω−m)− ω(enω−m)ω−1e = (1− (rs−1)n−m)en+1ω−m.

If n > m, then enω−m /∈ F (U). Let [u] = (adU)u be the U -submodule generated

by u ∈ U . Then we have the following proposition.
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Proposition 3.1. For n > 0 we have

[enω−n] = [fn(ωω′)−n] ∼= [fn] ∼= V (2n, rns−n).

P r o o f. Since the (2n + 1)-dimensional U -module with the highest weight

(rns−n, r−nsn) is isomorphic to V (2n, rns−n), we only need to show that (ω−1e)n is

the highest weight vector with weight (rns−n, r−nsn) and the action of f on (ω−1e)n

is nilpotent. It is clear that (adω)(ω−1e)n = rns−n(ω−1e)n, (adω′)(ω−1e)n =

r−nsn(ω−1e)n and (ad e)(ω−1e)n = 0. Hence, (ω−1e)n is the highest weight vector

with weight (rns−n, r−nsn). Note that (ad f)(ω−1e) = (r−1sfe−ef)(ωω′)−1. Hence,

(ad f)2(ω−1e) = (f(r−1sfe− ef)(ωω′)−1 − (r−1sfe− ef)(ωω′)−1f)(ω′)−1

= −(rs)−1[2]! f(ωω′)−1

and (ad f)3(ω−1e) = 0. By Lemma 2.3 and induction, we have

(ad f)2n+1(ω−1e)n = (ad f)2n+1((ω−1e)n−1(ω−1e))

=

2n+1
∑

i=0

s−i(2n+1−i)

[

2n+ 1

i

]

((ad f)i(ω−1e)n−1)((ad f)2n+1−i(adω′)i(ω−1e))

=

2n+1
∑

i=0

r−is−i(2n−i)

[

2n+ 1

i

]

((ad f)i(ω−1e)n−1)((ad f)2n+1−i(ω−1e)) = 0.

Hence, the action of f on (ω−1e)n is nilpotent and [enω−n] = [(ω−1e)n] ∼=

V (2n, rns−n). Noticing that for n > 2,

(ad f)2n(ω−1e)n =
2n
∑

i=0

s−i(2n−i)

[

2n

i

]

((ad f)i(ω−1e)n−1)((ad f)2n−i(adω′)i(ω−1e))

=
2n
∑

i=0

r−is−i(2n−1−i)

[

2n

i

]

((ad f)i(ω−1e)n−1)((ad f)2n−i(ω−1e)),

we assume

(ad f)2n−2(ω−1e)n−1 = (−1)n−1(rs)−(n−1)2 [2n− 2]! fn−1(ωω′)1−n.

By induction, we have

(ad f)2n(ω−1e)n = (rs)−(2n−2)

[

2n

2n− 2

]

(−1)n−1(rs)−(n−1)2 [2n− 2]!

× fn−1(ωω′)1−n(−(rs)−1[2]! f(ωω′)−1)

= (−1)n(rs)−n2

[2n]! fn(ωω′)−n.
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It follows that fn(ωω′)−n is the lowest weight vector with weight (r−nsn, rns−n).

Note that ωω′ ∈ Z(U). It follows that fn is the lowest weight vector with weight

(r−nsn, rns−n) and [enω−n] = [fn(ωω′)−n] ∼= [fn]. �

We use the following proposition to describe all simple submodules of F (U) under

the adjoint action.

Proposition 3.2. Let V be any simple U -submodule of F (U) under the adjoint

action. Then V = [henω−n] ∼= [enω−n] ∼= V (2n, rns−n) for some 0 6= h ∈ Z(U)

and n > 1.

P r o o f. Suppose that V is an (l+1)-dimensional simple U -submodule of F (U).

Note that any (l+1)-dimensional simple U -module is isomorphic to some V (l, ψ(ω)),

where ψ : U0 → k is an algebra homomorphism with ψ(ω′) = ψ(ω)r−lsl. We may

assume that u =
∑

i,j,k,m

aijkme
if jωk(ω′)m ∈ V is the highest weight vector with

weight (ψ(ω), ψ(ω)r−lsl) for the action of adω and adω′. It follows that

∑

i,j,k,m

aijkm(rs−1)i−jeif jωk(ω′)m = ψ(ω)
∑

i,j,k,m

aijkme
if jωk(ω′)m,

∑

i,j,k,m

aijkm(r−1s)i−jeif jωk(ω′)m = ψ(ω)r−lsl
∑

i,j,k,m

aijkme
if jωk(ω′)m.

This implies (rs−1)i−j = ψ(ω) and (r−1s)i−j = ψ(ω)r−lsl. Hence, (rs−1)2i−2j−l = 1.

Since rs−1 is not a root of unity, we have 2i − 2j = l, which implies that i > j

and l is even. So we can rewrite u in the form
∑

j

en+jf jgj for some polynomials

gj ∈ k[ω±1, (ω′)±1] and l = 2n. According to (2.4), we can replace each factor ef

by the Casimir element C modulo a polynomial in k[ω±1, (ω′)±1]. Therefore, we

rewrite u in the form eng(C) for some polynomial g(C) ∈ k[ω±1, (ω′)±1][C]. Noticing

that (ad e)u = 0, we have

eeng(C) = ωeng(C)ω−1e = rns−neng(C)e.

Since U has no zero divisors, it implies

eg(C) = rns−ng(C)e.

Noting that C ∈ Z(U), we obtain that g(C) has the form ω−nh for some h ∈ Z(U).

Hence, u = henω−n and V = [henω−n]. Since henω−n is also the highest weight vec-

tor with weight (rns−n, r−nsn), we have [henω−n] ∼= [enω−n] ∼= V (2n, rns−n). �
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Corollary 3.3. Let u, v ∈ F (U) be two weight vectors. Then u and v are both

the highest weight vectors if and only if uv is the highest weight vector.

P r o o f. Let u, v be the highest weight vectors. Then by Proposition 3.2, it

is clear that uv is the highest weight vector. Conversely, assume that u and v are

weight vectors with weight (rcs−c, r−csc) and (rds−d, r−dsd), respectively. Note

that u, v ∈ F (U). There exist a, b ∈ N such that (ad e)au 6= 0, (ad e)a+1u = 0,

(ad e)bv 6= 0 and (ad e)b+1v = 0. By Lemma 2.3 we have

(ad e)a+b(uv) =

a+b
∑

i=0

s−i(a+b−i)

[

a+ b

i

]

(ad ea+b−iωi)u(ad ei)v

= rbcs−ab−bc

[

a+ b

b

]

(ad e)au(ad e)bv

+ racs−ab−ac

[

a+ b

a

]

(ad e)bu(ad e)av.

This implies that (ad e)a+b(uv) 6= 0. Since (ad e)(uv) = 0, we have a+ b = 0, which

implies a = b = 0. Hence, u and v are both the highest weight vectors. �

Now we characterize the unit group of F (U).

Proposition 3.4. The unit group of F (U) is equal to {a(ωω′)n : a ∈ k∗, n ∈ Z}.

P r o o f. Let u be any invertible element in F (U). Since 1 is the highest weight

vector with weight (1, 1) and ω and ω′ are group-like elements, it follows that u

and u−1 are weight vectors. According to Corollary 3.3, both u and u−1 are the

highest weight vectors with weight (1, 1). By Proposition 3.2, we have u ∈ Z(U).

Since u is invertible, u ∈ {a(ωω′)n : a ∈ k∗, n ∈ Z}. It is obvious that each element

of {a(ωω′)n : a ∈ k∗, n ∈ Z} is invertible in F (U). �

Proposition 3.5. Suppose u =
m
∑

i=1

hie
niω−ni , where 0 6= hi ∈ Z(U), 1 6 i 6 m

and n1 > n2 > . . . > nm. Then

[u] =

m
⊕

i=1

[hie
niω−ni ] ∼=

m
⊕

i=1

[eniω−ni ].

P r o o f. Obviously, we have

(3.1) [u] ⊆

m
∑

i=1

[hie
niω−ni ].

Since hi ∈ Z(U) for 1 6 i 6 m, by Proposition 3.1, it follows that

[hie
niω−ni ] ∼= [eniω−ni ] ∼= V (2ni, r

nis−ni).
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Note that the integers ni are pairwise distinct. It follows that the right-hand side

of (3.1) is a sum of non-isomorphic simple modules, and hence it is direct. For the

converse inclusion, since n1 > n2 > . . . > nm, we have

(ad f)2n1u = (ad f)2n1(h1e
n1ω−n1) ∈ [u].

According to Proposition 3.1, (ad f)2n1(h1e
n1ω−n1) is the lowest weight vector with

weight (r−n1sn1 , rn1s−n1) in the simple module [h1e
n1ω−n1 ]. This implies that

h1e
n1ω−n1 ∈ [u].

Similarly, one can show that hie
niω−ni ∈ [u] for 1 < i 6 m. Thus,

m
∑

i=1

[hie
niω−ni ] ⊆ [u].

�

In order to depict the elements in F (U), we need the following lemma.

Lemma 3.6. We have [ω−1] = [eω−1]⊕ [C(ωω′)−1] and [ω′] = [eω′]⊕ [C].

P r o o f. From the proof of Proposition 3.1, we know that eω−1 is the highest

weight vector and

(ad f)eω−1 = (1− rs−1)
(

ef +
s(ω − ω′)

(r − s)2

)

(ωω′)−1,

(ad f)2eω−1 = −s−2[2]! f(ωω′)−1, (ad f)3eω−1 = 0.

Hence, [eω−1] is spanned by

eω−1,
(

ef +
s(ω − ω′)

(r − s)2

)

(ωω′)−1, f(ωω′)−1.

By direct calculations, we have

(ad e)ω−1 = (1 − r−1s)eω−1, (ad f)ω−1 = (1 − rs−1)f(ωω′)−1,

(ad e)f(ωω′)−1 = (1− r−1s)
(

ef +
s(ω − ω′)

(r − s)2

)

(ωω′)−1.

Then [ω−1] is spanned by ω−1, eω−1, f(ωω′)−1 and (ef+s(ω − ω′)/(r − s)2)(ωω′)−1.

Since

ω−1 = −
(r − s)2

r + s

(

ef +
s(ω − ω′)

(r − s)2

)

(ωω′)−1 +
(r − s)2

r + s
C(ωω′)−1,
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it follows that [ω−1] ⊆ [eω−1]⊕ [C(ωω′)−1]. Since

C(ωω′)−1 =
r + s

(r − s)2
ω−1 +

(

ef +
s(ω − ω′)

(r − s)2

)

(ωω′)−1 ∈ [ω−1] + [eω−1] = [ω−1],

we have that [ω−1] = [eω−1]⊕[C(ωω′)−1]. Note that ω′ = ω−1(ωω′) and ωω′ ∈ Z(U).

The second equation holds. �

Proposition 3.7. F (U) contains the elements eiω−j(ω′)k and faω−b(ω′)c for

a > 0, b+ c > 0 and j + k > i > 0.

P r o o f. By Proposition 3.1 and Lemma 3.6, we have

eω−1, eω′, f, ω−1, ω′, ωω′ ∈ F (U).

Since F (U) is a subalgebra of U , it is clear that the assertion holds. �

Corollary 3.8. We have Z(F (U)) = Z(U).

P r o o f. Since Z(U) ⊆ F (U), we have Z(U) ⊆ Z(F (U)). Take any u ∈ Z(F (U)).

By Proposition 3.7, eω−1, f , ω−1 and ω′ are contained in F (U). Hence, ueω−1 =

eω−1u and uω−1 = ω−1u. So we have ueω−1 = euω−1. Since U has no zero divisors,

it follows that ue = eu. Thus, u ∈ Z(U). Therefore, Z(F (U)) ⊆ Z(U). �

4. Annihilator ideals of finite dimensional simple modules

The aim of this section is to determine all annihilator ideals of finite dimensional

simple modules of U . We first describe all ideals of U by using the structure of F (U).

Then we classify the annihilator ideals of finite dimensional simple modules by gen-

erators. Moreover, we characterize all ideals of finite codimension.

Proposition 4.1. Let I be any nonzero ideal of U . Then there exist t > 0,

n1, n2, . . . , nt ∈ N and h1, h2, . . . , ht ∈ Z(U) such that

I = (h1e
n1 , h2e

n2 , . . . , hte
nt).

P r o o f. Since U is a Noetherian ring, each ideal of U is finitely generated. It suf-

fices to show that the assertion holds for I = (u1, u2, . . . , us) for ui ∈ U , 1 6 i 6 s. By

Proposition 3.7, eω−1, eω′, f, ω−1, ω′ ∈ F (U). It follows that eaf bω−c(ω′)d ∈ F (U)

for a, b ∈ N, c, d ∈ Z and 0 6 a 6 c + d. Thus, there exists l ∈ N such that
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uiω
−l(ω′)l ∈ F (U) for 1 6 i 6 s. It follows that we may write I = (u1, u2, . . . , us)

for ui ∈ F (U), 1 6 i 6 s. By Propositions 2.1 and 3.2, we have that [ui] is completely

reducible and

[ui] =

ki
∑

j=1

[hije
nijω−nij ],

where hij ∈ Z(U), ki > 0, 1 6 j 6 ki, 1 6 i 6 s. It is clear [ui] ⊆ (ui). Hence,

(hi1e
ni1 , hi2e

ni2 , . . . , hiki
eniki ) ⊆ (ui).

Conversely,

ui ∈ [ui] =

ki
∑

j=1

[hije
nijω−nij ] ⊆ (hi1e

ni1 , hi2e
ni2 , . . . , hiki

eniki ).

So we have

I = (hijie
niji : hiji ∈ Z(U), 1 6 ji 6 ki, 1 6 i 6 s).

Renumber hiji and e
niji , 1 6 ji 6 ki, 1 6 i 6 s, as h1, h2, . . . ht and e

n1 , en2 , . . . , ent .

Thus, we finish the proof. �

For h ∈ Z(U), denote by 〈h〉 the ideal of Z(U) generated by h. To describe the

ideals of U more precisely, we give the following theorem.

Theorem 4.2. Let I be any nonzero ideal of U . Then there exist t > 0, n1 >

n2 > . . . > nt > 0, mi > 1, hiji ∈ Z(U) for 1 6 ji 6 mi, 1 6 i 6 t such that

I = (hijie
ni : 1 6 ji 6 mi, 1 6 i 6 t),

where

〈h11, . . . , h1m1
〉 ) 〈h21, . . . , h2m2

〉 ) . . . ) 〈ht1, . . . , htmt
〉.

P r o o f. According to Proposition 4.1, there exist t > 0, ni > 0, mi > 1,

hiji ∈ Z(U) for 1 6 ji 6 mi, 1 6 i 6 t such that

(4.1) I = (hijie
ni : hiji ∈ Z(U), 1 6 ji 6 mi, 1 6 i 6 t).

After rearranging the generators, we may assume that n1 > n2 > . . . > nt > 0. Note

that

ht1e
nt−1 , . . . , htmt

ent−1 ∈ (ht1e
nt , . . . , htmt

ent)

⊆ (ht−1,1e
nt−1 , . . . , ht−1,mt−1

ent−1 , ht1e
nt , . . . , htmt

ent).
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We have

(ht−1,1e
nt−1 , . . . , ht−1,mt−1

ent−1 , ht1e
nt , . . . , htmt

ent)

= (ht−1,1e
nt−1 , . . . , ht−1,mt−1

ent−1 , ht1e
nt−1 , . . . , htmt

ent−1 , ht1e
nt , . . . , htmt

ent).

So one can replace the generators ht−1,1e
nt−1 , . . . , ht−1,mt−1

ent−1 by

ht−1,1e
nt−1 , . . . , ht−1,mt−1

ent−1 , ht1e
nt−1 , . . . , htmt

ent−1 .

It is clear that

〈ht−1,1, . . . , ht−1,mt−1
, ht1, . . . , htmt

〉 ⊇ 〈ht1, . . . , htmt
〉.

Therefore, without loss of generality, we may assume that

〈ht−1,1, . . . , ht−1,mt−1
〉 ⊇ 〈ht1, . . . , htmt

〉.

Repeating this process with t− 1 instead of t, we obtain

〈ht−2,1, . . . , ht−2,mt−2
〉 ⊇ 〈ht−1,1, . . . , ht−1,mt−1

〉

and so on. So we can rewrite (4.1) as

I = (hijie
ni : hiji ∈ Z(U), 1 6 ji 6 mi, 1 6 i 6 t),

where

〈h11, . . . , h1m1
〉 ⊇ 〈h21, . . . , h2m2

〉 ⊇ . . . ⊇ 〈ht1, . . . , htmt
〉.

If

〈hk−1,1, . . . , hk−1,mk−1
〉 = 〈hk1, . . . , hkmk

〉

for some k, then we can suppose

hk−1,i = gi1hk1 + . . .+ gimk
hkmk

for gij ∈ Z(U), 1 6 i 6 mk−1, 1 6 j 6 mk. It follows that

hk−1,ie
nk−1 = (gi1hk1e

nk + . . .+ gimk
hkmk

enk)enk−1−nk ∈ (hk1e
nk , . . . , hkmk

enk).

Thus, we can eliminate the generators hk−1,1e
nk−1 , . . . , hk−1,mk−1

enk−1 of I. Since I

is finitely generated, the process will end in finitely many steps. Hence, we finish the

proof. �
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To characterize the ideals of finite codimension, we introduce a family of polyno-

mials. For n > 1, let

ϕn(C) = C2 −
rn+1s1−n + r1−nsn+1 + 2rs

(r − s)4
ωω′ ∈ Z(U).

Then we have the following lemma.

Lemma 4.3. For n > 1, we have

(1) en−1ϕn(C) ∈ (en);

(2) if 0 6 m < n, then em
n
∏

i=m+1

ϕi(C) ∈ (en).

P r o o f. By (2.5) we have

s1−nen−1ω − r1−nen−1ω′ ∈ (en).

It follows that

s2en−1ω2 − sn+1r1−nen−1ωω′ ∈ (en), s1−nrn+1en−1ωω′ − r2en−1(ω′)2 ∈ (en).

Hence

en−1C2 = en−1
(

ef +
sω + rω′

(r − s)2

)2

≡ en−1 s
2ω2 + r2(ω′)2 + 2srωω′

(r − s)4
mod(en)

≡ en−1 s
n+1r1−n + s1−nr1+n + 2sr

(r − s)4
ωω′ mod(en).

Thus, assertion (1) holds. In order to show (2), we use induction on n − m. If

m = n− 1, then it holds by (1). Assume that the result is true for m+ 1, namely,

em+1
n
∏

i=m+2

ϕi(C) ∈ (en).

By (1) we have emϕm+1(C) ∈ (em+1). Hence,

em
n
∏

i=m+1

ϕi(C) = emϕm+1(C)
n
∏

i=m+2

ϕi(C) ∈ (em+1)
n
∏

i=m+2

ϕi(C).

Note that
n
∏

i=m+2

ϕi(C) ∈ Z(U), so the assertion holds for m by induction hypothesis.

�
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Proposition 4.4. If I is an ideal of U of finite codimension, then there exist posi-

tive integers n, m1,m2, . . . ,mn and hiji ∈ Z(U) for 1 6 ji 6 mi, 1 6 i 6 n such that

I = (en, hijie
n−i : hiji ∈ Z(U), 1 6 ji 6 mi, 1 6 i 6 n),

where

Z(U) ) 〈h11, . . . , h1m1
〉 ) 〈h21, . . . , h2m2

〉 ) . . . ) 〈hn1, . . . , hnmn
〉,

and

〈hi1, . . . , himi
〉 ⊇

〈 n
∏

t=n−i+1

ϕt(C)

〉

.

P r o o f. Assume that eiω−i /∈ I for some i ∈ N. Since [eiω−i] is a simple

U -module, it follows that [eiω−i] ∩ I = 0. Thus, dimk U/I > dimk[e
iω−i] > i.

Since I is of finite codimension, the set {i ∈ N : eiω−i /∈ I} is finite. Let n =

min{i ∈ N : eiω−i ∈ I}. Then enω−n ∈ I. Hence, en ∈ I. By Lemma 4.3, we have

en−i
n
∏

t=n−i+1

ϕt(C) ∈ (en) ⊆ I

for 1 6 i 6 n. By Theorem 4.2, the assertion holds. �

In order to depict the annihilator ideal of simple module V (n, ψ(ω)), we need the

following lemma.

Lemma 4.5. Set R = k[x, y±1]. Suppose that h(x, y, y−1) ∈ R satisfies

h(a, b, b−1) = 0 for a ∈ k and b ∈ k∗. Then it follows that

h(x, y, y−1) ∈ (x− a)R+ (y − b)R.

P r o o f. If h(x, y, y−1) = 0, then it is clear that the assertion holds. If

h(x, y, y−1) 6= 0, then there exists m ∈ N such that ymh(x, y, y−1) is a polynomial of

variables x and y. Suppose that degx y
mh(x, y, y−1) = n > 0. We may assume that

ymh(x, y, y−1) = (x− a)nf1(y) + (x− a)n−1f2(y) + . . .+ fn+1(y)

for fi(y) ∈ k[y], 1 6 i 6 n+ 1. Noting that h(a, b, b−1) = 0, we have

0 = bmh(a, b, b−1) = fn+1(b).

Thus, y − b | fn+1(y). Hence, it follows that

ymh(x, y, y−1) ∈ (x− a)R+ (y − b)R.

Since y is invertible in R, the assertion holds. �
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Theorem 4.6. Let ψ : U0 → k be an algebra homomorphism with ψ(ω′) =

ψ(ω)r−nsn and ψn = ψ(ω)r−n(rn+1 + sn+1)/(r − s)2. Then the annihilator ideal of

simple module V (n, ψ(ω)) is

(en+1, C − ψn, ωω
′ − ψ(ω)2r−nsn).

P r o o f. By Proposition 4.1, let

I = (h1e
m1 , h2e

m2 , . . . , hte
mt)

be the annihilator ideal of V (n, ψ(ω)), where hi ∈ Z(U) and mi > 0 for 1 6 i 6 t.

Since V (n, ψ(ω)) has a k-basis v0, v1, . . . , vn with U -action given by (2.6), it follows

that

en+1vj = 0, (ωω′)vj = ω(ψ(ω)r−n+jsn−j)vj = ψ(ω)2r−nsnvj

and

Cvj =
(

fe+
rω + sω′

(r − s)2

)

vj

= ψ(ω)r−n[j][n+ 1− j]vj +
ψ(ω)r−j+1sj + ψ(ω)r−n+jsn+1−j

(r − s)2
vj = ψnvj

for 0 6 j 6 n. Therefore,

(en+1, C − ψn, ωω
′ − ψ(ω)2r−nsn) ⊆ I.

For the converse inclusion, since I is the annihilator ideal of V (n, ψ(ω)), we have

hie
mivj = 0

for 1 6 i 6 t and 0 6 j 6 n. If mi > n+ 1 for some i, then it is clear that

hie
mi ∈ (en+1) ⊆ (en+1, C − ψn, ωω

′ − ψ(ω)2r−nsn).

If 1 6 mi 6 n, noting that emivj = 0 for 0 6 j 6 mi − 1, then we have hivj−mi
= 0

for mi 6 j 6 n. Since hi ∈ Z(U) = k[ωω′, (ωω′)−1][C], we may rewrite hi in the

form hi(C, ωω
′, (ωω′)−1). It follows that

hi(ψn, ψ(ω)
2r−nsn, ψ(ω)−2rns−n) = 0.

Thus, by Lemma 4.5 we have

hi ∈ 〈C − ψn, ωω
′ − ψ(ω)2r−nsn〉.
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Therefore,

hie
mi ∈ (C − ψn, ωω

′ − ψ(ω)2r−nsn) ⊆ (en+1, C − ψn, ωω
′ − ψ(ω)2r−nsn).

If mi = 0, then we can prove

hie
mi ∈ (en+1, C − ψn, ωω

′ − ψ(ω)2r−nsn)

in a similar way. Hence, I ⊆ (en+1, C − ψn, ωω
′ − ψ(ω)2r−nsn). �
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