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Abstract. We prove two-weighted norm estimates for higher order commutator of singular
integral and fractional type operators between weighted LP and certain spaces that include
Lipschitz, BMO and Morrey spaces. We also give the optimal parameters involved with
these results, where the optimality is understood in the sense that the parameters defining
the corresponding spaces belong to a certain region out of which the classes of weights are
satisfied by trivial weights. We also exhibit pairs of nontrivial weights in the optimal region
satisfying the conditions required.
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1. INTRODUCTION

A significant contribution is well known that represents the continuity properties
of different operators from harmonic analysis in the study of regularity properties
of the solutions of certain partial differential equations. There is a vast evidence of
this fact and in this direction, the commutators of operators with symbol functions
in certain adequate spaces play an important role, see, for example, [1] —[6] and [13].
Thus, their boundedness properties allow to derive regularity properties related with
the solutions of such PDE’s.

In [7] the authors proved one-weight boundedness results for the classical frac-
tional integral operator I,, 0 < a < n, between certain spaces including weighted
LP-Lipschitz(8) estimates, where the relation between p and j is standard, 8/n =
a/n—1/p. The Lipschitz spaces considered in that article are generalizations of some
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known integral version of classical Lipschitz(3) spaces. In [8] similar problems were
studied for the Hilbert transform and certain generalizations of the Lipschitz spaces
defined in [7].

On the other hand, in [10] a two-weighted problem for the boundedness of I, of
type LP-Lipschitz(3) was studied. The parameters involved belong to a region out of
which the weights are trivial, that is v = 0 or w = oo a.e., and, in this sense, this is an
optimal estimate. Similar results in this spirit were proved in [12] for commutators
of singular integral and fractional type operators by considering the Lipschitz spaces
given in [11].

In this paper we prove two-weighted norm estimates for singular integral and frac-
tional type operators and their higher order commutators between weighted LP and
certain spaces related to a parameter S, that include Lipschitz, BMO and Morrey
spaces and that are wider than those considered in [12]. Moreover the classes of
weights are quite different from those given there, including local and global condi-
tions. We also give the optimal parameters involved with these results, where the
optimality is understood in the sense that the parameters p and 3 belong to a certain
region out of which the classes of weights are satisfied by trivial weights. Moreover,
we exhibit concrete pairs of nontrivial weights in the optimal region satisfying the
conditions required on the weights, where the boundedness results includes values
of 8 describing Lipschitz(/3), BMO and Morrey spaces, that is, 0 < § <1, 8 =0
and 8 < 0, respectively. Our results extend those contained in [10] for the fractional
integral operator, see also [7] for the one-weight case. We prove that a one-weight
result can only holds whenever the relation between the parameters is standard. We
also give the relation between our classes of weights and those given in [12], which
are natural extensions of the A;-Muckenhoupt class in one-weight estimates.

The paper is organized as follows. In Section 2 we give the preliminaries and state
the main results. In Section 3 we prove the optimality of the classes of weights and
give some other properties. Finally, in Section 4 we show the main results.

2. PRELIMINARIES

We say that A < B if there exists a positive constant ¢ such that A < ¢ B. In this
section we give the definitions of operators we will be dealing with and the functional
class of symbols in order to define the commutators.

We consider singular integral operators of convolution type T with kernel K, that
is T is bounded on L?(R™) and if x ¢ supp f

(2.1) Tf(x) = . K(z —y)f(y)dy.
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The kernel K is a measurable function defined away from 0, satisfying a certain
smoothness condition to be described later. We also suppose that K satisfies the
typical size condition given by

C

K-yl < 77—

K-yl < o
which is called S§.

Related with the singular integral operator T', we can formally define the commu-

tator with symbol b € L (R") by

loc
[b,T]f = bTf—T(bf).
The commutator of order m € N U {0} of T is defined by
=T, T, =0T

We also consider fractional operators of convolution type Ty, 0 < o < n, defined by

(2'2) Taf(x) = n K(y(l‘ —y)f(y)dy,

where the kernel K, is not identically zero and satisfies certain size and smoothness
conditions.

Let 0 < § < 1. We say that a function b belongs to the space A(J) if there exists
a positive constant C' such that for every z,y € R",

[b(z) = b(y)| < Cla —yl°.

The smallest of such constants is denoted by [|b[|s¢5). The space A(0) is the well
known Lipschitz space in the classical literature. We will be dealing with commuta-
tors with symbols belonging to this class of functions.

Let 0 < oo < n. We say that a kernel K, € S}, if there exists a positive constant C'

h that
such tha o

|x|n7a'

[Ka(z)] <

We say that a kernel K, belongs to K, . if there exist a positive constant C' and
0 < n < 1 such that

o = "

|Ko(z —y) = Ko(2" —y)| + Koy — 2) = Kao(y —2")| < CW’

whenever |z —y| > 2|z — 2/|.
It is easy to check that the fractional integral operator I, with the kernel
Ko (x) = |2]*~" satisfies the conditions S} and K7, ,, for 0 < a < n.
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Related with the fractional type integral operators Ty, we can formally define the
higher order commutators with symbol b € L, .(R™) by

T2,f(@) = [ (0e) = b)) Kl = 1) 1) .

where m € N'U {0} is the order of the commutator. Clearly, T, 0 =T,

As we have said, we are interested in studying the boundedness properties of
the commutators 7", with symbol b € A(d), from weighted Lebesgue spaces into
a certain weighted version of Lipschitz spaces. For § € R and a weight w, these
spaces are denoted by £, (3) and collect the functions f € L{ (R™) that satisfy

T L @) = ma()]d <

for some positive constant C. When 5 = 0, £,,(0) is a weighted version of the

loc

bounded mean oscilation space introduced by Muckenhoupt and Wheeden in [9].
Moreover, £1(3) gives the known Lipschitz integral space for S in the range
0 < B < 1/n and the Morrey space for —1 < § < 0. This class of functions
was defined in [7].

In [12] the authors proved two weighted boundedness results for commutators of
a great variety of operators between Lebesgue and Lipschitz spaces L, (8). These
spaces collect the functions f € L (R™) that satisfy

(2.3) Wl [ 17(0) —mp(r)de <

for some positive constant C. It is easy to check that, for a general weight w,
L, (B) C Ly, and, if w belongs to the A;-Muckenhoupt class then both spaces coincide.
Related to the spaces L,,(8), we introduce the following class of weights.

Definition 2.1. Let0<a<n,0<d<land1l<r < oco. Put a =md+ «a,
m € N U {0}, and 6 < 6. We say that a pair of weights (w,v) belongs to H(r, a, 5),
if the inequality

N r’ 1/r’ B)
2.4 B(5—5>/"(/ v (W) d ) < w(B)
@4 15| o (BIV" T ap -y oam @) S

holds for every ball B C R", where zp is the center of B. In the case r = 1 we say
that (w,v) belongs to H(1, &, 5) if the inequality

o)
(B[ +Jam — )=+

_ w(B)

(2.5) |B|C=)/n <
VBl

holds for every ball B C R"™, where xp is the center of B.
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When 0 < @ < n, m = 0 and § = 1, the class in (2.4) was introduced in [10].
If, in addition, w = v and 0 = & — n/r, then the class 'H(r,&,g) was defined
in [7]. When @« = 0,0 =1, m = 0 and w = v the class H(00,0,0) is the
class Bs in [9].

Remark 2.2. Let 0 < a < n, 0 < 0 < min{n, (n — a)/m} and 1 < r < oo.
Let 6 < 4. In [12] the authors defined the classes H(r, &, §) as the pair of weight (v, w)
such that

X5 (6-3)/ v (y) L
sup||&=— B|\=o)n / ——d < 00,
BpH w Hool | ( R™ (|B|1/" + |xB — y|)r (n—a+6) y)

where the supremun is taken over every ball B with center xp. These classes char-
acterize the boundedness of several operators between Lebesgue and Lipschtz spaces
defined in (2.3), with two weights. Since

1 8]
inf,egw = w(B)

[(1/w)xBlle =

then the classes H(r, &, §) are contained in the classes H(r, &, d). We will prove later
that this inclusion is strict.

Remark 2.3. We say w € H(r,d,0) if w = v in (2.4) and (2.5).

In the one-weight case, we obtain the following lemma.

Lemma 2.4. Let 0 < a<n,0<d<landl <r < oo. Put @ =md+ « and
6 <min{é, & —n/r}. If w € H(r,&,o), then 6 = & —n/r.

Proof. Let 1 < r < oo (if r = 1 we understand ||| instead |-||,+). Since
w € H(r, a, 5), we have

/ 1
w(B) o |B| 6=/ / w” (y) dy "
Bl ~ B (|BIV/" + |zp — y|)'(n=a+9)

~ 1 1/r
> |B|(6—6)/n—(1/r—&/n+6/n)(_/ wr’(y) dy)
B

1B
> |B|—S/n—1/r+&/nw(B) )
~ |B|
Then, this inequality is true if § = & — n/r. O
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3. MAIN RESULTS

We are now in a position to state our main results. We first state the results for
singular integral operators with the corresponding weights belonging to H(r, md, ),
that is & = 0 in Definition 2.1.

Theorem 3.1. Let 0 < § < min{n,n/m} and 1 <r<oc. Let 6 <min{d, md—n/r}

and b € A(6). If (w,v) € H(r,mé,0) and K € Si N K, ., then
Tm
" Fll e arm = L)

holds for every f such that f/v e L"(R™).

From the theorem above and Lemma 2.4 we obtain the following corollary.

Corollary 3.2. Let 0 < § < min{n,n/m} and 1 <r < co. Let 6 = md —n/r and
be Ab). If w e H(r,md,0) and K € Si N K7 __, then

a,00”?

17 . 6

holds for every f such that f/w € L"(R™).

For the Hilbert transform, m = 0 and r = oo, this corollary was proved in [9].
We now state the main results for the boundedness of fractional integral operators,
that is 0 < a < n.

Theorem 3.3. Let0<a<n,0<d<min{n, (n—a)/m} and 1 <r < oo. Let
< min{d,& —n/r} and b € A(8). If (w,v) € H(r,&,6) and K € Sg N K(*y o, then
T2 2 o

holds for every f such that f/v e L"(R™).

From Theorem 3.3 and Lemma 2.4, we obtain the following result.

Corollary 3.4. Let 0 < o < n, 0 < < min{n, (n —a)/m} and 1 < r < oo. Let
d=a—n/randbe AS). Ifw e H(r,a,d) and K € S5 NK? ., then

«,007

1T Nl 25 /m) S ”bHA(‘S)H ‘ L7 (R™)

holds for every f such that f/w € L"(R"™).
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4. PROPERTIES OF CLASSES OF WEIGHTS

In this section we give some properties of the classes of weights H(r, @, 5) given in
Definition 2.1. Recall that § < min{& —n/r,é} and & = md + a, where 0 < a < n,

1<r<oo.
We prove that the range of the parameters involved in the classes H(r, &, ¢) lies in

the shaded region of Figure 1.

A 5 SA
) ) 5t
I~ O =a — n/r
1 1/r
a—npf-—=——=——=—-~- a—n

a=9 a<d

a>4
Figure 1. Permissible range of the parameters r and ¢ for different values of @&.

Lemma 4.1. Let 0 < a < n, 0 < 6 < min{n, (n —a)/m} and 1 < r < oo. If

(w,v) € H(r,&,d) then )
loxesll S 1B~ w(B).

Proof. Since (w,v) € H(r,&,d), we know that

~ r’ 1/’ B)
B(6=8)/n (/ V" (y) - dy) < o
1B v (B ¥ Jop — g @79 5]

for every ball B C R", where zp is the center of B. Then, we have

, |B|(n—&+6)r’/n
T _ T
v (2B) - |B|(n—&+6)r’/n /QBU (y) dy
7"/
< |B|(n-a+5)r' /n / v (y) __qy
~ | | 9B (|B|1/n + |$B _ y|)r (n—a+96)
< |B (n7&+6)r'/n/ v (y) _ d
=18 an (BT +Jam — gy 09
w(B)
|B|(5—8)/n+1

) S ()

~

< |B|(nf&+6)r’/n(
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As a consequence of the lemma above and Lemma 2.4 we obtain the following
result.

Corollary 4.2. Let 0 < a < n, 0 < § < min{n,(n —a)/m} and 1 <r < oo. If
w € H(r, a, 5) then w" satisfies a doubling condition.

When m = 0 this corollary was proved in [7].

We say that a weight w belongs to RH(s) if there exists a positive constant C

such that
1 / Vs w(B)
— | w®(x) dx) < C—5~.
<|B| B Bl

As a consequence of Lemmas 2.4 and 4.1, we get the following result.

Corollary 4.3. Let 0 < a < n, 0 < § <min{n, (n —a)/m} and 1 <r < oo. Ifw
is a weight in H(r, a, 5), then w belongs to RH (r').

Our next lemma shows the equivalence between the class H(r, &, 5) and a pair of
local and global conditions. The proof is straightforward and we omit it.

Lemma 4.4. Let 0 < a < n, 0 < § < min{n, (n —a)/m} and 1 < r < co. The
condition H(r, &, 5) is equivalent to the following two inequalities:

5 1 , Urt w(B)
(4.1) |B|<“>/“/’°<— [ (y)dy) <uB
|B| Jg |B|
and
(4.2) B0/ v )" D)
‘ w_p g~y V)~

hold simultaneously for every ball B C R™, where xp is the center of B.

It is important to note that both the conditions (4.1) and (4.2) cannot be reduced
to (4.2) as in [7] for the one-weighted case. However, under certain additional hy-
pothesis on v then H(r,&,0) is the condition (4.2). This fact is established in the
following lemma.

Lemma 4.5. Let 0 < a <n,0 < § < min{n, (n—a)/m} and 1 < r < oco. Let v be
a weight such that v" satisfies a doubling condition. Then, the global condition (4.2)
implies the local condition (4.1).
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Proof. Since v" is a doubling weight, we get

1 , 1/’ 1 , 1/r’
— [ v (y)d < —/ v" (y)d )
(1 ) <(g [, v @
- |B|(n7a+5)/n71/r' " /7'
T |B|nato/n 23731) (y) dy

(n—a&+8)/n—1/r' v’ (y) v
S B|n—«a n—1/r / - _ d ) .
1B < op_p |t — y["(Pma+9) Y

Then, using the global condition (4.2), we have that

: / ) " G- /nt1/r W(B)
R <y>dy> < |B|G-@/ms1/r 0 B),
(|B| 5 B

which is (4.1). O

Even though v" satisfies a doubling condition, both the inequalities (4.1) and (4.2)
are not equivalent. This fact is showed in Lemma 4.7. We first give well known
estimates in order to prove it.

Lemma 4.6. Let B = B(zp,R) C R™ and « > —n. Then, the following state-
ments hold.
(1) If |lzB| < R, [ |x]*dx ~ R**™.
(2) If |xg| > R, [z |x|*dz ~ |zp|*R".

Lemma 4.7. Let 0 < a<n, 0 < § < min{n, (n — «)/m} and 1 < r < oco. There
exist nontrivial pairs of weights (w,v) that satisfy the local condition (4.1) but not
the global condition (4.2) for é in the range

6 < min{é,&— ;},

excluding the case 6 = § when & — n/r = 6.

Proof. Let us first consider 6 = § < & —n/r. Let w = 1 and v(x) = |z|*/"~%+9,
we prove that (w,v) satisfies (4.1) but not (4.2). Indeed, let B = B(zp,R). By
Lemma 4.6, if |zp| < R we get

B|(@=8)/n , /v’ _ L ,
| L}(B) (/ " (y) dy) S RY ) an/r a+dé+n/r S C
B

and if |zg| > R, by Lemma 4.6, we have

|B|(a75)/n

1/r' N N ,
" y dy) S Raféfn TR n/rfaJréRn/r S C.
e ([rw s
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On the other hand, if we now take B = B(0, R), we get

|B| (/ UT/(y) dy)l/Tl N (/ |y|(n/r—&+6)r’ dy)l/T'
w(B) \ Jrm\ g [y|(m—a+or’ ~ \ sy Jylm—ator

/7'
1
(Lo o)
{yi>Ry Y]

and the last integral is infinite. Thus, (w,v) does not satisfy (4.2).

Similar estimates can be obtained for the case § < § < & — n/r by considering
(|x|a’g’”/”, 1). For the case § < & —n/r < J the same is true for (|z|?,|z|?) with
0>n/r—a+dand f=0+a—0—n/r. O

Proposition 4.8. Let 0 < oo < n, 0 < § < min{n, (n —a)/m} and 1 < r < 0.
Then:
(i) If 6 > &6 or § > & — n/r, then (w,v) € H(r,&,0) if and only if v = 0 almost
everywhere in R".
(ii) If 6 = @ — n/r = & then the same conclusion as in (i) holds.

Proof. Let us first see (i) and let 6 > §. Let B = B(x, R), where z is a Lebesgue
point of w. Suppose that r is finite, since (w,v) € H(r, a, 5) we get

r /7’
</ V" (y) _ dy> / < w(B)|B|(575)/n.
re (|B[Y™ + [z —y|)r(n=6+9) ~ |B

From the inequality above, by letting R — 0, we obtain that

(/ ’UT/(y) dy)l/r/ .
o BT+ fa— g e

and so v = 0 for a.e. z € R".

Now, if § > & — n/r, since (w,v) € H(r,q, 5) and by Lemma 4.4, we have

(’UT (B))l/r/ < w(B)|B|1/T—(&—(§)/TL

Bl ~ |Bl

If we choose B(x, R) as before, since x is a Lebesgue point of w, we get

lim w(B) |B|1/r—(62—5)/n =0,

R—0 |B|
from which it follows that

) v
lim sup
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Clearly we can get the same conclusion for a.e. x € R™. By standard arguments
we can deduce that v(z) = 0 at a.e. x € R™. If r = co we have to consider 1/r =0
and 7' =1 in the previous argument.

We now proceed with the proof of (ii), since b=0=a— n/r we are going to see
that (w,v) € H(r,d,0) with r = n/(@ —06) if & > 6 and r = oo if & = 6, if v(x) = 0
at a.e. z € R™.

Let B = B(xg, R) C R™, since (w,v) € H(r,&,g) we get

(/ ,U'r' (y) dy)l/'r'/ § w(B)
g (|B|Y/" + o — y|)r' (n=6+0) ~ |B]

Since n — & + 6 = n/r’, we have
b

» 1/’ B

g (IBIV™ + 20 —yl)" Bl
We now proceed as in the proof of Theorem 5.6 in [11] in order to obtain that v(z) = 0
for a.e. x € R™. O

Remark 4.9. Let 0 < o < n, 0 < 0 < min{n,(n —a/m)} and n/a < r <
n/(a—9). Let
+ .
(2(@-%)-0) <o<a-2 a-"-o<i<mn{a-2-a+4},
r r r r’r
we now exhibit a pair of weights (w,v) such that (w,v) € H(r,&,g) but (w,v) ¢
H(r, &, ).

Let w(z) = |o"xqz<1y + |x|9+‘§x{|x|>1} and v(z) = |x|‘§. It is easy to check
that (w,v) does not belong to H(r,@,d). However, we see that (w,v) € H(r,a,?).
Since v is a doubling weight, by Lemma 4.5, we only prove (4.2).

Let B = B(xp,R) and B; = 2°B. If |zg| < R, by Lemma 4.6 we obtain that

|B|1+(675)/n o (y) 1/r Rafs o0 s y .
—Tn-aror W 5 22 O @ ()Y
wB) \Jams I — 4] w(B) &

R&—i—n/r’ oo

5 2—i(n/r—5—&+6)
wB) &
Gt/
< R&+n/T
~ w(B)

Thus, since w(B) > max{R’*" R?+5+"} we obtain that (4.2) holds for this case.
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Now, if |zp| > R, then there exists Ny such that 2M R < |zp| < 2MTIR.

B+ / ) N
w(B) g\ |TB — y|(n=a+) Y

RO s , ,
271(n7a+5) " B; 1/r
i) ; (v" (Bi))

1

S

ga—s Moo , , RES X L , ,
=w@ 2T B)Y T D 2B
i=1 i=N1+1
=57 + 5.

Let us first estimate Sy. Since i < Ny, n/r —a+ 6 > 0 and

w(B) 2 max{|zp|*R", |z5|* O R"}

we have )
R&féJrn/r' N
S, < ————|zpl° < C.
In order to estimate Sy, we first observe that
R&Jrn/r'
So S ————
w(B)

and then we proceed as in the estimate of S; to obtain that Sy < C.

Theorem 4.10. Let 0 < a < n and 0 < § < min{n, (n—a)/m}. There exist pairs
of weights with v not identically equal to zero, that satisfy the condition H(r, &, 5)
in the range of r and ) given by

excluding the case 6 = § when & — n/r = 6.

Proof. By Remark 2.2, the pair of weights given in [12] belongs to 'H(r,&,g)
forl<r<oocanda-n<é< min{d, @ — n/r} excluding the case 5 = & when
a—njr=>24.

So, we exhibit examples of pairs of weights for the case § < &—n. We first consider
1 <r < oo. We split the range 6 < &—n in two regions:

() & —n—kd <6 <min{d@—n/r—ké,a—n— (k—1)8}, k €N, see Figure 2.
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S

/\/S:a—”/r

1
a—n
a—n-—2=0

a—n—20

1

G

i~ O=d —n/r—26

1/r

b=da—n/r—24

i~ 0=da—n/r—36

a—n-—30

B

a>d
Figure 2. Case (i) in the proof of Theorem 4.10.

(i) &@—n/r—kéd—86 <6< a—n—kd keNU{0}, see Figure 3.

B
0
/\/S:a—”/r
Nl 1/r
~ U
an \):vvgz&—n/r—é
a-n—>9¢ - -
amn s~ O=d —n/r—26
|
a—n-—26 <
a-n d=a—n/r—30
a—n—39 !

a<o
Figure 3. Case (ii) in the proof of Theorem 4.10.

For the case (i) we consider the pairs (w,v) given by w(z) = |z|% and v(z) =
|x|n/7’7&+5+k5 with
~ < . ~ n ~
G-n—ko<3<min{@— "k, G—n—ké+df, keN.

Since v satisfies the doubling condition, we use Lemma 4.5 to estimate only the
global condition (4.2). Let B = B(xp, R), we have two cases, |zg| < R or |zg| > R.
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If |zz| < R, by Proposition 4.6 and since (n/r — & + 0 + k&)r’ > —n (because
& —n—kd <),

/ Uw(a:) da ~ RM/r—a+6+k8)r'+n 404 w(B) :/ |x|k5 de ~ Rk
B B

R
w(B) Rn\B |J?B — y|7"/("—52+5) Y
B /n+1 r 1/7’/
NH*Z(/ v(,y)Nady>
w(B) — 2iB\2i-1B |z —y|” (n—a+96)

i=1
i(zz)a 5—ks ~ 0

R675+n o (21‘R)n/rfa+5~+k6+n/r'
S Rok+n (QiR)n—&+6
i=1 i=1

Then,

Z/\

where the last sum is finite because 6 + kd < & —n + 46 < 6.
Now let |zp| > R. Then there exists Ny such that |z5|/R ~ 2V1. On the other
hand we have

B|(6—=8)/n+1 v/ 1/r!
(4.4) "7( / Gt dy)
w(B) re\B |5 — Y[ (n=aT0)

Rafsfn e 1 , 1/r!
< — T .
~ |J)B|6k ; 2i(n—a+9) (/13 v >

The last term in (4.4) can be divided into S; and S, where S; is the sum up to

the Nith term and S5 is the sum of the remaining terms. We first estimate S,

5 < Ra 5—n Z |xB|n/r7§+5+~k6(2iR)n/r' < ( R )&—S—n/r ?—;(i)é—g <c

|6k 2i(n—a+9) |$B| 21

and the last sum is finite because 6 < 4.
For S5 we have

Rafgfn oo 2R n—a+o6+6k ROk > 1
(4.5) Se < Tenl* ( 21-2”_&_,_5) = lzp|%* Z 9i(§—-5—5k) "
BIY =N BU =N+

Since & 4 0k < 4, the last term of (4.5) is less than or equal to (R/|z|)%*, which is
bounded by a constant.

We now deal with (ii). Let & —n/r — (k—1)§ <0 < & —n—kd, k e NU{0}. We
consider the pair (w,v) defined by w(z) = |z|? and v(x) |z|? with

9:&—;—%—25 and = —kd — .
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Since v satisfies a doubling condition, by Lemma 4.5 it suffices to study the global
condition (4.2). Let B = B(zp, R). If |xg| < R, by Proposition 4.6 we have

_5 4 1/r’
wg B ( / o (y) dy) /
w(B) re\pg LB — Y| M=+

-5 1/r’
< |B|(5 5)/”-’1‘1 io: 1 _ / ’UTI /T
S wB) & @R\ Jyg

N > 1

~ P—0—0+B—n/r+a
~ R Z 9i(n/r—a+6—pB) "

i=1

Noting that
-0+ 8-"4a=0 and Z-a+o-p>0,
T T

it is immediate that the last sum in (4.6) is bounded by a constant.
Let us now consider || > R. As in the case (i), we obtain

|B|(57(§)/n+1 </ ,Ur'(y) 1 >1/r’
w(B)  \Jums o -y oato) Y

o0

RY3 1 A
< — r .
a2y ()

Then, we take S; and S like in case (i).
Observe that § = & — 6 + 3 —n/r. Since i < N1, we have that |xp| > 2'R. So we
can apply Lemma 4.6 to obtain

-5 M |xB|ﬁ 0 21R)n/r
Z 2i(n—a+d)

Ny
< Rafgfn/r79+ﬂ Z 27i(n7a+57n/7"'+97ﬂ) < Z 21‘(575)

i=0 i=1

which is finite since 6 < 4.

For S, we get
R&—5+n/r/ 0 Tr|f R&—5+B—n/r o0 ) ~
S < TeslPR" Qi(l/ilaw) SR Y 2iratend)
B i=Ni+1 B i=N1+1
oo
< (i)a Z g—i(n/r—a+5—p)
lesl/ S
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Now, since |xB|>R,&—5+B—n/r:9>0andn/r—&+6—ﬂ>0,weobtain

Sy S C.
This concludes the proof of (ii).
For the case 7 = 1 and § < & — n we set w(z) = |z|= and v(z) = |z|"~%. By
Lemma 4.5, we estimate (4.2). Let B = B(zp, R), if |xrp| < R, we then have

|B|(5—5)/7L+1H X[R"\Bv H < |B|((5—8)/n+1 [e%S) 1
w(B)  NTBF Jop —am e~ w(B) & @R

- R675+n 0 (QiR)nfa

~ Rn_g — (ziR)n—&-i-é

NCZQMS ~

If |xg| > R, we proceed as in the case p > 1 to obtain that the first term of the
above inequality is bounded by S; and S5, where

R(SfSJrn N1 R675+n 0
Sl % = Z = — 2 % -_— = s~ ~, <
|£L'B|76Rn P (Q’LR)nfaJré’ |£L‘B|76Rn i (21R)n7a+6

In order to estimate S, since |vg| > 2°R for i < Ny, we have

RS S8 o't g i

ax—0—"n n—oa

R g &y e ST e S C
i=1

On the other hand,

Réfs 0 (2iR)n7a 5. 1
< i
523 -5 Z (2iR)n—ats ~ <|x3|) Z 057
and since 6 < @ —n < 0 and |zg| > R, the last term is bounded by a constant. [

Proposition 4.11. Let 0 < a < n, 0 < § < min{n, (n —a)/m}. Let 1 <r < 0o
and § < min{d,& — n/r}, excluding the case 6 = 6 when & — n/r = §. Then there
exist pairs of weights (w,v) belonging to H(r,&,d) such that (w,v) does not belong
to H((r't)’,@,0) for any t > 0, where t # 1 and (1't)’ > 1.
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Proof. We exhibit examples of pairs of weights (w,v) such that (w,v) €
H(r,@,0) but (w,v) ¢ H((r't),&,d) for all t >0, # 1

Letl <7 <ocandd—n < 6 < & —n/r < 6. Let us consider the pair of
weights (w,v) = (1,]z|~?) with # = & — n/r — 6. By Theorem 3.6 of [12] we have
that (w,v) € H(r,&,0) C H(r,a,0). Let us see that (w,v) does not belong to
H((+'t)",@,d) for any t > 0 if t # 1. By Lemma 4.4, it is enough to show that the
pair (w,v) does not satisfy the local condition

(4.7) Bl xpollre S —par

Let 0 <t < n/(0r") (otherwise ||xpv|+ = 00). Let B(0, R), then the left hand side
of the inequality (4.7) is bounded below by

|B|71+(a7(§)/n”vXBHr/t 2 R7n+astfe+n/(r/t) Z, R*n/(r't/)

and the last term tends to infinity when R tends to zero or infinity if ¢ > 1 or ¢t < 1,
respectively.

We now consider the case 1 < 7 < oo and 6§ < § < & — n/r, and the pair
(|z| =7, |z|~%), where

G—2—5<f<Z and 0<B=0+0—a+—
T T T

By Theorem 3.6 of [12] we have that (w,v) € H(r,&,8) C H(r,d,0). Let us now see
that it does not belong to H((r't'), &, d) for any ¢t > 0 if t # 1. By Lemma 4.4 it is
enough to see that there exists a ball B such that the local condition (4.7) does not
hold. In fact, if B = B(0, R) then

|B]= lox ||

s R,B—n—i—&—éR—G-i-n/(r/t) ~ R—n/r’-{-n/(r/t) ~ R—n/(r/t’).
w(B) ~

Consequently, the last term tends to infinity when R tends to zero or infinity if £ > 1
or t < 1, respectively.

Let 1 <r <oo,a—n—kd<d<min{a—n/r—ké,a—n—(k—-1)}, k€N and
(w,v) = (|z|*,|z|?), where

9:§—a+5+m.

By Theorem 4.10, we have (w,v) € H(r,a, §). However, (w,v) ¢ H((r't"),a,d) for
any t > 0, with ¢ # 1 because the local condition (4.7) does not hold. In fact,
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if B= B(0,R),

B2 Joxs|lr

s R&—S—ké—an/r—&+5+k6+n/r’t ~ R—n/v"/t/7
w(B) ~

where the last term tends to infinity when R tends to zero or infinity if ¢ > 1 or ¢t < 1,
respectively.

Similar arguments show that, if 1 <r < coand a—n/r—ké—9 < o <a—n—kd,
k € N, then the pair (w,v) = (|z|’, |z|?), where

9:&—%—%ﬁ—% and 8= —ko -3,

belongs to H(r, &, d). However, (w,v) ¢ H((+'t')’,&,d) for any ¢ > 0 if t # 1 because
the local condition (4.7) does not hold.

For the case r = 1 and § = & — n, it is immediate that the pair (w,v) given by
w = v = 1 belongs to H(1l,a,a —n). However, it is easy to check that (w,v) ¢
H(1+¢e,a,a —n) for every € > 0.

Finally, if » = 1 and 6 < & — n, let us consider the pair (|x|*5, |z|"~%). Tt was
proved in Theorem 4.10 that (w,v) belongs to H(1,&,4). Let us see that (w,v)
does not belong to H(1 + &, &, ) for any € > 0. By Lemma 4.4 it is enough to show
that (w,v) does not satisfy the condition (4.1) with » = 1+¢. In fact, if B = B(0, R),
we get

|B|(&—5)/n

|B2 | > pr/+e)
w(B) lvxslltey 2

and the last expression tends to co when R tends to co. 0

5. PROOF OF THE MAIN RESULTS

We now give some previous lemmas that we will use in the proofs of the main
results. We are considering m € N U {0}.

Lemma 5.1. Let 0 < o« < n, 0 < § < min(n,(n —a)/m) and 1 < r < oo. Let
K, € K* _ andbe A(0). If (w,v) € H(r,&,0d), then

«,00

/ b(z) — b(2)|"|Ka(z — 2) — Ka(y — 2)|| f(2)|dz < ||b||T(5)w(B)|B|S/n71Hi
(2B)¢ v

T

for all x,y € B.
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Proof. If z,y € B, by using that b € A(J) and K, € K _, we have that

«,00)

/ b(x) = b(2)["|Ka(z — 2) = Kaly — 2)[|f(2)| dz
(2B)°

S 116llAGs) /(QB). & — 2™ Ka(z — 2) — Ka(y — 2)|If(2)| dz

S .
235m|B|6m/n+71/”
< bl S — Lo e
A(6) ; 97 (n—a+n) |B|(n—°{+”)/" 2i+1B\27 B

[e )

S [l | Bl in 3oy oac | () oo dz.

= 2/+1B\2/ B

Now, we can apply Holder’s inequality to get

/ b(x) —b(2)["|Ka(z — 2) = Ka(y — 2)||f(2)|dz
(2B)e

/ TR
5 Hb”;\n(é)HEHrlBl(ém "+(’)/n221(6m n+a—n) 2
Jj=1

/ _
S el || 5| 1B e

) 1/r'
v (2) dz)

i+15\2/ B

= r ( ) 1/r'
% Z 2j(6m—n+a—n)|2jB|(n—&+6)/n (/ v (2 dz)
2

i
= ip\aiplrp — 2|7 (1m0

f o B ’UTI(Z) 1/r’
S ERE I e
j=1

i+1p\2ig [t — 2|7

/ S v (2) v

m |l é/n j(6—n)

Sigo[], 5 S (| b )
=

o0 .
Since 3 (27)977 is finite, by using the global condition (4.2), we get
=1
m m pi/m|| L] wB)
[ 1b(a) = b Ko = 2) = Kaly = 2)£(:)] 4= S Il B 2] T2
(2B)¢ vlilr |B]
(I

Lemma 5.2. Let 0 < o <n, 0 < § < min(n,(n —a)/m) and 1 < r < co. Let
K, € 8% and b € A(6). Let (w,v) € H(r,&,d), then

f

’UHLT

w(B) /B [ Towfx2p (@) dz < |16l X5 B
for every ball B € R™.
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Proof. By using Tonelli’s theorem and the fact that b € A(d), we obtain that
—1 / | f (@)
rm x)|dx
'UJ(B) B o,b X2B

7 L[ ) =) Ee = )] dyda
sm)/w (/ b0) = b oz = )| )
100805y [ 1001 ( [ o=l Bt = ]z ) du

Now, since K, € S and dm < n — q, it is easy to see that
/ & =y | Ka(z — y)| de S | BT H/,
2B
Then, by Holder’s inequality, using Lemma 4.1, we have

/I anfx2B(@)] de S {|b][ X5 Bl ‘SmM)/"HszBIIw

; m B +a f B S—&

i
< lellzis 1BI |12

We now proceed with the proof of Theorems 3.1 and 3.3.

Proof of Theorem 3.3. Let f/v € L"(R™). Let B C R™ be a ball and z € B.
We split f = f1 + fo with fi = fx2p and put ap = 1/|B|fB T7', f2. Then,

ﬁ /B T f(2) — ap|dz < / T, £ ()] da

+w( )/' be( )—GB|d$
=1 + 5.

By Lemma 5.2, we have

m 5 n f
(5.1) Iy S |Ibl|% s BIY ZHT'

Since
Ty fa(w) — apl = [T fa(x) — (T3 f2)Bl < Bl / T fa() — T3 f2(y)| dy,
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(5.2) L < ﬁ/}gﬁ/}glmﬁ,fa(aﬁ)—Tﬁ?bfz(y)ldydx-

Let A = [T falz) — T foly)]. T 2,y € B,
A< / |(b(z) — b(2))™ Fa (2 — 2) — (b(y) — b)) Kaly — 2)||f()] dz
(2B)e
S [ 1bla) = b Kae — 2) = Kaly - 2)(2)] s
(2B)e

[ 66 =B = 40) = b)) = 250
= I3 + I4.
By Lemma 5.1, we have
m 6 /n— !
I3 S ||b||A(5)w(B)|B|6/ 1HZHT'

In order to estimate Iy, we use that b € A(d). If A; =271 B\ 27 B, then

m—1
It 5 [b(x) = bly)| Y / [b(x) = b(2)[" " FIb(y) = b(2)[*| Kaly — 2)|If (2)| d=

k—0 v (2B)°

< Bl B/ S 2+ pjStm=1/n /A Ka(z — 2)||f(2)] dz

j,l i
o/n WAL

S 1blgiolB Z e L
5/ A G|

S bl 1B/ / o T sl 02

Then, by Holder’s inequality and the global condition (4.2), we have

’ 1/r’
T ~ B)
< m é/n iH v (Z) < m é/n iH ’LU(
I S bl R s 1Bl ol \Jan\ s Tp — 27 -5 dz S0l R s | Bl ol 1Bl
We now get
1 / 1 / 5/m
2 S —— | = [ I+ L) dydz S b3 1B 2|
w(B) B |B| B( H ||A(5)| | vlly
and then, we obtain that
1 m m 11/l L
55 [ 17 @) = asl o < 1ol B 2]
so it remains to take supremum over all balls B to get the desired result. Il
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