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Abstract. We prove two-weighted norm estimates for higher order commutator of singular
integral and fractional type operators between weighted L

p and certain spaces that include
Lipschitz, BMO and Morrey spaces. We also give the optimal parameters involved with
these results, where the optimality is understood in the sense that the parameters defining
the corresponding spaces belong to a certain region out of which the classes of weights are
satisfied by trivial weights. We also exhibit pairs of nontrivial weights in the optimal region
satisfying the conditions required.
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1. Introduction

A significant contribution is well known that represents the continuity properties

of different operators from harmonic analysis in the study of regularity properties

of the solutions of certain partial differential equations. There is a vast evidence of

this fact and in this direction, the commutators of operators with symbol functions

in certain adequate spaces play an important role, see, for example, [1] –[6] and [13].

Thus, their boundedness properties allow to derive regularity properties related with

the solutions of such PDE’s.

In [7] the authors proved one-weight boundedness results for the classical frac-

tional integral operator Iα, 0 < α < n, between certain spaces including weighted

Lp-Lipschitz(β) estimates, where the relation between p and β is standard, β/n =

α/n−1/p. The Lipschitz spaces considered in that article are generalizations of some
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known integral version of classical Lipschitz(β) spaces. In [8] similar problems were

studied for the Hilbert transform and certain generalizations of the Lipschitz spaces

defined in [7].

On the other hand, in [10] a two-weighted problem for the boundedness of Iα of

type Lp-Lipschitz(β) was studied. The parameters involved belong to a region out of

which the weights are trivial, that is v = 0 or w = ∞ a.e., and, in this sense, this is an

optimal estimate. Similar results in this spirit were proved in [12] for commutators

of singular integral and fractional type operators by considering the Lipschitz spaces

given in [11].

In this paper we prove two-weighted norm estimates for singular integral and frac-

tional type operators and their higher order commutators between weighted Lp and

certain spaces related to a parameter β, that include Lipschitz, BMO and Morrey

spaces and that are wider than those considered in [12]. Moreover the classes of

weights are quite different from those given there, including local and global condi-

tions. We also give the optimal parameters involved with these results, where the

optimality is understood in the sense that the parameters p and β belong to a certain

region out of which the classes of weights are satisfied by trivial weights. Moreover,

we exhibit concrete pairs of nontrivial weights in the optimal region satisfying the

conditions required on the weights, where the boundedness results includes values

of β describing Lipschitz(β), BMO and Morrey spaces, that is, 0 < β < 1, β = 0

and β < 0, respectively. Our results extend those contained in [10] for the fractional

integral operator, see also [7] for the one-weight case. We prove that a one-weight

result can only holds whenever the relation between the parameters is standard. We

also give the relation between our classes of weights and those given in [12], which

are natural extensions of the A1-Muckenhoupt class in one-weight estimates.

The paper is organized as follows. In Section 2 we give the preliminaries and state

the main results. In Section 3 we prove the optimality of the classes of weights and

give some other properties. Finally, in Section 4 we show the main results.

2. Preliminaries

We say that A . B if there exists a positive constant c such that A 6 cB. In this

section we give the definitions of operators we will be dealing with and the functional

class of symbols in order to define the commutators.

We consider singular integral operators of convolution type T with kernel K, that

is T is bounded on L2(Rn) and if x /∈ supp f

(2.1) Tf(x) =

∫

Rn

K(x− y)f(y) dy.
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The kernel K is a measurable function defined away from 0, satisfying a certain

smoothness condition to be described later. We also suppose that K satisfies the

typical size condition given by

|K(x− y)| 6
C

|x− y|n
,

which is called S∗
0 .

Related with the singular integral operator T , we can formally define the commu-

tator with symbol b ∈ L1
loc(R

n) by

[b, T ]f = bT f − T (bf).

The commutator of order m ∈ N ∪ {0} of T is defined by

T 0
b = T, Tm

b = [b, Tm−1
b ].

We also consider fractional operators of convolution type Tα, 0 < α < n, defined by

(2.2) Tαf(x) =

∫

Rn

Kα(x− y)f(y) dy,

where the kernel Kα is not identically zero and satisfies certain size and smoothness

conditions.

Let 0 < δ < 1. We say that a function b belongs to the space Λ(δ) if there exists

a positive constant C such that for every x, y ∈ R
n,

|b(x) − b(y)| 6 C|x− y|δ.

The smallest of such constants is denoted by ‖b‖Λ(δ). The space Λ(δ) is the well

known Lipschitz space in the classical literature. We will be dealing with commuta-

tors with symbols belonging to this class of functions.

Let 0 6 α < n. We say that a kernel Kα ∈ S∗
α, if there exists a positive constant C

such that

|Kα(x)| 6
C

|x|n−α
.

We say that a kernel Kα belongs to K∗
α,∞ if there exist a positive constant C and

0 < η 6 1 such that

|Kα(x− y)−Kα(x
′ − y)|+ |Kα(y − x)−Kα(y − x′)| 6 C

|x− x′|η

|x− y|n−α+η
,

whenever |x− y| > 2|x− x′|.

It is easy to check that the fractional integral operator Iα with the kernel

Kα(x) = |x|α−n satisfies the conditions S∗
α and K∗

α,∞ for 0 < α < n.
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Related with the fractional type integral operators Tα, we can formally define the

higher order commutators with symbol b ∈ L1
loc(R

n) by

Tm
α,bf(x) =

∫

Rn

(b(x)− b(y))mKα(x − y)f(y) dy,

where m ∈ N ∪ {0} is the order of the commutator. Clearly, T 0
α,b = Tα.

As we have said, we are interested in studying the boundedness properties of

the commutators Tm
α,b with symbol b ∈ Λ(δ), from weighted Lebesgue spaces into

a certain weighted version of Lipschitz spaces. For β ∈ R and a weight w, these

spaces are denoted by Lw(β) and collect the functions f ∈ L1
loc(R

n) that satisfy

1

w(B)|B|β

∫

B

|f(x)−mB(f)| dx 6 C

for some positive constant C. When β = 0, Lw(0) is a weighted version of the

bounded mean oscilation space introduced by Muckenhoupt and Wheeden in [9].

Moreover, L1(β) gives the known Lipschitz integral space for β in the range

0 < β < 1/n and the Morrey space for −1 < β < 0. This class of functions

was defined in [7].

In [12] the authors proved two weighted boundedness results for commutators of

a great variety of operators between Lebesgue and Lipschitz spaces Lw(β). These

spaces collect the functions f ∈ L1
loc(R

n) that satisfy

(2.3)
‖(1/w)χB‖∞

|B|1+β

∫

B

|f(x)−mB(f)| dx 6 C

for some positive constant C. It is easy to check that, for a general weight w,

Lw(β)⊂Lw and, if w belongs to the A1-Muckenhoupt class then both spaces coincide.

Related to the spaces Lw(β), we introduce the following class of weights.

Definition 2.1. Let 0 6 α < n, 0 6 δ 6 1 and 1 < r 6 ∞. Put α̃ = mδ + α,

m ∈ N ∪ {0}, and δ̃ 6 δ. We say that a pair of weights (w, v) belongs to H(r, α̃, δ̃),

if the inequality

(2.4) |B|(δ−δ̃)/n

(∫

Rn

vr
′

(y)

(|B|1/n + |xB − y|)r′(n−α̃+δ)
dy

)1/r′

.
w(B)

|B|

holds for every ball B ⊂ R
n, where xB is the center of B. In the case r = 1 we say

that (w, v) belongs to H(1, α̃, δ̃) if the inequality

(2.5) |B|(δ−δ̃)/n

∥∥∥∥
v(·)

(|B|1/n + |xB − ·|)n−α̃+δ

∥∥∥∥
∞

.
w(B)

|B|

holds for every ball B ⊂ R
n, where xB is the center of B.
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When 0 < α < n, m = 0 and δ = 1, the class in (2.4) was introduced in [10].

If, in addition, w = v and δ̃ = α̃ − n/r, then the class H(r, α̃, δ̃) was defined

in [7]. When α = 0, δ = 1, m = 0 and w = v the class H(∞, 0, 0) is the

class B2 in [9].

Remark 2.2. Let 0 6 α < n, 0 < δ < min{η, (n − α)/m} and 1 < r 6 ∞.

Let δ̃ 6 δ. In [12] the authors defined the classesH(r, α̃, δ̃) as the pair of weight (v, w)

such that

sup
B

∥∥∥
χB

w

∥∥∥
∞
|B|(δ−δ̃)/n

(∫

Rn

vr
′

(y)

(|B|1/n + |xB − y|)r′(n−α̃+δ)
dy

)1/r′

< ∞,

where the supremun is taken over every ball B with center xB . These classes char-

acterize the boundedness of several operators between Lebesgue and Lipschtz spaces

defined in (2.3), with two weights. Since

‖(1/w)χB‖∞ =
1

infx∈B w
>

|B|

w(B)

then the classes H(r, α̃, δ̃) are contained in the classes H(r, α̃, δ̃). We will prove later

that this inclusion is strict.

Remark 2.3. We say w ∈ H(r, α̃, δ̃) if w = v in (2.4) and (2.5).

In the one-weight case, we obtain the following lemma.

Lemma 2.4. Let 0 6 α < n, 0 < δ < 1 and 1 6 r 6 ∞. Put α̃ = mδ + α and

δ̃ 6 min{δ, α̃− n/r}. If w ∈ H(r, α̃, δ̃), then δ̃ = α̃− n/r.

P r o o f. Let 1 6 r 6 ∞ (if r = 1 we understand ‖·‖∞ instead ‖·‖r′). Since

w ∈ H(r, α̃, δ̃), we have

w(B)

|B|
& |B|(δ−δ̃)/n

(∫

B

wr′(y)

(|B|1/n + |xB − y|)r′(n−α̃+δ)
dy

)1/r′

& |B|(δ−δ̃)/n−(1/r−α̃/n+δ/n)

(
1

|B|

∫

B

wr′(y) dy

)1/r′

& |B|−δ̃/n−1/r+α̃/nw(B)

|B|
.

Then, this inequality is true if δ̃ = α̃− n/r. �
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3. Main results

We are now in a position to state our main results. We first state the results for

singular integral operators with the corresponding weights belonging to H(r,mδ, δ̃),

that is α = 0 in Definition 2.1.

Theorem 3.1. Let 0 < δ < min{η, n/m} and 16 r6∞. Let δ̃6min{δ,mδ−n/r}

and b ∈ Λ(δ). If (w, v) ∈ H(r,mδ, δ̃) and K ∈ S∗
0 ∩K∗

α,∞, then

‖Tm
b f‖Lw(δ̃/n) . ‖b‖mΛ(δ)

∥∥∥
f

v

∥∥∥
Lr(Rn)

holds for every f such that f/v ∈ Lr(Rn).

From the theorem above and Lemma 2.4 we obtain the following corollary.

Corollary 3.2. Let 0 < δ < min{η, n/m} and 1 6 r < ∞. Let δ̃ = mδ−n/r and

b ∈ Λ(δ). If w ∈ H(r,mδ, δ̃) and K ∈ S∗
0 ∩K∗

α,∞, then

‖Tm
b f‖Lw(δ̃/n) . ‖b‖mΛ(δ)

∥∥∥
f

v

∥∥∥
Lr(Rn)

holds for every f such that f/w ∈ Lr(Rn).

For the Hilbert transform, m = 0 and r = ∞, this corollary was proved in [9].

We now state the main results for the boundedness of fractional integral operators,

that is 0 < α < n.

Theorem 3.3. Let 0 < α < n, 0 < δ < min{η, (n− α)/m} and 1 6 r 6 ∞. Let

δ̃ 6 min{δ, α̃− n/r} and b ∈ Λ(δ). If (w, v) ∈ H(r, α̃, δ̃) and K ∈ S∗
0 ∩K∗

α,∞, then

‖Tm
α,bf‖Lw(δ̃/n) . ‖b‖mΛ(δ)

∥∥∥
f

v

∥∥∥
Lr(Rn)

holds for every f such that f/v ∈ Lr(Rn).

From Theorem 3.3 and Lemma 2.4, we obtain the following result.

Corollary 3.4. Let 0 < α < n, 0 < δ < min{η, (n− α)/m} and 1 6 r 6 ∞. Let

δ̃ = α̃− n/r and b ∈ Λ(δ). If w ∈ H(r, α̃, δ̃) and K ∈ S∗
0 ∩K∗

α,∞, then

‖Tm
α,bf‖Lw(δ̃/n) . ‖b‖mΛ(δ)

∥∥∥
f

v

∥∥∥
Lr(Rn)

holds for every f such that f/w ∈ Lr(Rn).
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4. Properties of classes of weights

In this section we give some properties of the classes of weights H(r, α̃, δ̃) given in

Definition 2.1. Recall that δ̃ 6 min{α̃− n/r, δ} and α̃ = mδ + α, where 0 6 α < n,

1 6 r 6 ∞.

We prove that the range of the parameters involved in the classes H(r, α̃, δ̃) lies in

the shaded region of Figure 1.

1/r1

α̃− n

δ̃

δ

δ̃= α̃− n/r

α̃ > δ

1/r1

α̃− n

δ̃

δ

α̃= δ

δ̃= δ − n/r

1/r1

α̃− n

δ̃

δ

α̃ < δ

δ̃= α̃− n/r

Figure 1. Permissible range of the parameters r and δ̃ for different values of α̃.

Lemma 4.1. Let 0 6 α < n, 0 < δ < min{η, (n − α)/m} and 1 6 r 6 ∞. If

(w, v) ∈ H(r, α̃, δ̃) then

‖vχ2B‖r′ . |B|(δ̃−α̃)/nw(B).

P r o o f. Since (w, v) ∈ H(r, α̃, δ̃), we know that

|B|(δ−δ̃)/n

(∫

Rn

vr
′

(y)

(|B|1/n + |xB − y|)r′(n−α̃+δ)
dy

)1/r′

6 C
w(B)

|B|

for every ball B ⊂ R
n, where xB is the center of B. Then, we have

vr
′

(2B) =
|B|(n−α̃+δ)r′/n

|B|(n−α̃+δ)r′/n

∫

2B

vr
′

(y) dy

. |B|(n−α̃+δ)r′/n

∫

2B

vr
′

(y)

(|B|1/n + |xB − y|)r′(n−α̃+δ)
dy

. |B|(n−α̃+δ)r′/n

∫

Rn

vr
′

(y)

(|B|1/n + |xB − y|)r′(n−α̃+δ)
dy

. |B|(n−α̃+δ)r′/n
( w(B)

|B|(δ−δ̃)/n+1

)r′
. |B|(δ̃−α̃)r′/n(w(B))r

′

.

�
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As a consequence of the lemma above and Lemma 2.4 we obtain the following

result.

Corollary 4.2. Let 0 6 α < n, 0 < δ < min{η, (n − α)/m} and 1 6 r 6 ∞. If

w ∈ H(r, α̃, δ̃) then wr′ satisfies a doubling condition.

When m = 0 this corollary was proved in [7].

We say that a weight w belongs to RH(s) if there exists a positive constant C

such that (
1

|B|

∫

B

ws(x) dx

)1/s

6 C
w(B)

|B|
.

As a consequence of Lemmas 2.4 and 4.1, we get the following result.

Corollary 4.3. Let 0 6 α < n, 0 < δ < min{η, (n− α)/m} and 1 6 r 6 ∞. If w

is a weight in H(r, α̃, δ̃), then w belongs to RH(r′).

Our next lemma shows the equivalence between the class H(r, α̃, δ̃) and a pair of

local and global conditions. The proof is straightforward and we omit it.

Lemma 4.4. Let 0 6 α < n, 0 < δ < min{η, (n − α)/m} and 1 6 r 6 ∞. The

condition H(r, α̃, δ̃) is equivalent to the following two inequalities:

(4.1) |B|(α̃−δ̃)/n−1/r

(
1

|B|

∫

B

vr
′

(y) dy

)1/r′

.
w(B)

|B|

and

(4.2) |B|(δ−δ̃)/n

(∫

Rn−B

vr
′

(y)

|xB − y|r′(n−α̃+δ)
dy

)1/r′

.
w(B)

|B|

hold simultaneously for every ball B ⊂ R
n, where xB is the center of B.

It is important to note that both the conditions (4.1) and (4.2) cannot be reduced

to (4.2) as in [7] for the one-weighted case. However, under certain additional hy-

pothesis on v then H(r, α̃, δ̃) is the condition (4.2). This fact is established in the

following lemma.

Lemma 4.5. Let 0 6 α < n, 0 < δ < min{η, (n−α)/m} and 1 6 r 6 ∞. Let v be

a weight such that vr
′

satisfies a doubling condition. Then, the global condition (4.2)

implies the local condition (4.1).
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P r o o f. Since vr
′

is a doubling weight, we get

(
1

|B|

∫

B

vr
′

(y) dy

)1/r′

.

(
1

|B|

∫

2B−B

vr
′

(y) dy

)1/r′

=
|B|(n−α̃+δ)/n−1/r′

|B|(n−α̃+δ)/n

(∫

2B−B

vr
′

(y) dy

)1/r′

. |B|(n−α̃+δ)/n−1/r′
(∫

2B−B

vr
′

(y)

|xB − y|r′(n−α̃+δ)
dy

)1/r′

.

Then, using the global condition (4.2), we have that

(
1

|B|

∫

B

vr
′

(y) dy

)1/r′

. |B|(δ̃−α̃)/n+1/rw(B)

|B|
,

which is (4.1). �

Even though vr
′

satisfies a doubling condition, both the inequalities (4.1) and (4.2)

are not equivalent. This fact is showed in Lemma 4.7. We first give well known

estimates in order to prove it.

Lemma 4.6. Let B = B(xB , R) ⊂ R
n and α > −n. Then, the following state-

ments hold.

(1) If |xB| 6 R,
∫
B
|x|α dx ≈ Rα+n.

(2) If |xB| > R,
∫
B |x|α dx ≈ |xB|

αRn.

Lemma 4.7. Let 0 6 α < n, 0 < δ < min{η, (n− α)/m} and 1 6 r 6 ∞. There

exist nontrivial pairs of weights (w, v) that satisfy the local condition (4.1) but not

the global condition (4.2) for δ̃ in the range

δ̃ 6 min
{
δ, α̃−

n

r

}
,

excluding the case δ̃ = δ when α̃− n/r = δ.

P r o o f. Let us first consider δ̃ = δ < α̃− n/r. Let w = 1 and v(x) = |x|n/r−α̃+δ,

we prove that (w, v) satisfies (4.1) but not (4.2). Indeed, let B = B(xB , R). By

Lemma 4.6, if |xB | 6 R we get

|B|(α̃−δ)/n

w(B)

(∫

B

vr
′

(y) dy

)1/r′

. Rα̃−δ−nRn/r−α̃+δ+n/r′ . C

and if |xB| > R, by Lemma 4.6, we have

|B|(α̃−δ)/n

w(B)

(∫

B

vr
′

(y) dy

)1/r′

. Rα̃−δ−n|xB |
n/r−α̃+δRn/r′ . C.
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On the other hand, if we now take B = B(0, R), we get

|B|

w(B)

(∫

Rn\B

vr
′

(y)

|y|(n−α̃+δ)r′
dy

)1/r′

&

(∫

{|y|>R}

|y|(n/r−α̃+δ)r′

|y|(n−α̃+δ)r′
dy

)1/r′

&

(∫

{|y|>R}

1

|y|n
dy

)1/r′

and the last integral is infinite. Thus, (w, v) does not satisfy (4.2).

Similar estimates can be obtained for the case δ̃ < δ 6 α̃ − n/r by considering

(|x|α̃−δ̃−n/r, 1). For the case δ̃ 6 α̃ − n/r 6 δ the same is true for (|x|β , |x|θ) with

θ > n/r − α̃+ δ and β = θ + α̃− δ̃ − n/r. �

Proposition 4.8. Let 0 6 α < n, 0 < δ < min{η, (n − α)/m} and 1 6 r 6 ∞.

Then:

(i) If δ̃ > δ or δ̃ > α̃ − n/r, then (w, v) ∈ H(r, α̃, δ̃) if and only if v = 0 almost

everywhere in R
n.

(ii) If δ̃ = α̃− n/r = δ then the same conclusion as in (i) holds.

P r o o f. Let us first see (i) and let δ̃ > δ. Let B = B(x,R), where x is a Lebesgue

point of w. Suppose that r is finite, since (w, v) ∈ H(r, α̃, δ̃) we get

(∫

Rn

vr
′

(y)

(|B|1/n + |x− y|)r′(n−α̃+δ)
dy

)1/r′

.
w(B)

|B|
|B|(δ̃−δ)/n.

From the inequality above, by letting R → 0, we obtain that

(∫

Rn

vr
′

(y)

(|B|1/n + |x− y|)r′(n−α̃+δ)
dy

)1/r′

= 0

and so v = 0 for a.e. x ∈ R
n.

Now, if δ̃ > α̃− n/r, since (w, v) ∈ H(r, α̃, δ̃) and by Lemma 4.4, we have

(vr′(B)

|B|

)1/r′
.

w(B)

|B|
|B|1/r−(α̃−δ̃)/n.

If we choose B(x,R) as before, since x is a Lebesgue point of w, we get

lim
R→0

w(B)

|B|
|B|1/r−(α̃−δ̃)/n = 0,

from which it follows that

lim sup
R→0

vr
′

(B(x,R))

|B(x,R)|
= 0.
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Clearly we can get the same conclusion for a.e. x ∈ R
n. By standard arguments

we can deduce that v(x) = 0 at a.e. x ∈ R
n. If r = ∞ we have to consider 1/r = 0

and r′ = 1 in the previous argument.

We now proceed with the proof of (ii), since δ̃ = δ = α̃− n/r we are going to see

that (w, v) ∈ H(r, α̃, δ̃) with r = n/(α̃− δ) if α̃ > δ and r = ∞ if α̃ = δ, if v(x) = 0

at a.e. x ∈ R
n.

Let B = B(x0, R) ⊂ R
n, since (w, v) ∈ H(r, α̃, δ̃) we get

(∫

Rn

vr
′

(y)

(|B|1/n + |x0 − y|)r′(n−α̃+δ)
dy

)1/r′

.
w(B)

|B|
.

Since n− α̃+ δ = n/r′, we have

(4.3)

(∫

Rn

vr
′

(y)

(|B|1/n + |x0 − y|)n
dy

)1/r′

.
w(B)

|B|
.

We now proceed as in the proof of Theorem 5.6 in [11] in order to obtain that v(x) = 0

for a.e. x ∈ R
n. �

Remark 4.9. Let 0 6 α < n, 0 < δ < min{η, (n − α/m)} and n/α̃ < r <

n/(α̃− δ). Let

(
2
(
α̃−

n

r

)
− δ

)+
6 θ 6 α̃−

n

r
, α̃−

n

r
− θ < δ̃ < min

{
α̃−

n

r
,
n

r
− α̃+ δ

}
,

we now exhibit a pair of weights (w, v) such that (w, v) ∈ H(r, α̃, δ̃) but (w, v) /∈

H(r, α̃, δ̃).

Let w(x) = |x|θχ{|x|61} + |x|θ+δ̃χ{|x|>1} and v(x) = |x|δ̃. It is easy to check

that (w, v) does not belong to H(r, α̃, δ̃). However, we see that (w, v) ∈ H(r, α̃, δ̃).

Since vr
′

is a doubling weight, by Lemma 4.5, we only prove (4.2).

Let B = B(xB , R) and Bi = 2iB. If |xB | 6 R, by Lemma 4.6 we obtain that

|B|1+(δ−δ̃)/n

w(B)

(∫

Rn\B

vr
′

(y)

|xB − y|(n−α̃+δ)r′
dy

)1/r′

.
Rα̃−δ̃

w(B)

∞∑

i=1

2−i(n−α̃+δ)(vr
′

(Bi))
1/r′

.
Rα̃+n/r′

w(B)

∞∑

i=1

2−i(n/r−δ̃−α̃+δ)

.
Rα̃+n/r′

w(B)
.

Thus, since w(B) & max{Rθ+n, Rθ+δ̃+n} we obtain that (4.2) holds for this case.
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Now, if |xB | > R, then there exists N1 such that 2
N1R 6 |xB | 6 2N1+1R.

|B|1+(δ−δ̃)/n

w(B)

(∫

Rn\B

vr
′

(y)

|xB − y|(n−α̃+δ)r′
dy

)1/r′

.
Rα̃−δ̃

w(B)

∞∑

i=1

2−i(n−α̃+δ)(vr
′

(Bi))
1/r′

=
Rα̃−δ̃

w(B)

N1∑

i=1

2−i(n−α̃+δ)(vr
′

(Bi))
1/r′ +

Rα̃−δ̃

w(B)

∞∑

i=N1+1

2−i(n−α̃+δ)(vr
′

(Bi))
1/r′

= S1 + S2.

Let us first estimate S1. Since i 6 N1, n/r − α̃+ δ > 0 and

w(B) & max{|xB|
α̃Rn, |xB |

θ+δ̃Rn}

we have

S1 .
Rα̃−δ̃+n/r′

w(B)
|xB|

δ̃ . C.

In order to estimate S2, we first observe that

S2 .
Rα̃+n/r′

w(B)

and then we proceed as in the estimate of S1 to obtain that S2 . C.

Theorem 4.10. Let 0 6 α < n and 0 < δ < min{η, (n−α)/m}. There exist pairs

of weights with v not identically equal to zero, that satisfy the condition H(r, α̃, δ̃)

in the range of r and δ̃ given by

1 6 r 6 ∞ and δ̃ 6 min
{
δ, α̃−

n

r

}

excluding the case δ̃ = δ when α̃− n/r = δ.

P r o o f. By Remark 2.2, the pair of weights given in [12] belongs to H(r, α̃, δ̃)

for 1 6 r 6 ∞ and α̃ − n 6 δ̃ 6 min{δ, α̃ − n/r} excluding the case δ̃ = δ when

α̃− n/r = δ.

So, we exhibit examples of pairs of weights for the case δ̃ < α̃−n. We first consider

1 < r 6 ∞. We split the range δ̃ < α̃− n in two regions:

(i) α̃− n− kδ < δ̃ 6 min{α̃− n/r − kδ, α̃− n− (k − 1)δ}, k ∈ N, see Figure 2.
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1/r1

α̃− n

δ̃

δ

δ̃= α̃− n/r

α̃ > δ

α̃− n− δ

α̃− n− 2δ

α̃− n− 3δ

δ̃= α̃− n/r − δ

δ̃= α̃− n/r − 2δ

δ̃= α̃− n/r − 3δ

Figure 2. Case (i) in the proof of Theorem 4.10.

(ii) α̃− n/r − kδ − δ < δ̃ 6 α̃− n− kδ, k ∈ N ∪ {0}, see Figure 3.

1/r1

α̃− n

δ̃

δ

δ̃= α̃− n/r

α̃ < δ

α̃− n− δ

α̃− n− 2δ

α̃− n− 3δ

δ̃= α̃− n/r − δ

δ̃= α̃− n/r − 2δ

δ̃= α̃− n/r − 3δ

Figure 3. Case (ii) in the proof of Theorem 4.10.

For the case (i) we consider the pairs (w, v) given by w(x) = |x|kδ and v(x) =

|x|n/r−α̃+δ̃+kδ with

α̃− n− kδ < δ̃ 6 min
{
α̃−

n

r
− kδ, α̃− n− kδ + δ

}
, k ∈ N.

Since vr
′

satisfies the doubling condition, we use Lemma 4.5 to estimate only the

global condition (4.2). Let B = B(xB , R), we have two cases, |xB| 6 R or |xB | > R.
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If |xB | 6 R, by Proposition 4.6 and since (n/r − α̃ + δ̃ + kδ)r′ > −n (because

α̃− n− kδ < δ̃),

∫

B

vr
′

(x) dx ≈ R(n/r−α̃+δ̃+kδ)r′+n and w(B) =

∫

B

|x|kδ dx ≈ Rkδ+n.

Then,

|B|(δ−δ̃)/n+1

w(B)

(∫

Rn\B

vr
′

(y)

|xB − y|r′(n−α̃+δ)
dy

)1/r′

.
|B|(δ−δ̃)/n+1

w(B)

∞∑

i=1

(∫

2iB\2i−1B

vr
′

(y)

|xB − y|r′(n−α̃+δ)
dy

)1/r′

.
Rδ−δ̃+n

Rδk+n

∞∑

i=1

(2iR)n/r−α̃+δ̃+kδ+n/r′

(2iR)n−α̃+δ
.

∞∑

i=1

( 1

2i

)δ−δ̃−kδ

≈ C,

where the last sum is finite because δ̃ + kδ < α̃− n+ δ < δ.

Now let |xB | > R. Then there exists N1 such that |xB |/R ≈ 2N1 . On the other

hand we have

(4.4)
|B|(δ−δ̃)/n+1

w(B)

(∫

Rn\B

vr
′

(y)

|xB − y|r′(n−α̃+δ)
dy

)1/r′

.
Rα̃−δ̃−n

|xB|δk

∞∑

i=1

1

2i(n−α̃+δ)

(∫

2iB

vr
′

)1/r′

.

The last term in (4.4) can be divided into S1 and S2, where S1 is the sum up to

the N1th term and S2 is the sum of the remaining terms. We first estimate S1,

S1 .
Rα̃−δ̃−n

|xB|δk

N1∑

i=1

|xB |
n/r−α̃+δ̃+kδ(2iR)n/r

′

2i(n−α̃+δ)
.

( R

|xB|

)α̃−δ̃−n/r N1∑

i=1

( 1

2i

)δ−δ̃

. C,

and the last sum is finite because δ̃ < δ.

For S2 we have

(4.5) S2 .
Rα̃−δ̃−n

|xB |δk

∞∑

i=N1+1

(2iR)n−α̃+δ̃+δk

2i(n−α̃+δ)
≈

Rδk

|xB |δk

∞∑

i=N1+1

1

2i(δ−δ̃−δk)
.

Since δ̃ + δk < δ, the last term of (4.5) is less than or equal to (R/|xB|)
δk, which is

bounded by a constant.

We now deal with (ii). Let α̃− n/r− (k− 1)δ < δ̃ 6 α̃− n− kδ, k ∈ N∪ {0}. We

consider the pair (w, v) defined by w(x) = |x|θ and v(x) = |x|β with

θ = α̃−
n

r
− kδ − 2δ̃ and β = −kδ − δ̃.
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Since vr
′

satisfies a doubling condition, by Lemma 4.5 it suffices to study the global

condition (4.2). Let B = B(xB , R). If |xB | 6 R, by Proposition 4.6 we have

(4.6)
|B|(δ−δ̃)/n+1

w(B)

(∫

Rn\B

vr
′

(y)

|xB − y|r′(n−α̃+δ)
dy

)1/r′

.
|B|(δ−δ̃)/n+1

w(B)

∞∑

i=1

1

(2iR)n−α̃+δ

(∫

2iB

vr
′

)1/r′

≈ R−δ̃−θ+β−n/r+α̃
∞∑

i=1

1

2i(n/r−α̃+δ−β)
.

Noting that

−δ̃ − θ + β −
n

r
+ α̃ = 0 and

n

r
− α̃+ δ − β > 0,

it is immediate that the last sum in (4.6) is bounded by a constant.

Let us now consider |xB| > R. As in the case (i), we obtain

|B|(δ−δ̃)/n+1

w(B)

(∫

Rn\B

vr
′

(y)

|xB − y|r′(n−α̃+δ)
dy

)1/r′

.
Rα̃−δ̃

|xB |θRn

∞∑

i=1

1

2i(n−α̃+δ)

(∫

2iB

vr
′

)1/r′

.

Then, we take S1 and S2 like in case (i).

Observe that θ = α̃− δ̃ + β − n/r. Since i 6 N1, we have that |xB| > 2iR. So we

can apply Lemma 4.6 to obtain

S1 .
Rα̃−δ̃

Rn

N1∑

i=0

|xB |
β−θ(2iR)n/r

′

2i(n−α̃+δ)

. Rα̃−δ̃−n/r−θ+β
N1∑

i=0

2−i(n−α̃+δ−n/r′+θ−β) .

N1∑

i=1

2i(δ̃−δ),

which is finite since δ̃ < δ.

For S2 we get

S2 .
Rα̃−δ̃+n/r′

|xB |θRn

∞∑

i=N1+1

|xB|
β

2i(n/r−α̃+δ)
.

Rα̃−δ̃+β−n/r

|xB|θ

∞∑

i=N1+1

2−i(n/r−α̃+δ−β)

.
( R

|xB |

)θ ∞∑

i=N1+1

2−i(n/r−α̃+δ−β).
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Now, since |xB| > R, α̃− δ̃ + β − n/r = θ > 0 and n/r − α̃+ δ − β > 0, we obtain

S2 . C.

This concludes the proof of (ii).

For the case r = 1 and δ̃ < α̃ − n we set w(x) = |x|−δ̃ and v(x) = |x|n−α̃. By

Lemma 4.5, we estimate (4.2). Let B = B(xB , R), if |xB | 6 R, we then have

|B|(δ−δ̃)/n+1

w(B)

∥∥∥
χRn\Bv

(|B|1/n + |xB − ·|)n−α̃+δ

∥∥∥
∞

.
|B|(δ−δ̃)/n+1

w(B)

∞∑

i=1

1

(2iR)n−α̃+δ
‖χBi

v‖∞

.
Rδ−δ̃+n

Rn−δ̃

∞∑

i=1

(2iR)n−α̃

(2iR)n−α̃+δ

≈ C
∞∑

i=1

1

2iδ
. C.

If |xB| > R, we proceed as in the case p > 1 to obtain that the first term of the

above inequality is bounded by S1 and S2, where

S1 ≈
Rδ−δ̃+n

|xB |−δ̃Rn

N1∑

i=1

‖χBi
v‖∞

(2iR)n−α̃+δ
, S2 ≈

Rδ−δ̃+n

|xB|−δ̃Rn

∞∑

i=N1+1

‖χBi
v‖∞

(2iR)n−α̃+δ
.

In order to estimate S1, since |xB | > 2iR for i 6 N1, we have

S1 .
Rδ−δ̃

|xB |−δ̃

N1∑

i=1

|xB|
n−α̃

(2iR)n−α̃+δ
. Rα̃−δ̃−n|xB |

δ̃+n−α̃ . C.

On the other hand,

S2 .
Rδ−δ̃

|xB |−δ̃

∞∑

i=N1+1

(2iR)n−α̃

(2iR)n−α̃+δ
.

( R

|xB |

)−δ̃ ∞∑

i=2

1

2iδ
,

and since δ̃ < α̃− n < 0 and |xB| > R, the last term is bounded by a constant. �

Proposition 4.11. Let 0 6 α < n, 0 < δ < min{η, (n− α)/m}. Let 1 6 r < ∞

and δ̃ 6 min{δ, α̃− n/r}, excluding the case δ̃ = δ when α̃ − n/r = δ. Then there

exist pairs of weights (w, v) belonging to H(r, α̃, δ̃) such that (w, v) does not belong

to H((r′t)′, α̃, δ̃) for any t > 0, where t 6= 1 and (r′t)′ > 1.
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P r o o f. We exhibit examples of pairs of weights (w, v) such that (w, v) ∈

H(r, α̃, δ̃) but (w, v) /∈ H((r′t)′, α̃, δ̃) for all t > 0, t 6= 1.

Let 1 < r < ∞ and α̃ − n < δ̃ 6 α̃ − n/r < δ. Let us consider the pair of

weights (w, v) = (1, |x|−θ) with θ = α̃ − n/r − δ̃. By Theorem 3.6 of [12] we have

that (w, v) ∈ H(r, α̃, δ̃) ⊂ H(r, α̃, δ̃). Let us see that (w, v) does not belong to

H((r′t)′, α̃, δ̃) for any t > 0 if t 6= 1. By Lemma 4.4, it is enough to show that the

pair (w, v) does not satisfy the local condition

(4.7) |B|(α̃−δ̃)/n−1‖χBv‖r′t .
w(B)

|B|
.

Let 0 < t < n/(θr′) (otherwise ‖χBv‖r′t = ∞). Let B(0, R), then the left hand side

of the inequality (4.7) is bounded below by

|B|−1+(α̃−δ̃)/n‖vχB‖r′t & R−n+α̃−δ̃R−θ+n/(r′t) & R−n/(r′t′)

and the last term tends to infinity when R tends to zero or infinity if t > 1 or t < 1,

respectively.

We now consider the case 1 < r < ∞ and δ̃ 6 δ < α̃ − n/r, and the pair

(|x|−β , |x|−θ), where

α̃−
n

r
− δ < θ <

n

r′
and 0 < β = θ + δ − α̃+

n

r
.

By Theorem 3.6 of [12] we have that (w, v) ∈ H(r, α̃, δ̃) ⊂ H(r, α̃, δ̃). Let us now see

that it does not belong to H((r′t′)′, α̃, δ) for any t > 0 if t 6= 1. By Lemma 4.4 it is

enough to see that there exists a ball B such that the local condition (4.7) does not

hold. In fact, if B = B(0, R) then

|B|(α̃−δ̃)/n‖vχB‖r′t
w(B)

& Rβ−n+α̃−δR−θ+n/(r′t) ≃ R−n/r′+n/(r′t) ≃ R−n/(r′t′).

Consequently, the last term tends to infinity when R tends to zero or infinity if t > 1

or t < 1, respectively.

Let 1 < r < ∞, α̃− n− kδ < δ̃ 6 min{α̃− n/r− kδ, α̃− n− (k − 1)δ}, k ∈ N and

(w, v) = (|x|kδ , |x|θ), where

θ =
n

r
− α̃+ δ̃ + kδ.

By Theorem 4.10, we have (w, v) ∈ H(r, α̃, δ̃). However, (w, v) /∈ H((r′t′)′, α̃, δ) for

any t > 0, with t 6= 1 because the local condition (4.7) does not hold. In fact,
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if B = B(0, R),

|B|(α̃−δ̃)/n‖vχB‖r′t
w(B)

& Rα̃−δ̃−kδ−nRn/r−α̃+δ̃+kδ+n/r′t ≃ R−n/r′t′ ,

where the last term tends to infinity when R tends to zero or infinity if t > 1 or t < 1,

respectively.

Similar arguments show that, if 1 < r < ∞ and α̃−n/r−kδ− δ < δ̃ 6 α̃−n−kδ,

k ∈ N, then the pair (w, v) = (|x|θ, |x|β), where

θ = α̃−
n

r
− kδ − 2δ̃ and β = −kδ − δ̃,

belongs to H(r, α̃, δ̃). However, (w, v) /∈ H((r′t′)′, α̃, δ) for any t > 0 if t 6= 1 because

the local condition (4.7) does not hold.

For the case r = 1 and δ̃ = α̃ − n, it is immediate that the pair (w, v) given by

w = v = 1 belongs to H(1, α̃, α̃ − n). However, it is easy to check that (w, v) /∈

H(1 + ε, α̃, α̃− n) for every ε > 0.

Finally, if r = 1 and δ̃ < α̃ − n, let us consider the pair (|x|−δ̃, |x|n−α̃). It was

proved in Theorem 4.10 that (w, v) belongs to H(1, α̃, δ̃). Let us see that (w, v)

does not belong to H(1 + ε, α̃, δ̃) for any ε > 0. By Lemma 4.4 it is enough to show

that (w, v) does not satisfy the condition (4.1) with r = 1+ε. In fact, if B = B(0, R),

we get

|B|(α̃−δ̃)/n

w(B)
‖vχB‖(1+ε)′ & Rn/(1+ε)′

and the last expression tends to ∞ when R tends to ∞. �

5. Proof of the main results

We now give some previous lemmas that we will use in the proofs of the main

results. We are considering m ∈ N ∪ {0}.

Lemma 5.1. Let 0 6 α < n, 0 < δ < min(η, (n − α)/m) and 1 6 r 6 ∞. Let

Kα ∈ K∗
α,∞ and b ∈ Λ(δ). If (w, v) ∈ H(r, α̃, δ̃), then

∫

(2B)c
|b(x)− b(z)|m|Kα(x− z)−Kα(y − z)||f(z)| dz . ‖b‖mΛ(δ)w(B)|B|δ̃/n−1

∥∥∥
f

v

∥∥∥
r

for all x, y ∈ B.
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P r o o f. If x, y ∈ B, by using that b ∈ Λ(δ) and Kα ∈ K∗
α,∞, we have that

∫

(2B)c
|b(x)− b(z)|m|Kα(x− z)−Kα(y − z)||f(z)| dz

. ‖b‖mΛ(δ)

∫

(2B)c
|x− z|δm|Kα(x− z)−Kα(y − z)||f(z)| dz

. ‖b‖mΛ(δ)

∞∑

j=1

2jδm|B|δm/n+η/n

2j(n−α+η)|B|(n−α+η)/n

∫

2j+1B\2jB

|f(z)| dz

. ‖b‖mΛ(δ)|B|(δm−n+α)/n
∞∑

j=1

(2j)δm−n+α−η

∫

2j+1B\2jB

|f(z)|vv−1 dz.

Now, we can apply Hölder’s inequality to get
∫

(2B)c
|b(x) − b(z)|m|Kα(x− z)−Kα(y − z)||f(z)| dz

. ‖b‖mΛ(δ)

∥∥∥
f

v

∥∥∥
r
|B|(δm−n+α)/n

∞∑

j=1

2j(δm−n+α−η)

(∫

2j+1B\2jB

vr
′

(z) dz

)1/r′

. ‖b‖mΛ(δ)

∥∥∥
f

v

∥∥∥
r
|B|(δm−n+α)/n

×

∞∑

j=1

2j(δm−n+α−η)|2jB|(n−α̃+δ)/n

(∫

2j+1B\2jB

vr
′

(z)

|xB − z|r′(n−α̃+δ)
dz

)1/r′

. ‖b‖mΛ(δ)

∥∥∥
f

v

∥∥∥
r
|B|δ/n

∞∑

j=1

2j(δ−η)

(∫

2j+1B\2jB

vr
′

(z)

|xB − z|r′(n−α̃+δ)
dz

)1/r′

. ‖b‖mΛ(δ)

∥∥∥
f

v

∥∥∥
r
|B|δ/n

∞∑

j=1

2j(δ−η)

(∫

Rn\B

vr
′

(z)

|xB − z|r′(n−α̃+δ)
dz

)1/r′

Since
∞∑
j=1

(2j)δ−η is finite, by using the global condition (4.2), we get

∫

(2B)c
|b(x)− b(z)|m|Kα(x− z)−Kα(y − z)||f(z)| dz . ‖b‖mΛ(δ)|B|δ̃/n

∥∥∥
f

v

∥∥∥
r

w(B)

|B|
.

�

Lemma 5.2. Let 0 6 α < n, 0 < δ < min(η, (n − α)/m) and 1 6 r 6 ∞. Let

Kα ∈ S∗
α and b ∈ Λ(δ). Let (w, v) ∈ H(r, α̃, δ̃), then

1

w(B)

∫

B

|Tm
α,bfχ2B(x)| dx . ‖b‖mΛ(δ)|B|δ̃/n

∥∥∥
f

v

∥∥∥
Lr

for every ball B ∈ R
n.
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P r o o f. By using Tonelli’s theorem and the fact that b ∈ Λ(δ), we obtain that

1

w(B)

∫

B

|Tm
α,bfχ2B(x)| dx

6
1

w(B)

∫

B

∫

2B

|b(x)− b(y)|m|Kα(x− y)||f(y)| dy dx

.
1

w(B)

∫

2B

|f(y)|

(∫

B

|b(x)− b(y)|m|Kα(x− y)| dx

)
dy

. ‖b‖mΛ(δ)

1

w(B)

∫

2B

|f(y)|

(∫

2B

|x− y|δm|Kα(x − y)| dx

)
dy.

Now, since Kα ∈ S∗
α and δm < n− α, it is easy to see that

∫

2B

|x− y|δm|Kα(x− y)| dx . |B|(δm+α)/n.

Then, by Hölder’s inequality, using Lemma 4.1, we have

1

w(B)

∫

B

|Tm
α,bfχ2B(x)| dx . ‖b‖mΛ(δ)|B|(δm+α)/n‖vχ2B‖r′

∥∥∥
f

v

∥∥∥
r
(w(B))−1

. ‖b‖mΛ(δ)|B|(δm+α)/n
∥∥∥
f

v

∥∥∥
r
|B|(δ̃−α̃)/n

. ‖b‖mΛ(δ)|B|δ̃/n
∥∥∥
f

v

∥∥∥
r
.

�

We now proceed with the proof of Theorems 3.1 and 3.3.

P r o o f of Theorem 3.3. Let f/v ∈ Lr(Rn). Let B ⊂ R
n be a ball and x ∈ B.

We split f = f1 + f2 with f1 = fχ2B and put aB = 1/|B|
∫
B
Tm
α,bf2. Then,

1

w(B)

∫

B

|Tm
α,bf(x)− aB| dx .

1

w(B)

∫

B

|Tm
α,bf1(x)| dx

+
1

w(B)

∫

B

|Tm
α,bf2(x)− aB| dx

= I1 + I2.

By Lemma 5.2, we have

(5.1) I1 . ‖b‖mΛ(δ)|B|δ̃/n
∥∥∥
f

v

∥∥∥
r
.

Since

|Tm
α,bf2(x) − aB| = |Tm

α,bf2(x) − (Tm
α,bf2)B| .

1

|B|

∫

B

|Tm
α,bf2(x)− Tm

α,bf2(y)| dy,
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then,

(5.2) I2 .
1

w(B)

∫

B

1

|B|

∫

B

|Tm
α,bf2(x)− Tm

α,bf2(y)| dy dx.

Let A = |Tm
α,bf2(x) − Tm

α,bf2(y)|. If x, y ∈ B,

A .

∫

(2B)c
|(b(x)− b(z))mKα(x− z)− (b(y)− b(z))mKα(y − z)||f(z)| dz

.

∫

(2B)c
|b(x)− b(z)|m|Kα(x− z)−Kα(y − z)||f(z)| dz

+

∫

(2B)c
|(b(x) − b(z))m − (b(y)− b(z))m||Kα(y − z)||f(z)| dz

= I3 + I4.

By Lemma 5.1, we have

I3 . ‖b‖mΛ(δ)w(B)|B|δ̃/n−1
∥∥∥
f

v

∥∥∥
r
.

In order to estimate I4, we use that b ∈ Λ(δ). If Aj = 2j+1B \ 2jB, then

I4 . |b(x) − b(y)|

m−1∑

k=0

∫

(2B)c
|b(x)− b(z)|m−1−k|b(y)− b(z)|k|Kα(y − z)||f(z)| dz

. ‖b‖mΛ(δ)|B|δ/n
∞∑

j=1

|2j+1B|δ(m−1)/n

∫

Aj

|Kα(x− z)||f(z)| dz

. ‖b‖mΛ(δ)|B|δ/n
∞∑

j=1

∫

Aj

|f(z)|

|xB − z|(n−α̃+δ)
dz

. ‖b‖mΛ(δ)|B|δ/n
∫

Rn\B

|f(z)|

|xB − z|(n−α̃+δ)
dz.

Then, by Hölder’s inequality and the global condition (4.2), we have

I4. ‖b‖mΛ(δ)|B|δ/n
∥∥∥
f

v

∥∥∥
r

(∫

Rn\B

vr
′

(z)

|xB − z|r′(n−α̃+δ)
dz

)1/r′

. ‖b‖mΛ(δ)|B|δ̃/n
∥∥∥
f

v

∥∥∥
r

w(B)

|B|

We now get

I2 .
1

w(B)

∫

B

1

|B|

∫

B

(I3 + I4) dy dx . ‖b‖mΛ(δ)|B|δ̃/n
∥∥∥
f

v

∥∥∥
r

and then, we obtain that

1

w(B)

∫

B

|Tm
α,bf(x)− aB| dx . ‖b‖mΛ(δ)|B|δ̃/n

∥∥∥
f

v

∥∥∥
r
,

so it remains to take supremum over all balls B to get the desired result. �
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