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Abstract. We present a notion of an anti-covariant bialgebra extending the anti-
symmetric infinitesimal bialgebra and also provide some equivalent characterizations of
it. We also prove that an anti-associative Yang-Baxter pair can produce a special Rota-
Baxter system.
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1. Introduction

Infinitesimal bialgebras first appeared in the work of Joni and Rota (see [8]) to give

an algebraic framework for the calculus of divided differences. The anti-symmetric

version of infinitesimal bialgebras was introduced in [21] by Zhelyabin by using the

name associative D-bialgebra as an associative analog of Lie bialgebra defined by

Drinfeld in [6]. Later this structure was studied systematically by Bai under the name

anti-symmetric infinitesimal (for short ASI) bialgebra in [3]. Infinitesimal bialgebras

and ASI bialgebras were concerned by many researchers, see [1], [2], [4], [5], [7],

[9]–[20], etc. Interestingly, the latter can be characterized by the well-known matched

pair of associative algebras and a double construction of a Frobenius algebra, from

which the anti-symmetry appears, see [3]. In [5], Brzeziński introduced the notion

of covariant bialgebras generalizing the infinitesimal bialgebra, which is related to

Rota-Baxter systems and dendriform algebras. So it is very natural to consider

the anti-version of covariant bialgebras and as an expectation, it can cover the ASI

bialgebra. In this note, we provide the positive answer to the above question.
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Throughout this paper, K will be a field, and all vector spaces, tensor products,

and homomorphisms are over K. We denote by idM the identity map from M to M ,

σ : M ⊗ M → M ⊗ M by the flip map. If A is an algebra, then L and R denote

the left and right multiplication maps, respectively. Let C be a coalgebra, we use

the Sweedler’s notation for the comultiplication: ∆(c) = c1 ⊗ c2 for any c ∈ C. An

element r ∈ A⊗A being anti-symmetric means r = −σ(r). Given r = r1⊗r2 ∈ A⊗A,

we define r12 = r⊗1, r13 = r1⊗1⊗r2, r23 = 1⊗r, where 1 means either the identity

of A (if A is unital) or the identity in the extended unital algebra K ⊕ A (if A is

nonunital).

2. Main definitions and results

Firstly, as a natural generalization of Zhelyabin’s associative D-algebra or Bai’s

ASI bialgebra, we give the anti-version of Brzeziński’s covariant bialgebra.

Definition 2.1. An anti-covariant (for short AC) bialgebra is a quadruple

(A, δ1, δ2,∆) such that

(a) A is an associative algebra.

(b) (A,∆) is a coassociative coalgebra.

(c) Let δi : A → A⊗A, i = 1, 2 (write δi(a) = ai(1) ⊗ ai(2)) be two anti-derivations,

i.e., δi(ab) = ai(1)b⊗ ai(2) + bi(1) ⊗ abi(2), i = 1, 2, and

(1) ai(1) ⊗ ai(2)b+ bi(2)a⊗ bi(1) = bai(1) ⊗ ai(2) + bi(2) ⊗ abi(1).

Here ∆ is an AC derivation with respect to (δ1, δ2), which means

∆(ab) = (R(b)⊗ id)δ2(a) + (id⊗ L(a))∆(b) = a2(1)b⊗ a2(2) + b1 ⊗ ab2,(2)

= (R(b)⊗ id)∆(a) + (id⊗ L(a))δ1(b) = a1b⊗ a2 + b1(1) ⊗ ab1(2)(3)

and

(4) a1 ⊗ a2b+ b2a⊗ b1 = ba1 ⊗ a2 + b2 ⊗ ab1.

If A has identity and ∆(1) = λ 1⊗ 1, where λ ∈ K, then we call the AC bialgebra

(A, δ1, δ2,∆) λ-unital.

Remark 2.2.

(1) If δi = ∆, i = 1, 2 in Definition 2.1, then we obtain the ASI bialgebra

(A,∆,∆,∆) introduced in [21] under the name “associative D-algebra” and

studied in [3], [4].

(2) Equation (4) is exactly the second identity in [21], Theorem 1 or [3], Theo-

rem 2.2.3.
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Now we give an equivalent characterization of AC bialgebras.

Theorem 2.3. Let A be a unital associative algebra, δi : A → A ⊗ A, i = 1, 2

be two anti-derivations. There exists a coassociative AC derivation with respect

to (δ1, δ2) if and only if there exists an element u = u1 ⊗ u2 ∈ A ⊗ A such that for

all a, b ∈ A,

δ1(a)− δ2(a) = u1 ⊗ au2 − u1a⊗ u2,(5)

(δ1 ⊗ id− id⊗ δ1)(u) = u23u12 − u12u13,(6)

(δ1 ⊗ id− id⊗ δ1) ◦ δ1(a) = − u12δ1(a)13,(7)

u1a⊗ u2b+ u2a⊗ u1b = bu1a⊗ u2 + u2 ⊗ au1b.(8)

In this case,

(9) ∆(a) = u1a⊗ u2 + δ1(a) = u1 ⊗ au2 + δ2(a).

P r o o f. By ∆(a) = u1a⊗u2+δ1(a) in (9) and (1) for i = 1, it is obvious that (8)

is equivalent to (4).

(⇒) Assume that ∆ is a coassociative AC derivation, set u = ∆(1). Let b = 1

in (2), we have ∆(a) = a2(1) ⊗ a2(2) + 11 ⊗ a12. Similarly let a = 1 in (3), we have

∆(b) = 11b⊗ 12 + b1(1) ⊗ b1(2). So

∆(a) = 11 ⊗ a12 + a2(1) ⊗ a2(2) = 11a⊗ 12 + a1(1) ⊗ a1(2).

Then equations (9) and (5) hold.

By (9), we have

(id⊗∆)∆(a) = 11a⊗ 1̄112 ⊗ 1̄2 + 11a⊗ (12)
1
(1) ⊗ (12)

1
(2)

+ a1(1) ⊗ 1̄1a
1
(2) ⊗ 1̄2 + a1(1) ⊗ (a1(2))

1
(1) ⊗ (a1(2))

1
(2)

and

(∆⊗ id)∆(a) = 1̄111a⊗ 1̄2 ⊗ 12 + (11)
1
(1)a⊗ (11)

1
(2) ⊗ 12 + a1(1) ⊗ 11a

1
(2) ⊗ 12

+ 11a
1
(1) ⊗ 12 ⊗ a1(2) + (a1(1))

1
(1) ⊗ (a1(1))

1
(2) ⊗ a1(2).

Then by the coassociativity of ∆ at a = 1, we obtain

11 ⊗ 1̄112 ⊗ 1̄2 + 11 ⊗ (12)
1
(1) ⊗ (12)

1
(2) + 11(1) ⊗ 1̄11

1
(2) ⊗ 1̄2 + 11(1) ⊗ (11(2))

1
(1) ⊗ (11(2))

1
(2)

= 1̄111 ⊗ 1̄2 ⊗ 12 + (11)
1
(1) ⊗ (11)

1
(2) ⊗ 12 + 11(1) ⊗ 1̄11

1
(2) ⊗ 1̄2

+ 111̄
1
(1) ⊗ 12 ⊗ 1̄1(2) + (11(1))

1
(1) ⊗ (11(1))

1
(2) ⊗ 11(2).

Based on the properties of anti-derivations and AC derivations, we can get (6).
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Apply R(a)⊗ id⊗ id to (6) and by the coassociativity for all a ∈ A, we have

a1(1) ⊗ (a1(2))
1
(1) ⊗ (a1(2))

1
(2) = 11a

1
(1) ⊗ 12 ⊗ a1(2) + (a1(1))

1
(1) ⊗ (a1(1))

1
(2) ⊗ a1(2),

i.e., (δ1 ⊗ id− id⊗ δ1)δ1(a) = −11a
1
(1) ⊗ 12 ⊗ a1(2) = −u12δ1(a)13. Thus, equation (7)

holds.

(⇐) By (9) for all a, b ∈ A we have

a2(1)b⊗ a2(2) + b1 ⊗ ab2 = a1b⊗ a2 + b1(1) ⊗ ab1(2),

∆(ab)
(9)
= u1ab⊗ u2 + δ1(ab) = u1ab⊗ u2 + a1(1)b⊗ a1(2) + b1(1) ⊗ ab1(2)

(9)
= a1b⊗ a2 + b1(1) ⊗ ab1(2)

and

∆(ab)
(9)
= u1 ⊗ abu2 + δ2(ab) = u1 ⊗ abu2 + a2(1)b⊗ a2(2) + b2(1) ⊗ ab2(2)

(9)
= a2(1)b⊗ a2(2) + b1 ⊗ ab2.

Then we can obtain equations (2) and (3). By (6) and (7) and the properties of

anti-derivation, one can get the coassociativity of ∆. �

Remark 2.4. By ∆(a) = u1⊗au2+δ2(a) in (9) and (1) for i = 2, we also obtain

that (4) is equivalent to

(10) bu1 ⊗ au2 + bu2 ⊗ au1 = u1 ⊗ au2b+ bu2a⊗ u1.

Corollary 2.5. Let A be a unital associative algebra and ∆: A → A ⊗ A an

anti-derivation. Then ∆ is coassociative if and only if

(11) (∆⊗ id− id⊗∆) ◦∆(a) = 0.

P r o o f. Let δ1 = δ2 = ∆ in Theorem 2.3, then by (9), u = ∆(1) = 0. Thus, in

this case, equations (5), (6) and (8) hold automatically, and (7) is exactly (11). The

proof is finished. �

Remark 2.6. Corollary 2.5 is just the characterization of ASI bialgebras.

Corollary 2.7. Let A be a unital associative algebra, δi : A → A⊗A, i = 1, 2 be

two anti-derivations. Then (A, δ1, δ2,∆) is a λ-unital AC bialgebra if and only if for

all a, b ∈ A,

δ1(a)− δ2(a) = λ1⊗ a− λa⊗ 1,(12)

(δ1 ⊗ id− id⊗ δ1) ◦ δ1(a) = − λδ1(a)13,(13)

2λa⊗ b = λba⊗ 1 + λ1⊗ ab.(14)
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In this case,

(15) ∆(a) = λa⊗ 1 + δ1(a) = λ1⊗ a+ δ2(a).

P r o o f. It can be proved by letting u = ∆(1) = λ1⊗ 1 in Theorem 2.3. �

Proposition 2.8.

(1) 0-unital AC bialgebra is exactly the ASI bialgebra (A,∆,∆,∆).

(2) If char(K)=0, then λ-unital (for λ 6= 0) AC bialgebra is trivial, that is to say,

it is one dimensional.

P r o o f. If (A, δ1, δ2,∆) is a λ-unital AC bialgebra, then (8) and (10) hold. So

we have

(16) 2λ(a⊗ b− b⊗ a) = 0.

Thus, if λ = 0, then ∆(1) = 0. So by Corollary 2.5, we get the first conclusion. If

λ 6= 0 and char(K)=0, then by (16), we have a⊗ b = b⊗ a for all a, b ∈ A. So in this

case, A is trivial. We finish the proof. �

Remark 2.9.

(1) Corollary 2.7 is different from Corollary 3.11 of [5] even if λ = 1 since here

1-unital AC bialgebra is trivial when char(K) 6= 2.

(2) By Corollary 3.11 of [5] one gets that a 1-unital covariant bialgebra (A,∆, δ, δ)

is trivial.

The following characterization of AC bialgebras induces the notion of associative

Yang-Baxter equation.

Proposition 2.10. Let A be an algebra and r, s ∈ A ⊗ A two anti-symmetric

elements. Define the linear maps

δr : A → A⊗A, δr(a) = r1 ⊗ ar2 − r1a⊗ r2,(17)

δs : A → A⊗A, δs(a) = s1 ⊗ as2 − s1a⊗ s2,(18)

∆: A → A⊗A, ∆(a) = r1 ⊗ ar2 − s1a⊗ s2.(19)

Then (A, δr, δs,∆) is an AC bialgebra if and only if for all a ∈ A,

(20) (R(a)⊗id⊗id)(s13r23−s23s12+s12s13) = (id⊗id⊗L(a))(s12r13−r23r12+r13r23)

and

(21) (id⊗ L(a) ◦R(b)− L(b) ◦R(a)⊗ id)(r − s) = 0.
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P r o o f. The functions δr, δs are anti-derivations: For all a, b ∈ A,

ar(1)b⊗ ar(2) + br(1) ⊗ abr(2) = r1b⊗ ar2 − r1ab⊗ r2 + r1 ⊗ abr2 − r1b⊗ ar2

= r1 ⊗ abr2 − r1ab⊗ r2 = δr(ab),

ar(1) ⊗ ar(2)b+ br(2)a⊗ br(1) = r1 ⊗ ar2b− r1a⊗ r2b+ br2a⊗ r1 − r2a⊗ r1b

= − r2 ⊗ ar1b+ r2a⊗ r1b− br1a⊗ r2 − r2a⊗ r1b

= − r2 ⊗ ar1b− br1a⊗ r2

= − br2 ⊗ ar1 − br1a⊗ r2 + br2 ⊗ ar1 − r2 ⊗ ar1b

= br1 ⊗ ar2 − br1a⊗ r2 + br2 ⊗ ar1 − r2 ⊗ ar1b

= bar(1) ⊗ ar(2) + br(2) ⊗ abr(1).

The proof for δs is similar.

Equations (2) and (3) can be checked as follows. For all a, b ∈ A, we have

a1b⊗ a2 + br(1) ⊗ abr(2) = r1b⊗ ar2 − s1ab⊗ s2 + r1 ⊗ abr2 − r1b⊗ ar2

= r1 ⊗ abr2 − s1ab⊗ s2 = ∆(ab)

and

as(1)b⊗ as(2) + b1 ⊗ ab2 = s1b⊗ as2 − s1ab⊗ s2 + r1 ⊗ abr2 − s1b⊗ as2

= r1 ⊗ abr2 − s1ab⊗ s2 = ∆(ab).

By the anti-symmetry of r and s, (4) is equivalent to (21).

For all a ∈ A and r = R, s = S, one can compute

(id⊗∆) ◦∆(a) = r1 ⊗∆(ar2)− s1a⊗∆(s2)

= r1 ⊗ (R1 ⊗ ar2R2 − s1ar2 ⊗ s2)− s1a⊗ (r1 ⊗ s2r2 − S1s2 ⊗ S2)

= r1 ⊗R1 ⊗ ar2R2 − r1 ⊗ s1ar2 ⊗ s2 − s1a⊗ r1 ⊗ s2r2

+ s1a⊗ S1s2 ⊗ S2

and

(∆⊗ id) ◦∆(a) = ∆(r1)⊗ ar2 −∆(s1a)⊗ s2

= (R1 ⊗ r1R2 − s1r1 ⊗ s2)⊗ ar2 − (r1 ⊗ s1ar2 − S1s1a⊗ S2)⊗ s2

= R1 ⊗ r1R2 ⊗ ar2 − s1r1 ⊗ s2 ⊗ ar2 − r1 ⊗ s1ar2 ⊗ s2

+ S1s1a⊗ S2 ⊗ s2.
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Then ∆ is coassociative if and only if

s1a⊗ r1 ⊗ s2r2 − s1a⊗ S1s2 ⊗ S2 + S1s1a⊗ S2 ⊗ s2

= s1r1 ⊗ s2 ⊗ ar2 −R1 ⊗ r1R2 ⊗ ar2 + r1 ⊗R1 ⊗ ar2R2.

Thus,

(R(a)⊗ id⊗ id)(s1 ⊗ r1 ⊗ s2r2 − s1 ⊗ S1s2 ⊗ S2 + S1s1 ⊗ S2 ⊗ s2)

= (id⊗ id⊗  L(a))(s1r1 ⊗ s2 ⊗ r2 −R1 ⊗ r1R2 ⊗ r2 + r1 ⊗R1 ⊗ r2R2),

i.e.,

(R(a)⊗ id⊗ id)(s13r23 − s23s12 + s12s13) = (id⊗ id⊗L(a))(s12r13 − r23r12 + r13r23),

finishing the proof. �

Definition 2.11. An anti-associative Yang-Baxter pair in A is a pair of elements

r, s ∈ A⊗A satisfying

r13r23 − r23r12 + s12r13 = 0,(22)

s13r23 − s23s12 + s12s13 = 0(23)

and equation (21).

Specially, if r = s, then we call

r13r23 − r23r12 + r12r13 = 0

the anti-associative Yang-Baxter equation in A.

Remark 2.12. The anti-associative Yang-Baxter pair in Definition 2.11 is

exactly the associative Yang-Baxter pair in Aop (the opposite algebra) in [11] satis-

fying (21).

Proposition 2.13. If (r, s) is an anti-symmetric solution of the anti-associative

Yang-Baxter pair in A, δr, δs, ∆ are defined by (17)–(19). Then (A, δr, δs,∆) is

an AC bialgebra. In this case (A, δr, δs,∆) is called an anti-quasitriangular AC

bialgebra.

Theorem 2.14. Let A be an associative algebra, r, s ∈ A ⊗ A anti-symmetric

satisfying (21) and δr, δs, ∆ are defined by (17)–(19). Then (A, δr, δs,∆) is an

anti-quasitriangular AC bialgebra if and only if

(id⊗∆)(r) = r23r12 − s12r13 − s23r12,(24)

(∆⊗ id)(s) = s23r12 + s13r23 − s23s12.(25)
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P r o o f. One easily checks that

(id⊗∆)(r) = r1 ⊗ (R1 ⊗ r2R2 − s1r2 ⊗ s2) = r1 ⊗R1 ⊗ r2R2 − r1 ⊗ s1r2 ⊗ s2

= r13r23 − s23r12, (∆⊗ id)(s) = (r1 ⊗ s1r2 − S1s1 ⊗ S2)⊗ s2

= r1 ⊗ s1r2 ⊗ s2 − S1s1 ⊗ S2 ⊗ s2 = s23r12 − s12s13,

and the rest is direct. �

Corollary 2.15. Let A be a unital associative algebra, r ∈ A⊗A anti-symmetric.

Then a 0-unital anti-quasitriangular AC bialgebra (A,∆,∆,∆) is exactly a qua-

sitriangular ASI bialgebra studied in [3], Corollary 2.4.1. In this case, ∆(a) =

r1 ⊗ ar2 − r1a⊗ r2.

P r o o f. Let a = 1 in (19), we have ∆(1) = r1 ⊗ r2 − s1 ⊗ s2. An anti-

quasitriangular AC bialgebra (A, δr, δs,∆) is λ-unital if and only if r1⊗r2−s1⊗s2 =

λ1⊗ 1. Since λ = 0, r = s. The rest is obvious. �

Remark 2.16. By Proposition 2.10, a λ-unital (for λ 6= 0) anti-quasitriangular

AC bialgebra over a field K (char(K) = 0) is trivial, which coincides with Part (2)

in Proposition 2.8.

Let us recall that a Rota-Baxter system is a triple (A,P,Q), where A is an asso-

ciative algebra, P,Q : A → A are two linear maps such that for all a, b ∈ A,

P (a)P (b) = P (P (a)b+ aQ(b)),(26)

Q(a)Q(b) = Q(P (a)b+ aQ(b)).(27)

Definition 2.17. A special Rota-Baxter system is a Rota-Baxter system satis-

fying the following condition:

(28) aP (b) +Q(b)a = P (b)a+ aQ(b) ∀ a, b ∈ A.

Proposition 2.18. Let A be an associative algebra, r, s ∈ A⊗A such that (r, s)

is an anti-associative Yang-Baxter pair. For all a ∈ A, define

P (a) := r2ar1, Q(a) := s2as1.

Then (A,P,Q) is a special Rota-Baxter system.

P r o o f. Similarly to [5], Proposition 3.4, we can check that (26) and (27) hold

and (28) can be proved by (21). �
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Remark 2.19.

(1) If P = Q, then (28) holds automatically. So in this case, a special Rota-Baxter

system and a Rota-Baxter system coincide, both turn to be a Rota-Baxter

algebra (A,P = Q) of weight 0.

(2) A special Rota-Baxter system over a commutative associative algebra is just an

usual Rota-Baxter system.

Acknowledgment. The authors are deeply indebted to the referee for his/her

very useful suggestions and some improvements to the original manuscript.
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