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Abstract. We present a notion of an anti-covariant bialgebra extending the anti-
symmetric infinitesimal bialgebra and also provide some equivalent characterizations of
it. We also prove that an anti-associative Yang-Baxter pair can produce a special Rota-
Baxter system.
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1. INTRODUCTION

Infinitesimal bialgebras first appeared in the work of Joni and Rota (see [8]) to give
an algebraic framework for the calculus of divided differences. The anti-symmetric
version of infinitesimal bialgebras was introduced in [21] by Zhelyabin by using the
name associative D-bialgebra as an associative analog of Lie bialgebra defined by
Drinfeld in [6]. Later this structure was studied systematically by Bai under the name
anti-symmetric infinitesimal (for short ASI) bialgebra in [3]. Infinitesimal bialgebras
and ASI bialgebras were concerned by many researchers, see [1], [2], [4], [5], [7],
[9]-[20], etc. Interestingly, the latter can be characterized by the well-known matched
pair of associative algebras and a double construction of a Frobenius algebra, from
which the anti-symmetry appears, see [3]. In [5], Brzeziiiski introduced the notion
of covariant bialgebras generalizing the infinitesimal bialgebra, which is related to
Rota-Baxter systems and dendriform algebras. So it is very natural to consider
the anti-version of covariant bialgebras and as an expectation, it can cover the ASI
bialgebra. In this note, we provide the positive answer to the above question.
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Throughout this paper, K will be a field, and all vector spaces, tensor products,
and homomorphisms are over K. We denote by id,; the identity map from M to M,
oc: M®M — M ® M by the flip map. If A is an algebra, then L and R denote
the left and right multiplication maps, respectively. Let C be a coalgebra, we use
the Sweedler’s notation for the comultiplication: A(c) = ¢; ® ¢3 for any ¢ € C. An
element r € A® A being anti-symmetric means r = —o(r). Givenr = r'®@r? € AR A,
we define r12 = r®1, r13 = ' ®1®72, 7193 = 1®@r, where 1 means either the identity
of A (if A is unital) or the identity in the extended unital algebra K @ A (if A is
nonunital).

2. MAIN DEFINITIONS AND RESULTS

Firstly, as a natural generalization of Zhelyabin’s associative D-algebra or Bai’s
ASI bialgebra, we give the anti-version of Brzeziniski’s covariant bialgebra.

Definition 2.1. An anti-covariant (for short AC) bialgebra is a quadruple
(A, 01,02, A) such that
(a) A is an associative algebra.
(b) (A, A) is a coassociative coalgebra.
(c) Let 6;: A= A® A, i=1,2 (write 0;(a) = a’('l) ® cﬁ@) be two anti-derivations,
ie., d;(ab) = azl)b ® a(y) + bzl) ® abEQ), 1=1,2, and

(1) A1) ® agb + )0 @ by = bajy) @ afy) + by @ ably).
Here A is an AC derivation with respect to (61, 02), which means
() Alab) = (RO) ©id)62(a) + (d © L@)AD) = a?y)b ® ayy + by @ abs,
(3) = (R(b) ®id)A(a) + (id ® L(a))d1(b) = a1b ® ag + b(;y @ aby
and
(4) a1 ® ash +baya ® by = ba; ® as + by ® ab;.

If A has identity and A(1) = A 1® 1, where A € K, then we call the AC bialgebra
(4, 61,02, A) A-unital.

Remark 2.2.

(1) If 6; = A, i@ = 1,2 in Definition 2.1, then we obtain the ASI bialgebra
(A, A; A, A) introduced in [21] under the name “associative D-algebra” and
studied in [3], [4].

(2) Equation (4) is exactly the second identity in [21], Theorem 1 or [3], Theo-
rem 2.2.3.
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Now we give an equivalent characterization of AC bialgebras.

Theorem 2.3. Let A be a unital associative algebra, §;: A - A® A, i = 1,2
be two anti-derivations. There exists a coassociative AC derivation with respect
to (81, d2) if and only if there exists an element u = u' ® u?> € A ® A such that for
all a,b € A,

(5) 61(a) — 02(a) = u' ® au® — u'a @ u?,
(6) (01 ®id —1d ® 61)(u) = ugguia — ui2U13,

(7) (61 ©id —id @ 81) 0 81(a) = — w1281 ()13,

(8) uta @ u?b + u?a @ u'b = bu'a @ u? +u? @ au'b.

In this case,
(9) Aa) = ula @u? + 01(a) = u' @ au? + d2(a).

Proof. By A(a) = uta®u?+§1(a) in (9) and (1) for i = 1, it is obvious that (8)
is equivalent to (4).

(=) Assume that A is a coassociative AC derivation, set u = A(1). Let b =1

in (2), we have A(a) = a(21) ® a(22) +1; ® aly. Similarly let @ = 1 in (3), we have
A(b) = 11b @ 12 + b(y) ® iy So

Ala) =1, ®als + a%l) ® a%z) =lia® 1y + a%l) ® a%Q).

Then equations (9) and (5) hold.
By (9), we have

(ld (24 A)A(a) = 11@ (24 1112 X 12 + 11@ X (12)%1) [029] (12)%2)

+agy ® Liagy @ o+ afy) @ (agy) (1) @ (a(z)z)

and

(A ® 1d)A(a) = Llla ® 12 ® 12 —|— (11)%1)a ® (11)%2) ® 12 —|— a(ll) ® 11@%2) ® 12
+hiagy ® Lo @ ag) + (ap)(y © (o)) @ a2
Then by the coassociativity of A at a = 1, we obtain

Lehlel,+1; ® (12)%1) ® (12)%2) + 1%1) ® 111%2) ® 12+ 1%1) ® (1%2))%1) ® (1%2))%2)
=T ®@Ta®@la+ (1)) @ (11)g @ la+ 1() @ 11y ®@ 1z
+ 1110 ®© 12 ®@ 1) + (11){y © ()i © 1z
Based on the properties of anti-derivations and AC derivations, we can get (6).
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Apply R(a) ® id ® id to (6) and by the coassociativity for all a € A, we have
a(n) @ (a(z))() ® (a@)(z) = l1a(y © L2 @ agy) + (@) © (o)) © o),

ie, (61 ®id—id®d1)d1(a) = —11a%1) ®1® a%z) = —u3201(a)13. Thus, equation (7)
holds.
(<) By (9) for all a,b € A we have

a%l)b ® aé) + b ®aby =a1b®as + b%l) ® ab%z),
A(ab) @ b @u? + 61(ab) = utab ® u® + a%l)b ® a%z) + bh) ® ab%Q)
© a1b® as + b%l) ® abé)
and
A(ab) Dt @ abu? + So(ab) = u' ® abu® + a%l)b ® a%z) + b%l) ® abé)
© a(21)b ® a(22) + b1 ® abs.

Then we can obtain equations (2) and (3). By (6) and (7) and the properties of

anti-derivation, one can get the coassociativity of A. O
Remark 2.4. By A(a) = u!®au?+d2(a) in (9) and (1) for i = 2, we also obtain

that (4) is equivalent to

(10) bu' @ au® + bu? @ au' = u' ® au®b 4 buta ® ut.

Corollary 2.5. Let A be a unital associative algebra and A: A — A® A an
anti-derivation. Then A is coassociative if and only if

(11) (A®id—id® A) o Afa) = 0.

Proof. Let §; = 62 = A in Theorem 2.3, then by (9), v = A(1) = 0. Thus, in
this case, equations (5), (6) and (8) hold automatically, and (7) is exactly (11). The
proof is finished. U

Remark 2.6. Corollary 2.5 is just the characterization of ASI bialgebras.
Corollary 2.7. Let A be a unital associative algebra, 0;: A — A® A, i=1,2 be

two anti-derivations. Then (A, d1,02,A) is a A-unital AC bialgebra if and only if for
all a,b € A,

(12) 01(a) —da(a) = A1 ®a—Aa®1,
(13) ((51 ®1d—1d®51)o§1(a) = —)\51(a)13,
(14) 2Ma®b=Aba® 1+ A1l ® ab.



In this case,

(15) Ala) = Aa®1+61(a) = A ® a+ a(a).

Proof. It can be proved by letting u = A(1) = A1 ® 1 in Theorem 2.3. O

Proposition 2.8.
(1) O-unital AC bialgebra is exactly the ASI bialgebra (A, A, A, A).
(2) If char(K)=0, then A-unital (for A # 0) AC bialgebra is trivial, that is to say,
it is one dimensional.

Proof. If (A, d1,02,A) is a A\-unital AC bialgebra, then (8) and (10) hold. So

we have
(16) 2A(a®b—-b®a) = 0.

Thus, if A = 0, then A(1) = 0. So by Corollary 2.5, we get the first conclusion. If
A # 0 and char(K)=0, then by (16), we have a®b = b®a for all a,b € A. So in this
case, A is trivial. We finish the proof. (]

Remark 2.9.
(1) Corollary 2.7 is different from Corollary 3.11 of [5] even if A\ = 1 since here
1-unital AC bialgebra is trivial when char(K) # 2.
(2) By Corollary 3.11 of [5] one gets that a 1-unital covariant bialgebra (A, A, d, J)
is trivial.
The following characterization of AC bialgebras induces the notion of associative

Yang-Baxter equation.

Proposition 2.10. Let A be an algebra and r,s € A ® A two anti-symmetric
elements. Define the linear maps

(17) 6 A= A® A, b.(a)=r'@ar® —rla®r?,
(18) bs: A= A® A, 6(a)=s'®as® —sta®s?,
(19) A: A= AR A, Ale)=r'®a?® -s'a® s>

Then (A,J,,ds,A) is an AC bialgebra if and only if for all a € A,
(20) (R(a)@id@id)(813T23—823812+812813) = (id®id®L(a))(3127'13—7"237"12—1—7'137*23)
and

(21) (id ® L(a) o R(b) — L(b) o R(a) @ id)(r — s) = 0.
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Proof. The functions 4,, ds; are anti-derivations: For all a,b € A,

a(1)b ® agyy + by @ abiy) = rb@ar® —rtab@r? +r' @ abr? — r'b ® ar?
=rl @abr? —rlab® r? = 6, (ab),

a() @ aggb + bipya @ by = r ®@ar’b—rlta@r?b +brla®@rt —r?a® b
= —ra'b+r?faxrb—brla®r? —rfa®r'y
= —r?@a'b—brla®r?
= —b?@awa—brlar? + b2 @art —r* @ ar'd
=brl@a?®-brla@r? +br?®ar! —r? @ arld

= ba(y) ® ag) +bz) ® abyy).

The proof for & is similar.
Equations (2) and (3) can be checked as follows. For all a,b € A, we have

a1b® az + bjy) ® abjy) = b @ ar? —stab® s? +r' @ abr? — r'b ® ar?
=r! @ abr® — s'ab® s? = A(ab)

and

afb @ afyy + b1 @ aby = s'b®@as® — s'ab® s> + 1! @ abr® — s'b @ as?
=7 @abr? — s*ab ® s* = A(ab).

By the anti-symmetry of r and s, (4) is equivalent to (21).

For all a € A and r = R, s = S, one can compute

(id® A)o Aa) = r' @ Alar?) — s'a @ A(s?)
= @R ®@ar’R? - s'ar? @ 5?) — sla® (r' @ s%r? — S1s? ® §?)
=r' @R ' @ar’R? —r' @ star? @ s* — sla @ r' @ s*r?

+sla® S's? @ 52
and

(A®id)o Aa) = A(r!) ® ar® — A(sta) ® s*
=(R'orR?*—s'r' @ s*)@ar? — ("' @ s'ar? — S's'a® S?) @ 2
=R'@r'RPea?-s'r'es?@ar? —r' @ slar® @ s

+ Stsla® 8% @ s2.
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Then A is coassociative if and only if
sla@r @ s%r? —sla® S's? ® §% + S'sla® S? @ 2
=s'r'ws?@ar? - R' @' R*@ar’ +r' @ R' ® ar’R2.

Thus,

(R(a) ®@id @id)(s' @ ' @ s%1? —s' @ §1s2 @ §% + S1s' © §? @ s?)

= ([d®id®L) (s @s*@r? —R'@r'R*@r? +r' @ R' @ 2 R?),

ie.,
(R(a) ®id ®id)(s13723 — S23s12 + s12513) = (1d ®1d ® L(a))(s12713 — T23712 + T13723),
finishing the proof. (]

Definition 2.11. An anti-associative Yang-Bazter pair in A is a pair of elements
r,s € A® A satisfying
(22) 713723 — T23712 + S12713 = 0,
(23) 813723 — 23512 + 125813 = 0
and equation (21).

Specially, if » = s, then we call
r13723 — rogriz + ri2riz =0

the anti-associative Yang-Baxter equation in A.

Remark 2.12. The anti-associative Yang-Baxter pair in Definition 2.11 is
exactly the associative Yang-Baxter pair in A°P (the opposite algebra) in [11] satis-
fying (21).

Proposition 2.13. If (r,s) is an anti-symmetric solution of the anti-associative
Yang-Baxter pair in A, §,, ds, A are defined by (17)—(19). Then (A,d,,0ds,A) is
an AC bialgebra. In this case (A4,d,,0s,A) is called an anti-quasitriangular AC
bialgebra.

Theorem 2.14. Let A be an associative algebra, r,s € A ® A anti-symmetric
satistying (21) and 0., ds, A are defined by (17)—(19). Then (A,d,,d5,A) is an
anti-quasitriangular AC bialgebra if and only if
(24) (1(‘1 ® A)(T) = T23712 — S12T13 — S23T12,

(25) (A ®id)(s) = s237r12 + 513723 — 523512.
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Proof. One easily checks that
deA)(r) =re R e@rR?-s'rPes’)=r R @R —r'os'r? @ s?
(

= 113723 — Sa3T12, (A ®id)(s) = (7"1 @sir?—Slsl @ S2) ® s2

1 1.2 2 1.1 2 2
=r®srres —5s ®5°® s = s93r12 — 512513,
and the rest is direct. O

Corollary 2.15. Let A be a unital associative algebra, r € A® A anti-symmetric.
Then a 0-unital anti-quasitriangular AC bialgebra (A, A, A, A) is exactly a qua-
sitriangular ASI bialgebra studied in [3], Corollary 2.4.1. In this case, A(a) =
r'®@ar? —rlta®r?.

Proof. Let a = 1 in (19), we have A(l) = 7' @ r? — s! ® s>. An anti-
quasitriangular AC bialgebra (A, §,, ds, A) is A-unital if and only if r! @72 — sl ® s =
Al ® 1. Since A =0, r = s. The rest is obvious. O

Remark 2.16. By Proposition 2.10, a A-unital (for A # 0) anti-quasitriangular
AC bialgebra over a field K (char(K) = 0) is trivial, which coincides with Part (2)
in Proposition 2.8.

Let us recall that a Rota-Baxter system is a triple (A, P,Q), where A is an asso-
ciative algebra, P,Q): A — A are two linear maps such that for all a,b € A,

(26) P(a)P(b) = P(P(a)b+ aQ(b)),
(27) Q(a)Q(b) = Q(P(a)b + aQ(b)).

Definition 2.17. A special Rota-Baxter system is a Rota-Baxter system satis-
fying the following condition:

(28) aP(b) + Q(b)a = P(b)a+aQ(b) Va,be A.

Proposition 2.18. Let A be an associative algebra, r,s € A® A such that (r, s)
is an anti-associative Yang-Baxter pair. For all a € A, define

P(a) :=r*ar’, Q(a):= s’as’.

Then (A, P,Q) is a special Rota-Baxter system.

Proof. Similarly to [5], Proposition 3.4, we can check that (26) and (27) hold
and (28) can be proved by (21). O

762



Remark 2.19.

(1) If P = @, then (28) holds automatically. So in this case, a special Rota-Baxter

system and a Rota-Baxter system coincide, both turn to be a Rota-Baxter
algebra (A4, P = Q) of weight 0.

(2) A special Rota-Baxter system over a commutative associative algebra is just an

usual Rota-Baxter system.
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