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Abstract. We investigate the triangulated hull of orbit categories of the perfect derived
category and the bounded derived category of a ring concerning the power of the suspension
functor. It turns out that the triangulated hull corresponds to the full subcategory of
compact objects of certain triangulated categories of periodic complexes. This specializes
to Stai and Zhao’s result on the finite dimensional algebra of finite global dimension. As
the first application, if A, B are flat algebras over a commutative ring and they are derived
equivalent, then the corresponding derived categories of n-periodic complexes are triangle
equivalent. As the second application, we get the periodic version of the Koszul duality.
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1. INTRODUCTION

Given an additive category A and an integer n > 1, a complex (X, dx) over A is
called n-periodic if X* = X" and 9% = 8?" for all i. A chain map f between
n-periodic complexes is an n-periodic morphism if f? = f**" for all i. A 1-periodic
complex is just a differential object which first appeared in Cartan and Eilenberg’s
book, see [11]. It was systematically studied by Avramov, Buchweitz, and Iyengar,
see [1]. Two morphisms f,g: X — Y of n-periodic complexes are called homotopic
if there is a homotopy map {o?: X* — Y~1},c; from f to g such that o' = o't
for all <. Then one can form the homotopy category K,,(A) of n-periodic complexes
and the derived category D,,(A) of n-periodic complexes when A is abelian. They
are both triangulated categories, see [30] or Section 3.

Let R be a left noetherian ring. The homotopy category K(R-Inj) of com-
plexes of injective R-modules and the derived category D(R-Mod) of complexes of
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R-modules are compactly generated, see [20] and [24], respectively. Inspired by
this, we prove that the homotopy category K, (R-Inj) of n-periodic complexes of
injecitve R-modules and the derived category D, (R-Mod) of n-periodic complexes
of R-modules are compactly generated, see Theorem 3.1. Moreover, the canonical
functor K, (R-Inj) — D, (R-Mod) induces a recollement, see Theorem 3.1.

Let T: A — A be an autoequivalence. Following [22], the orbit category A/T is
defined as follows: it has the same objects as A and the morphism spaces

HOmA/T(X, Y) = HHOmA(X7 TiY),
i€z

The composition in A/T is defined in a natural way. As the name suggests, the
objects in the same T-orbit are isomorphic.

The following question has been considered in the literature: given a triangulated
category T with suspension functor ¥, is there a triangulated structure of 7 /3"
such that the projection functor 7 — T /X" is exact? Neeman found the answer
to this question is negative; see discussions in [22]. Let R be a finite dimensional
hereditary algebra over a field. Peng and Xiao in [30] observed the orbit category
D’(R-mod)/X%? of the bounded derived category of finitely generated R-modules,
introduced by Happel (see [16]) under the name “root category”, is triangulated.
Indeed, they proved that it is equivalent to the homotopy category of 2-periodic
complexes of finitely generated projective R-modules. This established a link between
the orbit category and the triangulated category of periodic complexes. By making
use of this triangulated structure, they constructed the so-called Ringel-Hall Lie
algebra determined by D’(R-mod)/X~? and gave a realization of all symmetrizable
Kac-Moody Lie algebras, see [31].

If R is a finite dimensional algebra over a field with finite global dimension, it
was independently proved by Stai (see [35]) and Zhao (see [37]) that D’(R-mod)/%"
embeds into its triangulated hull D,,(R-mod), where R-mod is the category of finitely
generated R-modules. We are motivated by the natural question: what is the trian-
gulated hull of D(R-mod)/¥" for a general ring R?

It is proved in Section 4 that the triangulated hull of D’(R-mod)/~" coincides
with the full subcategory of compact objects of K, (R-Inj), see Corollary 4.1. Its
proof relies on some techniques from [24], [35].

Two rings A, B are called derived equivalent if there exists a triangle equivalence
D(A-Mod) ~ D(B-Mod). In general, whether two rings are derived equivalent is
difficult to grasp. Therefore, it is important to investigate the invariant under the
derived equivalence. By introducing the tilting complex, Rickard in [32] established
the derived Morita theory of rings. After that, Keller in [20] generalized Rickard’s
derived Morita theory through the language of differential graded categories.
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In Section 5, we compare the triangle equivalences D(A-Mod) ~ D(B-Mod) and
D,.(A-Mod) ~ D,,(B-Mod) for two rings A, B. It turns out that these two equiva-
lences are closely related, see Theorem 5.1.

Over the past forty years, the Koszul duality phenomenon has played an important
role in representation theory. For instance, the DG version of the Koszul duality was
used by Benson, Iyengar, and Krause (see [6]) to classify subcategories of stable
module category of finite groups. In Section 6 we study the periodic version of
the Koszul duality.We prove that there exists a triangle equivalence between the
derived category of n-periodic complexes of graded modules over symmetric algebra
and the homotopy category of n-periodic complexes of graded-injective modules over
exterior algebra, see Theorem 6.1. Its proof relies on the classical Koszul duality and
the studies in previous sections.

2. NOTATIONS AND PRELIMINARIES

Throughout the article, R is a left noetherian ring, R-Mod (or R-mod) is the cate-
gory of left (or finitely generated left, respectively) R-modules. The full subcategory
of R-Mod consisting of all projective (or injective) R-modules is denoted by R-Proj
(or R-Inj, respectively). For an additive category A, C(A) is the category of com-
plexes over A with the suspension functor X! (XH(X)? := X+, 0% (x) = (=1)!iHh.
Denote by K(A) the homotopy category of complexes over A. When A is abelian,
let D(A) denote the derived category of complexes over A.

A complex of R-modules is perfect provided that it is quasi-isomorphic to
a bounded complex of finitely generated projective R-modules. The symbol
per(R) stands for the full subcategory of D(R-Mod) consisting of all perfect
complexes.

2.1. Thick subcategories and localizing subcategories. Let 7 be a tri-
angulated category and C be a triangulated subcategory of 7. We say C is
thick (or localizing) if it is closed under direct summands (or coproducts, re-
spectively). For a set S of objects in T, we let thicks(.S) denote the smallest thick
subcategories of 7 containing S. This can be realized as the intersection of all
thick subcategories of T containing S; it has an inductive construction, see [2],
Subsection 2.2.4.

If 7 has coproducts, then a technique of Eilenberg’s swindle implies that any
localizing subcategory is thick.

It is well-known that per(R) = thickp(p-moa)(R) is thick, see [10], Lemma 1.2.1.
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2.2. Let F': T — T’ be an exact functor between triangulated categories. Then
the kernel of F' defined by

KerF:={X eT: F(X) >0}

is a thick subcategory of 7. When the functor F' is full, the essential image of F
defined by
ImF:={YeT": Y>F(X)for some X € T}

is a triangulated subcategory of 7.

2.3. Recollement. Following Beilinson, Bernstein and Deligne (see [4]), we call
the diagram

of triangulated categories and exact functors the recollement if the following condi-
tions are satisfied.
(1) (i*,is), (ix,4"), (j1,5*) and (5*, j.) are adjoint pairs.
(2) ix, 51 and j, are fully faithful.
(3) Imi, = Ker j*, that is, j*(X) = 0 if and only if X =4.(Y) for some Y € T".
Next, we record a useful result for its proof, see [24], Section 3.

2.4. Let (F,G) be a sequence T’ I 7 C T of exact functors between
triangulated categories. We say (F, Q) is a localization sequence if the following
conditions hold.

(1) F is fully faithful and F has a right adjoint.
(2) G has a right adjoint G, and G, is fully faithful.
(3) For an object X of 7, G(X) =0 if and only if X = F(X’) for some X' € T".

The sequence (F, Q) is called a colocalization sequence if the sequence (F°P, G°P)
of opposite functors is a localization sequence.

Let x be a thick subcategory of 7. Assume the sequence x e, 9, T/x is
a localization sequence. Denote by 7 (or ¢) the right adjoint of the functor inc (or @,
respectively). Then the sequence T/xz ——» T —— x is a colocalization sequence,
see [22], Lemma 3.2. In particular, 7 induces a triangle equivalence

T/Imi — z.

Note that a sequence 7" — T — T" induces a recollement (see 2.3) if and only if
the sequence is both a localization sequence and a colocalization sequence.
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2.5. Compactly generated triangulated categories. Let 7 be a triangulated
category with coproducts. An object X € 7T is called compact provided that the Hom
functor Hom7 (X, —) commutes with coproducts. That is, for any class of objects
Yi(i € I) in T, the canonical map

can: H Homy(X,Y;) — Homy (X, H E)
il i€l
is an isomorphism. We let 7°¢ denote the full subcategory of T formed by compact
objects in 7. It is not hard to show that 7° is a thick subcategory of T.

The category 7T is said to be compactly generated if there exists a set S of compact
objects such that any object Y satisfying Hom7 (X, %4 (Y)) = 0 for all X € S and
i € 7 is a zero object; the condition is equivalent to the fact that 7 is equal to the
smallest localizing subcategory containing S, see [27], Lemma 3.2. In this case, T¢ =
thick7(S), see [26], Lemma 2.2. For instance, D(R-Mod) is compactly generated by
the compact object R.

A set S of objects in T is called a compact generating set provided that S C T°
and 7 is compactly generated by S. The following result is well-known. For its proof,
we refer the reader to [6], Lemma 4.5; compare [3], Lemma 1 and [20], Lemma 4.2.

Lemma 2.1. Let I': T — T’ be an exact functor between compactly generated
triangulated categories. Assume F' preserves coproducts and S C T° is a compact
generating set. Then F' is fully faithful if and only if the induced maps

Hom(X,X(Y)) = Homp (FX, FX{(Y))

are isomorphic for all X, Y € S and i € Z. In this case, F is dense if and only if Im F'
contains a compact generating set of T'.

2.6. dg categories and dg functors. An additive category A is called a dg cate-
gory provided that for each XY € A, the morphism space Hom 4(X,Y) is a complex
and the composition

Hom 4 (Y, Z) ®7 Hom 4(X,Y) — Hom4(X, Z)

is a chain map. An additive functor F': A — B is called a dg functor provided
that F' commutes with the differential.

Let A be an additive category. Denote by Cqg(A) the dg category of complexes
over A whose morphism spaces are Hom complex defined by

Homu (X,Y)" = [[ Homa(X?,Y7*)
pEZ

with differential 9(f) = dy o f + (—=1)!/f 0 9.
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The homotopy category H°(A) of A is defined to be the category with same objects
as A whose morphism spaces are the zeroth cohomology of the corresponding Hom
complexes in A. Observe that

H°(Cag(A)) = K(A).

2.7. Derived categories of dg categories. We briefly discuss the derived cat-
egory of a dg category, see [20] for more details.
Let A be a small dg category. A dg module over A is a dg functor

M: AP —s Cag(Z-Mod).

Then the category of dg A-modules, denoted by Modgg(.A), is still a dg category,
see [20], Section 1.2. Its homotopy category H°(Modgg(A)) is a triangulated cate-
gory, see [20], Lemma 2.2. A dg A-module is called acyclic if M(X) is acyclic for
each object X € A. The derived category of A is defined to be the Verdier quotient of
H%(Modag(A)) by its full subcategory of acyclic dg A-modules. We have the Yoneda
embedding

Y: H°(A) — D(A), X — Homu(—,X).

It is well-known that D(A) is compactly generated by the image of Y, see [20],
Subsection 4.2.

2.8. Pretriangulated category. Keep the notation as above. The dg category A
is called pretriangulated if ImY is a triangulated category. In this case, H(.A) inher-
its a natural triangulated structure and there is (up to direct summands) a triangle
equivalence

~

HO(A) <5 D(A)".

2.9. dg enhancement. Let 7 be a triangulated category and A be a dg category.
The dg category A is said to be a dg enhancement of T provided that A is pretrian-
gulated and 7 is triangle equivalent to H(.A) endowed with the natural triangulated
structure, see 2.8. In this case, any triangulated subcategory = of 7 has a dg en-
hancement. Indeed, denote by A’ the full dg subcategory of A consisting of objects
in the essential image of z. Then A’ is a dg enhancement of x, see [19], Section 2.2.

Let A be an additive category. Then Cgg(.A) is pretriangulated and is a dg en-
hancement of K(A).

Example 2.1. By above, Cqq(R-Mod) (or Cqg(R-Inj)) is a dg enhancement of
K(R-Mod) (or K(R-Inj), respectively). Denote by pery,(R) the full dg subcategory
of Cyqg(R-Mod) consisting of all perfect complexes. Then pery,(R) is a dg enhance-
ment of per(R).
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Next we give an example that is used in Section 4. We write C(J{g’f (R-Inj) to be
the full subcategory of Cyg(R-Inj) formed by bounded below complexes whose total
cohomology are finitely generated R-modules. Induced by taking injective resolution,
there exists a triangle equivalence

D*(R-mod) = H*(CJ; (R-Inj)).

3. TRIANGULATED CATEGORIES OF PERIODIC COMPLEXES

Throughout the article, n > 1 is an integer. In this section we investigate periodic
complexes. Remarkably, there exists an adjoint pair between the classical triangu-
lated category and the corresponding triangulated category of periodic complexes.
It is proved that many properties of the latter can be determined by the former. The
main result in this section is Theorem 3.1.

Let A be an additive category, denote by C,,(A) the category of n-periodic com-
plexes over 4 whose morphism spaces are n-periodic morphisms, see the introduction.
For each [ € Z, there is a canonical suspension functor X! on C,(.A) which maps X
to XH(X) (BH(X)? == XL, 8%1()() = (—1)!9%") and acts trivially on morphisms.

3.1. Homotopy category of n-periodic complexes. Let A be an additive
category and X,Y € C,(A). Two morphisms f,g: X — Y are called homotopic
if there exists a sequence {o?: X* — Y'~!},c; of morphisms over A such that
fi—g' =010y +0- " oo and 0 = 0"t for all i € 7.

The homotopy category of n-periodic complexes over A, denoted by K, (.A), is de-
fined by identifying homotopy in C,,(.A). It is a triangulated category with suspension
functor ¥, see [30], Section 7.

Let f: X — Y be a morphism in C,,(A). The mapping cone C(f) of f is

: A TT i A -0t 0
CH=XTIY Oy = ( it 8§/)

In K,,(A), f can be embedded in a canonical exact triangle

X Y C(f)

As Peng and Xiao [30], Subsection 7.1 mentioned, C,,(A) is a subcategory of C(.A)
(usually not full) and K,,(\A) is usually not a subcategory of K(A).
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3.2. Derived category of n-periodic complexes. Let A be an abelian cat-
egory. An n-periodic complex X is called acyclic if it is acyclic as complex, i.e.,
H{(X) := Ker(d%)/Im(0% ') = 0 for all i € Z. The derived category of n-periodic
complexes over A, denoted by D,,(A), is the Verdier quotient category of K,,(A) by
its full subcategory of acyclic n-periodic complexes.

Following the definition of the compression for the case n = 1 in [1], Subsection 1.3,
we define the compression for arbitrary n > 1, see also [35].

3.3. Compression. Let A be an additive category with coproducts. For a com-
plex X € C(A)

ai—1 i

.._>Xi—1L>Xi_X>Xi+1_>...
The compression A(X) of X is defined by

R H X7 = X7 = H X7 ..

j=i—1 (mod n) j=t (mod n) j=i+1 (mod n)

with the natural differential induced by the differential of X, where the ith component
of A(X) is 11 X7, This gives an additive functor A: C(A) — C,(A).
j=t (mod n)

Clearly, there is a natural exact functor V: C,,(A) — C(.A) which maps a periodic
complex to itself. We observe that (A, V) is an adjoint pair. For each X in C(A),
it is not hard to see there is an isomorphism VA(X) = [] £"(X). Moreover, the

i€z
unit nx: X — VA(X) corresponding to the adjoint pair is the composition

X T em(X) = VA(X).
i€z

3.4. Keep the notation as in Subsection 3.3. One can check directly that A
and V preserve homotopy, suspensions and mapping cones. Hence, they induce an
adjoint pair of exact functors between the homotopy categories

K(A) # K (A).

If A is also abelian, we observe V induces an exact functor V: D,(A) — D(A).
If further A is an AB4 category (i.e., an abelian category with coproducts and the
coproduct is an exact functor), then A preserves acyclic objects. Thus, A naturally
induces an exact functor A: D(A) — D,,(A). Moreover, (A, V) is an adjoint between
the derived categories, see [29], Lemma 1.1.
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3.5. If A is an additive category with coproducts, then it can be checked directly
that both K(A) and K,,(A) have coproducts. If A is an AB4 category, then both D(A)
and D,,(A) have coproducts, see [25], Proposition 3.5.1.

In addition, in these cases, the degree-wise coproduct of objects in K(A) (or K,,(A),
D(A), D,,(A)) is the categorical coproduct.

Results similar to those of Subsection 3.5 hold when we replace the coproduct
by the product and replace an AB4 category by an AB4* category (i.e., an abelian
category with products and the product is an exact functor).

Lemma 3.1.
(1) Let A be an additive category with coproducts and X be an object in K(A).
Then X is compact in K(A) if and only if A(X) is compact in K, (A).
(2) Let A be an AB4 category and X be an object in D(A). Then X is compact
in D(A) if and only if A(X) is compact in D, (A).

Proof. We prove (1). The proof of (2) is similar. First, assume X is compact
in K(A). Since (A, V) is an adjoint pair and V preserves coproducts (cf. 3.5), A pre-
serves compact objects, see [27], Theorem 5.1. Thus, A(X) is compact in K, (A).

For the converse, assume A(X) is compact in K,(A). For a class of objects Y;
(¢ € I) in K(A), consider the commutative diagram

H HomK(A) (Xv }/z) e HOIIIK(A) (X, H Y;)

el il

Hiel(mﬂ‘,)*[ j(n]—[iel Yi,)*
[T Homy ) (X, VA(Y:)) Honm ) (x, vA (H y))
el el

gHomK,,(A)(A(X), AY;) = Homy, (4) (A(X), A(H 1@))

el

where the vertical isomorphisms are induced by the adjoint pair (A, V) and the
horizontal one is based on the assumption. Since the unit ny: M — VA(M) is
split injection for each M € K(A) (see Subsection 3.3), we conclude that can is an
isomorphism. Il

773



Example 3.1. Let n = 1. Following [1], a differential R-module (P,dp) admits
a finite projective flag if P= Py [[Pi[]...]] P and dp is of the form

0 Oio Oop ... O—10 Oio
0 0 Oo1 ... O—11 01
0 0 0 oo Oi—12 02
0 0 0 0 011
0 O 0 0 0

where each P; is a finitely generated projective R-module. Set F'= (P, []...][ P;,dp)
(0 < i <1). These are differential submodules of (P, dp). It follows that (P,dp) has
a filtration

FOCF'C...CF'=(Psdp)

such that F'/F=1 = (P;,0) for each i. Since A(R) = (R,0) € D;(R-Mod)® (see
Lemma 3.1), the differential modules that admit finite projective flags are compact
objects in Dy (R-Mod).

If A is an abelian category, then an object X in D,,(\A) is zero if and only if V(X)

is zero in D(A). Similar result holds in the homotopy category, see the next lemma.

Lemma 3.2. Let A be an additive category and X be an object in K,,(A). Then X
is zero in K, (A) if and only if V(X)) is zero in K(A).

Proof. The forward direction is trivial. For the converse, assume V(X) is zero
in K(A). Then there exists s* € Hom4(X?, X*~!) for all i € Z such that

(3.1) idy: = s o0 + 0% ! o sh.

We define ¢t: X¢ — X1 ag

g =

; s"0 0y 08 ifi=0 (mod n),
Y ifi=j (modn)and 1 <j<n—1.

Our aim is to show that this gives the homotopy map from idx to 0 in K, (A).
Due to the choice of ¢%, it remains to check that idxo = o' 0 0% + 8;(1 o 0% and
idyn1 = 0% 0%t + 0% 200" ! Indeed, these are direct consequences of (3.1).
Thus, X is zero in K, (A). O
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Lemma 3.3.
(1) Let A be an additive category with coproducts. If K(A) is compactly generated,

¢ under the

then so is K, (A) and it is compactly generated by the image of K(A)
compression functor.
(2) Let A be an AB4 category. If D(A) is compactly generated, then so is D,,(.A) and

C

it is compactly generated by the image of D(A)¢ under the compression functor.

Proof. We prove (1). The proof of (2) is similar. Suppose K(A) is compactly
generated. Lemma 3.1 yields A(K(A)°) C K,,(A)¢. Let X € K,,(A) and

HOIIIKH(A)(A(K(.A)C),X) = 0

In order to show K,,(.A) is compactly generated by A(K(A)®), we need to prove X = 0
in K, (A). By the adjoint pair (A, V) we have

HOIDK(A)(K(A)C, V(X)) =0.

Then the assumption implies V(X) = 0. It follows immediately from Lemma 3.2
that X = 0 in K,,(A). The proof has been completed. O

The following result is due to Neeman, see [27]|, Theorem 4.1 and [28], Theo-
rem 8.6.1.

3.6. Let x be a compactly generated triangulated category and F': x — 7T be an
exact functor between triangulated categories. Then
(1) F has a right adjoint if and only if F' preserves coproducts.
(2) F has a left adjoint if and only if F' preserves products.

As we assume R is a left noetherian ring, the direct sum of injective R-modules
is still injective, see [15], Theorem 3.1.17. Hence, R-Inj is an additive category with
coproducts.

3.7. Krause proved that K(R-Inj) and the full subcategory of K(R-Inj) formed
by acyclic complexes (denoted by K**(R-Inj)) are compactly generated triangulated
categories, see [24], Proposition 2.3, Corollary 5.4. Moreover, Krause in Corollary 4.3
of [24] observed that the canonical sequence

K2 (R-Inj) 2% K(R-Inj) -2+ D(R-Mod)

induces a recollement; the definition of recollement is recalled in Subsection 2.3.

Let K2°(R-Inj) denote the full subcategory of K, (R-Inj) formed by acyclic com-
plexes. This is a localizing subcategory of K(R-Inj). Next, we give the periodic
version of Krause’s result in Theorem 3.1.
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Theorem 3.1. Let R be a left noetherian ring. Then
(1) K2(R-Inj), K, (R-Inj) and D,,(R-Mod) are compactly generated triangulated cat-
egories.
(2) The sequence

K2 (R-Inj) 2% K,,(R-Inj) - D,,(R-Mod)

induces a recollement

T T T T
Ka¢(R-Inj) —2—— K,,(R-Inj) D,,(R-Mod) .
\_/ \_/
Proof. (1) Combining with Subsection 3.7, it follows immediately from

Lemma 3.3 that K, (R-Inj) and D,,(R-Mod) are compactly generated. Also, with the
same proof of Lemma 3.3, K2°(R-Inj) is compactly generated.

(2) Next, we borrow Krause’s idea in the proof of Corollary 4.3 of [24]. Since Q) pre-
serves coproducts and products (cf. Subsection 3.5), Q has both a left adjoint and a
right adjoint by (1) and Subsection 3.6. Combining with Subsection 2.4, it remains to
show @ induces a triangle equivalence K,,(R-Inj)/K2°(R-Inj) = D, (R-Mod). Again
Subsection 2.4 yields this is equivalent to show the right adjoint of @ is fully faithful.

Denote by @, the right adjoint of (). It is clear that the inclusion functor J:
Kn(R-Inj) — K, (R-Mod) preserves products. Then Lemmata 3.3 and 3.6 imply
that J has a left adjoint Jy. Hence, there are adjoint pairs

K, (R-Mod) Jjﬁ Ky, (R-Tnj) % D,,(R-Mod).
Since J is a fully faithful right adjoint of .Jx, Homg , (r-moa) (Ker Jy, Ky, (R-Inj)) = 0.
This implies KerJy, C K2(R-Mod). Thus, for each M € K, (R-Mod), the unit
nav: M — J\(M) is a quasi-isomorphism. It follows that Q(M) = (Q o Jx)(M).
That is, @ o Jy is isomorphic to the localization functor K, (R-Mod) — D, (R-Mod).
By Subsection 2.4, Jo @, is fully faithful. As J is also fully faithful, we infer that @,
is too. This completes the proof. O

3.8. Let A be an abelian category. An n-periodic complex X € K,,(A) is called
homotopy injective (or homotopy projective) if
Homg,, 4)(Y, X) =0 (or Homg, 4)(X,Y) =0, respectively)

for each acyclic complex Y € K,,(A). Denote by Ki (A) (or KP(A)) the full subcate-
gory of K,,(A) consisting of all homotopy injective (or homotopy projective, respec-
tively) complexes. They naturally inherit the structure of triangulated categories.
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Let @, denote the right adjoint of Q: K, (R-Inj) — D,(R-Mod). Using the ad-
jointness, it is easy to check Q,(X) is homotopy injective for each n-periodic com-
plex X and the unit X — Q,(X) is a quasi-isomorphism. Thus, we get:

Corollary 3.1. @, induces a triangle equivalence

D,.(R-Mod) — K! (R-Mod).

Remark 3.1.
(1) Tang and Huang in Theorem 5.11 of [36] proved an analog of the above result
for higher differential objects. The two results coincide when n = 1.
(2) Stai in Section 3 of [35] obtained the dual version of the above result. That is,
the localization functor @: K,(R-Mod) — D, (R-Mod) has a left adjoint and the
left adjoint induces a triangle equivalence

D,,(R-Mod) — KP (R-Mod).

4. THE TRIANGULATED HULL OF THE ORBIT CATEGORIES
In this section, the main result is Theorem 4.1.

4.1. Let A be an additive category and T: A — A be an autoequivalence. As
mentioned in the introduction, the objects in the same T-orbit are isomorphic in the
orbit category A/T. We remind the reader that, in general, F' is not isomorphic to
the identity functor in the orbit category A/T, see [23] and [35], Proposition 5.6.
However, there is a natural isomorphism 7 = 7 o T, where 7: A — A/T is the
projection functor. Moreover, this gives rise to the universal property of the orbit
category:

If the functor F': A — B satisfies F o T = F, then there exists a natural functor
F: A/T — B such that For = F.

4.2. Let A be an additive category. Recall the degree shift functor (n) on C(A):
for a complex X, X (n)® := X", 8§((n) = 8?'"; (n) acts trivially on morphisms.

There is a natural isomorphism %" (X) = X (n) which maps z € X? to (—1)"z.
If further A is an additive category with coproducts (or AB4 category), then
AoXY" > Ao (n)=A. By the universal property of the orbit category, A induces

A K(A)/Z" — K (A)C (or A: D(A)°/E" — D, (A)°, respectively).
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We first strengthen Lemma 3.3 to the following result, compare [35], Lemma 3.13.

Proposition 4.1.
(1) Let A be an additive category with coproducts. If K(A) is compactly generated,
then there is a fully faithful embedding

A K(A)/E" — K (A)°

and K, (A) is compactly generated by its image.
(2) Let A be an AB4 category. If D(A) is compactly generated, then there is a fully
faithful embedding
A: D(A)/E™ — D, (A)°

and D,,(A) is compactly generated by its image.

Proof. We prove (1). The proof of (2) is similar. By Lemma 3.3, it remains to
show A is fully faithful. For X,Y € K(A)¢, we have

Homy, (4)(A(X), A(Y)) = Homg 4 (X, VA(Y)) = [ [ Homy 4 (X, £™(Y)),
ez
where the second isomorphism holds because X is compact and VA(Y) = [] (Y,
i€z
see Subsection 3.3. It follows immediately from the isomorphism above that the
induced functor A: K(A)¢/S" — K, (A)¢ is fully faithful. O

4.3. A homogeneous morphism f in a dg category is called closed if f is of
degree 0 and 9(f) = 0. We call a natural transformation 7 between dg functors
closed if nx is closed for all X € A.

The following is the universal property of the orbit category of the dg category.

Lemma 4.1. Let T: A — A be a dg autoequivalence of a dg category A and
F: A — B be a dg functor between dg categories such that there exists a closed
natural isomorphism 1: F oT — F. Then F induces a dg functor F: A/T — B
such that F o = F, where 7: A — A/T is the projection functor.

Proof. By assumption, 1 induces closed isomorphisms F o T® — F' (denoted
by n%). We define F': A/T — B as F(M) = F(M) for all M € A; for each ho-
mogeneous morphism a: M — TY(N) in Hom 4,7(M, N), F(c) is defined by the

composition

PO T pri(ny) e PV,
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By assumption, F' is a dg functor and 7 is closed, we have a commutative diagram

Hom (X, T7(Y)) —— Homz (F(X), F(T?(Y))) —= Homp(F(X), F(Y))

| &

Hom (X, T7(Y)) —— Homp (F(X), F(T?(Y))) ——= Homp(F(X), F(Y)).

This means F is a dg functor. Clearly For = F. (]

Example 4.1. Let C be an additive category. Set A = Cqg(C) and B = Cqx(Z).
The suspension functor £": Cqs(C) — Cyg(C) is a dg autoequivalence. If X is an
n-periodic complex in A, then

Hom4(X™(Y), X) = Homa (Y (n), X) 2 Hom4 (Y, X),
where the first isomorphism is induced by X" (Y') 2 Y(n) and the second one maps
a: Y(n) — X9 to a: Y™ — X" Set F = Homy(—,X) and T = ¥". We
conclude that there is a closed natural isomorphism F' o T = F'. This is an example
that satisfies the assumption of Lemma 4.1.

4.4. Let R be a left noetherian ring. Krause in Proposition 2.3 of [24] proved
that K(R-Inj) is compactly generated. Moreover, he observed that the localization
functor K(R-Mod) — D(R-Mod) induces the triangle equivalence

K(R-Inj)* = D*(R-mod).

The inverse is induced by taking injective resolution. In particular, K(R-Inj)¢ is the
full subcategory of K(R-Inj) consisting of complexes with finitely generated total
cohomology.

Recall that perg, (R) is the dg category of perfect complexes over R and C(';g;f (R-Inj)
is the dg category of bounded below complexes of injective R-modules with finitely
generated total cohomology. They are dg enhancements of per(R) and D’(R-mod),
respectively, see Subsection 4.4 and Example 2.1.

Next, we realize examples of triangulated categories in Theorem 3.1 as derived
categories of dg categories, compare [12], Theorem 2.2 and [24], Appendix A.

Theorem 4.1. Let R be a left noetherian ring. There are triangle equivalences

Ky (R-Inj) — D(ng’f(R—Inj)/E”) and D, (R-Mod) — D(per4,(R)/%").
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Proof. We prove the first equivalence. The proof of the second one is similar.
For each complex X of R-modules, set X" = Hompg(—, X). By Lemma 4.1 and
- )
Example 4.1, the map I — [ |CI;§ 7 (ReInj) /50 induces an exact functor

®: Ky (R-Inj) — D(CL (R-Inj) /=),

The functor ® preserves coproducts. Indeed, for each object J € C(';g;f (R-Inj) and
a family I; € K,,(R-Inj) (i € S), we have isomorphisms

o(o{112)0)

12

Homk (p-1nj) (EI(J)a H Ii> = HHomK(R-Inj)(Eil(J)in)

= = i€s
=~ []H/(2(L;)(J)) = | < 11 (I)(Ii)(J)>
€S €S

for each [ € 7, where the second isomorphism holds because J is a compact object
in K(R-Inj), see Subsection 4.4. Hence, in D(ng’f(R-Inj)/Z”),

(b(i]EISIi) = ie]_E@(Ii).

We observe that there exists a commutative diagram

(4.1) HO(CHY (R-Inj/5") —2> K, (R-Inj)°

| [

. ® .
D(C},” (R-Inj) /") <—— Ky (R-nj),
where Y is the Yoneda embedding. From Proposition 4.1,
A: HY(CL (R-Inj)/S") — Ky (R-Inj)°

is fully faithful and K, (R-Inj) is compactly generated by the image of A. As
D(ng’f (R-Inj)/¥™) is compactly generated by the image of Y, we conclude that ®
is an equivalence by Lemma 2.1. O

Remark 4.1.
(1) Let k be a field. When R is a finite dimensional k-algebra with finite global
dimension, the triangle equivalence D,,(R-Mod) — D(pery,(R)/%") was proved
by Stai with a different method, see [35], Section 4.
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(2) Let B (or A) denote perg,(RR)/%" (or ng’f(R—Inj)/E”, respectively). We can
regard B as a full dg subcategory of A, see Subsection 4.4. Then we can form
a dg quotient category A/B, see Keller’s construction in [21], Section 4. The
restriction functor D(A/B) — D(A) is fully faithful and its essential image is
equal to the kernel of the restriction functor D(A) — D(B), see [21], Section 4
and [13], Proposition 4.6. Combining this with Theorems 3.1 and 4.1, we conclude
that there is a triangle equivalence

Ka<(R-Inj) ~ D(A/B).

4.5. Let A be a dg enhancement of a triangulated category 7. Assume the functor
F: T — T is an autoequivalence and it lifts to a dg equivalence A — A (still denoted
by F'). Then we can form an orbit category .4/ F which naturally inherits a structure
of the dg category and gives the desired enhancement of 7/F. Hence,

T/F =5 HY(A/F) -5 D(A/F),

where Y is the Yoneda embedding. The triangulated hull of T/F is chosen to be
the triangulated subcategory of D(A/F') generated by the image of Y. It is up to
direct summands equivalent to D(A/F)¢. Thus, we use D(A/F)° to represent the
triangulated hull of 7/F in the article, see Keller’s definition in [22], Section 5 for
a broader definition of the triangulated hull.

The inverse of the equivalence K(R-Inj)¢ — D’(R-mod) (see Subsection 4.4) is
induced by taking injective resolution. We denote it by i.

Corollary 4.1. Let R be a left noetherian ring. Compression of complexes induces
functors

Aci: D’(R-mod)/Y" — K, (R-Inj)® and A: per(R)/2" — D,,(R-Mod)®

and these yield embeddings of the orbit categories into their triangulated hull.

Proof. For the first one: Cjéf(R—Inj) is the dg enhancement of D’(R-mod).
Then C(J{g’f (R-Inj)/X" is the desired dg enhancement of D®(R-mod)/¥". Given this
and Subsection 4.5, the desired result follows from Theorem 4.1.

For the second one: perg, () is the dg enhancement of per(R?). Then the remaining
proof is parallel to the first one. O
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Remark 4.2. Fix a locally noetherian Grothendieck category A. That is, A is
an AB4 category with exact direct colimit, and A has a set Ag of noetherian objects
such that every object in A is a quotient of a coproduct of objects in Ag. Denote
by A-noeth the full subcategory of A formed by noetherian objects, and by .A-Inj
the full subcategory of A formed by injective objects. With the same argument of
Theorem 4.1, we have K,,(A-Inj) — D(C(Jirg;f(.A—Inj)/E")7 where ng’f(A-Inj) is the
dg category of bounded below complexes of injective objects with noetherian total
cohomology. Then the same proof of Corollary 4.1 yields that the compression of
complexes

Aoi: D’(A-noeth)/E" — K,,(A-Inj)*

induces an embedding of the orbit category into its triangulated hull.

4.6. It was proved by Stai [35], Lemma 3.5 that when R has finite global dimen-
sion, then every object in C;(R-mod) is quasi-isomorphic to one admitting a finite
projective flag (see the definition in Example 3.1). Thus, D;(R-mod) is equal to
the thick subcategory generated by A(R). As he also mentioned, this extends to
any n > 1. Combining with Proposition 4.1, there is a natural triangle equivalence

D,,(R-mod) — D,,(R-Mod)°.

With the same method of Stai, one can show: if A is an abelian category with
enough projective objects and every object in A has finite projective dimension, then

Dn(A) = thickp, (4)({A(P): P is projective in A}).

The following result was proved independently by Stai (see [35], Theorem 4.3)
and Zhao (see [37], Theorem 2.10) when R is a finite dimensional algebra with finite
global dimension over a field.

Corollary 4.2. Let R be a left noetherian ring with finite global dimension, then
the compression of complexes

A: D’(R-mod)/%" — D,,(R-mod)

is an embedding of the orbit category into its triangulated hull.

Proof. When R has finite global dimension, D’(R-mod) = per(R). Combining
with Subsection 4.6, the desired result follows from Corollary 4.1. O
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4.7. When R is hereditary, D’(R-mod)/%" is triangulated and hence, it is (up to
direct summands) equivalent to its triangulated hull, see [22], Theorem 1 and [35],
Proposition 5.3. When n = 1 and R is a path algebra of finite connected acyclic
quiver, Ringel and Zhang in Theorem 1 of [34] proved that D°(R-mod)/Y is equiva-
lent to a stable category of certain Frobenius category.

5. DERIVED EQUIVALENCE AS DERIVED TENSOR PRODUCT

For two rings A and B, the purpose of this section is to compare the triangle
equivalences D(A-Mod) ~ D(B-Mod) and D,,(4-Mod) ~ D, (B-Mod). It turns out
that these two equivalences are closely related, see Theorem 5.1.

5.1. Tensor products. Let X be a complex of B-A bimodules. For an n-periodic
complex Y in C,(A-Mod), the tensor product X ® 4 Y is an n-periodic complex in
C,.(B-Mod). Thus, X ® 4 — gives a functor

X ®4 —: Co(A-Mod) — C,,(B-Mod).

The notation X X4 — is to distinguish it from X ®4 —: C(A-Mod) — C(B-Mod).
Moreover, the diagram

(5.1) C(A-Mod) 2245 ¢(B-Mod)
A A
Lo

Cn(A-Mod) — C,,(B-Mod)
is commutative; see [1], equation (1.9.4) for the case n = 1.

5.2. Keep the same assumption as Subsection 5.1. Since X K, — preserves
homotopy, suspensions and mapping cones, it induces an exact functor X X, —:
Kn(A-Mod) — K, (B-Mod). We define the derived tensor product X X% — by the
composition

D, (A-Mod) —" > K, (A-Mod) 2245 K., (B-Mod) —2= D,,(B-Mod) ,

where p is the left adjoint of the canonical functor K, (A-Mod) — D,,(A-Mod), see
Remark 3.1 for its existence. The compression functor A: K(A-Mod) — K,,(A-Mod)
preserves homotopy projective objects because its right adjoint preserves acyclic
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complexes. Combining this with (5.1), we observe that there exists a commutative
diagram

X®4% -
D(A-Mod) —— D(B-Mod)
Al lA
xRt —
D,,(A-Mod) —= D,,(B-Mod).
For a triangulated category 7, we write X7 to be the suspension functor of 7.
Lemma 5.1. Let F': T — T’ be an exact functor between triangulated cate-

gories. Then F is fully faithful if and only if the induced functor F: T /X% — T' /3%,
is fully faithful. Moreover, F is an equivalence if and only if ' is an equivalence.

Proof. Since F(X) = F(X) for each object X € T, the second statement
follows from the first one. Fix objects X,Y € T, we observe that the map
F: [[Homs (X, 25Y) — [ Homsp (F(X), S5, F(Y))
i€z i€z
is the direct sum of the composition maps

Homy (X, £2Y) -5 Homy (F(X), F(S2Y)) & Homy (F(X), S2 F(Y)),

where the isomorphism is induced by the canonical isomorphism FY+ =2 ¥4 F. The
desired result follows. O

Lemma 5.2. Let F, G, ®1, ®5 be exact functors between compactly generated
triangulated categories such that the diagram

F
r] —— T2

qu l%

i

commutes. Assume F,G preserve coproducts and ®; preserves compact objects for
i = 1,2. Moreover, we assume ®; induces a fully faithful functor

O xi /XL — TS

such that T; is compactly generated by its image for i = 1,2. Then we have the
implications:

(1) F is an equivalence = G is an equivalence.

(2) F preserves compact objects and G is an equivalence = F' is fully faithful.
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Proof. Combining with the assumption, the condition of (1) or (2) implies the
diagram

a$ /o L ag/mn

J |

T —5 Ty

commutes. Indeed, this is trivial for (2). For (1), it remains to show that G preserves

compact objects. The assumption and the condition of (1) yield G(Im ®;) C 7.
Since 7; is compactly generated by Im @, we have thickz, (Im ®;) = T, see Sub-
section 2.5. On the other hand, the full subcategory {X € T;: G(X) € T3} of Ty is
thick. Thus, G preserves compact objects.

(1) Assume F is equivalence. Then F is an equivalence. For i = 1,2, Im ®; is
a compact generating set of 7;. Clearly Im ®; is closed under suspensions. Then we
apply Lemma 2.1 to conclude that G: 71 — 75 is an equivalence.

(2) By assumption, G induces an equivalence G: T¢ — 7. Since ®; is fully faith-
ful for i = 1,2, F is fully faithful. Then Lemma 5.1 yields the functor F': 2§ — §
is fully faithful. According to Lemma 2.1, F' is fully faithful. (]

Example 5.1. Let R be a commutative noetherian ring with a dualizing com-
plex w. Iyengar and Krause in Theorem I of [17] proved that

w®g —: K(R-Proj) — K(R-Inj)

is a triangle equivalence. Combining this result with Proposition 4.1 and Lemma 5.2,
we immediately get that there is a triangle equivalence

wlp —: K, (R-Proj) — K, (R-Inj).
Let Thick T be the lattice of thick subcategories of a triangulated category 7.

5.3. Suppose A is an additive category with coproducts (or AB4 category). We
write 7 to be K(A) (or D(A)) and 7’ to be K, (A) (or D, (A), respectively). For
a thick subcategory x of T¢, we let F(x) be the smallest thick subcategory of 7'¢
containing all objects A(X) such that X € z. For a thick subcategory =’ of T'¢,
we let G(z') be the smallest thick subcategory of T¢ containing all objects X in T°¢
such that A(X) € 2’. Thus, we have maps of lattices

F
Thick T° <_T> Thick T"°.

The next result is inspired by a recent result of Iyengar, Letz, Pollitz, and the
author, see [18], Corollary 5.9. It is important in the proof of Theorem 5.1.
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Lemma 5.3. Keep the assumptions as in Subsection 5.3. Then G o F' = id. In
particular, the map of lattices F': Thick T¢ — Thick T'€ is injective.

Proof. Fix a thick subcategory x of 7. In order to show GF(x) = z, it suffices
to show for X, Y € T°¢,

X € thickr(Y) & A(X) € thicks (A(Y)).

The forward direction is trivial, see [2], Lemma 2.4. For the converse, assume A(X)
is an object in thicky(A(Y)). Then we have VA(X) € thicky(VA(Y)). Since

VA(M) = [] ¥"(M) for each M € T (see Subsection 3.3), X is in the localizing
i€z

subcategory of T generated by Y. As X, Y are compact objects in T, we conclude

by Subsection 2.5 that X is in thick7(Y"). The proof has been completed. O

Theorem 5.1. Let A, B be two rings and X be a complex of B-A-bimodules.
Then the functor X ®% —: D(A-Mod) — D(B-Mod) is a triangle equivalence if and
only if the functor X X% —: D, (A-Mod) — D,,(B-Mod) is a triangle equivalence.

Proof. First, assume X ®';4— is a triangle equivalence. It follows immediately
from Proposition 4.1, Subsection 5.2 and Lemma 5.2 that X @'R— is a triangle equiv-
alence.

Now, assume X @IA_ is a triangle equivalence. It restricts to an equivalence be-
tween the full categories of compact objects. Combining with the commutative
diagram in Subsection 5.2, we conclude by Lemma 3.1 that X @4 —: D(A-Mod) —
D(B-Mod) preserves compact objects. It follows from Proposition 4.1 and Lemma 5.2
that X®Y — is fully faithful.

To show X ®';4 — is an equivalence, by Lemma 2.1 it remains to show the essential
image of X ®4 —: D(A-Mod)® — D(B-Mod), denoted by z, is a compact generating
set of D(B-Mod). Consider the commutative diagram

c X®E“7

D(A-Mod)

D(B-Mod)®

A A
XKY —
D, (A-Mod)® —2> D,,(B-Mod)°.
We apply Proposition 4.1 to get thickp, (B-mod)(A(z)) = Dn(B-Mod)®. Then
Lemma 5.3 yields the smallest thick subcategory of D(B-Mod)® containing x is the

whole of D(B-Mod)®¢. Hence, x is a compact generating set of D(B-Mod). The proof
has been completed. O

Two rings are derived equivalent provided that D(A-Mod) and D(B-Mod) are
equivalent as triangulated categories.
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5.4. It is an open question whether any triangle equivalence
D(A-Mod) — D(B-Mod)

is isomorphic to a derived tensor functor X ®';4 —, where X is a complex of B-A
bimodules. Such derived equivalence is called a standard equivalence.

However, if A, B are two algebras over a commutative ring k such that they are flat
as k-modules, then any triangle equivalence D(A-Mod) — D(B-Mod) is standard,
see [20], Corollary 9.2 and [33], Section 3.

Combining with Theorem 5.1, the statement in Subsection 5.4 implies the follow-
ing result.

Corollary 5.1. Let k be a commutative ring and A, B be flat k-algebras. If A
and B are derived equivalent, then D,,(A-Mod) and D,,(B-Mod) are equivalent as
triangulated categories.

If A is a left noetherian ring with finite global dimension, then D,,(A-Mod)¢ =
D.,(A-mod); see Subsection 4.6. As a consequence of Corollary 5.1, we have:

Corollary 5.2. Let k be a commutative ring and A, B be flat k-algebras. If A, B
are noetherian with finite global dimensions and A, B are derived equivalent, then
D, (A-mod) and D,,(B-mod) are equivalent as triangulated categories.

Remark 5.1. The above corollary extends a result of Zhao, see [37], Theorem.
In her paper, she proved the above result holds for finite dimensional algebras with
finite global dimensions over a field.

6. KOSZUL DUALITY FOR PERIODIC COMPLEXES

Throughout this section, k£ is a field and S is the graded polynomial algebra
klx1,..., 2] with deg(xz;) = 1. We let A denote the Koszul dual of S. More pre-
cisely, A is the graded exterior algebra over k on variables &1, ...,&. of degree —1.

For a graded algebra A, denote by A-Gr (or A-gr) the category of left (or finitely
generated left, respectively) graded A-modules. A graded A-module is called graded-
injective provided that it is an injective object in A-Gr. It is well-known that A-Gr
has enough projective objects and enough injective objects, see [9], Section 1.5 and
Theorem 3.6.2.

Let A-GrInj denote the category of graded-injective A-module. As A is noetherian,
one can show that the direct sum of graded-injective A-module is graded-injective;
the proof is parallel to the non-graded version, see [15], Theorem 3.1.17.
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The main purpose of this section is to give the following periodic version of the
Koszul duality.

Theorem 6.1. There exists a triangle equivalence

Ky (A-GrInj) — D,,(S-Gr).

We give the proof of the above result at the end of this section. As a consequence,

we have:
Corollary 6.1. There is an embedding
D’(A-gr)/E" — D,,(S-gr)

of the orbit category into its triangulated hull.

Before giving the proof of the corollary, we recall a result.

6.1. Due to Krause (see [24], Proposition 2.3), K(A-Grlnj) is compactly gen-
erated. Moreover, the localization functor K(A-Gr) — D(A-Gr) induces a triangle
equivalence

K(A-GrInj)© = D°(A-gr).
Its inverse is induced by taking grade-injective resolution, denoted by i.

Proof of Corollary 6.1. Keep the notation as in Subsection 6.1, Remark 4.2
implies that the compression

Aoci: D(A-gr)/E" — K, (A-GrInj)©

induces an embedding of D¥(A-gr)/X" into its triangulated hull. It follows from The-
orem 6.1 that K, (A-GrInj)¢ is triangle equivalent to D, (S-Gr)°. Choose A = S-gr
in Subsection 4.6, we conclude that D, (S-gr) is the smallest thick subcategory con-
taining A(S(7)) for all i € Z. Tt is precisely D, (S-Gr)¢, see Subsection 2.5 and
Proposition 4.1. This completes the proof. O

6.2. Recall the functor ®: C(S-Gr) — C(A-Gr), see [5], [7] or [14] for more

details. Set (—)* := Homy(—, k). For a graded S-module M = [[M;, ®(M) is
defined by the complex i€Z

...i>A*®kMi,1 i)A*@)kMii)A*@kMiJrli)...,
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where 9(f @ m) := (—1)"*? Elﬁjf ® z;m for f € (A*); and m € M;, the sign makes
=

sure that  is A-linear. For a complex M: ... -4 Mi—1 -4y ppi -4y ppitt 4y
in C(S-Gr), ®(M) is defined by the total complex of the double complex

(6.1)
1®d 18d
—8>A*®kMZ—8>A*®kMZ+1—8>
1®d 1®d
2 Aty Mt 0, Ay Mt _o
1®d 1®d

where the Ith component of ®(M) is [ A* ®) M.
i+j=l

6.3. Keep the notation as above. Since ® preserves homotopy, suspensions and
mapping cones, it induces an exact functor ®: K(S-Gr) — K(A-Gr). The image of
this functor lies in K(A-Grlnj) because A* is graded-injective. Bernstein, Gel’fand,
and Gel'fand (see [7], Theorem 3) proved that ® naturally induces a triangle
equivalence

®: D°(S-gr) = D°(A-gr),

see also [5], Theorem 2.12.1. This is known as the BGG correspondence. Moreover,
it fits into the commutative diagram

(6.2) D®(S-gr) —— D’(A-gr)

ne| |

D(S-Gr) —— K(A-GrlInj),
where the bottom map is the composition
D(S-Gr) -2 K(S-Gr) -2 K(A-Grlnj),

where p is the left adjoint of the localization functor K(S-Gr) — D(S-Gr), see [§],
Proposition 2.12 for its exisence.
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The essential images of the vertical functors in (6.2) are precisely the full subcat-
egories of compact objects in the bottom categories. This is clear for the left one
as the global dimension of S is finite. See Subsection 6.1 for the right one. Com-
bining with the fact that ® o p preserves coproducts, Lemma 2.1 yields ® o p is an
equivalence, see [24], Example 5.7.

Now we define the exact functor D, (S-Gr) — K, (A-Grlnj).

6.4. For an n-periodic complex M € C,(S-Gr), the total complex ®(M)
(see (6.1)) is an n-periodic complex in C, (A-Gr). Therefore this gives a functor

®': C,(S-Gr) —» C,(A-Gr)

which maps M to ®(M). Also, ¢’ induces an exact functor ®': K,(S-Gr) —
K, (A-Gr) between the homotopy categories and its image lies in K,,(A-GrInj). Con-
sider the composition

D, (S-Gr) 2 K, (S-Gr) s K, (A-Grlnj),

where p’ is the left adjoint of the localization functor K, (S-Gr) — D, (S-Gr); its
existence can refer the non-graded version of Remark 3.1.

Proof of Theorem 6.1. It follows from Proposition 4.1 and Subsection 6.1
that D, (S-Gr) and K, (A-Grlnj) are compactly generated triangulated categories.
Combining with Subsection 6.3, we observe that there exists a commutative diagram

D(S-Gr) —2* » K(A-Grlnj)

| |
&’ op’

D, (S-Gr) —— K, (A-GrlInj).

Since @' o p’ preserves coproducts, Proposition 4.1 and Lemma 5.2 imply @' o p’ is
a triangle equivalence. O
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