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Abstract. Let G = Kny no,...,n, be a complete multipartite graph on [n] with n > r > 1
and Jg being its binomial edge ideal. It is proved that the Castelnuovo-Mumford regularity
reg(J&) is 2t 4 1 for any positive integer ¢.
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1. INTRODUCTION

The notion of binomial edge ideals of graphs was first introduced in [7] and [11]
independently. Since then, many researches on binomial edge ideals of graphs have
been done, cf. [8]. One of challenging problems in this area is the computation of the
Castelnuovo-Mumford regularity of powers of binomial edge ideals. Because of the
difficulties, only a few results have been obtained. When the graph is a cycle, a star
or complete, such regularities were successfully computed in [10]. The regularities of
powers of binomial edge ideals of a closed graph were obtained in [5]. The aim of this
paper is to compute the regularities of powers of binomial edge ideals of complete
multipartite graphs.

Let G = (V(G), E(G)) be a finite simple graph with V(G) = [n] := {1,2,...,n}
and S = K[z1,x2,...,Tn,Y1,Y2,-..,Yn] be a polynomial ring in 2n variables over
a field K. Then the binomial edge ideal of G, denoted by Jg, is the ideal generated
by all binomials

fij =xy; —xjy, 1<i<ji<mn, {i,j}€E@G).
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On the other hand, for a finitely generated graded S-module M, the (Castelnuovo-
Mumford) regularity of M, denoted by reg(M), is an important algebraic invariant
of M. For a long time, mathematicians have made great efforts to find homogeneous
ideals I whose powers possess linear regularities, i.e., reg(I') = at + b. When G
is a complete multipartite graph, we show that its binomial edge ideal Jg is such
a homogeneous ideal. In fact, we prove that reg(J5) = 2t + 1.

After preparing some auxiliary results in Section 2, we reduce the problem on
the power J} to certain suitable powers by using symbolic powers in Section 3.
Section 4 is the main part of this paper. We simplify some colon ideals, which makes
it possible to estimate the regularity of sums of powers of binomial edge ideals of
complete graphs and another ideal. Then we prove the main result reg(J5) = 2t +1
in Section 5.

2. PRELIMINARIES

Let S = K[z1,x2,...,2Z,] be a polynomial ring over a field K and M a finitely
generated graded S-module. Let

R A N - Ny

be a graded minimal free resolution of M, where F; = @ S(—a;;). Im(p;) is called
i
the jth syzygy module of M. One says that M is m-regular if a;; —j < m for all ¢, j
and defines the Castelnuovo-Mumford regularity (or regularity) of M by
reg(M) = min{m: M is m-regular}.

Let I be a nonzero homogeneous ideal of S. Notice that the ith syzygy of I is just
the (i + 1)st syzygy of S/I. It follows that reg(l) = reg(S/I)+ 1. For the properties
of regularity, we refer to [4].

The following Regularity Lemma will be used frequently.

Lemma 2.1 (Regularity Lemma, cf. [4], Corollary 20.19). Let 0 - M — N —
L — 0 be a short exact sequence of graded S-modules. Then
(1) reg(N) < max{reg(M), reg(L)};
(2) reg(M) < max{reg(N),reg(L) + 1}.

We will apply the following two lemmas in the sequel.

Lemma 2.2 (Cf. the proof of Lemma 2.10 of [3]). Let I be a monomial ideal
and x a variable of S. Then

reg((1, z)) < reg(I).
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Lemma 2.3 ([9], Lemma 3.2). Let S; = K[x1,x2,...,%,], S2 = K[y1,92,...,YnN]
and S3 = K(z1,22,...,%n,Y1,Y2,-..,yn]. Then, for nonzero homogeneous ideals
I C Sy and J C Sy, we have

veg(Ss /(I + J)) = reg(S1 /1) + reg(Sa/J).

Then, in the above lemma, reg((I,y;)) = reg(I).

Let < be a monomial order on S. For any f # 0 € S, the initial monomial of f
is denoted by in.(f). Let I be a nonzero ideal of S. Then the initial ideal of I,
denoted by in<(I), is the ideal generated by all monomials in.(f), f #0 € I. In
some cases, one can reduce the problem on I to the monomial ideal in< (I).

Lemma 2.4 ([6], Theorem 3.3.4). Let I be a nonzero homogeneous proper ideal
of S. Then, for any monomial order < on S,

reg(I) < reg(in<(1)).

Lemma 2.5 ([4], Lemma 15.5). Let I C J be nonzero proper ideals of S. If there
is a monomial order < on S such that in.(I) =inc(J), then I = J.

In our cases, we are interested in colon ideals. The following lemma is useful.

Lemma 2.6. Let I, 1s,..., I, be nonzero proper ideals of S and f # 0 € S. If
there is a monomial order < on S such that

inc(li+I+...+ 1) =inc (1) +inc(I2) + ... +in(I,) and
inc(l; : f) =inc(f;) :inc(f), i=1,2,...,7,
then
(h+L+...+L): f=0L: )+ T f)+...+ L f).

Proof. Ttisclearthat (I;: f)+(I2: f)+... 4+ f) S (Lh+L+...+1.): f.
Then, by Lemma 2.5, we only need to show that

inc((h+lL+...+L): f) Cinc((lh: f)+ T2z )+ ...+ f)).

Let ge (h+Io+...+1.): f. Thengf e [+ Ir+ ...+ I, and

inc(g)€inc(li + L+...+ I.):inc (f)=(inc (I1) + inc(l2) + ... +inc (1)) :in< (f)
= (in<(I1):in<(f)) + (in<(I2) :in<(f)) + ... + (in< () :in< (f))
=inc(f1:f)+inc(le:f)+... +inc(I,: f)
Cine((Ii:f)+ (L2 f) +.o+ (Lne f))-

The result follows. O
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Let < be a monomial order on S and I = (g1, g2, ...,9s) be a nonzero ideal of S.
Ifinc(I) = (inc(g1),in<(g2),...,in<(gs)), then {g1,g2,...,9s} is called a Grobner
basis of I with respect to <.

Let f,g # 0 € S and, ¢y and ¢, be coefficients of in<(f) and in<(g), respectively.
The S-polynomial of f and g is defined as

_ lem(inc(f),inc(g)) , lem(inc(f),in<(g))
S(f.9) = o ine (/) f T E—

We say that f has a standard expression with respect to g1, g2, ..., gs with remain-

der 0 if

f=f191+f292+---+f393a in<(figi)<in<(f)7 Z.:1527"'58'

Then, by Buchberger’s Criterion, {g1,g2,...,9gs} is a Grobner basis of I if and only
if for all ¢ # j, S(gs, g;) has a standard expression with respect to g1, g2, . . ., gs with
remainder 0.

Remark 2.7. Notice that in Lemma 2.6, inc(I1 + o + ...+ I,) = inc([1) +
in<(I3) + ... +in<(Z;) holds if and only if there is a Grobner basis G; of I; with
respect to <, i = 1,2,...,r, such that Gy U G2 U ... U G, is a Grébner basis of
I + I + ...+ I, with respect to <.

Set [m,n] = {m,m +1,...,n} for any m < n. Write [m] for [1,m]. Let G =
([n], E(G)) be a finite simple graph on [n] and S = K[x1,Z2,...,Tn,Y1,Y2,- - Yn)
be a polynomial ring in 2n variables over a field K. Then the binomial edge ideal
of G, denoted by Jg, is the ideal generated by all binomials

fij =xy; —xjy;, 1<i<ji<n, {ij}e€EG).
Note that, in fact, f;; is just a 2-minor of the generic matrix
X1 Xy ... Iy
(y1 Y2 .- yn) .
Then, by the properties of minors of a determinant, we have:

Lemma 2.8.

(1) For any a < b < ¢, xafbc - xbfac + xcfab =0 and yafbc - ybfac + ycfab =0.
(2) For any a < b < c¢<d, faafve — facfvda + favfea = 0 (Pliicker relation).
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Let T' C [n]. Denote the complete graph on T' by Kp. Then Jg, = {fi;j: 1 <i <
< n}. Let G be the complete r-partite graph Kn, n,....n., -6, V(G) is the d1SJ01nt

union of V; := |1 + Znt, Sonel,i=1,2,...,r, and E(G) = {{a,b}: a and b is
=1
not in the same V} If r = 1, then Jg = 0. In the following, we always assume

that » > 1. Whenn; =no=...=n, =1, G = Ky 1,1 is a complete graph.

For any T' C [n], set Ay = (w;,y;: i € T) and A, = Apy) for any 1 < m < n. Set
Ap = 0 by convention. Note that, for any 1 < m < n and s > 1, reg(43,) = s as A?,
has a linear resolution. On the other hand, let < be the lexicographic order with
T1>Ta> .. > Ty > Y1 > Y2 > ... > Yn, it Is well-known that fi;, 1 <@ < j <
form a Grobner basis of Jk,, with respect to <, which implies that 1n<(JKn) =
(xiy5,1 <1< j < n). Itis also known that reg(in< (Jx, )) = 2 by [13], Theorem 2.2.
Furthermore, we have:

Lemma 2.9. Let 0 < m < n. Then, for any s > 1, reg(in<(Jg, ) + A3,) < s+ 1.

Proof. Let us use induction on m and s together to prove that
reg(ine (Jg,) + A;,) < s+ 1.

If m = 0, the result is clear. If s = 1, then by Lemma 2.2, reg(in<(Jk, ) + 4m) <
reg(in<(Jk,)) = 2.

Now assume that m > 0 and s > 1, and the result is true for (s,m — 1) and
(s —1,m). Consider the following short exact sequences:

0— S (-1) =5 5
(inc(Ji,) + 45,) 21 inc(Jk,) + 43,

. S
inc(Jk,) + 45, + (1)
S o S

0= (ine(Jg,) + A3 + (21)) : 11 =)= inc(Jk,) + 45, + (1)

— 5 —0
inc(Jk,) + A3, + (x1,41) '

Note that in< (Ji, )+ A5, + (21, 41) = in< (Jk, ) + Az, + (21, 91) and (in< (Ji, )+
A5+ (21)) s g1 = inc(Jk,) + A5 + (21). Then reg(in< (Jk,) + A5, + (z1,11)) =
1"eg(1n<(JK[2 )t A[2 m] ) < s+ 1 by the induction hypothesis on m and

reg((in<(Jx,) + A5, + (1))  y1) < reg(ine (Jx,) + A571) < s

— 0,

by the induction hypothesis on s. Then applying Regularity Lemma 2.1 to the above
second short exact sequence, we obtain that

reg(ine (Jg,) + A,, + (1)) < s+ 1.

797



It is easy to see that (inc(Jk,) + A5) : z1 = (inc(Jk,) @ z1) + (A, = z1) =
(Y2, - -, yn) + AS71 hence reg((in (Jk, ) + AS,) : 1) < reg(AS, 1) = s — 1. Then
reg(in<(Jk, ) + A2) < s+ 1 follows by applying Regularity Lemma 2.1 to the above
first short exact sequence. O

The following simple result will be used in Section 4.

Lemma 2.10. Let I be an ideal of a ring R and f € R. Then, in the polynomial
ring R|x],
(Lz): f=:[f)+ (2)

3. POWERS OF BINOMIAL EDGE IDEALS OF COMPLETE MULTIPARTITE GRAPHS
Let I be an ideal of a ring R. The tth symbolic power of I is, by definition,

W= (I'RynR),
pemin(7)

where min(7) is the set of minimal prime ideals of I.
Let I =Q1NQ2N...NE,, be an irredundant primary decomposition of I with
min(l) = {Py, Ps,...,Ps} and P, = /Q;, i = 1,2,...,s. Then it is well-known that

10 =" Ny n...nQY.

Now we consider the case that I is the binomial edge ideal of a complete multi-
partite graph.
Let G = Ky, n,,....n,. be a complete multipartite graph on [n]. Then, by [12],
Theorem 4.3, J& = Jg) for any t > 1. On the other hand, assume that n; <
ng < ... < ng,r>1 and n, > 1, i.e.,, G is not a complete graph. Furthermore,
assume that ny =ny = ... =ny =1 and ns41 > 1. Then, by [12], Lemma 2.2, all the
associated prime ideals of Jg are minimal, which are exactly Jx,,, P, i = s+1,...,r,
i—1 i

where P, = (xj,yj: JE 1+ > ng, Y. nkD It is clear that Pi(t) = P!. On the
k=1 k=1

other hand, JI(;: = J}(n is well-known, see [1], Theorem 10.4. Thus, it follows that

J&=Jg NPy NPL,N...NP.

We will use this equality to compute the regularity reg(J§).
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Remark 3.1. Our strategy for computing reg(J§) is as follows. We firstly
estimate reg(Jf(" + P}), which is the crucial result of this paper, then estimate
reg(J, N P}), and finally get reg(Jj, NP NPL,N...N P}, ie., reg(J§).

4. REGULARITY RELATED TO POWERS OF BINOMIAL EDGE IDEALS
OF COMPLETE GRAPHS

Let K be a field and S = Klz1,22,...,%n,Y1,Y2,---,Yn]. Let T1 and T be two
subsets of S. Set T1Ty = {tita: t; € T;, i = 1,2}. For any ideal I of ating R, I' = R
for i < 0 by convention. Let < be the lexicographic order with x1 > xo > ... > x,, >
Y1 > Y2 > ... > Ynp-

Remark 4.1. It is known that reg(J ) = reg(in<(Jk,)") = 2t for any t > 1 as
observed by [10], Observation 3.2 (2). In this section, we will estimate the regularity
of the sum of Ji and some power of an ideal as Ar.

Set Q(JK”) = {fiji 1<i<j < n}

Lemma 4.2 (2], Theorem 2.1). For any t > 1, (G(Jk,))" is a Grobner basis
of Ji. with respect to < and inc(Jf ) = (in<(Jk,))".

Similarly, for any 1 < a < b < n, we can define G(Jk,, ) and prove that
(G(Jk,, )" is a Grobner basis of J}Qa ,, With respect to <.

Lemma 4.3. Forany 1 <a<b<nandt>1,G(Jk,,)(G(Jk,))" is a Grobner
basis of Jx, ,, Ji, with respect to < and in<(Jr, ,,Jf,) = in<(Jr, ,,)(in<(Jx,))"-

Proof. Notethat G(Jk,, ,)(G(JKk,))" generates Ji,, , Ji, and the set of initial
terms of G(Jk,, ,)(G(Jk,))" generates inc(Jk,, , )(in<(Jk,))". It is sufficient to
show that

inc (JK[O,,b] J;(,L) Cinc (JK[O,,b] )(in< (JKn))t'

On the contrary, suppose that there exists a monomial u € inc<(Jk, J%) \

ine(Jr,,)(in< ()" As inc(Jrey, , Ji,) € inc(Jl) = (in<(Jx, )", we can
t+1

write u = w [[ @;,y;, with no z;,y; € inc(Jk,,).- On the other hand, as
k=1 '

inc(Jr, ,Jk,) € in<(Jk, ), there exists some z,y, € in<(Jk,,) such that

ZpYq|u, which admits four possibilities:
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(1) zpyq|w. Then u € inc (JK[G,,b])(in< (JKn))tJrl C inc (JK[G,,b])(in<(JKH))t7 a con-
tradiction.

t4+1
(2) zp|lw and yq| I i, vj,- Let yq = yj;,. Then
k=1

w . .
U= TpYq——Ti Hxikyjk € Inc (JK[a,b])(1n<(']Kn))tv
Tp
J#l

a contradiction.

t+1

(3) zp| 1] iy, and yq|w. The same as (2).
k=1

41
(4) zpyq| 11 i yj.. Let p=1is and ¢ = ji. Then s #1, 4 <a <b < js; and
k=1

U= w(xpyq)(xilyjs) H Ty Yj,, € ing (JK[G,,b])(in<(JKH))t7
k+#s,l

which is also a contradiction. Then the result follows. O

For a monomial ideal I of S, the set of minimal generators of I is denoted by G(I).
Now, we verify the conditions in Lemma 2.6 in order to apply this lemma to get
following Proposition 4.9.

Proposition 4.4. For any 1 <a<b<n,T Cn] and s,t > 1,

inc (J;(,, + JK[a,b] ‘];(_,,,2 + A%) - (in< (JKn))t +inc (JK[a,b])(in<(']Kn))t_2 + A7

Proof. Tt is sufficient to show that (G(Jk,))' UG(Jk,, ,)(G(Jk,)) 2 UG(A})
is a Grobner basis of J. + Jik, Jf{f + A% with respect to <. For any hq, ho from
two different sets of the above three sets, let us show that the S-polynomial S(hq, ho)
has a standard expression with respect to the union of two sets with remainder 0.

(I) hi € (Q(JK”))t or g(JK[mb])(g(JK”))tfz and ho € G(A%) Then h; €
(G(Jx,))" where t’ =t or t — 1. Write

o

= k. = LIRS
hi =[] fise = w1 + coun + ... + couy,

k=1
where u; > us > ... > wu, are monomials of the same degrees and ¢; € K*,
1=2,3,...,r. Then
T T
lem(uq, h2) cihy
S(hi,ha) = —— ;= — ;.
( ) pat U o ;ng(Uth) ’

Note that wi = x4, ... Ti, Y5, Yjs - - - Yj,, and if ug € A% for some d > 0, then
u; € Ad for alli = 2,3,...,7. If d > s, then it is clear that c;hou;/ged(us, ho) € A,
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1=2,3,...,r. Ifd < s, then ha/ged(ug, he) € A%‘d. Thus again ¢;he /ged(uq, ho)u; €
A5, i = 2,3,...,7. Hence, S(h1,h2) has a standard expression with respect to
G(A%) U{h1} with remainder 0.

(I1) h1 € (G(JK,))" and ha € G(Jk,, , ). Let us show that S(hi, hy) has a standard
expression With respect to (G(Jx,))' UG(JKk,, ) with remainder 0 . We may assume

that hy = H firjy With no fi . € Jk, ,, ha = fpq and ged(ine (hy),in< (h2)) # 1.

Then gcd(1n<(h1) in<(ha)) = xp or Y4 Or THY,-
(i) ged(ine (h1),in<(h2)) = xp. Let p =43. Then p < ¢ < b < ji. One has

t
S(hla h2) = thl - (yjl H xikyjk>h’2

k=2

t t
= YaSoir [ Firie — Wir [T #iv5) Foa

k=2 k=2

t t
= (Yj1 foa + YpSaji) H ficin — <yj1 H xidljk) frq
k=2

t
= YpSain H fivie +Yi (H Jinge — H xikyjk>qu7

k=2 k=2

¢
which is a standard expression with respect to qul I1 fi.j. and fpq with remainder O
k=2 i

t
beca’use 1n< (ypfqﬁ) < 1n< (y(Ifum) a’nd 1n< ( H fik]k H x’ik y]k) < in< ( H fikjk) .
k=2 k=2

(ii) ged(ine (h1),in<(h2)) = yq. The same as ( ).
(iil) ged(ine (h1),in<(h2)) = xpy,. We may assume that p =41 and ¢ = jz. Then
g <a<p<qg<b<yj. We have

S(h, he) = H fivir = Y (H x’“cy]k>qu
= Jpir fing H fivin = TiYin (H xikyjk>qu

k=3 k=3

¢ t
= (fpafizjs + fizpfaji) H firje — iz Yi, (H xikyjk>qu
=3 k=3
t
= fizpfajr H fivir + (figs — ®iy95) (H xikyjk> fras
k=3

t

which is also a standard expression with respect to fi,pfo5, 1 firj. and fpg with re-
k=3

mainder 0 because in< (fi,pfgi) < in<(fpj, fing) and ine (fir;, — i y5,) < ine(fizj,)-
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() ¢ > 2 and (G(Jx,))" U G(Jk,,,,)(G(JK,))' 2 forms a Grobner basis with
respect to <. As in the proof of Lemma 4.3, it is sufficient to show that

inc (T, + I Ji0) € (i< (Jx,))" +inc (k) (in< (Jx, )2

Suppose on the contrary that there is one monomial u € in<(J§( + JK i 2) \
¢

(in< (Jx,))" +in<(Jx, ) (in< (Jk,))" "2, Then u € (in<(Jx, )", u & (in<(Jk,))
and u ¢ in<(Jk,, ,)(in<(Jx,))"">. On the other hand, inc(Ji + Jk, J%f) -

inc(J, + Jxy,) = (in<(Jx,))" + inc(Jk,,) by (II), which implies that u €
t—1

inc(Jry,, ). Thus, w = w [[ x;,y; with no z;,y;, € inc(Jk,,) and zpy,|u for
k=1

some a < p < ¢ < b. This situation leads to a contradiction by the same argument

as in the proof of Lemma 4.3. This completes the proof. (]
Lemma 4.5. For any T C [n], 1 < k<l<nands>1, A5 : fiy = A5 k10T
and in< (A% : fkl) = A% : in< (fkl)-

Proof. [{k,l1}NT| has three possible values 0, 1, 2. If [{k,l} NT| = 0, then no
variable in fi; appears in Ap, hence A% : fiy = A% If |[{k,I}NT| =1, then fi; € Ap
and Ai}_l C A% : fir. On the other hand, one has

inc (A7 : fr) Cinc (A7) :ine(fr) = AT : iy C A;}_l.

Then A5 : fr = A?ﬁl and inc (A% ¢ fu) = A% @ inc(fw). Finally, suppose that
[{k,1} N'T| = 2. Then f; € A2 and A5 > C A% : fy. Frorn inc (A% : fu) C A%
iy C AST72, one has A% : fiy = 57 and inc (A% ¢ fr) = A5 ine (fu)- O

It is easy to show the following lemma, as in<(Jk, ) is a monomial ideal.

Lemma 4.6. For any t > 1, (in<(Jk,))! : 2192 = (in< (Jg, )L,

Lemma 4.7. For any t > 1, J}}” 2 f12 = J;(_nl and in<(J§(n s f12) = in<(.]f<”) :
in<(fi2).
Proof. It is clear that J}{nl - Jf(n : f12. On the other hand, since

inc(Jg, : fi2) Cinc(Jg, ) :inc(fi2) = (in<(Jx,))" : inc(fi2) = in<(J;<_,,1)

by Lemma, 4.6, it follows that Jf(n : f1o = J;{nl and in<(J§<n : f12) = in<(J§(n) :
in< (flz). ‘:l

Lemma 4.8. For any 1 < ¢ <mnandt >0, Jg, Jk,  fiz2 = Jr,, J}{nl and
inc (JK[z,c] J;(,L : f12) = in<(JK[2,c] J;(,L) : in<(f12)'
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Proof. Clearly Jk, J}{nl C JKp.q Jf(n : f12. Note that, by Lemma 4.3,
ing (JK[Q,C] J;(,L : f12) < in<(JK[2,c] J;(,,L) P T1Y2 = ing (JK[Q,C])(in< (JKn))t FT1Y2-

However, in(Jr,,)(in<(Jk,))" is a product of monomial ideals and x;y is co-
prime with all the generators of in. (.J K2 ). This implies that

inc (Ji, ) (in< (Ji,))' 21y = inc (Ji, ) ((in< (Ji,)" 2 2192).
Hence, by Lemma 4.6,
inc(JrpoJk, * f12) ©ine(Jxy ) (ine (Jx, )™ = inc (Jrp o Ji))-

Then Jg, ,Jk : fi2 = Jkp g, and inc(Ji,  Jh o fi2) = inc(Jkp, ,Jk)
in< (flz). O

Proposition 4.9. Let 1 <a <b<nandT C [n]. Then, for any t > 2,

(Jhe, + A+ Ty JE2)  fap = T+ ATy gy 82,

Proof. Note that (Ji + A%+ Jk, ,Jio2): fao = (J, + A5 + i, Ji22) -
(—fap) and —fop = Tpya — Tayp. Reverse the order of 1,2,...,n, it is equivalent to
showing that, for 1 < a < b < n,

(ke + A+ Tipar  J62)  fap = T AT e 88,

Then, reordering 1,2,...,n, we may assume that a = 1, b = 2 and need to prove
that, for any 2 < ¢ < n,

(Jhe, + A5+ Tr g J52) : frz = T+ AT TR0 e T3,

Then, in virtue of Lemma 2.6 and by Proposition 4.4, Lemmas 4.5, 4.7 and 4.8, we
get the result. O

The following result plays an important role in the proof of our main theorem.

Proposition 4.10. Let t > 1, r = (g)t_l and (G(Jk,)) "t = {F, Fy,...,F}
ordered by a lexicographic order <. induced by

f12 >ef13 >e~~~>ef1n >ef23 >ef24 >e~~~>ef2n >e f34 >e~~~>efn71,n~
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Then, for any s >t > 1,1 < m <nandl = 1,2,. ,,ifFng%n—i—Afn-l-
(Fl,FQ,... Fi_ 1) Wl'iteﬂ H fakb with fa1 by e faz,bz >e ... e fauybu’ ck >0,

k=1,2,...,u, and Eck—t—l and obtain
k=1

(Ji, + A5+ (F1, Fa, ... Fy ) s Fr =k, + A[amm] + Aa, -1,

where ' = s — Y cpl{ak, b} N [m]|.
k=1

Proof. Firstly note that from fo, 5, >e fas,po e --- >e fau,b, We have
a1 < ag < ... < ay. Further, it also holds that b; < by < ... < b,. Assume,
on the contrary, that b; > b; for some ¢ < j, then a; < a; < b; < b;. By Lemma 2.8,

fa,;,b,:faj,bj = fa,;,bjfaj,b,', - faq‘,7ajfbj,b1‘,' But faf,,b,;faj,bj <e fa,',,bjfaj,bmfa,;,ajfbj,b,; a’nd

it follows that

. i—1 pci—1
Fi— fai,bifam(H f;:,b,c)u;,bi o)

k#i,j
—(fai,bjfaj’bi_fai,ajfbj,bi)<H fi:,bk> fs:, a/]7_]) (Flvu.,F‘lfl)v
k#i,j
a contradiction. Note also that, for it =1,2,...,a, — 1,
(*) (zi,yi)F1 C (F1, Fy, ..., Fi1),

because z; fa, b, = Ta, fip, — Tb, fi,a, by Lemma 2.8 and fq, b, <e fib,s fi,a,, then

it follows that
zi = x4 fau, f;:,_l H fak,bk

= (Tay, fin — Tby fiay) fa;;fl o € (P Py, Fisy)

and similarly y; F; € (Fy1, Fo,...,Fi—1). Then A, ,_1 C (F1,Fs,...,Fi_1) : F.
Lemma 4.5, A[a ) T Aa, 1= (A8, : F}) + A, —1. Hence

JK —|—A5 m] _|_Aau_1 - (J;(n —l—Afn + (F17F2, Ce ;E—l)) - Fy.

law,n] law,

Let us show the converse containment.
Set J = (F e (G(Jg,)) 1= firl=a > F >,

a,b1

f(f::'7bu). Then

a2 b *

(%) (F1, Fa,..., Fi1) C Ik, T2+ fC

ai, b1
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Let us use the induction on u to show that

J): R C Ik, A o+ Aay 1,

(Jk, + A5 + Ik, T2+ F

then the above converse containment follows.
If u =1, we need to show that

(J;(n +Afn+JKbl,1J;(7”2): 2;;1 g J . +A\[9a1$:);]1)|{al,bl}m[m]‘ +Aa1_1,

which is true by applying Proposition 4.9 (¢ — 1) times as

s—(t=1){a1,b1}N[m]| + Ag, 1 D Jk, + As; - DHavbnimll g
2 JK, m -

JK + A[ahm]

la1,n]

Now assume that v > 1 and the result is true for u — 1. Then

(Jk, + A5 + Ik, o T 2+fa1b1 J): Fy

2 n
((JK + AS + JKb1 1‘];( + a1 b1 J) : . ) : facj7b2 e fsvmbu

a1,b1

J): fo = Uk, + A5+ Tk, K, 2 fe ot

But (Ji, + A5+ Tk, Ji 4+,
Then, by Proposition 4.9,

2
(T, + A+ Ty Jie o+ Fotn ) s fats,
= J;(ncl +Afn cil{a1,b1}N[m]| + JKb1—1J;(_n2_Cl +J

Note that Aq,—1 C (Fi1, Fo, ..., Fi_1) : I} by (x). Using (*x), we have

(Jk, + A5+ Iy T+ 0, T) R

= (Jﬁ(nm + A5 c1l{a1,b1}N[m]]| + JKb171J§(_n2_Cl +J): f;;bz e f;”:”bu + Agy—1-

Then

(T, + A5+ Tk T2+ 0, ) B
C (Ji, + Apyerllen b0l g gy, TR T+ Ay a) S22, S,

s—cil{a1,b1}N[m]| + JK '];(7[527:]1 —I—J’ +Aa2—1) . f(:;bz "'f;Z,b,u7

t—c

(JK[azl n + A[amm] lag,by—1]
where J' = (F € (G(Jx,, )"« F > we by fatp,)- Again, by the
same argument as for (Fy, Fy,...,Fj_1) C K, J;(Q + fa1 p,J» we have J C
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2 1—
e HJ}(a T fey, " where J" = (F € (G( Tk, ) T T fo 0T 2

az,bz az,bs
F >, fcf’: .). It turns out that

ag bs "

Jt 1 + AS_Cll{ahbl}m[m]l + JK[C’Q by —1] Jt_3_61 + J/ + Aa2,1

(12 n] [az Jn]

t— s—c1|{a1,b1}N t—2—
J Cc1 +A9 c1 {al 1} [ H+JK[a2b1 1J C1

Klag,n [az2,m] lagn]
+ TKaz5-1 JE{[Q ot fazppd” + Aas
=Ji [;1 m T Afc;%l]{ahbl}m[ iy TR ar 51 Ji{[i fl + fas, byt + Aay—1
as by < by. Therefore

(Ji, + A+ Tryy i 2+ Tat ) s i
C UL A" TS
+ [ Aaa) 2y, S,
= O A I
+ fazp ") ey fat b, T Aast

where the last equality follows by Lemma 2.10.
Note that from Fy & J. + A5, + (F1, Fa, ..., Fi_1) we get that fi>, ... fo", &
J o+ Aselfavbidnimll ey applying the induction hypothesis, we have

lag,n] [az,m]

c S—cC a 7b m c C: Cu
(,];([ 144 1[{a1,b1}N[m]| +‘]K[a2,z)2 : J;(2 1 +f2b2J/,):fa;bz"'fau,bu

ag,n] [az,m] lag,n]

g JK[ w," + A[a m] + A[az,aufl]v

where s* = s—cy|{a1,b1}N[m]|— E ckl{ak, br }N[az, m]|. As noted at the beginning
of the proof, as < a3 < ... < au and as < by < b3 < ... < by, so we see that

{ak, bx} N a2, m] = {ak, b} N [m] for k > 2. Tt follows that s* = s’. Then

(JK + A7, + JKb1 1‘];( o+ J):F JK[au,n] + A[Sc/Lu,m] + A[a2,au—1] + Aay—1

= JK +Aﬁ;mm] +Aau—1;

[aw.n]

CLb1

as required. O

Theorem 4.11. For any 1 <m <nand s>t > 1, reg(J +A;,) < 2s

Proof. We prove the result by using induction on ¢. If ¢ = 1, then, as
inc(Jg, +A:) = inc(Jg, )+ AS, by Proposition 4.4 and reg(in< (Jx, )+ A5,) < s+1
by Lemma 2.9, we have

reg(Ji, +A,,) <s+1<2s.
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Now assume that ¢ > 1 and the result is true for t — 1. Set (G(Jg,))""! =
{F1, Fs,...,F.} as in above Proposition 4.10. We have the exact sequences

S R S S
0= ————(—(2t-2)) = N -0,
(Jg, +As5,) Fl( ( ) Jie + A3, Jie + As, + (F1)
S Py S
0— —(2t-2)) =
(Ji + Az, + (F1)) : Fz( ( ) T + A3, + (Fr)
— S —0
Jie + A5+ (F1, Fy) ’
S
0— —(2t -2
(JE(W,+A%L+(F1,...,FT72)):Frfl( ( )
J;(,,L+Afn,+(F1a~~~7Fr72) J}(7L+Afn+(F1;-~~;Fr—1) ’
S
0— —(2t —2
(J;(”+A$,1+(F1,...,Fr,1)):Fr( ( )
.F, S S

J}(,L+Aﬁn+(F1,...,Fr,1) J;(_,,,l"'Afn,

U
Forl =1,2,...,r,if Fy & J + Aj, + (F1,..., Fi1), write Fy = [ for, with
/ e e

u =
Sarbr >e fasbs e oo e faubur €6 >0,k =1,2,...,u, and ) ¢ =t — 1, then, by
k=1
Proposition 4.10

(ko + A%+ (Fryo Fiin) s Fr=Jk, )+ Al g+ Aaut,

U

where 5" = s— > cx[{ak, by} N[m]|. For the regularity, by Lemma 2.3, reg(Jk,, ., +
k=1 o
Afau’m] + Ag, 1) = reg(JK[a,u,,,] + Afamm]) +reg(A,,—1) = reg(JK[auyn] + A[Saum]).

Note that if a, > m then Ay, ) = 0 and if a, < m then {ay, by} N [m] # 0 for all
U U

k=1,...,u,hence s’ = s— > cxl{ak,bp}N[m]| < s— > ¢ = s—t+1. Then either
k=1 k=1

reg(']K[au,n] +Af;,u,m]+Aa1l,—1) = reg(JK[u,u,n]) =2or reg(JK[au,n] +Af¢;,u,m]+Aau,—1) =
reg(.]K[aWL] + Aﬁ;u m]) <8 +1<s—t+2 by Lemmas 2.4 and 2.9. It follows that
reg(Jk,, .+ A‘[(;u m) T An,—1) <28 —2t+ 2 in any cases.

By the induction hypothesis, reg(S/ (J;{1 +A%.)) < 2s—1. Then by applying Reg-
ularity Lemma 2.1 to the above last exact sequence, we get that reg(S/(Ji, + A, +
(F1,...,Fr_1))) < 2s—1. Similarly, from the above last but one exact sequence, one
has reg(S/(Jg + Aj, + (F1,...,Fr—2))) < 2s— 1, and so on. Finally, from the first
exact sequence , we obtain that reg(S/(Ji + A35,)) < 2s — 1, as required. O
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Corollary 4.12. Foranyl<m <nands>t>1, mg(Jf(n NA?)<2s+1.

Proof. Sincereg(S/J} )=2t—1,reg(S/A;,) = s—1andreg(S/(J +A45,)) <
2s — 1 by Theorem 4.11, the result follows by applying Regularity Lemma 2.1 to the
short exact sequence

Tie, VA Tk,

0 A, Jg T A3 '

5. THE MAIN RESULT

Now we come to the computation of regularity of powers of binomial edge ideals
of complete multipartite graphs. First we have

Proposition 5.1. Let Jx
n > r > 1. Then reg(Jx

be a complete r-partite graph on [n| with

MNY,M2,. ., N

= 3.

wina )

Proof. Assume that n; < ns <...< n,. Let us prove the result by induction
on r.

If r = 2, it is known by [15], Theorem 1.1. Now assume that r > 2 and the result is
true for r —2. Let G be the graph on [n1] with the empty edge set. Then K, ... n,
is the join product of G and Ky, ns.... n.» 1€y Kpyng,.oom,. = G* Ky g n,.. Then,
by [14], Theorem 2.1,

reg(JKnl,'7L2,,.,,n-,v) = max{reg(JG), reg(Jan,n3,.,.,n7,)a 3} = maX{O, 3, 3} =3.

O
The following lemma will be used in the proof of the main theorem.
Lemma 5.2. For1<m <n, Ji = (Ji, NAL)+ (Jie, DAL, )
Proof. Forany g€ (G(Jx,))", let us show that either g € A}, org € A7 ., .
t
Write g = [] fapb, = c1ur+coug+...4+crus, where uq, ug, . . ., us are monomials and
=1
c; € K*,i=1,2,...,s. Let d be the number of elements of a1, as,...,as, b1,ba, ..., b
which are in [m]. Then u; € A% N A[Q:n;dlm], 1 =1,2,...,s. It follows that either
g e Ain or g e Afm-i—l.n]' -
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Now we can prove our main result.

Theorem 5.3. Let G = Ji _ be a complete r-partite graph on [n] with

n >r > 1. Then, for any t > 1,

M1,M2,. ., Ny

reg(JL) =2t + 1.

Proof. When t = 1, it is Proposition 5.1. Assume that ¢ > 2. Note that,
since the length of the longest induced path in G is 2, reg(J&) > 2t + 1 by [10],
Corollary 3.4. Hence, it is sufficient to show that reg(J) < 2¢+ 1.

Use the same notations as Section 3. Then J§ = Ji NPL NPL,N...N P,

i—1 i
where P; = (a:j,yj: Jjé [14— > ng, Y nkD Set Q; = J, NPINP} N...NP i =
k=1 k=1
s+1,5+2,...,7. Then Qo1 = J§, Qi = (Ji, NPH)NQiy1,i=s+1,54+2,...,r—1,
and from

Tie, 2 (e, NP+ Qi = (T, NP+ (Jle, NPy 0 Pl ... PY)
2 (Ji, NP + (T, N(P)') = Tk,
i—1 i
where P/ = (xj,yj: JjgEe |1+ > ng >, nkD and the last equality follows by
k=1 k=1
Lemma 5.2, one has (Ji; NP+ Qiy1 = J ,i=s+1,s+2,...,r —1. We
have the following short exact sequences:

0— i — S (S3) 5 — —S —0
I Tk, NPy Qe T,
S S S S
0— — ® - = =0,

Qs+2 J;( n Pst+2 Qs+3 Jﬁ(

0— S — S 52 5 — i —0
Q'I"—Q J;(” N Pﬁ_g Qr—l J;(” ’
S S S S
0— @ — — 0.

_> [
Qr—1  Ji NP, T Jp nPE T

Since reg(S/Jg ) = 2t — 1 and reg(S/(Ji, NP})) <2t,i=s4+1,5s+2,...,7, by
Corollary 4.12, reg(S/J) < 2t follows by applying Regularity Lemma 2.1 to the

above exact sequences. O
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