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Abstract. We investigate the representation theory of the positively based algebra A,, 4,
which is a generalization of the noncommutative Green algebra of weak Hopf algebra corre-
sponding to the generalized Taft algebra. It turns out that A,, 4 is of finite representative
type if d < 4, of tame type if d = 5, and of wild type if d > 6. In the case when d < 4,
all indecomposable representations of A,, 4 are constructed. Furthermore, their right cell
representations as well as left cell representations of A, 4 are described.
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1. INTRODUCTION

As a generalization of Hopf algebra, the concept of weak Hopf algebra was intro-
duced by Liin [7]. More precisely, a weak Hopf algebra is a bialgebra with a weak an-
tipode. Su and Yang introduced two classes of the weak Hopf algebra toj, ; (s=0,1)
based on the generalized Taft algebra [, 4(q) in [15]. The Green rings 7(tv;, ;) of 10, ;
are established and it is proved that (v, ;) is noncommutative as well as r(mg’ a)
is commutative. Green rings or Green algebras are always positively based alge-
bras. Examples of positively based algebras include the Hecke algebras correspond-
ing to Coxeter groups with respect to the Kazhdan-Lusztig basis. Mazorchuk and
Miemietz defined cell 2-representations of finitary 2-categories in [12]. On the level of
the Grothendieck group, a cell 2-representation becomes a based module over some
finite-dimensional positively based algebras with various nice properties. For exam-
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ple, for the 2-category of Soergel bimodules over the coinvariant algebra of a finite
Coxeter group, the Grothendieck group level of a cell 2-representation is exactly the
Kazhdan-Lusztig left cell module, see [4], [9], [10], [11].

The aforementioned work motivates us to study indecomposable modules and
cell modules of positively based algebras. Of particular interest for us are those
noncommutative positively based algebras associated to Green algebras of some fi-
nite dimensional bialgebras. On the one hand, it could be helpful to understand
their representations of noncommutative Green algebras or noncommutative posi-
tively based algebras, and on the other hand, it may help us to recover all classes
of original bialgebras. To understand this, in the present paper we first define a
new algebra A,, 4 over some suitable subfields K of the complex field C. The
algebra A,, 4, which is just the Green algebra of mind’d if K = C, can be de-
scribed by three generators and generating relations controlled by the determi-
nant of some tridiagonal matrices. A new way is provided to show that A, 4
is a positively based algebra by avoiding the technique of Green rings. It is ob-
served that A,, q is of finite representation type if d < 4, of tame type if d = 5,
and of wild type if d > 6. Furthermore, we classify all indecomposable modules
of Ay,q for d < 4. At last the cells and cell modules of A,, 4 are constructed.
It is pointed out that the right cells and cell modules of A,, q are different from
the left ones.

The paper is organized as follows. In Section 2, we introduce the definition of
the algebra A,, 4 by generators and relations. Two sets of the basis of A,,q are
constructed. In Section 3, we show that A,, 4 is a positively based algebra by avoid-
ing the technique of Green rings. In Section 4, the representation type of A, 4 is
determined. All the indecomposable A,, 4-modules are constructed when A,, 4 is of
representation-finite type. In Section 5, right cell modules of A,, 4 as well as their
structures are investigated. Also, all the left cell modules of A,, 4 are listed.

2. PRELIMINARIES

Throughout, C, R, Z and N, stand for the field of complex numbers, real numbers,
the ring of integers, and the set of natural numbers, respectively, unless otherwise
stated. The symbol § means the number of elements of a set. Representations and
modules of an algebra are considered to be the same meanings.

Fixing integers m,d > 1 and n = md. Suppose that K is a subfield of C containing
the complex number i and the primitive 2nth root of the unity

T .. T
7 = COs — +1sIn —.
n n
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For0<i<n—1,1<j<d-1, wealwaysset i =14 (mod d) and

Oij = 277;"1 coS %
Note that o, ; = 147%™ when d 1 i and all 0; ;, cos(kn/n), sin(kn/n) (0 < k < 2n—1)
belong to K.

Su and Yang in [14], [15] provided two examples of noncommutative Green rings.
One of them is that of a small quantum group, which is of infinite Z-rank with much
complicated defining relations. The other one, provided in [15], is the Green rings
7(10;,4.4) (s = 0,1) of weak Hopf algebras w; ; ; (s = 0,1) based on generalized Taft
algebras, which are of finite Z-rank. Obviously, they are positively based algebras. In
the sequel, we focus on classifying representations of a more general K-algebra A4,, 4
than the ring r(ro, ; ;).

To introduce the K-algebra A,, q, we consider the matrices

y ™ 0 ... 0 O
1 vy ™ ... 0 0
. 0 1 y ... 0 0
Ay =, .|, where ay = ya,
0 O 0 y xm
0 0 0 1y /i

and put D;(z™,y) = det(4;(z™,y)). It is well known that

(/2] i A A
Di(z™,y) = Z(—1)1< ; >x"”yl2z forl > 1,

i=0
where [I/2] denotes the biggest integer which is not bigger than /2.

Definition 2.1. The K-algebra A,, 4 is generated by z, y, z with the following
relations:
(1) 2™ =1, 2y = ya;
(2) 1 +2™ —y)Dag-1(z™,y) =0;
(3) 2z =zx =z, yz = 22, and 2% = 2.

One sees that A,, 4 is noncommutative and

(2.1) Di(z™,y)z = Di(z™z,yz) = D;(1,2)z = (I + 1)z,
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Now, let V; (0 < ¢t < n—1), V be K-vector spaces with the bases {v;(k): 1<k <d},
{vr: 1 < k < d}, respectively. We introduce two lemmas.

Lemma 2.2. V; is an A, q-module with the following actions of A, 4 on V.
(1) Ifd | t, setting
vi(k) - @ = n*'v(k),

kT
2(cos — Ju(k), 1<k<d-1,
v(k) -y = ( d) +(k)
20¢(d), k=d,

ve(k) -z = 0.
(2) Ifd tt, setting
vi(k) -z = v (k),
O't’k’l}t(k), 1<I€<d—1,
vy(k) -y = _
V¢ (t) + O'tj’l}t(d), k= d,
ve(k) -z = 0.

Proof. Firstly, we assume that d | ¢, and have

(ve(k)-x)-z = (ve(k)-z)x =ve(k)-z, (ve(k)y)-z=0(k)2z, (vp(k)-2)z=uwv(k)z,

and

(ve(k) - 2) - z...2) = n?'™dy (k) = vy (k),
—_——

md
since v(k) - z = 0 and md = n.
For 1 < k < d, we have
k
2<n2t cos Fn)vt(k) = (v(k)-y) -z, 1<k<d-—1,

(ve(k) - ) -y =
22, (d) = (vi(d) - y) - 7, k=d.

If 1 <k<d-1, we have
k k
(ve(k)-(14+2™ —y))-Dg—1(x™,y) = (1+772tm—2cos %)Dd_l(lﬂcos %)vt(k;) =0.

This follows from Dy_1(1,2cos(kn/d)) = 0.
If £ = d, we have

ve(d) - (L4 2™ = y)Da-1(z™,y) = (1 + 9> = 2)Dg-1(1,2)ve(d) = 0.

Hence, the actions of z, y and z keep the defining relations of A,, 4.
Secondly, for the case when d { ¢, the proof is similar. Therefore, V; is an
Ay, ¢-module. O
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Lemma 2.3. V is an indecomposable A,, j-module with the following actions
of Ay, q on V.

Vg - T = Vg,

kn
2<COS —)vk, 1<k<d-1,

VY = d
2ug, k=d,
0, 1<k<d—1,
Vg 2 =

2(51115)1}1 +2<sin%n)v2 + ...—|—2(sin @)vd,l +vq, k=d.

Proof. The proof of the statement about the actions is similar to the proof of
Lemma 2.2. Also, V is indecomposable.
Indeed, we suppose that V = M; & M, with both M; and M5 nonzero. If there
d

exists w, 0 # w € My, such that w = Y byvy with by # 0, then w-z = bgvg -z € M,

k=1
and vg - 2y, vq - 2y>, ..., vq - 2y?~ 1 belong to M;. More precisely, we have that
d—1 i
Y1 =0V4 2= 2<Zsin E)’Uj + v4,

J=1

-1 . _
Ve = Vo1 -y =2 (Z Siﬂ% cosk~! %)Uj + 2k 1oy,
j=1

d—1 . .
V4= Vi-1-Y = 2d <Z sin % cos? ! %)vj + 29 1y,

j=1
belong to Mj.
It is easy to see that the matrix

2 d—1
QSing 25in§ QSin% 1
2 2 d—1 d—1 '
2k gin g cogF—1 g 2k gin g cosk—1 2L 2k gin ( y ) cosk—1 ( y ) ok—1
2 d—1n d—1
24 sin g cos?1 g 24 gin == cogd—1 gn 24 sin % cos?1 % 9d—1

is invertible and we get that vy € Mj for 1 < k < d. Hence, M; =V and we get
a contradiction in this case.

d

If there is no 0 # w € My such that w = > byvg, bg # 0, then we have
k=1

0 # vy € My. One sees that Ms =V in a similar way and get a contradiction. It

concludes that V is indecomposable. (I
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Proposition 2.4. The set {2'y/,2y': 0 < i < n—1,0< 74,1 < d— 1} forms
a basis of Ay, 4.

Proof. Noting that (1 + 2™)Dg_1(2™,y) = yDg_1(z™,y) by the defining
relations of A, 4, we have

[(d—1)/2]

e (3 (171 ey

2
=0

@=n/2 |
:y< Z (_1)z< ' >xmzyd121).
1=0

7

One sees that y? can be represented by linear combinations of {z'y?: 0 < j < d—1}.
Hence, any element in A,, 4 is spanned by {z'y’, zy': 0 <i<n—1,0<j,1<d-1}.
In fact,
{a:iyj,zyl: 0<i<n—1,0<4I<d-1}
is still linearly independent.
Indeed, suppose that

n—1d—1
(2.3) ZZa”my —l—Zblzy =0.
1=0 57=0
For convenience, we set a; = Z ain*" and o= (ag,...,aq—1)" . We also set
1 2 Cosg . 20=1 cogd—1 g
s km
1 2 cos — . 201 cogd—1 2=
A= d d ifd|t
-1 d—1
1 2cos( ] ) 201 cogd—1 ( 7 )
1 2 241
and
1 o4 (011)? (04,1)47 1
A= L oz (Ut,Z)Q (Ut,t)dfl itd it
1 ora—1 (0pa-1)® ... (04,4-1)47 1
0 1 20,7 ... (d—1)(o,7)"?
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It is easy to see that such A is invertible since det(A) # 0. For example, in the
case when d ¢, we have

1 O¢,1 . (Ut71)d_2
A= [[ew-an| = Lz
o 1 opg-1 .. (01,d-1)
1 03 . (Ut f)d_Q

)

n—1 .
Therefore, Y a; ;n**" =0for 0<j<d—1anddft.
i=0

In the case when d | t or d 1t, acting on {v(1),v:(2),...,v:(d)} by both the sides
of (2.3), respectively, we have Aa = 0. Consequently, & = 0 and hence

1 1 e 1 Qo,;j
1 772k o (n2k)n—1 k. =0
1 n2(n71) L (772(7171))7171 an_1,

for any 0 < j < d— 1. Therefore, a;; =0for 0 <i<n—-1,0<j<d—1and we
get that

d—1
(2.4) Zblzyl =0.
1=0

Acting on vg of V by both the sides of (2.4), we have

2sin z 4sin z cos z ... 2% sin z cos?1 z
d d d d d b
0
k k k k k
25sin FTE 4sin Fn cos = ... 24 gin & cogd—1 F by,

d d d kol =o.

d—1)n d—1 ba—2
P sin d cos P ... 2%gin d ) d—1 ( d ) byt
1 2 2d-1

(é—l)ﬂ dsi (d—l)ré (d—-1)=

2sin

It is easy to see that the determinant of the coefficient matrix is nonzero, so b, = 0
for 0 <1< d— 1. Hence,

{z'y?, 2y': 0<i<n—1,0<4,1<d-1}
is linearly independent. The above statements imply that
{a'y) 2yt 0<i<n—1,0<41<d-1}
is a basis of A;, 4. O
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Now we set
U)(O, O) =1, w(lv O) = Dl(xmvy)a U)(l, Z) = xiiw(la 0)7 Wy = zw(r, O)
with 0 <, r<d—1,1 € Z, and we have:

Proposition 2.5. The set {w(l,i),w,: 0 < l,r < d—-1,i € Z,} forms a basis
of Am,d-

Proof. We now assume that 0 <Il,r <d—-1,1¢€ Z,, then
. /2] I—k .
wlt) =i ) = S0 (1 ety a4 o),

[r/2]
wy = zDr(xm,y) - 5 Z(_l)k (T ) k>xmkyr—2k _ ZyT + (**)
Assuming that

ZZGMU}Z ) —l—Zb,«wr—O

1=01i€Z,
we have
d—1 d—1
SN a4 () + Dby + (1) = 0.
1=01i€Z, r=0
It follows that
d—1 d—1
Z agi(x” y + Zb (zy") =0
1=01i€Z, r=0

and a;; =b, =0forall 0 <, r<d—-1, 1€ Z, by Proposition 2.4.
Moreover, notice that

t{w(l,4), wr o<t r<d—1,icz, = 12"y, 2y Yo<i<n—1,0<51<d-1-

Consequently, {w(l,i),w,: 0 <, r <d—1,1i€ Z,} is another basis of A,, 4. O

3. THE POSITIVE BASIS OF A, 4

In this section, we show that {w(l,i),w,: 0 < l,r < d—1,7 € Z,} is a positive
basis of A,, 4. To see this, let us review some concepts and some basic results now.
Let A be an n-dimensional K-algebra. The basis B = {a;: i € I'} of A will be
called positive if all structure constants of A with respect to this basis are nonnegative

4= Z'ym

real numbers, that is,
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holds for all 4, j € I, where 'y(k) € R > 0forall 4, j, k. An algebra with a positive basis
is called a positively based algebra. For example, the group algebra KG is a positively
based algebra when G is a finite group and the positive basis is B = {g: g € G}
with the structure constants being one or zero.

For 1 < d e N, we set [0,d —1] = {0,...,d —1}. Counsider a free abelian group
generated by the elements (u,), where (u,i) € [0,d — 1] X Z,,. Suppose that this
group is equipped with an extra multiplicative structure, making it a commutative
ring, which is subject to the following relations, where + denotes the addition law, -
the multiplication law, and (u,7) =0 if u < 0.

(3'1) (OaZ) ' (07.7) = (O,i+j)a
(3'2) (LO)'(lvj):(l+1aj)+(l_1vj_m)7
(3.3) (LO)-(d=1,j)=(d-1,5)+(d—1,5 —m).

Lemma 3.1. The following formulas hold.
min(u,v)

1) (u,i)-(v,5)= >, (w+v—2ki+j—mk)foru+v<d-—1,

min(u,v)
(2) (u,i)-(v,4) = Z(d Li+j—mk)+ >, (ut+v—2k,i+j—mk) foru+v >d,
k=0 k=t+1
where t =u+v — (d —1).

Proof. The proofis similar to that of [3], Proposition 3.1, where we replace (i, u)
by (u,i),i+1byi—m,i+j+1byi+j—m, mbyd,i+j+Ibyi+j—ml j+1
byj—m,andi+j+l+1byi+j—ml—

The proof is finished. See also [16], Lemma 3.1. O

We can now investigate the structure constants of {w(l,7),w,: 0 <l, r < d -1,
i€ 2y} of Ay . Let

B ={w(l,i),w.: 0K, r<d—1, i € Z,}.

Lemma 3.2. Let 0 < w,v,l,r,7" <d—1,1,j € Z,, then take for the basis of A, 4
(1) ifu+v<d-—1, then

min(u,v)

w(u, i) - w(v, j) = Z w(u+v =2k, i+ 5 —mk),
k=0

(2) ifu+v>d,sett=u+v—(d—1), then

t min(u,v)
w(u, 1) - Z d—1,i4+j—mk)+ Z w(u+v— 2k, i+ j —mk),
k=0 k=t+1

(3) w(l, i) w, =+ 1Dw,,
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(4) ifr+1<d—1, then

min(r,l

)
’LU(Z,Z) = Z Wy 41—2k,
k=0

(6) ifr+1>d,sett=r+1—(d—1), then

min(r,l)

wy - w(l,i) = Z Wryi—2k + (t + 1)wg_1,
k=t+1

(6) wy - wp = (r+ L)w,.
Proof. It is easy to see that
w(1,0) =Di(z™,y) =y, w(l+1,0)=yw(,0)—zw(l-1,0),
where 1 <1 <d — 2. It is obvious that
w(0,4) - w(0,5) = 2~ "w(0,0) - 2 7w(0,0) = 2~ Iw(0,0) = w(0,i + 7).

Hence, (3.1) hold.
If 1 <1<d-—2, we have

w(1,0) - w(l,j) = xijw(]-a 0)-w(l,0) = xiij(lv 0)
=2 Iyw(l,0) — 2™ Jw(l —1,0) + 2™ Jw(l — 1,0)
=2 Jw(l +1,0)+ 2™ Tw(l —1,0)
If l=d—1, then
w(1,0) -w(d —1,5) =z 7w(1,0) - w(d —1,0) = z I yw(d — 1,0)

=2 (1 +2™)w(d—1,0)
=aJw(d—1,0)+ 2™ Jw(d - 1,0)
=w(d—1,j)+w(d—1,j—m).

It follows that (3.2) and (3.3) hold.
Now, the proof of the statements (1) and (2) is obvious by Lemma 3.1.
(3) By (2.1), we have

w(l, i) - w, =z "w(l,0)2w(r,0) = Dy(z™, y)zw(r,0)
= Di(1,2)zw(r,0) = (I + 1)zw(r,0) = (I + 1)w,.
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(4) Ifr+1<d—1, then

wy - w(l,7) = zw(r,0)w(l, )

min(r,l) min(r,l)

= Z zw(r +1—2k,i —mk) = Z 2™ " w(r + 1 — 2k, 0)
k=0
min(r,l) min(r,l)
= Z zw(r +1—2k,0) Z W -{— 2k
k=0

(B)Ifr+l>d sett=r+1—(d—1), then

wy - w(l, 1) = zw(r, 0)w(l, )

t min(r,l)
= Zzw(d— 1,i —mk) + Z zw(r +1 —2k,i — mk)
k=0 k=t+1
min(r,l)
=(t+ Dwg—1+ Z zw(r + 1 —2k,i —mk)
k=t+1
min(r,l)
= (t+ Dwa-1+ Z Wy —2k-
k=t+1

(6) Using (2.1), we have

wy - wpr = zw(r,0)zw(r’,0) = z(r + 1)zw(r’,0) = (r + 1)zw(r’,0) = (r + 1)w,.

O
Theorem 3.3. The algebra A,, q is a positively based algebra.
Proof. By Lemma 3.2, it is easy to see that
B ={w(l,i),w: 0<l,r<d-1,i€ Z,}
is a positive basis of A, 4. The result follows. O

4. THE REPRESENTATIONS OF A,, 4

In this section, the field K is assumed to be algebraic closed. Firstly we determine
the representation type of A,, ¢ and then construct all the indecomposable A, 4-
modules in the case that A,, 4 is of finite representation type. For this purpose, we set

n—1

L —2ik .k
34:—5 x
i = n

k=0
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for 0 < i< n—1. It is well known that {eg,e1,...,e,_1} is the set of central idem-
potents of A, 4. Also, ze; = e;z=0for 1 <i<n—1, (eg—2)z = z(eg —2) =0,
and (eg — 2)? = eg — 2.

Amd=2Ama® (0 — 2)Ama P e1Amd® ... Ben—14md.
A straightforward verification shows that
1—=2)Ana=(e0—2)Ana®e1Ama®...0en_14md
is isomorphic to r(Hy,q) ® K in [8].

Lemma 4.1. zA,, 4 =V is a d-dimensional indecomposable projective module.

Proof. Itiseasy toseethat A, ¢ = 2A; ¢B(1—2)A,, 4 and zA,, 4 is projective.
Noting that

zw(lyi) =w;, zw,=w, for0<l, r<d—1,1i¢€7Z,,

we have that {wo, w1, ws, ..., we—1} is a basis of zA4,, 4.
Let wi, = w1 for 1 < k < d, then the actions of A,, 4 on zA,, 4 can be written as

wp-x=wr (1<k<d),
Wity =wa, Wry=whp—1twrrr 2<k<d-1), wg-y = 2w,
wi -z =kw (1<k<d).

With respect to this basis, the matrix B of y is of the form

010 ..000
101 ...000
010 ..000
000 ...10 1
000 ...00 2/,,

The eigenvalue A\, and its eigenvector ay of B (1 < k < d) are

k
QCOS—T[, 1<k<d-1,

2, k=d,
. kn . 2kn . (d—1Dkn (=1)* kn
22 gin 22 b <k<d-—
o — (smd,sm 7 ,sin 7 — Cot2d), 1<k<d—1,
0,0,...,0,1), k=d.
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Now we assume that

wy, = sin —no.) + sin —2kﬂw +...+sin L L)kn
= NN Wd—
k et q 2 d d—1
(—1)k kn
- < —
+ 5 COtZdw (I1<k<d-1),
w& = Wq-

Then

wp T =wp, (1<k<d),
k
wy, - y—2cos§wk 1<k<d-1), wh-y=2w),

wp-z2=0 (1<k<d-1),
-z

g Wa- 1+ Wi

s~

2
w -z=2SinEw’1+ZSin§w§+...+QSin

d

We show the actions of z on the basis {w}: 1 < k < d}. By the defining relations
of Ay,.q, we have (A — 2)wj, - 2 = 0. Hence, w}, - z = 0 if k # d. Furthermore,

/ / I /
Wy - 2 =dw = aw] + agwy + . .. + aqwy.

Assume that

(wlawéawih 7wd)T :X(w1;w2;w37"'7wd)T7
where
sin — sinE sin (d— 1)K
d d
(M« B kn . 2kmn k(d—1)n
X<O 1>, M = sin — n —- sin ] ,
d—1 2(d—1 d—1)2
sm( d) sin( 7 i sm( d)n
and 1 t -
co 5d
-1 k'
a = ( ) CotE
2 2d
_1)d—-1 _
O NS VE
2 2d
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It is easy to see that M is invertible with the inverse M ~! = M/d. Hence, so is X,

and
X—l _ Mfl _Mfla _ 92 M _jc\{a
L0 1 T4\ 0 3 '

Consequently, we have

P d—1
(a1,az,...,a4-1,aq) = (d,0,...,0,00X " = (251112,25111—“,...,2sing 1).

d d ’
Hence,
2 d—1
Wz = 2sinEw’1 + QSin—nwé +...+ 2singwéf1 + Wl
d d d
By Lemma 2.3, zA,, 4 = V is indecomposable and projective. (I

One sees that the top S; of V is one dimensional with the basis {u;} and the
action of A, 4 on S; is

U T =Up, WY =2Uu;, U2 =Ul.

For0<i<md—-1withd|iand 0<j<d-1,letS;; be aone dimensional
simple A,,, g-module with the basis {v; ;}, on which the action of A,, 4 is

_ 2 _ Jr _
Vi T =0"Vij, vi7j-y—2(cosg>vi7j, v -2 =0.

For0<i<md—1withd{iand1<j<d—1,letS,; be one dimensional simple
Ay, g-modules with the basis {v; ;}, on which the action of A, q is

e — 20, o — e ) Ly —
Vij & =1""i4,  Vij Y =04V, Vij-zZ=0.

Let P; be the two dimensional module with the basis {v},v?} , on which the action

of Ay g is
1 2,1 1, 2imy, 1 1
v; cx=n"v, vy = 1+07")y, v; -2 =0,
2 .22 2 .1 2imy, 2 2 . _
v cx=n'vy, vi-y=v; + 1+, wv;-z2=0,

where 0 < ¢ <md—1and dfi.
The module P; is indecomposable and projective with the top and socle Sﬁ, where
0<i<md—1anddf?i.
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Now, we are able to classify all the simple modules and indecomposable projective
modules of A,, 4. We keep the notations. By the above discussion and Theorem 5.1
of [8] we have:

Lemma 4.2. The complete list of simple (and pairwise nonisomorphic) A, 4-
modules is as follows.
(1) One nonprojective simple module S; with the projective cover V,
(2) (n — m) nonprojective simple modules S;; with the projective cover P,
where d { ,
(3) nd — 2(n — m) projective simple modules S; ; with j # i and d 1 i, and S, ;
with d | i.

One the other hand, it is easy to see that

(eo = 2)w(l, i) = (eo = 2)w(l, 0),

(eg — z)w; = eqw; — 2wy = zw; — zw; =0 for 0 <1 <d—1.

It follows that (e — z) Ay, q is d-dimensional with the basis {w; := (e —2)w(j—1,0):
1 < j < d}. The actions of A, q on (eg — 2)A, ¢ can be written as

wirr=w; (1<j<d),
Wi Yy=wr wiry=wj—1F+wiy1 2<j<d-1), wqy=2wa,
wj-z2=0 (1<j<d).

Similarly to the proof of Lemma 4.1, we can get another basis {o.);: 1<j<d}of
(eo — 2)Ap, 4 such that

/ 0 .
Wi T = w; (1<j<d),

w}~y:2(cos—)w} 1<j<d-1), wy y=2uwy
/
wj
Hence, we get:
d—1
Lemma 4.3. (eg — 2)Am,qd = D So ;.
3=0
Let Q; (1 < j < d—1) be a K-vector space with the basis {g;,¢q}. The action
of Apq on Q; is given by

T
4 - =gy, Qj'yZQ(COSF)Qja qj -z =0,

4d T =4qd, qd-Y = 2qd, qd -z =qj +qa.
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Then @; is an indecomposable 2-dimensional A,, ¢-module, which can be viewed as
the quotient module of the indecomposable projective A,, s-module V. It is easy to
see that

Homa,, ,(€iAm,d,€04Am,a) =0, Homa,, ,(e0Am.d,eiAma) =0

for 1 < i < n—1. Indeed, noting that the idempotents e; are central and orthogonal

in A, 4, we have
Homa,, ,(€iAm.d, €0Am,d) = €0Am, i = €peiAm,aq =0
by [1], Lemma 4.2.

Lemma 4.4.
(1) If1 <j <d—1, then Homy,, ,(So,;,V) # 0,
(2) Homyu,, ,(V,So,;) =0 for 0 < j < d— 1, and Homy,, ,(S0,0,V) = 0.

d—1
Proof. (1) Asis shown in Lemma 4.1, the socle of V is € Sy ;. Hence,
j=1

Hompy,, ,(So0,,V) #0 and dim Homa,, ,(So,;,V) =1
for1<j<d—1.

(2) It is obvious that
HOInAm’d (5070, V) =0.

On the other hand,
HomAm,d(Va S()J‘) = HOInAm,d (ZAm,@, SOJ') = SOJ'Z =0.
The proof is finished. O

d—1
Accordingly, Ag =V & @ So,; is a block of A, 4. As is shown in [8], the inde-
j=1
composable modules of other blocks of A,, 4 are listed in Lemma 4.2. Therefore, to

determine the representation type of A, 4, it is sufficient to consider the case of the
block Ag.

d—1
Lemma 4.5. The quiver of the block Ao =V & @ Sy, ; is
j=1
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Proof. We haveshown that Sp ;, 1 < j < d—1, are projective modules of A, 4.
Therefore,
EXth(S()?j, Sl) =0.

On the other hand, there is an extension of Sy ; by S1,
0—50; = Qj =51 —0.
Suppose that
0—)50’]‘—)@;-—)51—)0

is another extension of Sy ; by S1. We may assume that Q' has the basis {q,q;}
with the actions

Jm
q; - = qj, q}~y:2(0083)q}, q;-z =0,

Gr=qp 4y =24y Qp-z2=Mj;+q; (A#0).
Then h: Q; — Qf, given by g; = Aq}, g4 = ¢j; is an isomorphism. Hence, we have
dimExth(Sl, SOJ') =1.
Consequently, the quiver of Ay is as shown, where the points 0,1,...,d — 1 are
corresponding to S1, So1, ..., S0,d—1, respectively. ([
By the above lemmas and the well-known classification theorem of representation

type, we have:

Theorem 4.6. We have the following statements.
(1) Ap,,q is of the finite representation type for d < 4;
(2) Ay, q is of the tame type for d = 5;

(3) Apq is of the wild type for d > 6.

Here we list all indecomposable modules of A, ; when they are of finite represen-
tation type. We firstly establish some indecomposable A, 4-modules which will be
needed.

For an arbitrary pair of integers 1 < ¢, j < d — 1, let Q;; be a K-vector space
spanned by the basis {¢;, ¢j, g4} with the action of A,, 4 as follows.

i
qi T = qi, qz"yZQ(COSE)qz‘, gi -z =0,
T
4 - = qj, Qj'yZQ(COSF)Qja qj-z2=0,
4d T =4qd, qd"Y = 2qd, v3-2=¢; +q; +qq.
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It is straightforward to check that @;; is an indecomposable 3-dimensional A, 4-
module.

For d = 4, let V' be a K-vector space spanned by the basis {vy, va, v3,v4,v5}, the
actions on V' are

vi-x=v; forl<i<5h,
iT
vi-y=2(cosZ)vi for 1 <i<3 and wvy-y=2vy, vs-y=2us,

v;-z2=0 for1<i<3 and wvy-z=wv; +v3+v4, v5-2=v1+ V2 + V5.

It is straightforward to check that V' is an indecomposable 5-dimensional A, 4-
module. We see that

V/Qi22Qs, V'/Q132Q, and V'/S=Qn,
where S is the submodule of V' such that
_ _ 2( 27:) -0
Vg - & = Vg, V2 Y = COS 4 V2, V2 -2 =0V,

3
V3 - T = V3, w-yzZ(cosf)vg, vy -z =0,
(s —vg) - x = (v5 —va), (v5—v4) y=2(v5—04),

(vs —wa) - 2 = va — vz + (v5 — v4),
which is isomorphic to Q2 3.

Theorem 4.7. The complete list of indecomposable (and pairwise nonisomorphic)
A, a-modules for d < 4 follows.
(1) A2 has 4m + 2 iso-classes of indecomposable modules:

{Si1, P 0<i<2m—1,24i}U{S;;: 0<7<1,0<i<2m—1,2]¢}U{V,5}
(2) A3 has 9m + 4 iso-classes of indecomposable modules:

{Sij Pir 1< <2,0<i<3m—1,31i}U{S,;: 0<j<20<i<3m—1,3]d)
U{VaslanaQQ}-

(3) A4 has 16m + 9 iso-classes of indecomposable modules:

{8, Pt 1<j<3,0<i<4m— 1,444} U{S;;: 0<75<3,0<i<4m—1,4]i}
U{VﬂvlvslanaQZaQ3an,2;Q1,37Q2,3}~
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Proof. (1) Assume that d = 2. By Lemma 4.5, the quiver of the block Ay =

d—1
Va @ Sois
=1

Qg
0——1
It is easy to see that the block Ay has 3 nonisomorphic indecomposable mod-
ules Sy 1, S1 and V, where Sy 1 and S; are 1-dimensional modules, V is 2-dimensional.
Consequently, there are 4m + 2 pairwise nonisomorphic indecomposable modules
of Ay, 2 by Lemma 4.2.
(2) Assume that d = 3. By Lemma 4.5, the quiver of the block Ay is
2<20—>1
The associated Auslander-Reiten quiver is
So1 Q2 \
’ \ / ;
Q1

It is easy to see that the block Ay has 6 pairwise nonisomorphic indecomposable

So,2

modules: Si, Sp1 and Sp 2, @1, @2, and V. Consequently, there are 9m + 4 pairwise
nonisomorphic indecomposable modules of A,, 3 by Lemma 4.2.
(4) Assume that d = 4. By Lemma 4.5, the quiver of the block Ay is

1=——0—2-3

lag

2

The associated Auslander-Reiten quiver is

@

\/\
/\/

It is easy to see that the block Ay has 12 pairwise nonisomorphic indecomposable

\/
/\

modules: 1-dimensional simple modules Si, So.1, So,2, So,3; 2-dimensional modules
Q1, Q2, Q3; 3-dimensional modules Q1 2, @1,3 and ()2 3; 4-dimensional module V; and
5-dimensional module V’. Consequently, there are 16m + 9 pairwise nonisomorphic
indecomposable modules of A,, 4 by Lemma 4.2. The proof is completed. O
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Remark 4.8. When d = 5, A is the algebra of the tame type Dy. The clas-
sification of indecomposable modules of the tame type D,, (n > 4) was studied by
many authors in the last decades, see for example [2], [13]. On the other hand, it is
hopeless to construct all indecomposable modules of A, 4 (d > 6) of the wild type.

5. THE CELL MODULES OF A,, 4

Let A be a positively based algebra with a fixed positive basis B = {a;: ¢ € I}
with the identity a; of A. For i,j € I, set

ixj={k: 71.(’];-) > 0}.

This defines an associative multi-valued operation on the set I and turns the latter
set into a finite multi-semigroup, see [6], Subsection 3.7. Denote by i <g j if there
is an s € I such that j € i xs. Then <pg is a partial pre-order on I called a right
pre-order. Denote by i ~g j if i <g j and also j <g . This defines an equivalence
relation on I and the set of associated equivalence classes of i ~g j is called right
cells. Furthermore, the pre-order i ~ j induces a genuine partial order on the set of
all cells in 1. We write i <p j provided that ¢ <r j and ¢ ~g j, similarly for ¢ <p, j.

Similarly we can also define the left pre-order i <j j, the equivalence relation
i~ j and left cells. Here ¢ <1 j means that there is an s € I such that j € s« .

Let R be a right cell in I and R the union of all right cells R’ in I such that R’ > R.
Set R=TR \ R. Consider the K-submodule Mz of the regular A-module A4, which
is spanned by all a; with j € R. Let Nz be the K-submodule of A4 spanned by
all a; with j € R. It is easy to see that both Mz and N are A-submodules of Ay4
by [5], Proposition 1 and Ng C Mg. It allows us to define the cell A-modules Cr
as the quotient My /Nz. Here N = 0 if R = ().

In this section, we focus on describing the right cells and right cell modules of A4, 4.
For this purpose, its positive basis

B ={w(l,i),w.: 0K, r<d—1,i€ Z,}
is fixed.

Proposition 5.1. The algebra A,, q has only the following three right cells R1, R2
and Rs.
(1) Ry ={r: ris the index of w,, 0 < r < d—1};
(2) Re={(d—1,i): (d—1,4) is the index of w(d — 1,i), i € Z,,};
(3) Rs =A{(l,4): (I,4) is the index of w(l,7), 0 <1< d—2, i € Z,,}.
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Proof. (1)Setting0 < r, 7" < d—1, we have w,-w,» = (r+1)w, by Theorem 3.2.
It follows that v’ € r«r’, which implies that r <g r’. Similarly, r € v’ xr and 7’ <g r.
The equivalent relation r ~g 7’ holds and R; is a right cell.

(2) For any i € Z,,, since w(d — 1,0) - w(0,7) = w(d — 1,4), we have (d — 1,i) €
(d—1,0) % (0,4) and (d — 1,0) <g (d — 1,4). On the other hand,

T
L

w(d—1,i)-wld—-1,n—1i) =Y w(d—1,n—mk).
0

x>
I

Hence, (d —1,0) € (d—1,i) x(d—1,n—i) and (d — 1,i) <gr (d — 1,0).
Consequently, Ro = {(d — 1,4): i € Z,,} is a right cell.
(3) If I < [3(d — 1)], then w(0,4) - w(l,0) = w(l,i) by Theorem 3.2. Therefore,
(1,7) € (0,3) = (1,0) and (0,%) <gr (/,7). On the other hand,

l
w(l, i) -w(l,ml) = w(2l — 2k, i+ ml — mk)
k=0

implies that (0,4) € (I,4) * (I, ml) and (I,7) <gr (0,4).
Consequently, (O z) ~p (1,4) holds for I < [(d —1)/2].
If[2(d—1)]+1<1<d-2, then w(0,4) - w(l,0) = w(l,i). Therefore, (I,i) €
(0,4) % (1,0) and (O,z) <r (I,7). On the other hand,

t
w(l, i) - w(l,ml) = w(d—1,i+ml—mk)+ Y w2l —2k,i+ml — mk),
k=0 k=t+1

where ¢ = 2] — (d — 1), implies that w(0,7) € w(l,4) - w(l,ml) for k = I. Therefore,
(0,%) € (1,4) = (I,ml) and (1,7) <g (0,1).

The equivalent relation (0,7) ~g ({,4) still holds for [1(d —1)] +1 <1< d—2.
In other words, R3 = {({,i): 0 <1< d—2,i € Z,} is a right cell. The proof is
completed. (I
Corollary 5.2. As the right cells, we have R3 <r R2 <r R1 in A 4.

Proof. Asw(l,0)-w, = (I+1)w, for 0 < r, I < d—1, it implies that r € (I,0)*r
and
Ro <r R1, Rs <r TRa

by Proposition 5.1.
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Moreover, for 0 < [ < d — 2 we have

!
w(l,i) - w(d—1,n—1) = Zw(d— 1,n — mk).
k=0

It implies that (d —1,0) € (I,i)x(d —1,n — i) and R3 <r R2. Consequently, we get
that R3 <r R2 <gr R1. O

Proposition 5.3. For the right cells R1, Ro and R3, the corresponding right cell
modules Cr,, Cr, and Cr, of A, 4 are given as
(1) Cr, = Span{w,: 0 <r < d—1}, where Ng, = {0};
(2) Cr, = Span{w(d —1,4): i € Z,}, where w(l,i) = w(l,i)+ Ng,, Ng, =
Span{w,: 0 <r<d—1};
(3) Cr, = Span{w(l,i): 0 <1 <d—2,i¢€ Z,}, where w(l,i) = w(l,i) + Ng,, and

Ng, = Span{w,,w(d —1,i): 0<r<d—1,i € Z,}.

Proof. (1) By Corollary 5.2, it is easy to see that
Ri=R:i and Ri=0.
It follows that
Mg, =Span{w,: 0<r<d—1} and Ng, ={0}.

Hence,
Cr, = Mg,/Nr, =Span{w,: 0 <r <d—1}.

(2) By Corollary 5.2, it is easy to see that
Ro=Ri1URs, Ra=TRi.
It follows that
Mg, = Span{w(d — 1,i),w,: 0<r<d—1,i€ Z,}

and
Ng, = Span{w,: 0 <r <d—1}.

Hence,
Cr, = Mg,/Nr, = Span{w(d — 1,4): i € Z,}.
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(3) By Corollary 5.2, it is easy to see that
Rs=R1UR2UR3, Rsz=RiURos.
It follows that

Mg, = Span{w(l,i),w,: 0< I, r<d—-1,i€ Z,}

and
Ng, = Span{w,,w(d —1,i): 0<r<d—1,i€ Z,}.
Hence,
Cr, = Mz,/Nr, = Span{w(l,i): 0<1<d—2,i€Z,}.
The result follows. O

In the sequel, we describe the structures of right cell modules Cz, (i = 1,2, 3).
For the right cell module Cr,, we have:
Theorem 5.4. Cgr, is isomorphic to V.

Proof. Setwy = w_1 for 1 <k < d. The actions of A,, 4 on Cr, are the same
as those of V. The result follows from Lemma 2.3 and Lemma 4.1. O

For the right cell A,, ¢g-module Cg,, recall that Cr, = Span{wg_1,; := w(d — 1,1):
i € Z,,} by Proposition 5.3. The actions of A, 4 on Cg, now can be given by
Wi—1, T = Wd—1,i—1, Wd—1,i"Y =Wd—1,i +Wd—1i—m, Wi 2= 0.
Set

2(n—1):

. 1 ) )
wq(i) = E(wdq,o + 0P wa—11 + M wic12+ ...+ W4—1,n—1)

where 0 <i<n—1.
A straightforward verification shows that

(1) if d | 4, we have
wa (i) - = n*wa(i), wa(i) -y =2wa(i), wa(i)-z=0.

We get a simple submodule S; ¢ of Cr,.
(2) if dt4, we have

wali) - @ = 1P wa(), wali) -y = (L+ 2™ wa(i), wali) -z =0.

We get a simple submodule Si,i of Cr,.

In fact, we have:

Theorem 5.5. Cr, is decomposable andCr, = @ Sio® D S;;
0<i<n—1 o<i<n—1
dji dfi
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Proof. It is obvious that

Z Si0+ Z S;7 € Cr,-

0<i<n—1 0<i<n—1
dli di

On the other hand, Sﬁ, where 0 < i < md — 1, are nonisomorphic 1-dimensional

simple modules by Lemma 4.2. Therefore the left hand side is in fact direct sum.
Comparing the dimension of both the sides, we get

Cr, = @ Sio @ @ Sz

0<i<n—1 0<i<n—1
dli di

The proof is completed. O

To consider the structure of Cr,, recall that
Cr, = Span{w;; == w(l,i): 0<I<d—2,i€ Z,}
by Proposition 5.3. The actions of A, 4 on Cr, are given by

Wi =& = Wi i—1,

W1, l= 07
Wi Y =4 Wi, +Wi—1,i—m, 1<I<d—=2,
Wd—3,i—m; l=d-2,

wy; -z = 0.
Foreach1 <l<d—-1land 0<i<n—1, weset

2(n—1)

wy () (wi—1,0 + n*wi—11 +n* w10+ ...+ ‘w1 1)

n

It is noted that wq(i) = 0 in Cr,.
Let W; be the vector space spanned by {wy (i), w2(i), ..., wq—1(¢)} with the actions
of A,, 4 on W; being

wy (1) - x = ¥ (i),

wg(i), = ].,
wi(i) -y = P w-a (i) Fwiga(9), 2<1<d -2,
ﬂzimwdfg(i), l=d— ].,

wy(i)-z=0.
Lemma 5.6. W, is a submodule of Cr,.
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Proof. The proof which is similar to that of Lemma 2.2 shows that

(wi(@)-2)-2 = (wi(i)-2)-2 = wi(@)-2z, (wii)-y)-z=wi(i)22, (wi(i)-2)2z=wli) 2

and
(i (@) - x) - z...x) = "™ (i) = wi(i).
—_———

md

For 1 <1l <d-1, we have

~—
<
~—
&
o~
I
i_‘

n?wy (i) -y = n*wip1 (i) = (wi (i
(wi(i) - ) -y = P00y (i) + p*wig (i) = (wi(i) - y) -z, 2<1<d =2,
(P DNy o (i) = (wg_1(i) - y) - , l=d-—1.

If1<l<d-1,then
(wi (i) - (1 +2™ —y)) - Da—1(z™,y) = wa(i) - (1 + 2™ —y)Dj—1(z™,y) = 0.

The actions of z, y and z on W, keep the defining relations of A,, 4. Hence, W; is a
submodule of Cr,. g
It is not hard to show that the sum of Wj; is direct sum since W; is the eigenvector

space of the eigenvalue 72’ of 2. Moreover,

dimg, Wo@W1 @ ...& W, 1) = (d—1)n =dimy,, ,Cr,.

Therefore,
CRg :WO@W1@~~~@WW,—1
by Lemma 5.6.
n—1d—1
Theorem 5.7. Cr, is decomposable and Cr, = @ D S; ;.
i=0 j=1

Proof. Recall that

CR3::VWN$yV1@~~~@]W%,L

Therefore, it is sufficient to show that

T
L

IR

Wi Sij-

.
I
-
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To see this statement, we let A;, B;, C; be the matrices of z, y, z acting on {w (%),
wa(i), ..., wq—1(i)}. Then A; is the scalar matrix n**E and C; is the zero matrix of
size (d — 1) x (d — 1) on each basis. As for B;, we have

0 1 0o ... 0 0
M0 1 ... 00
0 %m0 ... 0 0
B; = . . . )
0 0 0o ... 0 1

0 0 0 ... 9 0 (d—1)x(d—1).

It is straightforward to see that B; has eigenvalues

Uj:2<cos‘%n) ifd|i and o;; ifdf{q,

where 1 <j<d—-1.
For each W; (0 <4 < n — 1), whether d | i or d {1, its submodules

2 — g -
Vig T =1 0ig, Vij-Y = 05Uy, Vij-z=0
or
. — 2y, . . — g Vs - =0
Vij T =1"Vij, Vij Y= 0i;5Vj5 Vij 2=
are isomorphic to S; ; respectively. Consequently,

d—1 n—1d—1
W, =@ Si; and Cr, = Sij.

j=1 =1

IS8

s
I
<

~
Il

The proof is completed. O

Remark 5.8. We can also describe all the left cell modules of A,, 4. More
precisely, by the discussion analogous as above, we conclude that there are d + 2 left
cells in A, 4:

L,={r} for0<r<d-1, Ry, and Rs.

However, there are only three left cell modules C;, C2 and Cs up to isomorphism,
which are listed as follows.
(1) Cy: it is spanned by {w}, the actions of A,, 4 are given by

T-ow =wy, Y-w; =2w, 2-w;=uwi.
It is noticed that C,, is isomorphic to C; for 0 < r < d — 1.
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(2) Csq: it is spanned by {w(d—1,i): ¢ € Z,}, the actions of A,, 4 on Cs are given by
T Wd—1,i = Wd—1,i—1, Y Wd—1,4 = Wd—1,; + Wd—1,i—m, 2 wi; =0.

(3) Cs: it is spanned by {w(l,7): 0 <1< d—2,i€ Z,}, the actions of A, q on C3
are given by

T-wWp; = Wii—1,

wl,i, l = 0,
Y Wi = Wikt +Wi—1,i—m, 1<1I<d—2,
Wd—3,i—m» l=d— 2,

Z Wy =0.

Of course, Theorems 5.5 and 5.7 also hold for the left cell modules C5 and Cj,
respectively.
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