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Abstract. We investigate the representation theory of the positively based algebra Am,d,
which is a generalization of the noncommutative Green algebra of weak Hopf algebra corre-
sponding to the generalized Taft algebra. It turns out that Am,d is of finite representative
type if d 6 4, of tame type if d = 5, and of wild type if d > 6. In the case when d 6 4,
all indecomposable representations of Am,d are constructed. Furthermore, their right cell
representations as well as left cell representations of Am,d are described.
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1. Introduction

As a generalization of Hopf algebra, the concept of weak Hopf algebra was intro-

duced by Li in [7]. More precisely, a weak Hopf algebra is a bialgebra with a weak an-

tipode. Su and Yang introduced two classes of the weak Hopf algebra ws
n,d (s = 0, 1)

based on the generalized Taft algebraHn,d(q) in [15]. The Green rings r(w
s
n,d) ofw

s
n,d

are established and it is proved that r(w1
n,d) is noncommutative as well as r(w

0
n,d)

is commutative. Green rings or Green algebras are always positively based alge-

bras. Examples of positively based algebras include the Hecke algebras correspond-

ing to Coxeter groups with respect to the Kazhdan-Lusztig basis. Mazorchuk and

Miemietz defined cell 2-representations of finitary 2-categories in [12]. On the level of

the Grothendieck group, a cell 2-representation becomes a based module over some

finite-dimensional positively based algebras with various nice properties. For exam-
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ple, for the 2-category of Soergel bimodules over the coinvariant algebra of a finite

Coxeter group, the Grothendieck group level of a cell 2-representation is exactly the

Kazhdan-Lusztig left cell module, see [4], [9], [10], [11].

The aforementioned work motivates us to study indecomposable modules and

cell modules of positively based algebras. Of particular interest for us are those

noncommutative positively based algebras associated to Green algebras of some fi-

nite dimensional bialgebras. On the one hand, it could be helpful to understand

their representations of noncommutative Green algebras or noncommutative posi-

tively based algebras, and on the other hand, it may help us to recover all classes

of original bialgebras. To understand this, in the present paper we first define a

new algebra Am,d over some suitable subfields K of the complex field C. The

algebra Am,d, which is just the Green algebra of w
1
md,d if K = C, can be de-

scribed by three generators and generating relations controlled by the determi-

nant of some tridiagonal matrices. A new way is provided to show that Am,d

is a positively based algebra by avoiding the technique of Green rings. It is ob-

served that Am,d is of finite representation type if d 6 4, of tame type if d = 5,

and of wild type if d > 6. Furthermore, we classify all indecomposable modules

of Am,d for d 6 4. At last the cells and cell modules of Am,d are constructed.

It is pointed out that the right cells and cell modules of Am,d are different from

the left ones.

The paper is organized as follows. In Section 2, we introduce the definition of

the algebra Am,d by generators and relations. Two sets of the basis of Am,d are

constructed. In Section 3, we show that Am,d is a positively based algebra by avoid-

ing the technique of Green rings. In Section 4, the representation type of Am,d is

determined. All the indecomposable Am,d-modules are constructed when Am,d is of

representation-finite type. In Section 5, right cell modules of Am,d as well as their

structures are investigated. Also, all the left cell modules of Am,d are listed.

2. Preliminaries

Throughout, C, R, Z and N, stand for the field of complex numbers, real numbers,

the ring of integers, and the set of natural numbers, respectively, unless otherwise

stated. The symbol ♯ means the number of elements of a set. Representations and

modules of an algebra are considered to be the same meanings.

Fixing integers m, d > 1 and n = md. Suppose that K is a subfield of C containing

the complex number i and the primitive 2nth root of the unity

η = cos
π

n
+ i sin

π

n
.
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For 0 6 i 6 n− 1, 1 6 j 6 d− 1, we always set i = i (mod d) and

σi,j = 2ηim cos
jπ

d
.

Note that σi,i = 1+η2im when d ∤ i and all σi,j , cos(kπ/n), sin(kπ/n) (0 6 k 6 2n−1)

belong to K.

Su and Yang in [14], [15] provided two examples of noncommutative Green rings.

One of them is that of a small quantum group, which is of infinite Z-rank with much

complicated defining relations. The other one, provided in [15], is the Green rings

r(ws
md,d) (s = 0, 1) of weak Hopf algebras ws

md,d (s = 0, 1) based on generalized Taft

algebras, which are of finite Z-rank. Obviously, they are positively based algebras. In

the sequel, we focus on classifying representations of a more general K-algebra Am,d

than the ring r(w1
md,d).

To introduce the K-algebra Am,d, we consider the matrices

Al(x
m, y) =




y xm 0 . . . 0 0

1 y xm . . . 0 0

0 1 y . . . 0 0
...
...

... . . .
...
...

0 0 0 . . . y xm

0 0 0 . . . 1 y




l×l

, where xy = yx,

and put Dl(x
m, y) = det(Al(x

m, y)). It is well known that

Dl(x
m, y) =

[l/2]∑

i=0

(−1)i
(
l− i

i

)
xmiyl−2i for l > 1,

where [l/2] denotes the biggest integer which is not bigger than l/2.

Definition 2.1. The K-algebra Am,d is generated by x, y, z with the following

relations:

(1) xmd = 1, xy = yx;

(2) (1 + xm − y)Dd−1(x
m, y) = 0;

(3) xz = zx = z, yz = 2z, and z2 = z.

One sees that Am,d is noncommutative and

Dl(x
m, y)z = Dl(x

mz, yz) = Dl(1, 2)z = (l + 1)z,(2.1)

zDl(x
m, y) = zDl(1, y).(2.2)
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Now, let Vt (0 6 t 6 n−1), V beK-vector spaces with the bases {vt(k) : 16 k 6 d},

{vk : 1 6 k 6 d}, respectively. We introduce two lemmas.

Lemma 2.2. Vt is an Am,d-module with the following actions of Am,d on Vt.

(1) If d | t, setting

vt(k) · x = η2tvt(k),

vt(k) · y =





2
(
cos

kπ

d

)
vt(k), 1 6 k 6 d− 1,

2vt(d), k = d,

vt(k) · z = 0.

(2) If d ∤ t, setting

vt(k) · x = η2tvt(k),

vt(k) · y =

{
σt,kvt(k), 1 6 k 6 d− 1,

vt(t) + σt,tvt(d), k = d,

vt(k) · z = 0.

P r o o f. Firstly, we assume that d | t, and have

(vt(k)·x)·z = (vt(k)·z)·x = vt(k)·z, (vt(k)·y)·z = vt(k)·2z, (vt(k)·z)·z = vt(k)·z,

and

((vt(k) · x) · x . . . x︸ ︷︷ ︸
md

) = η2tmdvt(k) = vt(k),

since vt(k) · z = 0 and md = n.

For 1 6 k 6 d, we have

(vt(k) · x) · y =





2
(
η2t cos

kπ

d

)
vt(k) = (vt(k) · y) · x, 1 6 k 6 d− 1,

2η2tvt(d) = (vt(d) · y) · x, k = d.

If 1 6 k 6 d− 1, we have

(vt(k)·(1+xm−y))·Dd−1(x
m, y) =

(
1+η2tm−2 cos

kπ

d

)
Dd−1

(
1, 2 cos

kπ

d

)
vt(k) = 0.

This follows from Dd−1(1, 2 cos(kπ/d)) = 0.

If k = d, we have

vt(d) · (1 + xm − y)Dd−1(x
m, y) = (1 + η2tm − 2)Dd−1(1, 2)vt(d) = 0.

Hence, the actions of x, y and z keep the defining relations of Am,d.

Secondly, for the case when d ∤ t, the proof is similar. Therefore, Vt is an

Am,d-module. �
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Lemma 2.3. V is an indecomposable Am,d-module with the following actions

of Am,d on V .

vk · x = vk,

vk · y =





2
(
cos

kπ

d

)
vk, 1 6 k 6 d− 1,

2vk, k = d,

vk · z =





0, 1 6 k 6 d− 1,

2
(
sin

π

d

)
v1 + 2

(
sin

2π

d

)
v2 + . . .+ 2

(
sin

(d− 1)π

d

)
vd−1 + vd, k = d.

P r o o f. The proof of the statement about the actions is similar to the proof of

Lemma 2.2. Also, V is indecomposable.

Indeed, we suppose that V = M1 ⊕M2 with both M1 and M2 nonzero. If there

exists w, 0 6= w ∈ M1, such that w =
d∑

k=1

bkvk with bd 6= 0, then ω · z = bdvd · z ∈ M1

and vd · zy, vd · zy
2, . . . , vd · zy

d−1 belong to M1. More precisely, we have that

γ1 = vd · z = 2

(d−1∑

j=1

sin
jπ

d

)
vj + vd,

γk = γk−1 · y = 2k
(d−1∑

j=1

sin
jπ

d
cosk−1 jπ

d

)
vj + 2k−1vd,

γd = γd−1 · y = 2d
(d−1∑

j=1

sin
jπ

d
cosd−1 jπ

d

)
vj + 2d−1vd

belong to M1.

It is easy to see that the matrix
























2 sin
π

d
2 sin

2π

d
. . . 2 sin

(d− 1)π

d
1

.

.

.

.

.

. . . .
.

.

.

.

.

.

2k sin
π

d
cosk−1

π

d
2k sin

2π

d
cosk−1

2π

d
. . . 2k sin

(d− 1)π

d
cosk−1

(d− 1)π

d
2k−1

.

.

.

.

.

. . . .
.

.

.

.

.

.

2d sin
π

d
cosd−1

π

d
2d sin

2π

d
cosd−1

2π

d
. . . 2d sin

(d− 1)π

d
cosd−1

(d− 1)π

d
2d−1

























is invertible and we get that vk ∈ M1 for 1 6 k 6 d. Hence, M1 = V and we get

a contradiction in this case.

If there is no 0 6= w ∈ M1 such that w =
d∑

k=1

bkvk, bd 6= 0, then we have

0 6= vd ∈ M2. One sees that M2 = V in a similar way and get a contradiction. It

concludes that V is indecomposable. �
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Proposition 2.4. The set {xiyj , zyl : 0 6 i 6 n − 1, 0 6 j, l 6 d − 1} forms

a basis of Am,d.

P r o o f. Noting that (1 + xm)Dd−1(x
m, y) = yDd−1(x

m, y) by the defining

relations of Am,d, we have

(1 + xm)

([(d−1)/2]∑

i=0

(−1)i
(
d− 1− i

i

)
xmiyd−1−2i

)

= y

([(d−1)/2]∑

i=0

(−1)i
(
d− 1− i

i

)
xmiyd−1−2i

)
.

One sees that yd can be represented by linear combinations of {xiyj : 0 6 j 6 d−1}.

Hence, any element in Am,d is spanned by {xiyj , zyl : 0 6 i 6 n−1, 0 6 j, l 6 d−1}.

In fact,

{xiyj , zyl : 0 6 i 6 n− 1, 0 6 j, l 6 d− 1}

is still linearly independent.

Indeed, suppose that

(2.3)

n−1∑

i=0

d−1∑

j=0

ai,jx
iyj +

d−1∑

l=0

blzy
l = 0.

For convenience, we set aj =
n−1∑
i=0

ai,jη
2ti and α = (a0, . . . , ad−1)

⊤. We also set

A =




1 2 cos
π

d
. . . 2d−1 cosd−1 π

d
...

... . . .
...

1 2 cos
kπ

d
. . . 2d−1 cosd−1 kπ

d
...

... . . .
...

1 2 cos
(d− 1)π

d
. . . 2d−1 cosd−1 (d− 1)π

d

1 2 . . . 2d−1




if d | t

and

A =




1 σt,1 (σt,1)
2 . . . (σt,1)

d−1

...
...

... . . .
...

1 σt,t (σt,t)
2 . . . (σt,t)

d−1

...
...

... . . .
...

1 σt,d−1 (σt,d−1)
2 . . . (σt,d−1)

d−1

0 1 2σt,t . . . (d− 1)(σt,t)
d−2




if d ∤ t.
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It is easy to see that such A is invertible since det(A) 6= 0. For example, in the

case when d ∤ t, we have

|A| = (−1)t+1
∏

k 6=t

(σt,k − σt,t)

∣∣∣∣∣∣∣∣∣

1 σt,1 . . . (σt,1)
d−2

...
... . . .

...

1 σt,d−1 . . . (σt,d−1)
d−2

1 σt,t . . . (σt,t)
d−2

∣∣∣∣∣∣∣∣∣

6= 0.

Therefore,
n−1∑
i=0

ai,jη
2ti = 0 for 0 6 j 6 d− 1 and d ∤ t.

In the case when d | t or d ∤ t, acting on {vt(1), vt(2), . . . , vt(d)} by both the sides

of (2.3), respectively, we have Aα = 0. Consequently, α = 0 and hence




1 1 . . . 1
...

... . . .
...

1 η2k . . . (η2k)n−1

...
... . . .

...

1 η2(n−1) . . . (η2(n−1))n−1







a0,j
...

ak,j
...

an−1,j




= 0

for any 0 6 j 6 d− 1. Therefore, ai,j = 0 for 0 6 i 6 n− 1, 0 6 j 6 d − 1 and we

get that

(2.4)

d−1∑

l=0

blzy
l = 0.

Acting on vd of V by both the sides of (2.4), we have
























2 sin
π

d
4 sin

π

d
cos

π

d
. . . 2d sin

π

d
cosd−1

π

d

.

.

.

.

.

. . . .
.

.

.

2 sin
kπ

d
4 sin

kπ

d
cos

kπ

d
. . . 2d sin

kπ

d
cosd−1

kπ

d

.

.

.

.

.

. . . .
.

.

.

2 sin
(d− 1)π

d
4 sin

(d− 1)π

d
cos

(d− 1)π

d
. . . 2d sin

(d− 1)π

d
cosd−1

(d− 1)π

d

1 2 . . . 2d−1









































b0
.

.

.

bk
.

.

.

bd−2

bd−1

















= 0.

It is easy to see that the determinant of the coefficient matrix is nonzero, so bl = 0

for 0 6 l 6 d− 1. Hence,

{xiyj , zyl : 0 6 i 6 n− 1, 0 6 j, l 6 d− 1}

is linearly independent. The above statements imply that

{xiyj , zyl : 0 6 i 6 n− 1, 0 6 j, l 6 d− 1}

is a basis of Am,d. �
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Now we set

w(0, 0) = 1, w(l, 0) = Dl(x
m, y), w(l, i) = x−iw(l, 0), wr = zw(r, 0)

with 0 6 l, r 6 d− 1, i ∈ Zn and we have:

Proposition 2.5. The set {w(l, i), wr : 0 6 l, r 6 d − 1, i ∈ Zn} forms a basis

of Am,d.

P r o o f. We now assume that 0 6 l, r 6 d− 1, i ∈ Zn, then

w(l, i) = x−iDl(x
m, y) = x−i

[l/2]∑

k=0

(−1)k
(
l − k

k

)
xmkyl−2k = x−iyl + (∗),

wr = zDr(x
m, y) = z

[r/2]∑

k=0

(−1)k
(
r − k

k

)
xmkyr−2k = zyr + (∗∗).

Assuming that
d−1∑

l=0

∑

i∈Zn

al,iw(l, i) +

d−1∑

r=0

brwr = 0,

we have
d−1∑

l=0

∑

i∈Zn

al,i(x
−iyl + (∗)) +

d−1∑

r=0

br(zy
r + (∗∗)) = 0.

It follows that
d−1∑

l=0

∑

i∈Zn

al,i(x
−iyl) +

d−1∑

r=0

br(zy
r) = 0

and al,i = br = 0 for all 0 6 l, r 6 d− 1, i ∈ Zn by Proposition 2.4.

Moreover, notice that

♯{w(l, i), wr}06l,r6d−1,i∈Zn
= ♯{xiyj, zyl}06i6n−1,06j,l6d−1.

Consequently, {w(l, i), wr : 0 6 l, r 6 d− 1, i ∈ Zn} is another basis of Am,d. �

3. The positive basis of Am,d

In this section, we show that {w(l, i), wr : 0 6 l, r 6 d − 1, i ∈ Zn} is a positive

basis of Am,d. To see this, let us review some concepts and some basic results now.

Let A be an n-dimensional K-algebra. The basis B = {ai : i ∈ I} of A will be

called positive if all structure constants ofA with respect to this basis are nonnegative

real numbers, that is,

ai · aj =
n∑

k=1

γ
(k)
i,j ak,
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holds for all i, j ∈ I, where γ
(k)
i,j ∈ R > 0 for all i, j, k. An algebra with a positive basis

is called a positively based algebra. For example, the group algebra KG is a positively

based algebra when G is a finite group and the positive basis is B = {g : g ∈ G}

with the structure constants being one or zero.

For 1 < d ∈ N, we set [0, d − 1] = {0, . . . , d − 1}. Consider a free abelian group

generated by the elements (u, i), where (u, i) ∈ [0, d − 1] × Zn. Suppose that this

group is equipped with an extra multiplicative structure, making it a commutative

ring, which is subject to the following relations, where + denotes the addition law, ·

the multiplication law, and (u, i) = 0 if u < 0.

(0, i) · (0, j) = (0, i+ j),(3.1)

(1, 0) · (l, j) = (l + 1, j) + (l − 1, j −m),(3.2)

(1, 0) · (d− l, j) = (d− 1, j) + (d− 1, j −m).(3.3)

Lemma 3.1. The following formulas hold.

(1) (u, i) · (v, j) =
min(u,v)∑

k=0

(u+ v − 2k, i+ j −mk) for u+ v 6 d− 1,

(2) (u, i) ·(v, j) =
t∑

k=0

(d−1, i+j−mk)+
min(u,v)∑
k=t+1

(u+v−2k, i+j−mk) for u+v > d,

where t = u+ v − (d− 1).

P r o o f. The proof is similar to that of [3], Proposition 3.1, where we replace (i, u)

by (u, i), i+1 by i−m, i+ j +1 by i+ j −m, m by d, i+ j + l by i+ j −ml, j + 1

by j −m, and i+ j + l + 1 by i+ j −ml −m.

The proof is finished. See also [16], Lemma 3.1. �

We can now investigate the structure constants of {w(l, i), wr : 0 6 l, r 6 d − 1,

i ∈ Zn} of Am,d. Let

B = {w(l, i), wr : 0 6 l, r 6 d− 1, i ∈ Zn}.

Lemma 3.2. Let 0 6 u, v, l, r, r′ 6 d−1, i, j ∈ Zn, then take for the basis of Am,d

(1) if u+ v 6 d− 1, then

w(u, i) · w(v, j) =

min(u,v)∑

k=0

w(u + v − 2k, i+ j −mk),

(2) if u+ v > d, set t = u+ v − (d− 1), then

w(u, i) · w(v, j) =
t∑

k=0

w(d− 1, i+ j −mk) +

min(u,v)∑

k=t+1

w(u + v − 2k, i+ j −mk),

(3) w(l, i) · wr = (l + 1)wr,
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(4) if r + l 6 d− 1, then

wr · w(l, i) =

min(r,l)∑

k=0

wr+l−2k,

(5) if r + l > d, set t = r + l− (d− 1), then

wr · w(l, i) =

min(r,l)∑

k=t+1

wr+l−2k + (t+ 1)wd−1,

(6) wr · wr′ = (r + 1)wr′ .

P r o o f. It is easy to see that

w(1, 0) = D1(x
m, y) = y, w(l + 1, 0) = yw(l, 0)− xmw(l − 1, 0),

where 1 6 l 6 d− 2. It is obvious that

w(0, i) · w(0, j) = x−iw(0, 0) · x−jw(0, 0) = x−i−jw(0, 0) = w(0, i+ j).

Hence, (3.1) hold.

If 1 6 l 6 d− 2, we have

w(1, 0) · w(l, j) = x−jw(1, 0) · w(l, 0) = x−jyw(l, 0)

= x−jyw(l, 0)− xm−jw(l − 1, 0) + xm−jw(l − 1, 0)

= x−jw(l + 1, 0) + xm−jw(l − 1, 0)

= w(l + 1, j) + w(l − 1, j −m).

If l = d− 1, then

w(1, 0) · w(d − 1, j) = x−jw(1, 0) · w(d− 1, 0) = x−jyw(d− 1, 0)

= x−j(1 + xm)w(d − 1, 0)

= x−jw(d− 1, 0) + xm−jw(d − 1, 0)

= w(d − 1, j) + w(d − 1, j −m).

It follows that (3.2) and (3.3) hold.

Now, the proof of the statements (1) and (2) is obvious by Lemma 3.1.

(3) By (2.1), we have

w(l, i) · wr = x−iw(l, 0)zw(r, 0) = Dl(x
m, y)zw(r, 0)

= Dl(1, 2)zw(r, 0) = (l + 1)zw(r, 0) = (l + 1)wr.
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(4) If r + l 6 d− 1, then

wr · w(l, i) = zw(r, 0)w(l, i)

=

min(r,l)∑

k=0

zw(r + l − 2k, i−mk) =

min(r,l)∑

k=0

zxmk−iw(r + l − 2k, 0)

=

min(r,l)∑

k=0

zw(r + l − 2k, 0) =

min(r,l)∑

k=0

wr+l−2k.

(5) If r + l > d, set t = r + l − (d− 1), then

wr · w(l, i) = zw(r, 0)w(l, i)

=

t∑

k=0

zw(d− 1, i−mk) +

min(r,l)∑

k=t+1

zw(r + l − 2k, i−mk)

= (t+ 1)wd−1 +

min(r,l)∑

k=t+1

zw(r + l− 2k, i−mk)

= (t+ 1)wd−1 +

min(r,l)∑

k=t+1

wr+l−2k.

(6) Using (2.1), we have

wr · wr′ = zw(r, 0)zw(r′, 0) = z(r + 1)zw(r′, 0) = (r + 1)zw(r′, 0) = (r + 1)wr′ .

�

Theorem 3.3. The algebra Am,d is a positively based algebra.

P r o o f. By Lemma 3.2, it is easy to see that

B = {w(l, i), wr : 0 6 l, r 6 d− 1, i ∈ Zn}

is a positive basis of Am,d. The result follows. �

4. The representations of Am,d

In this section, the field K is assumed to be algebraic closed. Firstly we determine

the representation type of Am,d and then construct all the indecomposable Am,d-

modules in the case that Am,d is of finite representation type. For this purpose, we set

ei =
1

n

n−1∑

k=0

η−2ikxk
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for 0 6 i 6 n− 1. It is well known that {e0, e1, . . . , en−1} is the set of central idem-

potents of Am,d. Also, zei = eiz = 0 for 1 6 i 6 n − 1, (e0 − z)z = z(e0 − z) = 0,

and (e0 − z)2 = e0 − z.

Am,d = zAm,d ⊕ (e0 − z)Am,d ⊕ e1Am,d ⊕ . . .⊕ en−1Am,d.

A straightforward verification shows that

(1 − z)Am,d = (e0 − z)Am,d ⊕ e1Am,d ⊕ . . .⊕ en−1Am,d

is isomorphic to r(Hn,d)⊗K in [8].

Lemma 4.1. zAm,d
∼= V is a d-dimensional indecomposable projective module.

P r o o f. It is easy to see that Am,d = zAm,d⊕(1−z)Am,d and zAm,d is projective.

Noting that

zw(l, i) = wl, zwr = wr for 0 6 l, r 6 d− 1, i ∈ Zn,

we have that {w0, w1, w2, . . . , wd−1} is a basis of zAm,d.

Let ωk = wk−1 for 1 6 k 6 d, then the actions of Am,d on zAm,d can be written as

ωk · x = ωk (1 6 k 6 d),

ω1 · y = ω2, ωk · y = ωk−1 + ωk+1 (2 6 k 6 d− 1), ωd · y = 2ωd,

ωk · z = kω1 (1 6 k 6 d).

With respect to this basis, the matrix B of y is of the form




0 1 0 . . . 0 0 0

1 0 1 . . . 0 0 0

0 1 0 . . . 0 0 0
...
...
... . . .

...
...
...

0 0 0 . . . 1 0 1

0 0 0 . . . 0 0 2




d×d

.

The eigenvalue λk and its eigenvector αk of B (1 6 k 6 d) are

λk =





2 cos
kπ

d
, 1 6 k 6 d− 1,

2, k = d,

αk =






(
sin

kπ

d
, sin

2kπ

d
, . . . , sin

(d− 1)kπ

d
,
(−1)k

2
cot

kπ

2d

)
, 1 6 k 6 d− 1,

(0, 0, . . . , 0, 1), k = d.
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Now we assume that

ω′
k = sin

kπ

d
ω1 + sin

2kπ

d
ω2 + . . .+ sin

(d− 1)kπ

d
ωd−1

+
(−1)k

2
cot

kπ

2d
ωd (1 6 k < d− 1),

ω′
d = ωd.

Then

ω′
k · x = ω′

k, (1 6 k 6 d),

ω′
k · y = 2 cos

kπ

d
ω′
k (1 6 k 6 d− 1), ω′

d · y = 2ω′
d,

ω′
k · z = 0 (1 6 k 6 d− 1),

ω′
d · z = 2 sin

π

d
ω′
1 + 2 sin

2π

d
ω′
2 + . . .+ 2 sin

(d− 1)π

d
ω′
d−1 + ω′

d.

We show the actions of z on the basis {ω′
k : 1 6 k 6 d}. By the defining relations

of Am,d, we have (λk − 2)ω′
k · z = 0. Hence, ω′

k · z = 0 if k 6= d. Furthermore,

ω′
d · z = dω1 = a1ω

′
1 + a2ω

′
2 + . . .+ adω

′
d.

Assume that

(ω′
1, ω

′
2, ω

′
3, . . . , ω

′
d)

⊤ = X(ω1, ω2, ω3, . . . , ωd)
⊤,

where

X =

(
M α

0 1

)
, M =




sin
π

d
sin

2π

d
. . . sin

(d− 1)π

d
...

... . . .
...

sin
kπ

d
sin

2kπ

d
. . . sin

k(d− 1)π

d
...

... . . .
...

sin
(d− 1)π

d
sin

2(d− 1)π

d
. . . sin

(d− 1)2π

d




,

and

α =




−
1

2
cot

π

2d
...

(−1)k

2
cot

kπ

2d
...

(−1)d−1

2
cot

(d− 1)π

2d




.
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It is easy to see that M is invertible with the inverse M−1 = M/d. Hence, so is X ,

and

X−1 =

(
M−1 −M−1α

0 1

)
=

2

d

(
M −Mα

0
d

2

)
.

Consequently, we have

(a1, a2, . . . , ad−1, ad) = (d, 0, . . . , 0, 0)X−1 =
(
2 sin

π

d
, 2 sin

2π

d
, . . . , 2 sin

(d− 1)π

d
, 1
)
.

Hence,

ω′
d · z = 2 sin

π

d
ω′
1 + 2 sin

2π

d
ω′
2 + . . .+ 2 sin

(d− 1)π

d
ω′
d−1 + ω′

d.

By Lemma 2.3, zAm,d
∼= V is indecomposable and projective. �

One sees that the top S1 of V is one dimensional with the basis {u1} and the

action of Am,d on S1 is

u1 · x = u1, u1 · y = 2u1, u1 · z = u1.

For 0 6 i 6 md − 1 with d | i and 0 6 j 6 d − 1, let Si,j be a one dimensional

simple Am,d-module with the basis {vi,j}, on which the action of Am,d is

vi,j · x = η2ivi,j , vi,j · y = 2
(
cos

jπ

d

)
vi,j , vi,j · z = 0.

For 0 6 i 6 md−1 with d ∤ i and 1 6 j 6 d−1, let Si,j be one dimensional simple

Am,d-modules with the basis {vi,j}, on which the action of Am,d is

vi,j · x = η2ivi,j , vi,j · y = σi,jvi,j , vi,j · z = 0.

Let Pi be the two dimensional module with the basis {v
1
i , v

2
i } , on which the action

of Am,d is

v1i · x = η2iv1i , v1i · y = (1 + η2im)v1i , v1i · z = 0,

v2i · x = η2iv2i , v2i · y = v1i + (1 + η2im)v2i , v2i · z = 0,

where 0 6 i 6 md− 1 and d ∤ i.

The module Pi is indecomposable and projective with the top and socle Si,i, where

0 6 i 6 md− 1 and d ∤ i.
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Now, we are able to classify all the simple modules and indecomposable projective

modules of Am,d. We keep the notations. By the above discussion and Theorem 5.1

of [8] we have:

Lemma 4.2. The complete list of simple (and pairwise nonisomorphic) Am,d-

modules is as follows.

(1) One nonprojective simple module S1 with the projective cover V ,

(2) (n − m) nonprojective simple modules Si,i with the projective cover Pi,

where d ∤ i,

(3) nd − 2(n − m) projective simple modules Si,j with j 6= i and d ∤ i, and Si,j

with d | i.

One the other hand, it is easy to see that

(e0 − z)w(l, i) = (e0 − z)w(l, 0),

(e0 − z)wl = e0wl − zwl = zwl − zwl = 0 for 0 6 l 6 d− 1.

It follows that (e0−z)Am,d is d-dimensional with the basis {ωj := (e0−z)w(j−1, 0):

1 6 j 6 d}. The actions of Am,d on (e0 − z)Am,d can be written as

ωj · x = ωj (1 6 j 6 d),

ω1 · y = ω2 ωj · y = ωj−1 + ωj+1 (2 6 j 6 d− 1), ωd · y = 2ωd,

ωj · z = 0 (1 6 j 6 d).

Similarly to the proof of Lemma 4.1, we can get another basis {ω′
j : 1 6 j 6 d} of

(e0 − z)Am,d such that

ω′
j · x = ω′

j (1 6 j 6 d),

ω′
j · y = 2

(
cos

jπ

d

)
ω′
j (1 6 j 6 d− 1), ω′

d · y = 2ω′
d,

ω′
j · z = 0 (1 6 j 6 d).

Hence, we get:

Lemma 4.3. (e0 − z)Am,d =
d−1⊕
j=0

S0,j .

Let Qj (1 6 j 6 d − 1) be a K-vector space with the basis {qj, qd}. The action

of Am,d on Qj is given by

qj · x = qj , qj · y = 2
(
cos

jπ

d

)
qj , qj · z = 0,

qd · x = qd, qd · y = 2qd, qd · z = qj + qd.
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Then Qj is an indecomposable 2-dimensional Am,d-module, which can be viewed as

the quotient module of the indecomposable projective Am,d-module V . It is easy to

see that

HomAm,d
(eiAm,d, e0Am,d) = 0, HomAm,d

(e0Am,d, eiAm,d) = 0

for 1 6 i 6 n− 1. Indeed, noting that the idempotents ei are central and orthogonal

in Am,d, we have

HomAm,d
(eiAm,d, e0Am,d) = e0Am,dei = e0eiAm,d = 0

by [1], Lemma 4.2.

Lemma 4.4.

(1) If 1 6 j 6 d− 1, then HomAm,d
(S0,j ,V) 6= 0,

(2) HomAm,d
(V , S0,j) = 0 for 0 6 j 6 d− 1, and HomAm,d

(S0,0,V) = 0.

P r o o f. (1) As is shown in Lemma 4.1, the socle of V is
d−1⊕
j=1

S0,j . Hence,

HomAm,d
(S0,j ,V) 6= 0 and dim HomAm,d

(S0,j ,V) = 1

for 1 6 j 6 d− 1.

(2) It is obvious that

HomAm,d
(S0,0,V) = 0.

On the other hand,

HomAm,d
(V , S0,j) = HomAm,d

(zAm,d, S0,j) = S0,jz = 0.

The proof is finished. �

Accordingly, A0 = V ⊕
d−1⊕
j=1

S0,j is a block of Am,d. As is shown in [8], the inde-

composable modules of other blocks of Am,d are listed in Lemma 4.2. Therefore, to

determine the representation type of Am,d, it is sufficient to consider the case of the

block A0.

Lemma 4.5. The quiver of the block A0 = V ⊕
d−1⊕
j=1

S0,j is

0
α1

ww♦♦♦
♦♦
♦♦
♦♦
♦♦
♦♦
♦

α2

~~⑦⑦
⑦⑦
⑦⑦
⑦⑦

αd−2

""❋
❋❋

❋❋
❋❋

❋❋

αd−1

))❙❙
❙❙❙

❙❙❙
❙❙❙

❙❙❙
❙❙❙

❙

1 2 . . . d− 2 d− 1.
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P r o o f. We have shown that S0,j, 1 6 j 6 d−1, are projective modules of Am,d.

Therefore,

Ext1A(S0,j , S1) = 0.

On the other hand, there is an extension of S0,j by S1,

0 → S0,j → Qj → S1 → 0.

Suppose that

0 → S0,j → Q′
j → S1 → 0

is another extension of S0,j by S1. We may assume that Q
′
j has the basis {q

′
j , q

′
d}

with the actions

q′j · x = q′j , q′j · y = 2
(
cos

jπ

d

)
q′j , q′j · z = 0,

q′d · x = q′d, q′d · y = 2q′d, q′d · z = λq′j + q′d (λ 6= 0).

Then h : Qj → Q′
j , given by qj 7→ λq′j , qd 7→ q′d is an isomorphism. Hence, we have

dimExt1A(S1, S0,j) = 1.

Consequently, the quiver of A0 is as shown, where the points 0, 1, . . . , d − 1 are

corresponding to S1, S0,1, . . . , S0,d−1, respectively. �

By the above lemmas and the well-known classification theorem of representation

type, we have:

Theorem 4.6. We have the following statements.

(1) Am,d is of the finite representation type for d 6 4;

(2) Am,d is of the tame type for d = 5;

(3) Am,d is of the wild type for d > 6.

Here we list all indecomposable modules of Am,d when they are of finite represen-

tation type. We firstly establish some indecomposable Am,d-modules which will be

needed.

For an arbitrary pair of integers 1 6 i, j 6 d − 1, let Qi,j be a K-vector space

spanned by the basis {qi, qj , qd} with the action of Am,d as follows.

qi · x = qi, qi · y = 2
(
cos

iπ

d

)
qi, qi · z = 0,

qj · x = qj , qj · y = 2
(
cos

jπ

d

)
qj , qj · z = 0,

qd · x = qd, qd · y = 2qd, v3 · z = qi + qj + qd.
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It is straightforward to check that Qi,j is an indecomposable 3-dimensional Am,d-

module.

For d = 4, let V ′ be a K-vector space spanned by the basis {v1, v2, v3, v4, v5}, the

actions on V ′ are

vi · x = vi for 1 6 i 6 5,

vi · y = 2
(
cos

iπ

4

)
vi for 1 6 i 6 3 and v4 · y = 2v4, v5 · y = 2v5,

vi · z = 0 for 1 6 i 6 3 and v4 · z = v1 + v3 + v4, v5 · z = v1 + v2 + v5.

It is straightforward to check that V ′ is an indecomposable 5-dimensional Am,4-

module. We see that

V ′/Q1,2
∼= Q3, V ′/Q1,3

∼= Q2, and V ′/S ∼= Q1,

where S is the submodule of V ′ such that

v2 · x = v2, v2 · y = 2
(
cos

2π

4

)
v2, v2 · z = 0,

v3 · x = v3, v3 · y = 2
(
cos

3π

4

)
v3, v3 · z = 0,

(v5 − v4) · x = (v5 − v4), (v5 − v4) · y = 2(v5 − v4),

(v5 − v4) · z = v2 − v3 + (v5 − v4),

which is isomorphic to Q2,3.

Theorem 4.7. The complete list of indecomposable (and pairwise nonisomorphic)

Am,d-modules for d 6 4 follows.

(1) Am,2 has 4m+ 2 iso-classes of indecomposable modules:

{Si,1, Pi : 0 6 i 6 2m− 1, 2 ∤ i} ∪ {Si,j : 0 6 j 6 1, 0 6 i 6 2m− 1, 2 | i} ∪ {V , S1};

(2) Am,3 has 9m+ 4 iso-classes of indecomposable modules:

{Si,j , Pi : 1 6 j 6 2, 0 6 i 6 3m− 1, 3 ∤ i} ∪ {Si,j : 0 6 j 6 2, 0 6 i 6 3m− 1, 3 | i}

∪ {V , S1, Q1, Q2}.

(3) Am,4 has 16m+ 9 iso-classes of indecomposable modules:

{Si,j , Pi : 1 6 j 6 3, 0 6 i 6 4m− 1, 4 ∤ i} ∪ {Si,j : 0 6 j 6 3, 0 6 i 6 4m− 1, 4 | i}

∪ {V ,V ′, S1, Q1, Q2, Q3, Q1,2, Q1,3, Q2,3}.
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P r o o f. (1) Assume that d = 2. By Lemma 4.5, the quiver of the block A0 =

V ⊕
d−1⊕
j=1

S0,j is

0
α1 // 1

It is easy to see that the block A0 has 3 nonisomorphic indecomposable mod-

ules S0,1, S1 and V , where S0,1 and S1 are 1-dimensional modules, V is 2-dimensional.

Consequently, there are 4m + 2 pairwise nonisomorphic indecomposable modules

of Am,2 by Lemma 4.2.

(2) Assume that d = 3. By Lemma 4.5, the quiver of the block A0 is

2 0
α2oo α1 // 1

The associated Auslander-Reiten quiver is

S0,1

%%▲
▲▲

▲▲
▲

Q2

%%▲
▲▲

▲▲
▲

V

99ssssss

%%❑
❑❑

❑❑
❑ S1

S0,2

99rrrrrr
Q1

99rrrrrr

It is easy to see that the block A0 has 6 pairwise nonisomorphic indecomposable

modules: S1, S0,1 and S0,2, Q1, Q2, and V . Consequently, there are 9m+4 pairwise

nonisomorphic indecomposable modules of Am,3 by Lemma 4.2.

(4) Assume that d = 4. By Lemma 4.5, the quiver of the block A0 is

1 0
α1oo α2 //

α3

��

3

2

The associated Auslander-Reiten quiver is

S0,1

##❍
❍❍

❍❍
❍❍

Q2,3

$$■
■■

■■
■■

Q1

##●
●●

●●
●

S0,2 // V //

::✈✈✈✈✈✈✈

$$❍
❍❍

❍❍
❍❍

Q1,3 // V ′ //

;;✇✇✇✇✇✇

##●
●●

●●
●

Q2
// S1

S0,3

;;✈✈✈✈✈✈✈
Q1,2

::✉✉✉✉✉✉✉
Q3

;;✇✇✇✇✇✇

It is easy to see that the block A0 has 12 pairwise nonisomorphic indecomposable

modules: 1-dimensional simple modules S1, S0,1, S0,2, S0,3; 2-dimensional modules

Q1, Q2, Q3; 3-dimensional modulesQ1,2, Q1,3 andQ2,3; 4-dimensional module V ; and

5-dimensional module V ′. Consequently, there are 16m+ 9 pairwise nonisomorphic

indecomposable modules of Am,4 by Lemma 4.2. The proof is completed. �
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Remark 4.8. When d = 5, A0 is the algebra of the tame type D̃4. The clas-

sification of indecomposable modules of the tame type D̃n (n > 4) was studied by

many authors in the last decades, see for example [2], [13]. On the other hand, it is

hopeless to construct all indecomposable modules of Am,d (d > 6) of the wild type.

5. The cell modules of Am,d

Let A be a positively based algebra with a fixed positive basis B = {ai : i ∈ I}

with the identity a1 of A. For i, j ∈ I, set

i ⋆ j = {k : γ
(k)
i,j > 0}.

This defines an associative multi-valued operation on the set I and turns the latter

set into a finite multi-semigroup, see [6], Subsection 3.7. Denote by i 6R j if there

is an s ∈ I such that j ∈ i ⋆ s. Then 6R is a partial pre-order on I called a right

pre-order. Denote by i ∼R j if i 6R j and also j 6R i. This defines an equivalence

relation on I and the set of associated equivalence classes of i ∼R j is called right

cells. Furthermore, the pre-order i ∼R j induces a genuine partial order on the set of

all cells in I. We write i <R j provided that i 6R j and i ≁R j, similarly for i <L j.

Similarly we can also define the left pre-order i 6L j, the equivalence relation

i ∼L j and left cells. Here i 6L j means that there is an s ∈ I such that j ∈ s ⋆ i.

LetR be a right cell in I andR the union of all right cellsR′ in I such thatR′ > R.

Set R = R \R. Consider the K-submodule MR of the regular A-module AA, which

is spanned by all aj with j ∈ R. Let NR be the K-submodule of AA spanned by

all aj with j ∈ R. It is easy to see that both MR and NR are A-submodules of AA

by [5], Proposition 1 and NR ⊂ MR. It allows us to define the cell A-modules CR

as the quotient MR/NR. Here NR = 0 if R = ∅.

In this section, we focus on describing the right cells and right cell modules ofAm,d.

For this purpose, its positive basis

B = {w(l, i), wr : 0 6 l, r 6 d− 1, i ∈ Zn}

is fixed.

Proposition 5.1. The algebraAm,d has only the following three right cellsR1,R2

and R3.

(1) R1 = {r : r is the index of wr, 0 6 r 6 d− 1};

(2) R2 = {(d− 1, i) : (d− 1, i) is the index of w(d − 1, i), i ∈ Zn};

(3) R3 = {(l, i) : (l, i) is the index of w(l, i), 0 6 l 6 d− 2, i ∈ Zn}.
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P r o o f. (1) Setting 0 6 r, r′ 6 d−1, we have wr ·wr′ = (r+1)wr′ by Theorem 3.2.

It follows that r′ ∈ r⋆r′, which implies that r 6R r′. Similarly, r ∈ r′ ⋆r and r′ 6R r.

The equivalent relation r ∼R r′ holds and R1 is a right cell.

(2) For any i ∈ Zn, since w(d − 1, 0) · w(0, i) = w(d − 1, i), we have (d − 1, i) ∈

(d− 1, 0) ⋆ (0, i) and (d− 1, 0) 6R (d− 1, i). On the other hand,

w(d− 1, i) · w(d− 1, n− i) =

d−1∑

k=0

w(d − 1, n−mk).

Hence, (d− 1, 0) ∈ (d− 1, i) ⋆ (d− 1, n− i) and (d− 1, i) 6R (d− 1, 0).

Consequently, R2 = {(d− 1, i) : i ∈ Zn} is a right cell.

(3) If l 6 [ 12 (d − 1)], then w(0, i) · w(l, 0) = w(l, i) by Theorem 3.2. Therefore,

(l, i) ∈ (0, i) ⋆ (l, 0) and (0, i) 6R (l, i). On the other hand,

w(l, i) · w(l,ml) =
l∑

k=0

w(2l − 2k, i+ml −mk)

implies that (0, i) ∈ (l, i) ⋆ (l,ml) and (l, i) 6R (0, i).

Consequently, (0, i) ∼R (l, i) holds for l 6 [(d− 1)/2].

If [ 12 (d − 1)] + 1 6 l 6 d − 2, then w(0, i) · w(l, 0) = w(l, i). Therefore, (l, i) ∈

(0, i) ⋆ (l, 0) and (0, i) 6R (l, i). On the other hand,

w(l, i) · w(l,ml) =

t∑

k=0

w(d − 1, i+ml−mk) +

l∑

k=t+1

w(2l − 2k, i+ml −mk),

where t = 2l− (d− 1), implies that w(0, i) ∈ w(l, i) · w(l,ml) for k = l. Therefore,

(0, i) ∈ (l, i) ⋆ (l,ml) and (l, i) 6R (0, i).

The equivalent relation (0, i) ∼R (l, i) still holds for [ 12 (d− 1)] + 1 6 l 6 d− 2.

In other words, R3 = {(l, i) : 0 6 l 6 d − 2, i ∈ Zn} is a right cell. The proof is

completed. �

Corollary 5.2. As the right cells, we have R3 <R R2 <R R1 in Am,d.

P r o o f. As w(l, 0) ·wr = (l+1)wr for 0 6 r, l 6 d−1, it implies that r ∈ (l, 0)⋆r

and

R2 <R R1, R3 <R R1

by Proposition 5.1.
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Moreover, for 0 6 l 6 d− 2 we have

w(l, i) · w(d− 1, n− i) =
l∑

k=0

w(d − 1, n−mk).

It implies that (d− 1, 0) ∈ (l, i) ⋆ (d− 1, n− i) and R3 <R R2. Consequently, we get

that R3 <R R2 <R R1. �

Proposition 5.3. For the right cells R1, R2 and R3, the corresponding right cell

modules CR1
, CR2

and CR3
of Am,d are given as

(1) CR1
= Span{wr : 0 6 r 6 d− 1}, where NR1

= {0};

(2) CR2
= Span{w(d − 1, i): i ∈ Zn}, where w(l, i) = w(l, i) +NR2

, NR2
=

Span{wr : 0 6 r 6 d− 1};

(3) CR3
= Span{w(l, i): 0 6 l 6 d− 2, i ∈ Zn}, where w(l, i) = w(l, i) +NR3

, and

NR3
= Span{wr, w(d− 1, i) : 0 6 r 6 d− 1, i ∈ Zn}.

P r o o f. (1) By Corollary 5.2, it is easy to see that

R1 = R1 and R1 = ∅.

It follows that

MR1
= Span{wr : 0 6 r 6 d− 1} and NR1

= {0}.

Hence,

CR1
= MR1

/NR1
= Span{wr : 0 6 r 6 d− 1}.

(2) By Corollary 5.2, it is easy to see that

R2 = R1 ∪R2, R2 = R1.

It follows that

MR2
= Span{w(d − 1, i), wr : 0 6 r 6 d− 1, i ∈ Zn}

and

NR2
= Span{wr : 0 6 r 6 d− 1}.

Hence,

CR2
= MR2

/NR2
= Span{w(d− 1, i): i ∈ Zn}.
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(3) By Corollary 5.2, it is easy to see that

R3 = R1 ∪R2 ∪R3, R3 = R1 ∪R2.

It follows that

MR3
= Span{w(l, i), wr : 0 6 l, r 6 d− 1, i ∈ Zn}

and

NR3
= Span{wr, w(d− 1, i) : 0 6 r 6 d− 1, i ∈ Zn}.

Hence,

CR3
= MR3

/NR3
= Span{w(l, i): 0 6 l 6 d− 2, i ∈ Zn}.

The result follows. �

In the sequel, we describe the structures of right cell modules CRi
(i = 1, 2, 3).

For the right cell module CR1
, we have:

Theorem 5.4. CR1
is isomorphic to V .

P r o o f. Set ωk = wk−1 for 1 6 k 6 d. The actions of Am,d on CR1
are the same

as those of V . The result follows from Lemma 2.3 and Lemma 4.1. �

For the right cell Am,d-module CR2
, recall that CR2

= Span{wd−1,i := w(d − 1, i):

i ∈ Zn} by Proposition 5.3. The actions of Am,d on CR2
now can be given by

wd−1,i · x = wd−1,i−1, wd−1,i · y = wd−1,i + wd−1,i−m, wl,i · z = 0.

Set

wd(i) =
1

n
(wd−1,0 + η2iwd−1,1 + η4iwd−1,2 + . . .+ η2(n−1)iwd−1,n−1),

where 0 6 i 6 n− 1.

A straightforward verification shows that

(1) if d | i, we have

wd(i) · x = η2iwd(i), wd(i) · y = 2wd(i), wd(i) · z = 0.

We get a simple submodule Si,0 of CR2
.

(2) if d ∤ i, we have

wd(i) · x = η2iwd(i), wd(i) · y = (1 + η2im)wd(i), wd(i) · z = 0.

We get a simple submodule Si,i of CR2
.

In fact, we have:

Theorem 5.5. CR2
is decomposable and CR2

=
⊕

06i6n−1
d|i

Si,0 ⊕
⊕

06i6n−1
d∤i

Si,i.
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P r o o f. It is obvious that

∑

06i6n−1
d|i

Si,0 +
∑

06i6n−1
d∤i

Si,i ⊆ CR2
.

On the other hand, Si,i, where 0 6 i 6 md − 1, are nonisomorphic 1-dimensional

simple modules by Lemma 4.2. Therefore the left hand side is in fact direct sum.

Comparing the dimension of both the sides, we get

CR2
=

⊕

06i6n−1
d|i

Si,0 ⊕
⊕

06i6n−1
d∤i

Si,i.

The proof is completed. �

To consider the structure of CR3
, recall that

CR3
= Span{wl,i := w(l, i) : 0 6 l 6 d− 2, i ∈ Zn}

by Proposition 5.3. The actions of Am,d on CR3
are given by

wl,i · x = wl,i−1,

wl,i · y =






w1,i, l = 0,

wl+1,i + wl−1,i−m, 1 6 l < d− 2,

wd−3,i−m, l = d− 2,

wl,i · z = 0.

For each 1 6 l 6 d− 1 and 0 6 i 6 n− 1, we set

wl(i) =
1

n
(wl−1,0 + η2iwl−1,1 + η4iwl−1,2 + . . .+ η2(n−1)iwl−1,n−1).

It is noted that wd(i) = 0 in CR3
.

LetWi be the vector space spanned by {w1(i), w2(i), . . . , wd−1(i)} with the actions

of Am,d on Wi being

wl(i) · x = η2iwl(i),

wl(i) · y =





w2(i), l = 1,

η2imwl−1(i) + wl+1(i), 2 6 l 6 d− 2,

η2imwd−2(i), l = d− 1,

wl(i) · z = 0.

Lemma 5.6. Wi is a submodule of CR3
.
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P r o o f. The proof which is similar to that of Lemma 2.2 shows that

(wl(i)·x)·z = (wl(i)·z)·x = wl(i)·z, (wl(i)·y)·z = wl(i)·2z, (wl(i)·z)·z = wl(i)·z,

and

((wl(i) · x) · x . . . x︸ ︷︷ ︸
md

) = η2niwl(i) = wl(i).

For 1 6 l 6 d− 1, we have

(wl(i) · x) · y =





η2iwl(i) · y = η2iwl+1(i) = (wl(i) · y) · x, l = 1,

η2(m+1)iwl−1(i) + η2iwl+1(i) = (wl(i) · y) · x, 2 6 l 6 d− 2,

(η2(m+1)i)wd−2(i) = (wd−1(i) · y) · x, l = d− 1.

If 1 6 l 6 d− 1, then

(wl(i) · (1 + xm − y)) ·Dd−1(x
m, y) = wd(i) · (1 + xm − y)Dl−1(x

m, y) = 0.

The actions of x, y and z on Wi keep the defining relations of Am,d. Hence, Wi is a

submodule of CR3
. �

It is not hard to show that the sum ofWi is direct sum sinceWi is the eigenvector

space of the eigenvalue η2i of x. Moreover,

dimAm,d
(W0 ⊕W1 ⊕ . . .⊕Wn−1) = (d− 1)n = dimAm,d

CR3
.

Therefore,

CR3
= W0 ⊕W1 ⊕ . . .⊕Wn−1

by Lemma 5.6.

Theorem 5.7. CR3
is decomposable and CR3

∼=
n−1⊕
i=0

d−1⊕
j=1

Si,j .

P r o o f. Recall that

CR3
= W0 ⊕W1 ⊕ . . .⊕Wn−1.

Therefore, it is sufficient to show that

Wi
∼=

d−1⊕

j=1

Si,j .
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To see this statement, we let Ai, Bi, Ci be the matrices of x, y, z acting on {w1(i),

w2(i), . . . , wd−1(i)}. Then Ai is the scalar matrix η
2iE and Ci is the zero matrix of

size (d− 1)× (d− 1) on each basis. As for Bi, we have

Bi =




0 1 0 . . . 0 0

η2im 0 1 . . . 0 0

0 η2im 0 . . . 0 0
...

...
... . . .

...
...

0 0 0 . . . 0 1

0 0 0 . . . η2im 0




(d−1)×(d−1).

It is straightforward to see that Bi has eigenvalues

σj = 2
(
cos

jπ

d

)
if d | i and σi,j if d ∤ i,

where 1 6 j 6 d− 1.

For each Wi (0 6 i 6 n− 1), whether d | i or d ∤ i, its submodules

vi,j · x = η2ivi,j , vi,j · y = σjvi,j , vi,j · z = 0

or

vi,j · x = η2ivi,j , vi,j · y = σi,jvi,j , vi,j · z = 0

are isomorphic to Si,j respectively. Consequently,

Wi
∼=

d−1⊕

j=1

Si,j and CR3

∼=

n−1⊕

i=0

d−1⊕

j=1

Si,j .

The proof is completed. �

Remark 5.8. We can also describe all the left cell modules of Am,d. More

precisely, by the discussion analogous as above, we conclude that there are d+2 left

cells in Am,d:

Lr = {r} for 0 6 r 6 d− 1, R2, and R3.

However, there are only three left cell modules C1, C2 and C3 up to isomorphism,

which are listed as follows.

(1) C1: it is spanned by {w1}, the actions of Am,d are given by

x · w1 = w1, y · w1 = 2w1, z · w1 = w1.

It is noticed that CLr
is isomorphic to C1 for 0 6 r 6 d− 1.
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(2) C2: it is spanned by {w(d−1, i) : i ∈ Zn}, the actions of Am,d on C2 are given by

x · wd−1,i = wd−1,i−1, y · wd−1,i = wd−1,i + wd−1,i−m, z · wl,i = 0.

(3) C3: it is spanned by {w(l, i) : 0 6 l 6 d− 2, i ∈ Zn}, the actions of Am,d on C3
are given by

x · wl,i = wl,i−1,

y · wl,i =





w1,i, l = 0,

wl+1,i + wl−1,i−m, 1 6 l < d− 2,

wd−3,i−m, l = d− 2,

z · wl,i = 0.

Of course, Theorems 5.5 and 5.7 also hold for the left cell modules C2 and C3,

respectively.
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