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Abstract. For any square-free positive integer m ≡ 10 (mod 16) with m > 26, we prove
that the class number of the real cyclotomic field Q(ζ4m+ζ−1

4m
) is greater than 1, where ζ4m

is a primitive 4mth root of unity.
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1. Introduction

Letm > 1 be a positive integer, we use ζm to denote a primitive mth root of unity,

andH(m) to denote the class number of the maximal real subfieldKm = Q(ζm+ζ−1

m
)

of the cyclotomic field Q(ζm). Further, let h(m) denote the class number of the

quadratic field Q(
√
m).

The study of the class number of the maximal real subfield of a cyclotomic field

is important. There are many beautiful results in this context; we mention some

of them. In 1965, Ankeny, Chowla and Hasse in [1] proved that if m = (2nq)2 + 1

is a prime, where q is a prime and n > 1 is an integer, then H(m) > 1. Later,

in 1974, Yamaguchi in [9] relaxed the primality condition on m and took m as

a square-free integer and proved H(4m) > 1. Lang in [6] proved H(p) > 1 for

the prime p = ((2n + 1)q)2 + 4, where q is an odd prime and n > 1 is an integer.

There are many more such results in that direction, we refer the interested reader to

consult [4], [5], [7], [8] for more details.

The author acknowledges the UGC, Government of India, for financial support during
the research.

c© Institute of Mathematics, Czech Academy of Sciences 2023.

DOI: 10.21136/CMJ.2023.0364-22 937

http://dx.doi.org/10.21136/CMJ.2023.0364-22


All results have been proved for the quadratic expression m, but in this article,

we prove the same result in this direction for the linear expression m = 16t + 10,

where t > 1 is an integer. Precisely, we prove the following theorem.

Theorem 1.1. Let t > 1 be an integer such that m = 16t + 10 is a square-free

integer. Then H(4m) > 1. Moreover, 2 | H(4m).

It is well known that the class number of a cyclotomic field is divisible by the

class number of its maximal real subfield. So, we have an immediate consequence of

Theorem 1.1.

Corollary 1.2. Let m be a square-free positive integer as in Theorem 1.1. Then

the class number of the cyclotomic field Q(ζ4m) is divisible by 2.

2. Preliminaries

We begin this section by stating the theorem of Yamaguchi, see [9].

Theorem 2.1. Let m be a square-free positive integer such that ϕ(m) > 4. Then

h(m) | H(4m), where ϕ(m) stands for Euler’s function.

Analogously to the results of Gica (see [2]), we prove the following.

Proposition 2.2. If m ≡ 10 (mod 16) is a positive integer then there exists

a prime p ≡ 3 or 5 (mod 8) such that p < m and m is a quadratic residue modulo p.

The above proposition plays an important role in proving the main theorem.

P r o o f. Sincem ≡ 10 (mod 16) is a positive integer, this implies that there exists

a nonnegative integer t such that m = 16t+ 10.

Consider an element a = 1

2
(m− 4) = 8t + 3. Clearly, a < m and a ≡ 3 (mod 8),

it follows that a has a prime factor p such that p ≡ 3 or 5 (mod 8) and p < m.

Furthermore, a ≡ 0 (mod p) implies m ≡ 22 (mod p) and thus, m is a quadratic

residue modulo p. Hence, we have proved the proposition. �

Hasse in [3] proved that if the class number of the real quadratic field Q(
√
D)

is one, then D = p, 2p or qr, where p, q and r are primes, and p ≡ 1 (mod 4),

q ≡ r ≡ 3 (mod 4).

However, there are real quadratic fields of the form Q(
√
2p), with primes p ≡ 1

(mod 4), whose class number is greater than one. In this regard, we prove a more

general proposition.
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Proposition 2.3. Let m = 16t+10 be a square-free integer, where t is a positive

integer. Then the class number h(m) of the real quadratic field F = Q(
√
m) is

greater than one.

By Dirichlet’s theorem on primes in arithmetic progression there are infinitely

many primes p of the form 8t + 5, hence from Proposition 2.3 it follows that there

are infinitely many fields Q(
√
2p) with prime p ≡ 1 (mod 4), whose class number is

greater than one.

P r o o f of Proposition 2.3. Let p be a prime as in Proposition 2.2. Then p splits

in the ring of integers OF of F . Thus, we obtain pOF = P1P2, where P1 and P2

are distinct prime ideals in F above p. We claim that the prime ideal P1 is not

principal.

If prime ideal P1 is principal then by taking its norm we obtain the integers x

and y such that

(1) x2 −my2 = ±p.

Reading the above equation (1) modulo 8 leads to a contradiction and thus P1 is

a nonprincipal ideal. The ideal class containing P1 is nontrivial. Hence, Proposi-

tion 2.3 follows. �

We observe that 8t+ 5 has a prime divisor q such that q ≡ 3 or 5 (mod 8). This

prime q divides m, it implies that q is ramified in F .

Let Q be the prime ideal of OF above q. By using similar arguments, as used

to show that P1 is nonprincipal, we can show that Q is nonprincipal. This implies

that h(m) is divisible by 2, as Q2 is principal.

If the prime ideals Q and P1 do not belong to the same ideal class then h(m) > 4.

3. Proof of Theorem 1.1

If 8t+ 5 is a prime then ϕ(m) = 8t+ 4 which is greater than 4 as t > 1.

On the other hand, if 8t+5 is not a prime then it has at least two prime divisors,

say p1 and p2, and then ϕ(m) > ϕ(p1p2) > 8. From Theorem 2.1, it follows that

h(m) | H(4m). In the proof of Proposition 2.3, we have seen that h(m) > 1. Thus,

H(4m) > 1. Moreover, H(4m) is divisible by 2 as 2 | h(m). This completes the

proof of the theorem. �
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