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Abstract. For any square-free positive integer m = 10 (mod 16) with m > 26, we prove
that the class number of the real cyclotomic field Q((4m, +C4_,,1L) is greater than 1, where (4,
is a primitive 4mth root of unity.
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1. INTRODUCTION

Let m > 1 be a positive integer, we use (,, to denote a primitive mth root of unity,
and H(m) to denote the class number of the maximal real subfield K,,, = Q(¢n+¢;,0)
of the cyclotomic field Q((,,). Further, let h(m) denote the class number of the
quadratic field Q(y/m).

The study of the class number of the maximal real subfield of a cyclotomic field
is important. There are many beautiful results in this context; we mention some
of them. In 1965, Ankeny, Chowla and Hasse in [1] proved that if m = (2ng)? + 1
is a prime, where ¢ is a prime and n > 1 is an integer, then H(m) > 1. Later,
in 1974, Yamaguchi in [9] relaxed the primality condition on m and took m as
a square-free integer and proved H(4m) > 1. Lang in [6] proved H(p) > 1 for
the prime p = ((2n + 1)q)? + 4, where ¢ is an odd prime and n > 1 is an integer.
There are many more such results in that direction, we refer the interested reader to
consult [4], [5], [7], [8] for more details.
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All results have been proved for the quadratic expression m, but in this article,
we prove the same result in this direction for the linear expression m = 16t + 10,
where t > 1 is an integer. Precisely, we prove the following theorem.

Theorem 1.1. Let t > 1 be an integer such that m = 16t + 10 is a square-free
integer. Then H(4m) > 1. Moreover, 2 | H(4m).

It is well known that the class number of a cyclotomic field is divisible by the
class number of its maximal real subfield. So, we have an immediate consequence of
Theorem 1.1.

Corollary 1.2. Let m be a square-free positive integer as in Theorem 1.1. Then
the class number of the cyclotomic field ({4, ) is divisible by 2.

2. PRELIMINARIES
We begin this section by stating the theorem of Yamaguchi, see [9].

Theorem 2.1. Let m be a square-free positive integer such that ¢(m) > 4. Then
h(m) | H(4m), where o(m) stands for Euler’s function.

Analogously to the results of Gica (see [2]), we prove the following.

Proposition 2.2. If m = 10 (mod 16) is a positive integer then there exists
a prime p = 3 or 5 (mod 8) such that p < m and m is a quadratic residue modulo p.

The above proposition plays an important role in proving the main theorem.

Proof. Since m = 10 (mod 16) is a positive integer, this implies that there exists
a nonnegative integer ¢ such that m = 16t 4 10.

Consider an element a = 4 (m —4) = 8t + 3. Clearly, a < m and a = 3 (mod 8),
it follows that a has a prime factor p such that p = 3 or 5 (mod 8) and p < m.
Furthermore, a = 0 (mod p) implies m = 22 (mod p) and thus, m is a quadratic

residue modulo p. Hence, we have proved the proposition. O

Hasse in [3] proved that if the class number of the real quadratic field Q(v/D)
is one, then D = p, 2p or gr, where p, ¢ and r are primes, and p = 1 (mod 4),
g=r=3 (mod 4).

However, there are real quadratic fields of the form Q(,/2p), with primes p = 1
(mod 4), whose class number is greater than one. In this regard, we prove a more
general proposition.
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Proposition 2.3. Let m = 16t+ 10 be a square-free integer, where t is a positive
integer. Then the class number h(m) of the real quadratic field F = Q(y/m) is
greater than one.

By Dirichlet’s theorem on primes in arithmetic progression there are infinitely
many primes p of the form 8t + 5, hence from Proposition 2.3 it follows that there
are infinitely many fields Q(1/2p) with prime p =1 (mod 4), whose class number is
greater than one.

Proof of Proposition 2.3. Let p be a prime as in Proposition 2.2. Then p splits
in the ring of integers Op of F'. Thus, we obtain pOp = B1P2, where P; and Po
are distinct prime ideals in F' above p. We claim that the prime ideal 3; is not
principal.

If prime ideal B3; is principal then by taking its norm we obtain the integers x
and y such that

(1) 2 —my? = £p.

Reading the above equation (1) modulo 8 leads to a contradiction and thus P; is
a nonprincipal ideal. The ideal class containing 3; is nontrivial. Hence, Proposi-
tion 2.3 follows. O

We observe that 8¢ + 5 has a prime divisor ¢ such that ¢ = 3 or 5 (mod 8). This
prime ¢ divides m, it implies that ¢ is ramified in F.

Let 9 be the prime ideal of Or above ¢q. By using similar arguments, as used
to show that 37 is nonprincipal, we can show that £ is nonprincipal. This implies
that h(m) is divisible by 2, as Q2 is principal.

If the prime ideals £ and 3; do not belong to the same ideal class then h(m) > 4.

3. PROOF OF THEOREM 1.1

If 8¢+ 5 is a prime then ¢(m) = 8¢ + 4 which is greater than 4 as ¢ > 1.

On the other hand, if 8¢ 4 5 is not a prime then it has at least two prime divisors,
say p1 and po, and then o(m) = p(p1p2) = 8. From Theorem 2.1, it follows that
h(m) | H(4m). In the proof of Proposition 2.3, we have seen that h(m) > 1. Thus,
H(4m) > 1. Moreover, H(4m) is divisible by 2 as 2 | h(m). This completes the
proof of the theorem. O
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