
Czechoslovak Mathematical Journal

Kazushi Yoshitomi
Fredholmness of pseudo-differential operators with nonregular symbols

Czechoslovak Mathematical Journal, Vol. 73 (2023), No. 3, 941–954

Persistent URL: http://dml.cz/dmlcz/151784

Terms of use:
© Institute of Mathematics AS CR, 2023

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized
documents strictly for personal use. Each copy of any part of this document must contain these
Terms of use.

This document has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz

http://dml.cz/dmlcz/151784
http://dml.cz


Czechoslovak Mathematical Journal, 73 (148) (2023), 941–954

FREDHOLMNESS OF PSEUDO-DIFFERENTIAL OPERATORS

WITH NONREGULAR SYMBOLS

Kazushi Yoshitomi, Tokyo

Received September 9, 2022. Published online May 19, 2023.

Abstract. We establish the Fredholmness of a pseudo-differential operator whose symbol
is of class C0,σ , 0 < σ < 1, in the spatial variable. Our work here refines the work of
H.Abels, C. Pfeuffer (2020).
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1. Introduction

The starting point of our consideration is the result of Abels and Pfeuffer (see [2]),

which is recalled below. Let N be the set of all positive integers, Z+ the set of all

nonnegative integers. Let n ∈ N. We fix 0 < τ 6 1, 0 6 ̺, δ 6 1 andM ∈ Z+∪{∞}.

For m ∈ R and m̃ ∈ Z+, let C
m̃,τSm

̺,δ(R
n × R

n;M) stand for the set of functions

a : R
n × R

n → C such that the following properties are satisfied for all α, β ∈ Z
n
+

with |β| 6 m̃ and |α| 6 M :

(i) ∂β
xa(x, ·) ∈ CM (Rn) for all x ∈ R

n;

(ii) ∂β
x∂

α
ξ a ∈ C0(Rn

x × R
n
ξ );

(iii) |∂α
ξ a(x, ξ)| 6 Cα〈ξ〉

m−̺|α| for all x, ξ ∈ R
n;

(iv) ‖∂α
ξ a(·, ξ)‖Cm̃,τ (Rn)

6 Cα〈ξ〉
m−̺|α|+δ(m̃+τ) for all ξ ∈ R

n.

We fix N ∈ N. Let L(CN ) stand for the set of all linear bounded opera-

tors on C
N ; L(CN ) is identified with C

N×N in the standard way. A function

a : R
n × R

n → L(CN ) is an element of Cm̃,τSm
̺,δ(R

n × R
n;M ;L(CN )) if aj,k, the

(j, k)-component of a, belongs to Cm̃,τSm
̺,δ(R

n × R
n;M) for all j, k = 1, . . . , N .

For a symbol a ∈ Cm̃,τSm
̺,δ(R

n × R
n;M ;L(CN )), we define the associated pseudo-
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differential operator by

Op(a)u(x) = a(x,Dx)u(x)

= (2π)−n

∫

Rn

eix·ξa(x, ξ)û(ξ) dξ ∀u ∈ S(Rn)N , x ∈ R
n.

Here, û stands for the Fourier transform of u and S(Rn) is the Schwartz space. The

main result of [2] reads as follows.

Theorem 1.1 ([2], Theorem 1.1). Let m̃,N ∈ N, 0 < τ < 1, 0 6 δ < ̺ 6 1,

m ∈ R,M ∈ Z+∪{∞} and p ∈ (1,∞) with p = 2 if ̺ 6= 1. Additionally we choose an

arbitrary θ ∈ (0,min{(m̃+τ)(̺−δ), 1}) and ε̃ ∈ (0,min{(̺−δ)τ, (̺−δ)(m̃+τ)−θ, θ}).

Moreover let a ∈ Cm̃,τSm
̺,δ(R

n × R
n;M ;L(CN )) be a symbol fulfilling the following

properties for some R > 0 and C0 > 0:

(1) | det(a(x, ξ))|〈ξ〉−mN > C0 for all x, ξ ∈ R
n with |x|+ |ξ| > R;

(2) a(x, ξ)
|x|→∞
−→ a(∞, ξ) for all ξ ∈ R

n.

Then for all M > (n+ 2) + n ·max{1/2, 1/p} and s ∈ R with

(1 − ̺)
n

2
− (1− δ)(m̃+ τ) + θ + ε̃ < s < m̃+ τ

the operator

a(x,Dx) : Hm+s
p (Rn)N → Hs

p(R
n)N

is a Fredholm operator.

Theorem 1.1 does not cover the case where m̃ = 0 because of a technical reason.

So we shall handle this case. Our main result is stated as follows.

Theorem 1.2. Let N ∈ N, 0 6 τ < 1, 0 < σ < 1, m ∈ R, M ∈ Z+ ∪ {∞}

and p ∈ (1,∞). Let a ∈ C0,σSm
1,τ (R

n × R
n;M ;L(CN )) be a symbol satisfying the

following properties for some R > 0 and C0 > 0:

(1) | det(a(x, ξ))|〈ξ〉−mN > C0 for all x, ξ ∈ R
n with |x|+ |ξ| > R;

(2) a(x, ξ)
|x|→∞
−→ a(∞, ξ) for all ξ ∈ R

n.

Then for all M > (n+ 1) + n ·max{1/2, 1/p} and s ∈ R with

−(1− τ)σ < s < σ

the operator

a(x,Dx) : Hm+s
p (Rn)N → Hs

p(R
n)N

is a Fredholm operator.
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It is worth mentioning that the condition on M in Theorem 1.2 is milder than

that in Theorem 1.1. In order to prove Theorem 1.2 we employ the decomposition

of symbols inspired by Nagase in [6], see Theorem 2.2. This, together with several

results in [2] and our tricky arguments in Lemmas 3.1 and 3.2, completes the proof.

We note that [2] uses the decomposition of symbols due to Taylor (see [7]), which is

different from Nagase’s. It is also worth mentioning that our proof here is somewhat

simpler than that in [2].

The Fredholm properties of (smooth) pseudodifferential operators have been stud-

ied by many authors; we refer to [3], [4], [5] and the references therein. In [4] Kohn

and Nirenberg show that for the Fredholmness of a pseudo-differential operator the

ellipticity of its symbol is necessary. Kumano-go in [5], Chapter 3, Theorem 5.16

shows the Fredholm property of an elliptic pseudo-differential operator whose sym-

bol belongs to a subclass of the Hörmander class and is slowly varying. In [3], Sec-

tion 19.2, Hörmander studies the Fredholm index of an elliptic pseudo-differential

operator on a compact manifold.

We organize this paper as follows. In Section 2 we prepare several notations and

recall known results which are utilized in the proof of Theorem 1.2. In Section 3 we

complete the proof of Theorem 1.2.

2. Preliminaries

We prepare several notations. We use the standard conventions on multi-indices.

For a variable x = (x1, . . . , xn) in R
n and α = (α1, . . . , αn) ∈ Z

n
+, we write

∂α
x = ∂α1

x1
∂α2

x2
. . . ∂αn

xn
and Dα

x = (−i)|α|∂α
x ,

where ∂xj
= ∂/∂xj, j = 1, 2, . . . , n. We put

〈x〉 =
√

1 + |x|2.

We define the Hölder spaces as follows. For 0 < s 6 1, let C0,s(Rn) stand for the

set of functions f : R
n → C such that

‖f‖C0,s(Rn) ≡ sup
x∈Rn

|f(x)|+ sup
x 6=y

|f(x)− f(y)|

|x− y|s
< ∞.

Let m̃ ∈ Z+. A function f : R
n → C belongs to Cm̃,s(Rn) if we have ∂α

x f ∈ C0,s(Rn)

for every α ∈ Z
n
+ with |α| 6 m̃. For f ∈ Cm̃,s(Rn), we define ‖f‖

Cm̃,s(Rn)
=∑

|α|6m̃

‖∂α
x f‖C0,s(Rn).
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For s ∈ R and 1 < p < ∞, let Hs
p(R

n) be the set of f ∈ S ′(Rn) such that

〈Dx〉
sf ∈ Lp(Rn), where 〈Dx〉

s = Op(〈ξ〉s). For f ∈ Hs
p(R

n), we put ‖f‖Hs
p(R

n) =

‖〈Dx〉
sf‖Lp(Rn). We call H

s
p(R

n) the Bessel potential space.

Next, we recall the definition of a Fredholm operator and the Atkinson theorem.

Definition 2.1. Let X , Y be Banach spaces. A linear bounded operator T :

X → Y is called a Fredholm operator if KerT is finite-dimensional and T (X) is

finite-codimensional, that is, there is a finite-dimensional subspace Z of Y such that

Y = T (X)∔ Z.

Theorem 2.1 (Atkinson). Let X , Y be Banach spaces. A linear bounded op-

erator T : X → Y is a Fredholm operator if and only if there exist linear bounded

operators Sj : Y → X , j = 1, 2, and compact linear operators K1 : X → X and

K2 : Y → Y such that S1T = IX + K1 and TS2 = IY +K2. Here, IX and IY are

identity operators on X and Y , respectively.

We recall the decomposition of symbols due to Nagase, which plays a key role in

the proof of Theorem 1.2. Let p(x, ξ) be a bounded continuous function on Rn×R
n.

We choose a ϕ ∈ C∞
0 (Rn) such that

∫
ϕ(y) dy = 1. Fix 0 < δ < 1 and put

(2.1) q(x, ξ) =

∫
ϕ(y)p(x − 〈ξ〉−δy, ξ) dy.

Theorem 2.2 ([6], Theorem 1). Let M ∈ Z+ ∪{∞}. Assume that for all α ∈ Z
n
+

with |α| 6 M ,

|Dα
ξ p(x, ξ)| 6 Cα〈ξ〉

−|α|,(2.2)

|Dα
ξ p(x, ξ) −Dα

ξ p(y, ξ)| 6 Cα|x− y|σ〈ξ〉−|α|+στ ,(2.3)

where 0 < σ 6 1 and 0 6 τ < 1, and set r(x, ξ) = p(x, ξ) − q(x, ξ).

Then, there exist positive constants Cα and Cα,β such that for any α, β with

|α| 6 M we have

|Dβ
xD

α
ξ q(x, ξ)| 6 Cα,β〈ξ〉

−|α|+δ|β|,(2.4)

|Dα
ξ r(x, ξ)| 6 Cα〈ξ〉

−|α|−(δ−τ)σ.(2.5)

We recall from [2] several materials needed in the proof of Theorem 1.2. Let N ,

M ∈ Z+∪{∞} and m, τ ∈ R. Let Am,N
τ,M (Rn×R

n) stand for the set of all continuous

functions a : R
n×R

n → C such that for all α, β ∈ Z
n
+ with |α| 6 N , |β| 6 M we have

(i) ∂α
η ∂

β
y a(y, η) ∈ C0(Rn

y × R
n
η );

(ii) |∂α
η ∂

β
y a(y, η)| 6 Cα,β(1 + |η|)m(1 + |y|)τ for all y, η ∈ R

n,
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where all derivatives are well defined in the sense of distributions. We choose a χ ∈

S(Rn × R
n) for which χ(0, 0) = 1. For a ∈ Am,N

τ,M (Rn × R
n), we define

(2.6) Os-

∫∫
e−iy·ηa(y, η) dy dη = lim

ε→0

∫∫
χ(εy, εη)e−iy·ηa(y, η) dy dη

whenever the limit exists. It is called the oscillatory integral.

Theorem 2.3 ([2], Corollary 2.7). Let m, τ ∈ R and N ∈ Z+ ∪{∞} be such that

there is some l′ ∈ N with N > l′ > n + τ . Moreover, let l ∈ N with l > n + m.

Additionally, let aj , a ∈ C0(Rn × R
n), j ∈ Z+ be such that for all α, β ∈ Z

n
+ with

|α| 6 N and |β| 6 l the derivatives ∂α
η ∂

β
y aj, ∂

α
η ∂

β
y a exist in the classical sense and

⊲ |∂α
η ∂

β
y aj(y, η)| 6 Cα,β〈η〉

m〈y〉τ for all η, y ∈ R
n, j ∈ Z+;

⊲ |∂α
η ∂

β
y a(y, η)| 6 Cα,β〈η〉

m〈y〉τ for all η, y ∈ R
n;

⊲ ∂α
η ∂

β
y aj(y, η)

j→∞
−→ ∂α

η ∂
β
y a(y, η) for all η, y ∈ R

n.

Then

lim
j→∞

Os-

∫∫
e−iy·ηaj(y, η) dy dη = Os-

∫∫
e−iy·ηa(y, η) dy dη.

For results analogous to this theorem, see [1], Corollary 3.10 and [5], Chapter 1,

Theorem 6.6.

For x, x′ ∈ R
n, we put

〈x;x′〉 =
√
1 + |x|2 + |x′|2.

Definition 2.2. Let m̃ ∈ Z+, 0 < τ < 1, m1, m2 ∈ R, 0 6 δ, ̺ 6 1 and M1,

M2 ∈ Z+ ∪ {∞}. Then a continuous function a : R
n
x × R

n
ξ × R

n
x′ × R

n
ξ′ → C belongs

to the nonsmooth double symbol-class Cm̃,τSm1,m2

̺,δ (Rn × R
n × R

n ×R
n;M1,M2) if

(i) ∂α
ξ ∂

β′

x′ ∂α′

ξ′ a ∈ Cm̃,τ (Rn
x) and ∂β

x∂
α
ξ ∂

β′

x′ ∂α′

ξ′ a ∈ C0(Rn
x × R

n
ξ × R

n
x′ × R

n
ξ′);

(ii)

|∂β
x∂

α
ξ ∂

β′

x′ ∂
α′

ξ′ a(x, ξ, x
′, ξ′)|

6 Cα,β,β′,α′(x)C̃α,β,β′,α′(x′)〈ξ〉m1−̺|α|+δ|β|〈ξ′〉m2−̺|α′|〈ξ; ξ′〉δ|β
′|;

(iii)

‖∂α
ξ ∂

β′

x′ ∂
α′

ξ′ a(·, ξ, x
′, ξ′)‖

Cm̃,τ (Rn)
6 Cα,β′,α′〈ξ〉m1−̺|α|+δ(m̃+τ)〈ξ′〉m2−̺|α′|〈ξ; ξ′〉δ|β

′|

for all x, ξ, x′, ξ′ ∈ R
n and arbitrary β, α, β′, α′ ∈ Z

n
+ with |β| 6 m̃, |α| 6 M1 and

|α′| 6 M2. Here the constants Cα,β,β′,α′(x), Cα,β′,α′ and C̃α,β,β′,α′(x′) are bounded

and independent of ξ, x′, ξ′ ∈ R
n or ξ, x, ξ′ ∈ R

n, respectively.
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We will utilize the following assertions on double symbols.

Theorem 2.4 ([2], Theorem 3.10). Let 0 < s < 1, m̃ ∈ Z+ and m1,m2 ∈ R.

Additionally we choose N1, N2 ∈ Z+ ∪ {∞} such that there is an l ∈ N with N1 >

l > n. Moreover, we put Ñ = min{N1 − (n+ 1), N2}. Furthermore, let

B ⊂ Cm̃,sSm1,m2

̺,δ (Rn × R
n × R

n × R
n;N1, N2)

be bounded. If we define for each a ∈ B and θ ∈ [0, 1] the function aθL : R
n ×

R
n → C by

aθL(x, ξ) = Os-

∫∫
e−iy·ηa(x, θη + ξ, x+ y, ξ) dy dη ∀x, ξ ∈ R

n,

we get with m ≡ m1 + m2 that a
θ
L ∈ Cm̃,sSm

̺,δ(R
n × R

n; Ñ) for all a ∈ B and

θ ∈ [0, 1], and the existence of a constant Cα, independent of a ∈ B and θ ∈ [0, 1],

such that for all α, β ∈ Z
n
+ with |α| 6 Ñ and |β| 6 m̃

‖∂α
ξ a

θ
L(·, ξ)‖Cm̃,s(Rn)

6 Cα〈ξ〉
m−̺|α|+δ(m̃+s) ∀ ξ ∈ R

n

and

|∂α
ξ ∂

β
xa

θ
L(x, ξ)| 6 Cα,β(x)〈ξ〉

m−̺|α|+δ|β| ∀x, ξ ∈ R
n,

where Cα,β(x) is bounded and independent of a ∈ B, ξ ∈ R
n and θ ∈ [0, 1]. This

implies the boundedness of {aθL : a ∈ B, θ ∈ [0, 1]} ⊂ Cm̃,sSm
̺,δ(R

n × R
n; Ñ).

Theorem 2.5 ([2], Theorem 4.5). Let 0 6 δ 6 ̺ 6 1, m1,m2 ∈ R, M1,M2 ∈

Z+ ∪ {∞} with M1 > n + 1, m̃ ∈ Z+ and 0 < τ < 1. For a ∈ Cm̃,τSm1,m2

̺,δ (Rn ×

R
n × R

n × R
n;M1,M2) we define

aL(x, ξ) = (2π)−n ·Os-

∫∫
e−iy·ηa(x, ξ + η, x+ y, ξ) dy dη ∀x, ξ ∈ R

n.

Additionally we set for all θ ∈ [0, 1] and γ ∈ Z
n
+ with |γ| 6 M1 − (n+ 1)

rγ,θ(x, ξ) = (2π)−n ·Os-

∫∫
e−iy·η∂γ

ηD
γ
ya(x, ξ + θη, x+ y, ξ) dy dη ∀x, ξ ∈ R

n.

Moreover we put M̃k = min{M1 − k − (n+ 1),M2} for all k 6 M1 − (n+ 1). Then

we get for all N 6 M1 − (n+ 1) that

aL(x, ξ) =
∑

|α|<N

1

α!
∂α
η D

α
y a(x, ξ + η, x+ y, ξ)

∣∣
η=y=0

+RN (x, ξ),
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where

RN (x, ξ)≡N ·
∑

|γ|=N

∫ 1

0

(1 − θ)N−1

γ!
rγ,θ(x, ξ) dθ∈C

m̃,τS
m1+m2−(̺−δ)·N
̺,δ (Rn×R

n; M̃N )

and

{rγ,θ(x, ξ) : θ ∈ [0, 1]} ⊂ Cm̃,τS
m1+m2−(̺−δ)·N
̺,δ (Rn × R

n; M̃N)

is bounded.

We need the following implication concerning the action of a pseudo-differential

operator on the Bessel potential spaces.

Theorem 2.6 ([2], Theorem 3.2). Let m ∈ R, 0 6 δ 6 ̺ 6 1 with ̺ > 0,

1 < p < ∞ and M ∈ Z+ ∪ {∞} with M > max{n/2, n/p}. Additionally let m̃ ∈ Z+

and 0 < τ 6 1 be such that m̃ + τ > (1− ̺)/(1− δ) · (n/2) if ̺ < 1 and m̃ ∈ Z+,

τ > 0 if ̺ = 1, respectively. Moreover let B ⊂ Cm̃,τS
m−kp

̺,δ (Rn ×R
n;M) be bounded

with kp ≡ (1−̺)n|1/2− 1/p| and let (1−̺)n/p− (1− δ)(m̃+ τ) < s < m̃+ τ . Then

there is some Cs > 0, independent of a ∈ B, such that

‖a(x,Dx)f‖Hs
p(R

n) 6 Cs‖f‖Hs+m
p (Rn) ∀ a ∈ B and f ∈ Hs+m

p (Rn).

The following result concerning the compactness of a pseudo-differential operator

is due to Marschall.

Lemma 2.1 ([2], Lemma 4.2). Let m ∈ R, 0 6 δ 6 1, 1 < p < ∞, m̃ ∈ Z+ and

0 < τ < 1. Moreover, let M ∈ N ∪ {∞} with M > n ·max{1/2, 1/p}. Additionally

let a ∈ Cm̃,τSm
1,δ(R

n × R
n;M) be such that

lim
|x|+|ξ|→∞

(1 + |ξ|)−ma(x, ξ) = 0.

Then for −(1− δ)(m̃+ τ) < s < m̃+ τ

a(x,Dx) : Hs+m
p (Rn) → Hs

p(R
n) is compact.

For 0 6 ̺, δ 6 1 and M ∈ Z+ ∪ {∞}, let Sm
̺,δ(R

n ×R
n;M) be the set of functions

a : R
n × R

n → C such that the following properties are fulfilled for all α, β ∈ Z
n
+

with |α| 6 M :

(i) ∂β
xa(x, ·) ∈ CM (Rn) for all x ∈ R

n;

(ii) ∂β
x∂

α
ξ a ∈ C0(Rn

x × R
n
ξ );

(iii) |∂β
x∂

α
ξ a(x, ξ)| 6 Cα,β〈ξ〉

m−̺|α|+δ|β| for all x, ξ ∈ R
n.
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We will utilize the embedding result, see [2], (3.1):

(2.7) Sm
̺,δ(R

n × R
n;M) ⊂ Cm̃,sSm

̺,δ(R
n × R

n;M)

for all 0 < s 6 1, m̃ ∈ Z+, m ∈ R, M ∈ Z+ ∪ {∞} and 0 6 ̺, δ 6 1.

Let a ∈ Cn+1(Rn) be such that, for any α ∈ Z
n
+ with |α| 6 n+1, there is a Cα > 0

such that |∂α
y a(y)| 6 Cα for all y ∈ R

n. We have

(2.8) (2π)−n ·Os-

∫∫
ei(x−y)·ηa(y) dy dη = a(x)

for every x ∈ R
n. For the proof, see [1], Example 3.11.

We will make use of the following implication.

Lemma 2.2 ([5], Chapter 1, Lemma 6.5). Let f(t) be a C2-function defined on

I = [0, 1]. Then there exists a constant M > 0 independent of f such that

(
max

I
|f ′(t)|

)2
6 M

(
max

I
|f(t)|

){
max

I
|f(t)|+max

I
|f ′′(t)|

}
.

3. Proof of Theorem 1.2

We use the following notations. A function a : R
n × R

n → L(CN ) is an element

of Sm
̺,δ(R

n × R
n;M ;L(CN )) if aj,k belongs to the class S

m
̺,δ(R

n × R
n;M) for all

j, k = 1, . . . , N , where aj,k is the (j, k)-component of a. A matrix version of the class

Cm̃,τSm1,m2

̺,δ (Rn ×R
n ×R

n ×R
n;M1,M2) and that of the class A

m,N
τ,M (Rn ×R

n) are

defined similarly. For a ∈ Am,N
τ,M (Rn×R

n;L(CN )), we defineOs-
∫∫

e−iy·ηa(y, η) dy dη

by (2.6) whenever the limit exists.

First, we prove the statement of Theorem 1.2 for m = 0. Let N ∈ N, 0 6 τ < 1,

0 < σ < 1 and p ∈ (1,∞). Let M ∈ Z+ ∪ {∞} be such that M > (n + 1) + n ·

max{1/2, 1/p}. Let p ∈ C0,σS0
1,τ (R

n × R
n;M ;L(CN )) be a symbol satisfying the

following properties for some R > 0 and C0 > 0:

(i) | det(p(x, ξ))| > C0 for all x, ξ ∈ R
n with |x|+ |ξ| > R;

(ii) p(x, ξ)
|x|→∞
−→ p(∞, ξ) for all ξ ∈ R

n.

We pick a δ ∈ (τ, 1) arbitrarily. We define q(x, ξ) by (2.1) and put r(x, ξ) =

p(x, ξ)− q(x, ξ). We have

(3.1) r(x, ξ) =

∫
ϕ(〈ξ〉δy)(p(x, ξ) − p(x− y, ξ)) dy · 〈ξ〉nδ.
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Let us prove the following assertion.

Lemma 3.1.

(1) We have lim
|x|+|ξ|→∞

r(x, ξ) = 0.

(2) For −(1−δ)σ < s < σ, the operator r(x,Dx) : Hs
p(R

n)N → Hs
p(R

n)N is compact.

P r o o f. (1) Seeking a contradiction, we assume that r(x, ξ) does not converge

to 0 as |x| + |ξ| → ∞. Then, there are an ε0 > 0 and a sequence {(xi, ξi)}
∞
i=1

in R
n × R

n such that lim
i→∞

(|xi|+ |ξi|) = ∞ and

(3.2) |r(xi, ξi)| > ε0 ∀ i ∈ N.

It follows from Theorem 2.2 that |r(x, ξ)| 6 C0〈ξ〉
−(δ−τ). This, combined with

δ ∈ (τ, 1) and (3.2), implies that the sequence {ξi}
∞
i=1 is bounded. So, the Bolzano-

Weierstrass theorem implies that {ξi}
∞
i=1 has a convergent subsequence {ξi(l)}

∞
l=1.

We put ξ0 = lim
l→∞

ξi(l). From condition (ii) we have for every y ∈ R
n

lim
|x|→∞

(p(x, ξ0)− p(x− y, ξ0)) = 0.

In addition, we have

|ϕ(〈ξ0〉δy)(p(x, ξ0)− p(x− y, ξ0))| 6 2C0|ϕ(〈ξ
0〉δy)|,

where C0 = sup
(x,ξ)

|p(x, ξ)|. Since the right-hand side of this inequality is an integrable

function on R
n, we infer by the Lebesgue theorem and (3.1) that

(3.3) lim
|x|→∞

r(x, ξ0) = 0.

It follows from Theorem 2.2 that K ≡ sup
(x,ξ)

|∇ξr(x, ξ)| < ∞. Since |xi(l)| → ∞ as

l → ∞, we have from (3.3)

|r(xi(l), ξi(l))| 6 |r(xi(l) , ξi(l))− r(xi(l), ξ
0)|+ |r(xi(l) , ξ

0)|

6 K|ξi(l) − ξ0|+ |r(xi(l) , ξ
0)| → 0 (as l → ∞).

Since this violates (3.2), we get the conclusion.

(2) It follows from Theorem 2.2 that q ∈ S0
1,δ(R

n × R
n;M ;L(CN )). Combining

this with (2.7) we have q ∈ C0,σS0
1,δ(R

n × R
n;M ;L(CN )). But,

p ∈ C0,σS0
1,τ (R

n × R
n;M ;L(CN )) ⊂ C0,σS0

1,δ(R
n × R

n;M ;L(CN )).

So, r ∈ C0,σS0
1,δ(R

n × R
n;M ;L(CN )). This, together with assertion (1) and

Lemma 2.1, yields the conclusion. �

949



Put d(A) = detA for A ∈ L(CN ). We have

| det(p(x, ξ))− det(q(x, ξ))| 6 max
06t61

|(∇d)(tp(x, ξ) + (1− t)q(x, ξ))||r(x, ξ)|.

This, combined with the boundedness of p(x, ξ) on R
n × R

n and (1) of Lemma 3.1,

implies that lim
|x|+|ξ|→∞

| det(p(x, ξ))− det(q(x, ξ))| = 0. So, we see from condition (i)

that there exist R > 0 and C0 > 0 such that

(3.4) | det(q(x, ξ))| > C0 ∀x, ξ ∈ R
n with |x|+ |ξ| > R.

Furthermore, it follows from condition (ii) and (1) of Lemma 2.2 that

(3.5) q(x, ξ)
|x|→∞
−→ p(∞, ξ) ∀ ξ ∈ R

n.

We choose a χ ∈ C∞(Rn × R
n) such that χ(x, ξ) = 0 for |x| + |ξ| 6 R + 1 and

χ(x, ξ) = 1 for |x|+ |ξ| > R+ 2. Let

w(x, ξ) = χ(x, ξ)q(x, ξ)−1 ∀x, ξ ∈ R
n.

Because of (3.4) and the fact that q ∈ S0
1,δ(R

n × R
n;M ;L(CN )), we obtain

w ∈ S0
1,δ(R

n × R
n;M ;L(CN )). Since q, w ∈ S0

1,δ(R
n × R

n;M ;L(CN )), we

claim by (2.7) that q, w ∈ Cm̃,σS0
1,δ(R

n × R
n;M ;L(CN )) for all m̃ ∈ Z+.

Thus, the functions qi,j(x, ξ)wk,l(x
′, ξ′) and wk,l(x, ξ)qi,j(x

′, ξ′) belong to the class

C0,σS0,0
1,δ (R

n×R
n×R

n×R
n;M,M), where qi,j , 1 6 i, j 6 N , and wk,l, 1 6 k, l 6 N ,

stand for the (i, j)-component of q or the (k, l)-component of w, respectively. We put

m1(x, ξ) = (2π)−n ·Os-

∫∫
e−iy·ηq(x, ξ + η)w(x + y, ξ) dy dη

and

m2(x, ξ) = (2π)−n ·Os-

∫∫
e−iy·ηw(x, ξ + η)q(x + y, ξ) dy dη.

Since M > n+ 1, we infer from Theorem 2.4 that m1,m2 ∈ C0,σS0
1,δ(R

n ×R
n;M −

(n+ 1);L(CN )). We also put

r1(x, ξ) = m1(x, ξ) − q(x, ξ)w(x, ξ) and r2(x, ξ) = m2(x, ξ) − w(x, ξ)q(x, ξ).

Because q(x, ξ)w(x, ξ) and w(x, ξ)q(x, ξ) belong to S0
1,δ(R

n × R
n;M ;L(CN )), we

have r1, r2 ∈ C0,σS0
1,δ(R

n × R
n;M − (n + 1);L(CN )). Since qi,j(x, ξ)wk,l(x

′, ξ′)

and wk,l(x, ξ)qi,j(x
′, ξ′) belong to the class C0,σS0,0

1,δ (R
n × R

n × R
n × R

n;M,M)

and since M > n + 2, we have by Theorem 2.5 that r1, r2 ∈ C0,σS
−(1−δ)
1,δ (Rn × R

n;

M − (n+ 2);L(CN )). Let us demonstrate the following assertion.
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Lemma 3.2.

(1) We have lim
|x|+|ξ|→∞

r1(x, ξ) = 0 and lim
|x|+|ξ|→∞

r2(x, ξ) = 0.

(2) For −(1 − δ)σ < s < σ, the operators r1(x,Dx) : Hs
p(R

n)N → Hs
p(R

n)N and

r2(x,Dx) : Hs
p(R

n)N → Hs
p(R

n)N are compact.

P r o o f. (1) On account of (3.4) and (3.5), we have

(3.6) w(x, ξ)
|x|→∞
−→ p(∞, ξ)−1 ∀ ξ ∈ R

n.

Seeking a contradiction, we suppose that r1(x, ξ) does not tend to 0 as |x|+ |ξ| → ∞.

Then, there are an ε0 > 0 and a sequence {(xk, ξk)}
∞
k=1 in R

n × R
n such that

lim
k→∞

(|xk|+ |ξk|) = ∞ and

(3.7) |r1(xk, ξk)| > ε0 ∀ k ∈ N.

Since r1 ∈ C0,σS
−(1−δ)
1,δ (Rn × R

n;M − (n + 2);L(CN )), there is a constant C0 for

which |r1(x, ξ)| 6 C0〈ξ〉
−(1−δ) for all x, ξ ∈ R

n. This, combined with −(1− δ) < 0

and (3.6), implies that the sequence {ξk}
∞
k=1 is bounded. It then follows from

the Bolzano-Weierstrass theorem that {ξk}
∞
k=1 admits a convergent subsequence

{ξk(l)}
∞
l=1. Put ξ

0 = lim
l→∞

ξk(l). We have

(3.8) r1(xk(l), ξk(l)) = r1(xk(l), ξk(l))− r1(xk(l), ξ
0) + r1(xk(l), ξ

0).

Since ∇ξr1(x, ξ) is bounded on R
n × R

n, we get

(3.9) lim
l→∞

(r1(xk(l), ξk(l))− r1(xk(l), ξ
0)) = 0.

Since w(xk(l) + ·, ξ0) ∈ C∞
b (Rn;L(CN )), we obtain from (2.8)

(3.10)

r1(xk(l), ξ
0) = (2π)−n·Os-

∫∫
e−iy·η(q(xk(l), ξ

0+η)−q(xk(l) , ξ
0))w(xk(l)+y, ξ0) dy dη.

We note that for any α ∈ Z
n
+ with |α| 6 1, there is a constant Cα such that

|∂α
η q(xk(l), η)| 6 Cα〈η〉

−|α| for all η ∈ R
n and l ∈ N and that |∂α

y w(xk(l)+y, ξ0)|6Cα

for all y ∈ R
n and l ∈ N. This, together with the Ascoli-Arzela theorem and the diag-

onalization argument, yields that {k(l)}∞l=1 admits a subsequence {k(l(m))}∞m=1 such

that the sequence [q(xk(l(m)), ξ
0 + η) − q(xk(l(m)), ξ

0)]w(xk(l) + y, ξ0) converges uni-

formly on each compact subset of Rn
y ×R

n
η . But, (3.5), (3.6) and lim

m→∞
|xk(l(m))| = ∞

yield that

lim
m→∞

[q(xk(l(m)), ξ
0 + η)− q(xk(l(m)), ξ

0)]w(xk(l) + y, ξ0)

= (p(∞, ξ0 + η)− p(∞, ξ0))p(∞, ξ0)−1 ∀ y, η ∈ R
n.
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So, it holds that

lim
m→∞

[q(xk(l(m)), ξ
0 + η)− q(xk(l(m)), ξ

0)]w(xk(l) + y, ξ0)(3.11)

= (p(∞, ξ0 + η)− p(∞, ξ0))p(∞, ξ0)−1

uniformly on each compact subset of Rn
y × R

n
η .

Because q, w ∈ S0
1,δ(R

n × R
n;M ;L(CN )), we have, for any α, β ∈ Z

n
+ with |α| 6

n+ 2 and |β| 6 n+ 2, there is a constant Cα,β such that

|∂α
η ∂

β
y [(q(xk(l(m)), ξ

0 + η)− q(xk(l(m)), ξ
0))w(xk(l(m)) + y, ξ0)]| 6 Cα,β(3.12)

∀ η, y ∈ R
n and m ∈ N.

This, together with (3.11) and repeated use of Lemma 2.2, yields that, for any α,

β ∈ Z
n
+ with |α| 6 n+ 1 and |β| 6 n+ 1,

lim
m→∞

∂α
η ∂

β
y [(q(xk(l(m)), ξ

0 + η)− q(xk(l(m)), ξ
0))w(xk(l) + y, ξ0)](3.13)

= ∂α
η ∂

β
y [(p(∞, ξ0 + η)− p(∞, ξ0))p(∞, ξ0)−1]

uniformly on each compact subset of Rn
y × R

n
η . We infer from Theorem 2.3, (2.8),

(3.10), (3.12) and (3.13) that

lim
m→∞

r1(xk(l(m)), ξ
0)

= (2π)−n ·Os-

∫∫
e−iy·η(p(∞, ξ0 + η)− p(∞, ξ0))p(∞, ξ0)−1 dy dη = 0.

This, combined with (3.8) and (3.9), yields that

lim
m→∞

r1(xk(l(m)), ξk(l(m))) = 0.

Since this violates (3.7), we obtain lim
|x|+|ξ|→∞

r1(x, ξ) = 0. Similarly, we get

lim
|x|+|ξ|→∞

r2(x, ξ) = 0.

(2) Combining assertion (1) with the fact that r1, r2 ∈ C0,σS0
1,δ(R

n × R
n;

M − (n+ 1);L(CN )) and Lemma 2.1, we arrive at the conclusion. �

Since p, w ∈ C0,σS0
1,δ(R

n × R
n;M ;L(CN )) and M > n ·max{1/2, 1/p}, we infer

from Theorem 2.6 that for −(1 − δ)σ < s < σ the operators p(x,Dx) : H
s
p(R

n)N →

Hs
p(R

n)N and w(x,Dx) : H
s
p(R

n)N → Hs
p(R

n)N are bounded. Let I stand for the

identity matrix of size N . Since the function q(x, ξ)w(x, ξ) − I belongs to the class

C0,σS0
1,δ(R

n × R
n;M ;L(CN )) and has a compact support, we see from Lemma 2.1
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that for −(1 − δ)σ < s < σ the operator Op(qw − I) : Hs
p(R

n)N → Hs
p(R

n)N is

compact. We define

R1 = Op(r1) + Op(qw − I) + Op(r) ◦Op(w).

We see from Lemmas 3.1 and 3.2 and the observation above that for−(1−δ)σ < s < σ

the operator R1 : Hs
p(R

n)N → Hs
p(R

n)N is compact. Furthermore, we obtain

Op(p) ◦Op(w) = (Op(q) + Op(r)) ◦Op(w) = Op(r1) + Op(qw) + Op(r) ◦Op(w)

= Id +R1.

We also define

R2 = Op(r2) + Op(wq − I) + Op(w) ◦Op(r).

As in the discussion above, we claim that for −(1 − δ)σ < s < σ the operator

R2 : Hs
p(R

n)N → Hs
p(R

n)N is compact and that

Op(w) ◦Op(p) = Id +R2.

So we infer by the Atkinson theorem that for −(1 − δ)σ < s < σ the operator

p(x,Dx) : Hs
p(R

n)N → Hs
p(R

n)N is a Fredholm operator. Since we have chosen

δ ∈ (τ, 1) arbitrarily, the assertion of Theorem 1.2 for m = 0 holds true.

Next, we turn our attention to the general case. Assume that the conditions in

Theorem 1.2 are satisfied. Put

(3.14) ã(x, ξ) = a(x, ξ) · 〈ξ〉−mI.

Since a ∈ C0,σSm
1,τ (R

n×R
N ;M ;L(CN )), we have ã∈C0,σS0

1,τ (R
n×R

N ;M ;L(CN)).

Thus, Theorem 1.2 for m = 0 yields that for −(1 − τ)σ < s < σ the operator

ã(x,Dx) : Hs
p(R

n)N → Hs
p(R

n)N is a Fredholm operator. Note that (3.14) yields

a(x,Dx) = ã(x,Dx) ◦ Op(〈ξ〉mI). Since Op(〈ξ〉mI) : Hs+m
p (Rn)N → Hs

p(R
n)N is

a linear isomorphism for any s ∈ R, we get the conclusion of Theorem 1.2.
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