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Abstract. We establish the Fredholmness of a pseudo-differential operator whose symbol
is of class %%, 0 < ¢ < 1, in the spatial variable. Our work here refines the work of
H. Abels, C. Pfeuffer (2020).
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1. INTRODUCTION

The starting point of our consideration is the result of Abels and Pfeuffer (see [2]),
which is recalled below. Let N be the set of all positive integers, Z; the set of all
nonnegative integers. Let n € N. Wefix 0 <7< 1,0< 9,6 <1and M € 7, U{co}.
For m € R and m € Z4, let C’%’TS;”L(;(R" x R™; M) stand for the set of functions
a: R™ x R™ — C such that the following properties are satisfied for all o, 8 € Z7}
with |8 < m and |a| < M:

(i) d%a(z,-) € CM(R") for all z € R™;
(ii) 000¢a € CO(Ry x RY);
(iif) [Oga(x,§)| < Oy (&)m—elel for all z,& € R™;
(1) 19200 )l grr ny < Cal€)™ 647 for all ¢ € R7.

We fix N € N. Let £(CV) stand for the set of all linear bounded opera-
tors on CV; L£(CV) is identified with CV*¥ in the standard way. A function
a: R" x R" — L(CV) is an element of Cﬁ“TS;%(R” x R™; M; L(CY)) if aj, the
(J, k)-component of a, belongs to C™ 7S (R™ x R"; M) for all j,k = 1,...,N.
For a symbol a € Cm’TS;’?’(;([R” x R™; M; L(CY)), we define the associated pseudo-
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differential operator by

Op(a)u(x) = a(z, Dy )u(z)
=(2n)~" / e Ca(x, £)u(€)dé Yue S(RMY, z € R™.

Here, u stands for the Fourier transform of u and S(R™) is the Schwartz space. The
main result of [2] reads as follows.

Theorem 1.1 ([2], Theorem 1.1). Let m,N e N, 0 <7< 1,0< 0 < p < 1,
meR, M e ZyU{co}andp € (1,00) withp = 2 if p # 1. Additionally we choose an
arbitrary 0 € (0, min{(m+7)(p—0),1}) and € € (0, min{(p—9)7, (¢—9)(m~+71)—0,0}).
Moreover let a € C’m?TSg?é([R" x R™; M; L(C")) be a symbol fulfilling the following
properties for some R > 0 and Cy > 0:

(1) |det(a(z,£))(&)~™N > Cy for all x,& € R™ with |z| + [£] > R;
(2) a(zx,§) olpe a(oo,§) for all £ € R™.
Then for all M > (n+2) + n-max{1/2,1/p} and s € R with

(1—@%—(1—5)(m+r)+6+€<s<ﬁz+r

the operator
a(z,Dy): HI'PH(RMN — HS(R™)N

is a Fredholm operator.

Theorem 1.1 does not cover the case where m = 0 because of a technical reason.
So we shall handle this case. Our main result is stated as follows.

Theorem 1.2. Let N e N, 0 < 7 < 1,0< o<1, meR, M e Z;y U{oo}
and p € (1,00). Let a € C*7S7" (R" x R"; M; L(C")) be a symbol satisfying the
following properties for some R > 0 and Cy > 0:

(1) |det(a(z,&))(&)~™N > Cy for all x,& € R™ with |z| + [¢] > R;
(2) a(zx,§) felmpe a(oo,§) for all £ € R™.
Then for all M > (n+ 1) + n-max{1/2,1/p} and s € R with

—-1l-7)o<s<o

the operator
a(z, Dy): HPH(R™)N — Hy(R™)N

is a Fredholm operator.
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It is worth mentioning that the condition on M in Theorem 1.2 is milder than
that in Theorem 1.1. In order to prove Theorem 1.2 we employ the decomposition
of symbols inspired by Nagase in [6], see Theorem 2.2. This, together with several
results in [2] and our tricky arguments in Lemmas 3.1 and 3.2, completes the proof.
We note that [2] uses the decomposition of symbols due to Taylor (see [7]), which is
different from Nagase’s. It is also worth mentioning that our proof here is somewhat
simpler than that in [2].

The Fredholm properties of (smooth) pseudodifferential operators have been stud-
ied by many authors; we refer to [3], [4], [5] and the references therein. In [4] Kohn
and Nirenberg show that for the Fredholmness of a pseudo-differential operator the
ellipticity of its symbol is necessary. Kumano-go in [5], Chapter 3, Theorem 5.16
shows the Fredholm property of an elliptic pseudo-differential operator whose sym-
bol belongs to a subclass of the Hérmander class and is slowly varying. In [3], Sec-
tion 19.2, Hormander studies the Fredholm index of an elliptic pseudo-differential
operator on a compact manifold.

We organize this paper as follows. In Section 2 we prepare several notations and
recall known results which are utilized in the proof of Theorem 1.2. In Section 3 we
complete the proof of Theorem 1.2.

2. PRELIMINARIES

We prepare several notations. We use the standard conventions on multi-indices.
For a variable = (x1,...,2,) in R" and o = (a1, ...,a,) € 27}, we write

0% = 001922 ...9% and DY = (—i)l*o2,
where 0., = 0/0x;, j =1,2,...,n. We put

(@) = 1+ a2

We define the Holder spaces as follows. For 0 < s < 1, let C%*(R") stand for the
set of functions f: R™ — C such that

) —
| fllco.s(mny = sup |f(x)| + sup 7”( ) fgy)| < 0.
TER™ x#y |J) _ylk

Let m € 7. A function f: R™ — C belongs to C™*(R") if we have 0% f € C**(R")

for every a € 7% with |a| < m. For f € C™*(R"), we define Hf|\c~(R
108 llomeqen.

o] <

) =
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For s € R and 1 < p < oo, let H;(R") be the set of f € S'(R") such that
(D.)*f € LP(R™), where (D,)* = Op((€)*). For f € H3(R™), we put |[f]|sry(an) =
[{D2)® fllLr(rny. We call Hs(R™) the Bessel potential space.

Next, we recall the definition of a Fredholm operator and the Atkinson theorem.

Definition 2.1. Let X, Y be Banach spaces. A linear bounded operator T':
X — Y is called a Fredholm operator if KerT is finite-dimensional and T'(X) is
finite-codimensional, that is, there is a finite-dimensional subspace Z of Y such that
Y=T(X)+Z.

Theorem 2.1 (Atkinson). Let X, Y be Banach spaces. A linear bounded op-
erator T: X — Y is a Fredholm operator if and only if there exist linear bounded
operators Sj: Y — X, j = 1,2, and compact linear operators K;: X — X and
Ks:' Y — Y such that SiT = Ix + K1 and TS; = Iy + Ks. Here, [x and Iy are
identity operators on X and Y, respectively.

We recall the decomposition of symbols due to Nagase, which plays a key role in
the proof of Theorem 1.2. Let p(z, £) be a bounded continuous function on R™ x R™.
We choose a ¢ € C§°(R™) such that [¢(y)dy =1. Fix 0 < < 1 and put

(2.1) 4, €) = / oWp(e — (€)0y.€) dy.

Theorem 2.2 ([6], Theorem 1). Let M € Z, U{oc}. Assume that for all o« € 77}
with |a| < M,

(22) |Dgp(a, )] < Cal€) ™1,
(23) |Dgp(,€) = DEP(Y, )| < Calw =yl (€)1,
where 0 < 0 < 1 and 0 < 7 < 1, and set r(x,&) = p(x, &) — q(z,§).

Then, there exist positive constants C, and C, g such that for any «, [ with
|a] < M we have

(2.4) | D7 Dgq(x,€)
(2.5) |Dr(x, €)

Co €)™ \OtIJré\ﬁl7
Co (€)™ le|=(6—7)o

//\ //\

We recall from [2] several materials needed in the proof of Theorem 1.2. Let N,
M e 7y U{co} and m, 7 € R. Let AT}\ZV(R" x R™) stand for the set of all continuous
functions a: R™xR"™ — C such that for all a, € 77} with || < N, |f| < M we have

(i) 9707 aly,n) € CO(Ry x RY);
(ii) 0505 a(y,n)] < Cap(1+[n))™(1+[y|)" for all y, n € R™,
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where all derivatives are well defined in the sense of distributions. We choose a x €
S(R™ x R™) for which x(0,0) = 1. For a € A" W (R x R™), we define

(2.6) Os- // e™Ma(y,n) dy dy = lim //X(ﬁy,@?)e_iy'"a(y,n) dy dn

whenever the limit exists. It is called the oscillatory integral.

Theorem 2.3 ([2], Corollary 2.7). Let m, 7 € R and N € Z U{oco} be such that
there is some I € N with N > I’ > n + 7. Moreover, let | € N with [ > n + m.
Additionally, let a;, a € C°(R™ x R™), j € Z4 be such that for all o, 8 € 7'} with
la| <N and |8] < the derivatives 905 a;, 930 a exist in the classical sense and

> 10200a;(y,m)| < Cos ()™ ()" for all n, y € R", j € Z.;
> 1079y, )] < Coa) )" for all . y € R

8a8y a;(y, ) 8,?85@(@/,77) for all m, y € R™.

Then
lim Os—//e_iy'"aj(y,n) dydn = Os—//e_iy'"a(y,n) dy dn.
j—o0

For results analogous to this theorem, see [1], Corollary 3.10 and [5], Chapter 1,
Theorem 6.6.
For z, ' € R", we put

(w;2) = V14 |2 + [,

Definition 2.2. Let me Z,,0< 7 <1, my, my € R, 0<9,0<1and My,
M; € Z4 U{oo}. Then a continuous function a: R x RY x R}, x Rf, — C belongs
to the nonsmooth double symbol-class Cm’TSml’"”(R” x R™ x R™ x R™; My, My) if

(i) 0202 0¢ a € C™7(R?) and 820282 8¢ a € CORY x RZ x RY, x R%);
(if)

070805 0 ala, &2/, &)
< C(y,67/5/7(y/ (J?)Co(,gwﬁ”,o/ (x/)<§>m1—g|oz\+6|ﬁ\ <€/>m2—9|o{’| <§7 €l>6|ﬁ’|;
(iii)
logal og a(-, €,',€")]

o () S Caypr,ar ()™ —elIHOTET) eymazelell (g ¢yl

for all ,£, 2, € R™ and arbitrary §,a, ', € 77} with [3| < m, |a| < M; and
|o’| < Ms. Here the constants Cy g g0/ (), Co,pr o and C’(yﬁ”@w’a/( ') are bounded
and independent of £,2/,£ € R™ or £, x,&" € R™, respectively.
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We will utilize the following assertions on double symbols.

Theorem 2.4 ([2], Theorem 3.10). Let 0 < s < 1, m € Z; and mi,mqy € R.
Additionally we choose N1, Na € Z4 U {oo} such that there is an | € N with N1 >
[ > n. Moreover, we put N = min{N; — (n + 1), No}. Furthermore, let

B C C™SMM2 (R x R x R™ x R™; Ny, Np)

be bounded. If we define for each a € B and 0 € [0,1] the function af: R™ x
R™ — C by

af (z,€) = OS'//e_iy'"a(%@??+§7$+y75) dydn V¢ eR",

we get with m = mj + mao that af € Cﬁ“sSg%(R” x R"; N) for all a € B and
6 € [0,1], and the existence of a constant C,, independent of a € B and 6 € [0,1],
such that for all o, € 77 with |of < N and |3| <m

0gaf(-, ¢l < Co(gymeleltolmts) y¢ e Rm

C';L,S(Rn)

and
08059 (2,€)| < Ca,p(z)(€)melFBl vg ¢ e R™,

where Cy, g(x) is bounded and independent of a € B, £ € R™ and 6 € [0,1]. This
implies the boundedness of {a%: a € B, § € [0,1]} C Cm’SS%(R” x R™; N).

Theorem 2.5 ([2], Theorem 4.5). Let 0 < § < o < 1, my,ma € R, My, M> €

ZyU{oo} with My >n+1, m € Zy and 0 <7 < 1. Fora € Cm’TS;'fg’mz(R” X
R™ x R™ x R™; My, M2) we define

ou(,) = (20" Os- [ [ e aa6 4 na sy dydy Vg e
Additionally we set for all § € [0,1] and v € 77 with |y| < M; — (n+1)
ry.0(2,€) = (2m) 7" - Os- // e VI DYa(x, &+ On,x +y,&)dydny  Va,{ € R™

Moreover we put Mk =min{M; —k— (n+1),Ms} for all k < My — (n+1). Then
we get for all N < My — (n+ 1) that

1
ar(r.6) = Y —0yDja(z.&+n.z+y.6)

|| <N

n=y=0 + RN (1[,', 5);
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where

1 N-1
1-6 i mi+ma—(0—90)- n n. s
Ry(z,€)=N- Y / %rw(x,g)deecmfsgj (e=0) N (R 5 R™; My )
lyl=n 70 '

and
{ry0(2,€): 0. €0,1]} © O™ grFmem @O N gn o g M)

is bounded.

We need the following implication concerning the action of a pseudo-differential
operator on the Bessel potential spaces.

Theorem 2.6 ([2], Theorem 3.2). Let m € R, 0 < 6 < o < 1 with o > 0,
l<p<ooand M € 7 U{oo} with M > max{n/2,n/p}. Additionally let m € 7
and 0 < 7 <1 besuchthat m+7> (1—9)/(1-6)-(n/2) ifpo<1andm e Z,,
7> 0 if o = 1, respectively. Moreover let B C Cm’TSZ?(S_k”(R” x R™; M) be bounded
with kp, = (1—o)n|1/2—1/p| and let (1 —p)n/p— (1 —=9)(m+7) <s < m+7. Then
there is some Cs > 0, independent of a € B, such that

la(, Da)flliry ey < Csllflygimuny Va€ B and f € HI™(R™),

The following result concerning the compactness of a pseudo-differential operator
is due to Marschall.

Lemma 2.1 ([2], Lemma 4.2). Let m € R, 0< < 1,1 <p < oo, m € Zy and
0 <7 < 1. Moreover, let M € NU {oo} with M > n-max{1/2,1/p}. Additionally
let a € Cm’TSK%([R” x R™; M) be such that

lim  (1+¢) "a(z,€) = 0.

|z|+|¢] o0
Then for —(1 —d)(m+7)<s<m+T

a(z,Dg): H3P™(R™) — HS(R™) is compact.

For 0 < 0,6 <1land M € Z; U{oo}, let S'(R™ x R™; M) be the set of functions
a: R™ x R® — C such that the following properties are fulfilled for all o, 8 € 77}
with |of < M:

(i) d%a(z,-) € CM(R") for all z € R™;
(ii) 979¢a € CO(Ry x RY);
(iii) [080ga(z, )| < Cap(§)m ool for all z, ¢ € R™.

947



We will utilize the embedding result, see [2], (3.1):
(2.7) ms(R™ x R™; M) € C™*S75(R™ x R™; M)

foral0<s<1l,meZy,meR, MeZ;y U{oo} and 0 < p,0 < 1.
Let a € C"T!(R™) be such that, for any a € Z7 with |a| < n+1, thereisa Cy > 0
such that [0y a(y)| < Cq for all y € R™. We have

(2.8) (2n)~" - Os- // @V (y) dy dn = a(x)

for every x € R™. For the proof, see [1], Example 3.11.
We will make use of the following implication.

Lemma 2.2 ([5], Chapter 1, Lemma 6.5). Let f(t) be a C*-function defined on
I =10,1]. Then there exists a constant M > 0 independent of f such that

(s 10)1) < M (mavs £(0) ) {max )] + e | 0) .

3. PROOF OF THEOREM 1.2

We use the following notations. A function a: R™ x R” — L£(C¥) is an element
of SIs(R™ x R™; M; L(CN)) if aj belongs to the class S7'5(R™ x R™; M) for all
j.k=1,...,N, where a;  is the (j, k)-component of a. A matrix version of the class
C™TSTIT (R X R™ x R™ x R™; My, My) and that of the class A’T’f}\]j(ﬂ%" x R™) are
defined similarly. For a € A7) (R xR"; £(CN)), we define Os- [[ e~ "a(y,n) dy dn
by (2.6) whenever the limit exists.

First, we prove the statement of Theorem 1.2 for m = 0. Let N e N, 0 < 7 < 1,
0<o<1landpe (1,00). Let M € Z; U{oo} be such that M > (n+ 1)+ n -
max{1/2,1/p}. Let p € C%75) (R™ x R™; M;L(C")) be a symbol satisfying the
following properties for some R > 0 and Cy > 0:

(i) |det(p(x,€))| = Cy for all z,& € R™ with |z| + |£] > R;
(i) p(z,§) leigo p(00,&) for all £ € R™.

We pick a § € (7,1) arbitrarily. We define ¢(z,£) by (2.1) and put r(z,§) =

p(x, &) — q(x,£). We have

(3.1) r(z,€) = / o((E)°9) (p(,€) — pla — 3, €)) dy - (€)™,
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Let us prove the following assertion.

Lemma 3.1.
(1) We have lim r(z,&) =0.

|z|+]€]—o00

(2) For —(1-6)0 < s < o, the operator r(z, D,): H35(R™)N — HS(R™)" is compact.

Proof. (1) Seeking a contradiction, we assume that r(z,¢) does not converge
to 0 as |z| + |{] — oo. Then, there are an €9 > 0 and a sequence {(z;,&)}2;
in R™ x R™ such that lim (Jz;| + |&|) = oo and

11— 00

(3.2) |T($i,§i)| >e9 VieN.

It follows from Theorem 2.2 that |r(z,&)| < Co(¢)~®~7). This, combined with
d € (1,1) and (3.2), implies that the sequence {&;}22; is bounded. So, the Bolzano-
Weierstrass theorem implies that {£;}5°;, has a convergent subsequence {&;)}i2;.
We put &0 = llg& &i(1y- From condition (ii) we have for every y € R"

lim (p(z,£") — p(z —y,£%) = 0.

|z|— 00

In addition, we have

lo((€)y) (p(2, %) — p(z — y,€°))| < 2Colp((€°)°y)],

where Cy = sup |p(z, £)|. Since the right-hand side of this inequality is an integrable
(2,€)
function on R™, we infer by the Lebesgue theorem and (3.1) that

(3.3) lim r(z,&) = 0.

|z|— 00

It follows from Theorem 2.2 that K = sup|Ver(z,&)| < oo. Since |z;;| — oo as

| — oo, we have from (3.3) €X3)

Ir(ziqy, &) — r(@iay, )] + |r(ziqy, €0)]

7 (230y, &iy)| <
< K|&ay — 1+ Ir(ziq), €% = 0 (as I — oo).

Since this violates (3.2), we get the conclusion.
(2) It follows from Theorem 2.2 that ¢ € S%A[R" x R™; M; L(CY)). Combining
this with (2.7) we have ¢ € C%757 5(R™ x R™; M; L(CV)). But,

pe CP7S) (R* x R™; M;L(CN)) c C™7 5] 5(R™ x R™; M; L(CN)).

So, r € C%75) 5(R™ x R™; M;L(CN)). This, together with assertion (1) and
Lemma 2.1, yields the conclusion. O
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Put d(A) = det A for A € L(CY). We have

| det(p(x,§)) — det(q(x,§))| < max

0<t<1 |

(Vd)(tp(x, €) + (1 = t)g(x, €))||r(z, )]

This, combined with the boundedness of p(z, ) on R™ x R™ and (1) of Lemma 3.1,

implies that " lllgl | det(p(x, &)) — det(g(x, €))| = 0. So, we see from condition (i)
x|+|&|—o0

that there exist R > 0 and Cjy > 0 such that
(3.4) |det(q(z,€))| = Co Vx,£ € R™ with |z|+|¢| > R.

Furthermore, it follows from condition (ii) and (1) of Lemma 2.2 that
|| —o0 n
(3.5) a(z,€) T p(oo,6) VEER™

We choose a y € C(R"™ x R™) such that y(z,&) = 0 for |z| + |¢| < R+ 1 and
x(x,&) =1 for |z| +|¢] > R+ 2. Let

w(z,&) = x(2,§q(x,§) " VYV, eR™

Because of (3.4) and the fact that ¢ € S(l)’é([R" x R™: M; L(CY)), we obtain
w € 5?7(5([1%” x R™ M;L(CN)). Since ¢, w € S?’é(R” x R™; M; L(CN)), we
claim by (2.7) that ¢, w € C%"S%(S(R” x R™:; M;L(CN)) for all m € 7.
Thus, the functions ¢; ;(z, §)wy (2, &) and wi,(z,&)q:,;(2',€’) belong to the class
CO7 YR x R™ x R™ x R™; M, M), where ¢, ;, 1 <i,j < N, and wy, 1 <k, < N,
stand for the (i, j)-component of ¢ or the (k,[)-component of w, respectively. We put

ma(,§) = (20" 05 [ [ a(a &+ mule + 3.6 dy
and
ma(®,8) = (@n)7" - Os- // e w(z, & +n)q(x +y, &) dy dn.
Since M > n + 1, we infer from Theorem 2.4 that mq,mo € CO"’S?’(;([R” x R™ M —

(n+1); L(CV)). We also put

Tl(l‘,f) = ml(maf) - q(x,g)w(m,f) and TQ(xvg) = mQ(xvg) - w(x,ﬁ)q(x,ﬁ)

Because ¢(z,&)w(z, &) and w(x,§&)q(x, &) belong to S?’é([R" x R™; M; L(CN)), we
have 71, 79 € C%78) 5(R™ x R"; M — (n + 1); L(CV)). Since g, ;(x, )wyi(2', &)
and wg(z,&)q,;(¢',€") belong to the class CO"’S(I)”(?([R” x R™ x R™ x R™; M, M)
and since M > n + 2, we have by Theorem 2.5 that 1,7y € C’O"’Si(gk&)(ﬂ%” x R™;
M — (n+2); L(CY)). Let us demonstrate the following assertion.
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Lemma 3.2.
(1) We have lim r(z,§) =0and lim 7y(z,§) =0.

|z]+€]—o00 |z]+]€]—o00
(2) For —(1 —6)o < s < o, the operators r1(z, D;): H3(R™")N — HS(R™)N and
ro(z, Dy): HE(R™)N — H5(R™)N are compact.

Proof. (1) On account of (3.4) and (3.5), we have
(3.6) w(@,§) T ploc,§) ! Ve ER™

Seeking a contradiction, we suppose that ri(x, &) does not tend to 0 as |z|+|¢] — oco.
Then, there are an g9 > 0 and a sequence {(z,&x)}7>, in R™ x R™ such that
lim (|zx| + |€k|) = oo and
k—o0

(3.7) 71 (an, &) > €0 Yk eN.

Since r € CO’”S;(gl_é)(R" x R™; M — (n + 2); L(CY)), there is a constant Cj for
which |r1(z,&)| < Co(€)~ (=9 for all z,¢ € R™. This, combined with —(1 —4) <0
and (3.6), implies that the sequence {{x}7°, is bounded. It then follows from
the Bolzano-Weierstrass theorem that {£,}7°, admits a convergent subsequence
&y 12, Put €0 = llggo &kay- We have

(3.8) r(zray, &) = 11 (e), Seay) — 11 (@), €0) + (@R, £°).

Since Veri(z,&) is bounded on R™ x R™, we get
(3.9) Jim (ra(zray, Ekay) — r1(zr), €°)) = 0.

Since w(xy ) + -, €% € C°(R™; L(CY)), we obtain from (2.8)
(3.10)

r1(zgqy, €%) = (2m)7"-Os- // e VN (q(zray, E24n) —q(zray . ) w (TR +y, £2) dy dn.

We note that for any o € 77 with |a| < 1, there is a constant C, such that
10 a(Tray,n)| < Cu(n)~1ol for all € R™ and I € N and that 102w (k) +y,£°)|<Co
for all y € R™ and I € N. This, together with the Ascoli-Arzela theorem and the diag-
onalization argument, yields that {k(1)}7°, admits a subsequence {k(I(m))}°_; such
that the sequence [q(zx(i(m)),€° + 1) = @(Tra(m))» E°)w(ze@y +y,&0) converges uni-
formly on each compact subset of Ry x Ry, But, (3.5), (3.6) and lm_|xy(m))| = 00
m—o0
yield that

W%LOO[Q(xk(z(m)),EO +1) = @(Tr(my)» Ew () +y,£%)
= (p(00,£% + 1) — p(00,£”))p(00,€°) ™" Vy,n e R™
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So, it holds that
(3.11) im [g(@aemy)» € + 1) — a(@rqen)» §Nw (e +v,€%)

= (p(00,€” +1) = p(00, £°))p(00, %)~
uniformly on each compact subset of R} x R}.

Because g, w € S(f’(;([R" x R™; M; L(CN)), we have, for any «, 8 € 7" with [af <
n+ 2 and || < n+ 2, there is a constant C, g such that

(3.12) 10205 [(a(xr(u(m))> € + 1) — A(@ra(my) €)@ ki) + ¥ €] < Cap
Vn,y € R™ and m € N.

This, together with (3.11) and repeated use of Lemma 2.2, yields that, for any «,
B € 2 with |a| <n+1and 8] <n+1,

(3.13) w}gnooa O 1(a(@r(a(my)» € + 1) — a(@raemy) E))w(zray +3,€°)]
= 050} [(p(00,€° + 1) — p(oo, £%))p(o0, %) 7]

uniformly on each compact subset of R} x R}. We infer from Theorem 2.3, (2.8),
(3.10), (3.12) and (3.13) that

hm ! (Zk(u(m))» €°)

(2 05 [ [ €300, 4 1) = ploc,€)p(oc,€) dydy = 0.
This, combined with (3.8) and (3.9), yields that

i 7 (@k(m))s Eea(m))) = 0-

Since this violates (3.7), we obtain lim ri(z,§) = 0. Similarly, we get
lim  ra(z,€) = 0 |z]+]€]—o00
lolHg[o0 " ’
(2) Combining assertion (1) with the fact that ry, ro € CO"’S?,C;([R" x R™;
M — (n+1); £(CY)) and Lemma 2.1, we arrive at the conclusion. O

Since p, w € C%78) 5(R™ x R"™; M; L(CN)) and M > n - max{1/2,1/p}, we infer
from Theorem 2.6 that for —(1 — d)o < s < o the operators p(z, D) : H3(R™)
HS(R™N and w(z, Dy) : Hy(R™)N — HS(R™)N are bounded. Let I stand for the
identity matrix of size N. Since the function ¢(z, &)w(z,£) — I belongs to the class
CO’“S?,(;(R” x R™; M; £L(C")) and has a compact support, we see from Lemma 2.1
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that for —(1 —d)o < s < o the operator Op(quw — I): H3(R™)N — Hs(R™)N is
compact. We define

Ry = Op(r1) + Op(qw — I) + Op(r) o Op(w).

We see from Lemmas 3.1 and 3.2 and the observation above that for —(1-d)o < s < o
the operator Ry: H3(R")N — H5(R")N is compact. Furthermore, we obtain

Op(p) o Op(w) = (Op(g) + Op(r)) o Op(w) = Op(r1) + Op(qw) + Op(r) o Op(w)
=1d + R;.

We also define
Rs = Op(rz) + Op(wq — I) + Op(w) o Op(r).

As in the discussion above, we claim that for —(1 — d)0 < s < o the operator
Ry: H3(R™)N — H5(R™)N is compact and that

Op(w) o Op(p) =Id + Ra.

So we infer by the Atkinson theorem that for —(1 — d)c < s < o the operator
p(x, Dy): H3(R™)N — HS(R™)N is a Fredholm operator. Since we have chosen
0 € (7,1) arbitrarily, the assertion of Theorem 1.2 for m = 0 holds true.

Next, we turn our attention to the general case. Assume that the conditions in
Theorem 1.2 are satisfied. Put

(3.14) a(z,§) = a(z,§) - (§)~" 1.

Since a € C%7 S (R™ x RN; M; L(CV)), we have acC™ SY (R™ x RN; M; L(CN)).
Thus, Theorem 1.2 for m = 0 yields that for —(1 — 7)o0 < s < o the operator
a(z, Dy): H3(R™)N — H3(R™)N is a Fredholm operator. Note that (3.14) yields
a(z, Dy) = d(x, D,) o Op({&)™1). Since Op((&)™1): Hyt™(R™N — HyRMN is
a linear isomorphism for any s € R, we get the conclusion of Theorem 1.2.
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