Czechoslovak Mathematical Journal

Kazushi Yoshitomi

Fredholmness of pseudo-differential operators with nonregular symbols

Czechoslovak Mathematical Journal, Vol. 73 (2023), No. 3, 941-954

Persistent URL: http://dml.cz/dmlcz/151784

Terms of use:

© Institute of Mathematics AS CR, 2023

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these *Terms of use*.

This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project *DML-CZ*: *The Czech Digital Mathematics Library* http://dml.cz

FREDHOLMNESS OF PSEUDO-DIFFERENTIAL OPERATORS WITH NONREGULAR SYMBOLS

Kazushi Yoshitomi, Tokyo

Received September 9, 2022. Published online May 19, 2023.

Abstract. We establish the Fredholmness of a pseudo-differential operator whose symbol is of class $C^{0,\sigma}$, $0 < \sigma < 1$, in the spatial variable. Our work here refines the work of H. Abels, C. Pfeuffer (2020).

Keywords: Fredholmness; pseudo-differential operator; nonregular symbol

MSC 2020: 35S05, 47A53, 47G30

1. Introduction

The starting point of our consideration is the result of Abels and Pfeuffer (see [2]), which is recalled below. Let \mathbb{N} be the set of all positive integers, \mathbb{Z}_+ the set of all nonnegative integers. Let $n \in \mathbb{N}$. We fix $0 < \tau \leqslant 1$, $0 \leqslant \varrho$, $\delta \leqslant 1$ and $M \in \mathbb{Z}_+ \cup \{\infty\}$. For $m \in \mathbb{R}$ and $\widetilde{m} \in \mathbb{Z}_+$, let $C^{\widetilde{m},\tau}S^m_{\varrho,\delta}(\mathbb{R}^n \times \mathbb{R}^n; M)$ stand for the set of functions $a \colon \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{C}$ such that the following properties are satisfied for all $\alpha, \beta \in \mathbb{Z}_+^n$ with $|\beta| \leqslant \widetilde{m}$ and $|\alpha| \leqslant M$:

- (i) $\partial_x^{\beta} a(x,\cdot) \in C^M(\mathbb{R}^n)$ for all $x \in \mathbb{R}^n$;
- (ii) $\partial_x^\beta \partial_\varepsilon^\alpha a \in C^0(\mathbb{R}^n_x \times \mathbb{R}^n_\varepsilon);$
- (iii) $|\partial_{\xi}^{\alpha} a(x,\xi)| \leqslant C_{\alpha} \langle \xi \rangle^{m-\varrho|\alpha|}$ for all $x, \xi \in \mathbb{R}^n$;
- $\text{(iv) } \|\partial_{\xi}^{\alpha}a(\cdot,\xi)\|_{C^{\widetilde{m},\tau}(\mathbb{R}^n)}\leqslant C_{\alpha}\langle\xi\rangle^{m-\varrho|\alpha|+\delta(\widetilde{m}+\tau)} \text{ for all } \xi\in\mathbb{R}^n.$

We fix $N \in \mathbb{N}$. Let $\mathcal{L}(\mathbb{C}^N)$ stand for the set of all linear bounded operators on \mathbb{C}^N ; $\mathcal{L}(\mathbb{C}^N)$ is identified with $\mathbb{C}^{N \times N}$ in the standard way. A function $a \colon \mathbb{R}^n \times \mathbb{R}^n \to \mathcal{L}(\mathbb{C}^N)$ is an element of $C^{\widetilde{m},\tau}S^m_{\varrho,\delta}(\mathbb{R}^n \times \mathbb{R}^n; M; \mathcal{L}(\mathbb{C}^N))$ if $a_{j,k}$, the (j,k)-component of a, belongs to $C^{\widetilde{m},\tau}S^m_{\varrho,\delta}(\mathbb{R}^n \times \mathbb{R}^n; M)$ for all $j,k=1,\ldots,N$. For a symbol $a \in C^{\widetilde{m},\tau}S^m_{\varrho,\delta}(\mathbb{R}^n \times \mathbb{R}^n; M; \mathcal{L}(\mathbb{C}^N))$, we define the associated pseudo-

DOI: 10.21136/CMJ.2023.0387-22

differential operator by

$$\begin{aligned} \operatorname{Op}(a)u(x) &= a(x, D_x)u(x) \\ &= (2\pi)^{-n} \int_{\mathbb{R}^n} \operatorname{e}^{\mathrm{i} x \cdot \xi} a(x, \xi) \widehat{u}(\xi) \, \mathrm{d} \xi \quad \forall \, u \in \mathcal{S}(\mathbb{R}^n)^N, \, \, x \in \mathbb{R}^n. \end{aligned}$$

Here, \hat{u} stands for the Fourier transform of u and $\mathcal{S}(\mathbb{R}^n)$ is the Schwartz space. The main result of [2] reads as follows.

Theorem 1.1 ([2], Theorem 1.1). Let $\widetilde{m}, N \in \mathbb{N}$, $0 < \tau < 1$, $0 \leqslant \delta < \varrho \leqslant 1$, $m \in \mathbb{R}$, $M \in \mathbb{Z}_+ \cup \{\infty\}$ and $p \in (1, \infty)$ with p = 2 if $\varrho \neq 1$. Additionally we choose an arbitrary $\theta \in (0, \min\{(\widetilde{m} + \tau)(\varrho - \delta), 1\})$ and $\widetilde{\varepsilon} \in (0, \min\{(\varrho - \delta)\tau, (\varrho - \delta)(\widetilde{m} + \tau) - \theta, \theta\})$. Moreover let $a \in C^{\widetilde{m},\tau}S^m_{\varrho,\delta}(\mathbb{R}^n \times \mathbb{R}^n; M; \mathcal{L}(\mathbb{C}^N))$ be a symbol fulfilling the following properties for some R > 0 and $C_0 > 0$:

- (1) $|\det(a(x,\xi))|\langle\xi\rangle^{-mN} \geqslant C_0$ for all $x,\xi\in\mathbb{R}^n$ with $|x|+|\xi|\geqslant R$;
- (2) $a(x,\xi) \xrightarrow{|x| \to \infty} a(\infty,\xi)$ for all $\xi \in \mathbb{R}^n$.

Then for all $M \ge (n+2) + n \cdot \max\{1/2, 1/p\}$ and $s \in \mathbb{R}$ with

$$(1-\varrho)\frac{n}{2} - (1-\delta)(\widetilde{m} + \tau) + \theta + \widetilde{\varepsilon} < s < \widetilde{m} + \tau$$

the operator

$$a(x, D_x) \colon H_p^{m+s}(\mathbb{R}^n)^N \to H_p^s(\mathbb{R}^n)^N$$

is a Fredholm operator.

Theorem 1.1 does not cover the case where $\widetilde{m}=0$ because of a technical reason. So we shall handle this case. Our main result is stated as follows.

Theorem 1.2. Let $N \in \mathbb{N}$, $0 \leq \tau < 1$, $0 < \sigma < 1$, $m \in \mathbb{R}$, $M \in \mathbb{Z}_+ \cup \{\infty\}$ and $p \in (1,\infty)$. Let $a \in C^{0,\sigma}S^m_{1,\tau}(\mathbb{R}^n \times \mathbb{R}^n; M; \mathcal{L}(\mathbb{C}^N))$ be a symbol satisfying the following properties for some R > 0 and $C_0 > 0$:

- (1) $|\det(a(x,\xi))|\langle\xi\rangle^{-mN} \geqslant C_0$ for all $x,\xi\in\mathbb{R}^n$ with $|x|+|\xi|\geqslant R$;
- (2) $a(x,\xi) \stackrel{|x| \to \infty}{\longrightarrow} a(\infty,\xi)$ for all $\xi \in \mathbb{R}^n$.

Then for all $M > (n+1) + n \cdot \max\{1/2, 1/p\}$ and $s \in \mathbb{R}$ with

$$-(1-\tau)\sigma < s < \sigma$$

the operator

$$a(x, D_x): H_n^{m+s}(\mathbb{R}^n)^N \to H_n^s(\mathbb{R}^n)^N$$

is a Fredholm operator.

It is worth mentioning that the condition on M in Theorem 1.2 is milder than that in Theorem 1.1. In order to prove Theorem 1.2 we employ the decomposition of symbols inspired by Nagase in [6], see Theorem 2.2. This, together with several results in [2] and our tricky arguments in Lemmas 3.1 and 3.2, completes the proof. We note that [2] uses the decomposition of symbols due to Taylor (see [7]), which is different from Nagase's. It is also worth mentioning that our proof here is somewhat simpler than that in [2].

The Fredholm properties of (smooth) pseudodifferential operators have been studied by many authors; we refer to [3], [4], [5] and the references therein. In [4] Kohn and Nirenberg show that for the Fredholmness of a pseudo-differential operator the ellipticity of its symbol is necessary. Kumano-go in [5], Chapter 3, Theorem 5.16 shows the Fredholm property of an elliptic pseudo-differential operator whose symbol belongs to a subclass of the Hörmander class and is slowly varying. In [3], Section 19.2, Hörmander studies the Fredholm index of an elliptic pseudo-differential operator on a compact manifold.

We organize this paper as follows. In Section 2 we prepare several notations and recall known results which are utilized in the proof of Theorem 1.2. In Section 3 we complete the proof of Theorem 1.2.

2. Preliminaries

We prepare several notations. We use the standard conventions on multi-indices. For a variable $x = (x_1, \ldots, x_n)$ in \mathbb{R}^n and $\alpha = (\alpha_1, \ldots, \alpha_n) \in \mathbb{Z}_+^n$, we write

$$\partial_x^\alpha = \partial_{x_1}^{\alpha_1} \partial_{x_2}^{\alpha_2} \dots \partial_{x_n}^{\alpha_n} \quad \text{and} \quad D_x^\alpha = (-i)^{|\alpha|} \partial_x^\alpha,$$

where $\partial_{x_j} = \partial/\partial x_j$, $j = 1, 2, \dots, n$. We put

$$\langle x \rangle = \sqrt{1 + |x|^2}.$$

We define the Hölder spaces as follows. For $0 < s \le 1$, let $C^{0,s}(\mathbb{R}^n)$ stand for the set of functions $f \colon \mathbb{R}^n \to \mathbb{C}$ such that

$$||f||_{C^{0,s}(\mathbb{R}^n)} \equiv \sup_{x \in \mathbb{R}^n} |f(x)| + \sup_{x \neq y} \frac{|f(x) - f(y)|}{|x - y|^s} < \infty.$$

Let $\widetilde{m} \in \mathbb{Z}_+$. A function $f \colon \mathbb{R}^n \to \mathbb{C}$ belongs to $C^{\widetilde{m},s}(\mathbb{R}^n)$ if we have $\partial_x^{\alpha} f \in C^{0,s}(\mathbb{R}^n)$ for every $\alpha \in \mathbb{Z}_+^n$ with $|\alpha| \leqslant \widetilde{m}$. For $f \in C^{\widetilde{m},s}(\mathbb{R}^n)$, we define $||f||_{C^{\widetilde{m},s}(\mathbb{R}^n)} = \sum_{|\alpha| \leqslant \widetilde{m}} ||\partial_x^{\alpha} f||_{C^{0,s}(\mathbb{R}^n)}$.

For $s \in \mathbb{R}$ and $1 , let <math>H_p^s(\mathbb{R}^n)$ be the set of $f \in \mathcal{S}'(\mathbb{R}^n)$ such that $\langle D_x \rangle^s f \in L^p(\mathbb{R}^n)$, where $\langle D_x \rangle^s = \operatorname{Op}(\langle \xi \rangle^s)$. For $f \in H_p^s(\mathbb{R}^n)$, we put $||f||_{H_p^s(\mathbb{R}^n)} = ||\langle D_x \rangle^s f||_{L^p(\mathbb{R}^n)}$. We call $H_p^s(\mathbb{R}^n)$ the Bessel potential space.

Next, we recall the definition of a Fredholm operator and the Atkinson theorem.

Definition 2.1. Let X, Y be Banach spaces. A linear bounded operator T: $X \to Y$ is called a *Fredholm operator* if $\operatorname{Ker} T$ is finite-dimensional and T(X) is finite-codimensional, that is, there is a finite-dimensional subspace Z of Y such that $Y = T(X) \dotplus Z$.

Theorem 2.1 (Atkinson). Let X, Y be Banach spaces. A linear bounded operator $T: X \to Y$ is a Fredholm operator if and only if there exist linear bounded operators $S_j: Y \to X$, j = 1, 2, and compact linear operators $K_1: X \to X$ and $K_2: Y \to Y$ such that $S_1T = I_X + K_1$ and $TS_2 = I_Y + K_2$. Here, I_X and I_Y are identity operators on X and Y, respectively.

We recall the decomposition of symbols due to Nagase, which plays a key role in the proof of Theorem 1.2. Let $p(x,\xi)$ be a bounded continuous function on $\mathbb{R}^n \times \mathbb{R}^n$. We choose a $\varphi \in C_0^{\infty}(\mathbb{R}^n)$ such that $\int \varphi(y) dy = 1$. Fix $0 < \delta < 1$ and put

(2.1)
$$q(x,\xi) = \int \varphi(y)p(x - \langle \xi \rangle^{-\delta} y, \xi) \, \mathrm{d}y.$$

Theorem 2.2 ([6], Theorem 1). Let $M \in \mathbb{Z}_+ \cup \{\infty\}$. Assume that for all $\alpha \in \mathbb{Z}_+^n$ with $|\alpha| \leq M$,

$$|D_{\xi}^{\alpha}p(x,\xi)| \leqslant C_{\alpha}\langle\xi\rangle^{-|\alpha|},$$

$$(2.3) |D_{\varepsilon}^{\alpha} p(x,\xi) - D_{\varepsilon}^{\alpha} p(y,\xi)| \leqslant C_{\alpha} |x - y|^{\sigma} \langle \xi \rangle^{-|\alpha| + \sigma \tau},$$

where $0 < \sigma \le 1$ and $0 \le \tau < 1$, and set $r(x, \xi) = p(x, \xi) - q(x, \xi)$.

Then, there exist positive constants C_{α} and $C_{\alpha,\beta}$ such that for any α , β with $|\alpha| \leq M$ we have

$$(2.4) |D_x^{\beta} D_{\varepsilon}^{\alpha} q(x,\xi)| \leqslant C_{\alpha,\beta} \langle \xi \rangle^{-|\alpha| + \delta|\beta|},$$

$$(2.5) |D_{\xi}^{\alpha} r(x,\xi)| \leqslant C_{\alpha} \langle \xi \rangle^{-|\alpha| - (\delta - \tau)\sigma}.$$

We recall from [2] several materials needed in the proof of Theorem 1.2. Let N, $M \in \mathbb{Z}_+ \cup \{\infty\}$ and $m, \tau \in \mathbb{R}$. Let $\mathcal{A}_{\tau,M}^{m,N}(\mathbb{R}^n \times \mathbb{R}^n)$ stand for the set of all continuous functions $a \colon \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{C}$ such that for all $\alpha, \beta \in \mathbb{Z}_+^n$ with $|\alpha| \leq N, |\beta| \leq M$ we have

- (i) $\partial_{\eta}^{\alpha} \partial_{y}^{\beta} a(y, \eta) \in C^{0}(\mathbb{R}_{y}^{n} \times \mathbb{R}_{\eta}^{n});$
- (ii) $|\partial_{\eta}^{\alpha}\partial_{y}^{\beta}a(y,\eta)| \leqslant C_{\alpha,\beta}(1+|\eta|)^{m}(1+|y|)^{\tau}$ for all $y, \eta \in \mathbb{R}^{n}$,

where all derivatives are well defined in the sense of distributions. We choose a $\chi \in \mathcal{S}(\mathbb{R}^n \times \mathbb{R}^n)$ for which $\chi(0,0) = 1$. For $a \in \mathcal{A}_{\tau,M}^{m,N}(\mathbb{R}^n \times \mathbb{R}^n)$, we define

(2.6) Os-
$$\iint e^{-iy\cdot\eta} a(y,\eta) dy d\eta = \lim_{\varepsilon \to 0} \iint \chi(\varepsilon y, \varepsilon \eta) e^{-iy\cdot\eta} a(y,\eta) dy d\eta$$

whenever the limit exists. It is called the oscillatory integral.

Theorem 2.3 ([2], Corollary 2.7). Let $m, \tau \in \mathbb{R}$ and $N \in \mathbb{Z}_+ \cup \{\infty\}$ be such that there is some $l' \in \mathbb{N}$ with $N \geqslant l' > n + \tau$. Moreover, let $l \in \mathbb{N}$ with l > n + m. Additionally, let a_j , $a \in C^0(\mathbb{R}^n \times \mathbb{R}^n)$, $j \in \mathbb{Z}_+$ be such that for all α , $\beta \in \mathbb{Z}_+^n$ with $|\alpha| \leqslant N$ and $|\beta| \leqslant l$ the derivatives $\partial_{\eta}^{\alpha} \partial_{\eta}^{\beta} a_j$, $\partial_{\eta}^{\alpha} \partial_{\eta}^{\beta} a$ exist in the classical sense and

$$\triangleright |\partial_{\eta}^{\alpha} \partial_{y}^{\beta} a_{j}(y, \eta)| \leqslant C_{\alpha, \beta} \langle \eta \rangle^{m} \langle y \rangle^{\tau} \text{ for all } \eta, y \in \mathbb{R}^{n}, j \in \mathbb{Z}_{+};$$

$$\triangleright |\partial_{\eta}^{\alpha} \partial_{y}^{\beta} a(y, \eta)| \leqslant C_{\alpha, \beta} \langle \eta \rangle^{m} \langle y \rangle^{\tau} \text{ for all } \eta, y \in \mathbb{R}^{n};$$

$$\triangleright \ \partial_{\eta}^{\alpha} \partial_{y}^{\beta} a_{j}(y,\eta) \stackrel{j \to \infty}{\longrightarrow} \partial_{\eta}^{\alpha} \partial_{y}^{\beta} a(y,\eta) \text{ for all } \eta, y \in \mathbb{R}^{n}.$$

Then

$$\lim_{j \to \infty} \operatorname{Os-} \iint e^{-iy \cdot \eta} a_j(y, \eta) \, dy \, d\eta = \operatorname{Os-} \iint e^{-iy \cdot \eta} a(y, \eta) \, dy \, d\eta.$$

For results analogous to this theorem, see [1], Corollary 3.10 and [5], Chapter 1, Theorem 6.6.

For $x, x' \in \mathbb{R}^n$, we put

$$\langle x; x' \rangle = \sqrt{1 + |x|^2 + |x'|^2}.$$

Definition 2.2. Let $\widetilde{m} \in \mathbb{Z}_+$, $0 < \tau < 1$, m_1 , $m_2 \in \mathbb{R}$, $0 \le \delta$, $\varrho \le 1$ and M_1 , $M_2 \in \mathbb{Z}_+ \cup \{\infty\}$. Then a continuous function $a : \mathbb{R}^n_x \times \mathbb{R}^n_\xi \times \mathbb{R}^n_{x'} \times \mathbb{R}^n_{\xi'} \to \mathbb{C}$ belongs to the nonsmooth double symbol-class $C^{\widetilde{m},\tau}S^{m_1,m_2}_{\varrho,\delta}(\mathbb{R}^n \times \mathbb{R}^n \times \mathbb{R}^n \times \mathbb{R}^n; M_1, M_2)$ if

(i)
$$\partial_{\xi}^{\alpha} \partial_{x'}^{\beta'} \partial_{\xi'}^{\alpha'} a \in C^{\widetilde{m},\tau}(\mathbb{R}_{x}^{n})$$
 and $\partial_{x}^{\beta} \partial_{\xi}^{\alpha} \partial_{x'}^{\beta'} \partial_{\xi'}^{\alpha'} a \in C^{0}(\mathbb{R}_{x}^{n} \times \mathbb{R}_{\xi}^{n} \times \mathbb{R}_{x'}^{n} \times \mathbb{R}_{\xi'}^{n})$; (ii)

$$\begin{aligned} |\partial_x^\beta \partial_\xi^\alpha \partial_{x'}^{\alpha'} \partial_{\xi'}^{\alpha'} a(x,\xi,x',\xi')| \\ & \leq C_{\alpha,\beta,\beta',\alpha'}(x) \widetilde{C}_{\alpha,\beta,\beta',\alpha'}(x') \langle \xi \rangle^{m_1-\varrho|\alpha|+\delta|\beta|} \langle \xi' \rangle^{m_2-\varrho|\alpha'|} \langle \xi;\xi' \rangle^{\delta|\beta'|}; \end{aligned}$$

(iii)

$$\|\partial_{\xi}^{\alpha}\partial_{x'}^{\beta'}\partial_{\xi'}^{\alpha'}a(\cdot,\xi,x',\xi')\|_{C^{\widetilde{m},\tau}(\mathbb{R}^{n})}\leqslant C_{\alpha,\beta',\alpha'}\langle\xi\rangle^{m_{1}-\varrho|\alpha|+\delta(\widetilde{m}+\tau)}\langle\xi'\rangle^{m_{2}-\varrho|\alpha'|}\langle\xi;\xi'\rangle^{\delta|\beta'|}$$

for all $x, \xi, x', \xi' \in \mathbb{R}^n$ and arbitrary $\beta, \alpha, \beta', \alpha' \in \mathbb{Z}_+^n$ with $|\beta| \leqslant \widetilde{m}$, $|\alpha| \leqslant M_1$ and $|\alpha'| \leqslant M_2$. Here the constants $C_{\alpha,\beta,\beta',\alpha'}(x)$, $C_{\alpha,\beta',\alpha'}$ and $\widetilde{C}_{\alpha,\beta,\beta',\alpha'}(x')$ are bounded and independent of $\xi, x', \xi' \in \mathbb{R}^n$ or $\xi, x, \xi' \in \mathbb{R}^n$, respectively.

We will utilize the following assertions on double symbols.

Theorem 2.4 ([2], Theorem 3.10). Let 0 < s < 1, $\widetilde{m} \in \mathbb{Z}_+$ and $m_1, m_2 \in \mathbb{R}$. Additionally we choose $N_1, N_2 \in \mathbb{Z}_+ \cup \{\infty\}$ such that there is an $l \in \mathbb{N}$ with $N_1 \geqslant l > n$. Moreover, we put $\widetilde{N} = \min\{N_1 - (n+1), N_2\}$. Furthermore, let

$$\mathcal{B} \subset C^{\widetilde{m},s} S^{m_1,m_2}_{\varrho,\delta}(\mathbb{R}^n \times \mathbb{R}^n \times \mathbb{R}^n \times \mathbb{R}^n; N_1, N_2)$$

be bounded. If we define for each $a \in \mathcal{B}$ and $\theta \in [0,1]$ the function $a_L^{\theta} \colon \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{C}$ by

$$a_L^{\theta}(x,\xi) = \text{Os-} \iint e^{-\mathrm{i} y \cdot \eta} a(x,\theta \eta + \xi, x + y, \xi) \, \mathrm{d} y \, \mathrm{d} \eta \quad \forall \, x, \xi \in \mathbb{R}^n,$$

we get with $m \equiv m_1 + m_2$ that $a_L^{\theta} \in C^{\widetilde{m},s}S_{\varrho,\delta}^m(\mathbb{R}^n \times \mathbb{R}^n; \widetilde{N})$ for all $a \in \mathcal{B}$ and $\theta \in [0,1]$, and the existence of a constant C_{α} , independent of $a \in \mathcal{B}$ and $\theta \in [0,1]$, such that for all $\alpha, \beta \in \mathbb{Z}_+^n$ with $|\alpha| \leq \widetilde{N}$ and $|\beta| \leq \widetilde{m}$

$$\|\partial_{\xi}^{\alpha} a_{L}^{\theta}(\cdot,\xi)\|_{C^{\widetilde{m},s}(\mathbb{R}^{n})} \leqslant C_{\alpha} \langle \xi \rangle^{m-\varrho|\alpha|+\delta(\widetilde{m}+s)} \quad \forall \, \xi \in \mathbb{R}^{n}$$

and

$$|\partial_\xi^\alpha \partial_x^\beta a_L^\theta(x,\xi)| \leqslant C_{\alpha,\beta}(x) \langle \xi \rangle^{m-\varrho|\alpha|+\delta|\beta|} \quad \forall \, x,\xi \in \mathbb{R}^n,$$

where $C_{\alpha,\beta}(x)$ is bounded and independent of $a \in \mathcal{B}$, $\xi \in \mathbb{R}^n$ and $\theta \in [0,1]$. This implies the boundedness of $\{a_L^{\theta}: a \in \mathcal{B}, \ \theta \in [0,1]\} \subset C^{\widetilde{m},s}S_{a,\delta}^m(\mathbb{R}^n \times \mathbb{R}^n; \widetilde{N})$.

Theorem 2.5 ([2], Theorem 4.5). Let $0 \le \delta \le \varrho \le 1$, $m_1, m_2 \in \mathbb{R}$, $M_1, M_2 \in \mathbb{Z}_+ \cup \{\infty\}$ with $M_1 > n + 1$, $\widetilde{m} \in \mathbb{Z}_+$ and $0 < \tau < 1$. For $a \in C^{\widetilde{m}, \tau} S_{\varrho, \delta}^{m_1, m_2}(\mathbb{R}^n \times \mathbb{R}^n \times \mathbb{R}^n \times \mathbb{R}^n; M_1, M_2)$ we define

$$a_L(x,\xi) = (2\pi)^{-n} \cdot \text{Os-} \iint e^{-iy\cdot\eta} a(x,\xi+\eta,x+y,\xi) \,dy \,d\eta \quad \forall x,\xi \in \mathbb{R}^n.$$

Additionally we set for all $\theta \in [0,1]$ and $\gamma \in \mathbb{Z}_+^n$ with $|\gamma| \leqslant M_1 - (n+1)$

$$r_{\gamma,\theta}(x,\xi) = (2\pi)^{-n} \cdot \text{Os-} \iint e^{-iy\cdot\eta} \partial_{\eta}^{\gamma} D_{y}^{\gamma} a(x,\xi+\theta\eta,x+y,\xi) \,dy \,d\eta \quad \forall x,\xi \in \mathbb{R}^{n}.$$

Moreover we put $\widetilde{M}_k = \min\{M_1 - k - (n+1), M_2\}$ for all $k \leq M_1 - (n+1)$. Then we get for all $N \leq M_1 - (n+1)$ that

$$a_L(x,\xi) = \sum_{|\alpha| < N} \frac{1}{\alpha!} \partial_{\eta}^{\alpha} D_y^{\alpha} a(x,\xi + \eta, x + y, \xi) \Big|_{\eta = y = 0} + R_N(x,\xi),$$

where

$$R_N(x,\xi) \equiv N \cdot \sum_{|\gamma|=N} \int_0^1 \frac{(1-\theta)^{N-1}}{\gamma!} r_{\gamma,\theta}(x,\xi) \, \mathrm{d}\theta \in C^{\widetilde{m},\tau} S_{\varrho,\delta}^{m_1+m_2-(\varrho-\delta)\cdot N}(\mathbb{R}^n \times \mathbb{R}^n; \widetilde{M}_N)$$

and

$$\{r_{\gamma,\theta}(x,\xi)\colon\,\theta\in[0,1]\}\subset C^{\widetilde{m},\tau}S^{m_1+m_2-(\varrho-\delta)\cdot N}_{\varrho,\delta}(\mathbb{R}^n\times\mathbb{R}^n;\widetilde{M}_N)$$

is bounded.

We need the following implication concerning the action of a pseudo-differential operator on the Bessel potential spaces.

Theorem 2.6 ([2], Theorem 3.2). Let $m \in \mathbb{R}$, $0 \le \delta \le \varrho \le 1$ with $\varrho > 0$, $1 and <math>M \in \mathbb{Z}_+ \cup \{\infty\}$ with $M > \max\{n/2, n/p\}$. Additionally let $\widetilde{m} \in \mathbb{Z}_+$ and $0 < \tau \le 1$ be such that $\widetilde{m} + \tau > (1 - \varrho)/(1 - \delta) \cdot (n/2)$ if $\varrho < 1$ and $\widetilde{m} \in \mathbb{Z}_+$, $\tau > 0$ if $\varrho = 1$, respectively. Moreover let $\mathcal{B} \subset C^{\widetilde{m},\tau}S^{m-k_p}_{\varrho,\delta}(\mathbb{R}^n \times \mathbb{R}^n; M)$ be bounded with $k_p \equiv (1 - \varrho)n|1/2 - 1/p|$ and let $(1 - \varrho)n/p - (1 - \delta)(\widetilde{m} + \tau) < s < \widetilde{m} + \tau$. Then there is some $C_s > 0$, independent of $a \in \mathcal{B}$, such that

$$||a(x,D_x)f||_{H_p^s(\mathbb{R}^n)} \leqslant C_s ||f||_{H_p^{s+m}(\mathbb{R}^n)} \quad \forall \, a \in \mathcal{B} \quad \text{and} \quad f \in H_p^{s+m}(\mathbb{R}^n).$$

The following result concerning the compactness of a pseudo-differential operator is due to Marschall.

Lemma 2.1 ([2], Lemma 4.2). Let $m \in \mathbb{R}$, $0 \le \delta \le 1$, $1 , <math>\widetilde{m} \in \mathbb{Z}_+$ and $0 < \tau < 1$. Moreover, let $M \in \mathbb{N} \cup \{\infty\}$ with $M > n \cdot \max\{1/2, 1/p\}$. Additionally let $a \in C^{\widetilde{m}, \tau} S^m_{1.\delta}(\mathbb{R}^n \times \mathbb{R}^n; M)$ be such that

$$\lim_{|x|+|\xi|\to\infty} (1+|\xi|)^{-m} a(x,\xi) = 0.$$

Then for $-(1-\delta)(\widetilde{m}+\tau) < s < \widetilde{m}+\tau$

$$a(x, D_x) \colon H_p^{s+m}(\mathbb{R}^n) \to H_p^s(\mathbb{R}^n)$$
 is compact.

For $0 \leq \varrho, \delta \leq 1$ and $M \in \mathbb{Z}_+ \cup \{\infty\}$, let $S^m_{\varrho,\delta}(\mathbb{R}^n \times \mathbb{R}^n; M)$ be the set of functions $a \colon \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{C}$ such that the following properties are fulfilled for all $\alpha, \beta \in \mathbb{Z}_+^n$ with $|\alpha| \leq M$:

- (i) $\partial_x^{\beta} a(x,\cdot) \in C^M(\mathbb{R}^n)$ for all $x \in \mathbb{R}^n$;
- (ii) $\partial_x^{\beta} \partial_{\xi}^{\alpha} a \in C^0(\mathbb{R}_x^n \times \mathbb{R}_{\xi}^n);$
- (iii) $|\partial_x^{\beta} \partial_{\xi}^{\alpha} a(x,\xi)| \leqslant C_{\alpha,\beta} \langle \xi \rangle^{m-\varrho|\alpha|+\delta|\beta|}$ for all $x, \xi \in \mathbb{R}^n$.

We will utilize the embedding result, see [2], (3.1):

$$(2.7) S_{\varrho,\delta}^m(\mathbb{R}^n \times \mathbb{R}^n; M) \subset C^{\widetilde{m},s} S_{\varrho,\delta}^m(\mathbb{R}^n \times \mathbb{R}^n; M)$$

for all $0 < s \leqslant 1$, $\widetilde{m} \in \mathbb{Z}_+$, $m \in \mathbb{R}$, $M \in \mathbb{Z}_+ \cup \{\infty\}$ and $0 \leqslant \varrho, \delta \leqslant 1$.

Let $a \in C^{n+1}(\mathbb{R}^n)$ be such that, for any $\alpha \in \mathbb{Z}_+^n$ with $|\alpha| \leq n+1$, there is a $C_{\alpha} > 0$ such that $|\partial_v^{\alpha} a(y)| \leq C_{\alpha}$ for all $y \in \mathbb{R}^n$. We have

(2.8)
$$(2\pi)^{-n} \cdot \text{Os-} \iint e^{i(x-y)\cdot \eta} a(y) \, dy \, d\eta = a(x)$$

for every $x \in \mathbb{R}^n$. For the proof, see [1], Example 3.11.

We will make use of the following implication.

Lemma 2.2 ([5], Chapter 1, Lemma 6.5). Let f(t) be a C^2 -function defined on I = [0, 1]. Then there exists a constant M > 0 independent of f such that

$$\left(\max_{I}|f'(t)|\right)^{2} \leqslant M\left(\max_{I}|f(t)|\right) \left\{\max_{I}|f(t)| + \max_{I}|f''(t)|\right\}.$$

3. Proof of Theorem 1.2

We use the following notations. A function $a \colon \mathbb{R}^n \times \mathbb{R}^n \to \mathcal{L}(\mathbb{C}^N)$ is an element of $S^m_{\varrho,\delta}(\mathbb{R}^n \times \mathbb{R}^n; M; \mathcal{L}(\mathbb{C}^N))$ if $a_{j,k}$ belongs to the class $S^m_{\varrho,\delta}(\mathbb{R}^n \times \mathbb{R}^n; M)$ for all $j,k=1,\ldots,N$, where $a_{j,k}$ is the (j,k)-component of a. A matrix version of the class $C^{\widetilde{m},\tau}S^{m_1,m_2}_{\varrho,\delta}(\mathbb{R}^n \times \mathbb{R}^n \times \mathbb{R}^n \times \mathbb{R}^n; M_1,M_2)$ and that of the class $\mathcal{A}^{m,N}_{\tau,M}(\mathbb{R}^n \times \mathbb{R}^n)$ are defined similarly. For $a \in \mathcal{A}^{m,N}_{\tau,M}(\mathbb{R}^n \times \mathbb{R}^n; \mathcal{L}(\mathbb{C}^N))$, we define Os- $\iint e^{-iy\cdot\eta}a(y,\eta)\,\mathrm{d}y\,\mathrm{d}\eta$ by (2.6) whenever the limit exists.

First, we prove the statement of Theorem 1.2 for m=0. Let $N \in \mathbb{N}$, $0 \le \tau < 1$, $0 < \sigma < 1$ and $p \in (1,\infty)$. Let $M \in \mathbb{Z}_+ \cup \{\infty\}$ be such that $M > (n+1) + n \cdot \max\{1/2,1/p\}$. Let $p \in C^{0,\sigma}S^0_{1,\tau}(\mathbb{R}^n \times \mathbb{R}^n; M; \mathcal{L}(\mathbb{C}^N))$ be a symbol satisfying the following properties for some R > 0 and $C_0 > 0$:

- (i) $|\det(p(x,\xi))| \ge C_0$ for all $x, \xi \in \mathbb{R}^n$ with $|x| + |\xi| \ge R$;
- (ii) $p(x,\xi) \stackrel{|x| \to \infty}{\longrightarrow} p(\infty,\xi)$ for all $\xi \in \mathbb{R}^n$.

We pick a $\delta \in (\tau, 1)$ arbitrarily. We define $q(x, \xi)$ by (2.1) and put $r(x, \xi) = p(x, \xi) - q(x, \xi)$. We have

(3.1)
$$r(x,\xi) = \int \varphi(\langle \xi \rangle^{\delta} y) (p(x,\xi) - p(x-y,\xi)) \, \mathrm{d}y \cdot \langle \xi \rangle^{n\delta}.$$

Let us prove the following assertion.

Lemma 3.1.

- (1) We have $\lim_{|x|+|\xi|\to\infty} r(x,\xi) = 0$.
- (2) For $-(1-\delta)\sigma < s < \sigma$, the operator $r(x, D_x)$: $H_n^s(\mathbb{R}^n)^N \to H_n^s(\mathbb{R}^n)^N$ is compact.

Proof. (1) Seeking a contradiction, we assume that $r(x,\xi)$ does not converge to 0 as $|x| + |\xi| \to \infty$. Then, there are an $\varepsilon_0 > 0$ and a sequence $\{(x_i, \xi_i)\}_{i=1}^{\infty}$ in $\mathbb{R}^n \times \mathbb{R}^n$ such that $\lim_{i \to \infty} (|x_i| + |\xi_i|) = \infty$ and

$$|r(x_i, \xi_i)| \geqslant \varepsilon_0 \quad \forall i \in \mathbb{N}.$$

It follows from Theorem 2.2 that $|r(x,\xi)| \leq C_0 \langle \xi \rangle^{-(\delta-\tau)}$. This, combined with $\delta \in (\tau,1)$ and (3.2), implies that the sequence $\{\xi_i\}_{i=1}^{\infty}$ is bounded. So, the Bolzano-Weierstrass theorem implies that $\{\xi_i\}_{i=1}^{\infty}$ has a convergent subsequence $\{\xi_{i(l)}\}_{l=1}^{\infty}$. We put $\xi^0 = \lim_{l \to \infty} \xi_{i(l)}$. From condition (ii) we have for every $y \in \mathbb{R}^n$

$$\lim_{|x| \to \infty} (p(x, \xi^0) - p(x - y, \xi^0)) = 0.$$

In addition, we have

$$|\varphi(\langle \xi^0 \rangle^{\delta} y)(p(x, \xi^0) - p(x - y, \xi^0))| \le 2C_0 |\varphi(\langle \xi^0 \rangle^{\delta} y)|,$$

where $C_0 = \sup_{(x,\xi)} |p(x,\xi)|$. Since the right-hand side of this inequality is an integrable function on \mathbb{R}^n , we infer by the Lebesgue theorem and (3.1) that

$$\lim_{|x| \to \infty} r(x, \xi_0) = 0.$$

It follows from Theorem 2.2 that $K \equiv \sup_{(x,\xi)} |\nabla_{\xi} r(x,\xi)| < \infty$. Since $|x_{i(l)}| \to \infty$ as $l \to \infty$, we have from (3.3)

$$|r(x_{i(l)}, \xi_{i(l)})| \leq |r(x_{i(l)}, \xi_{i(l)}) - r(x_{i(l)}, \xi^{0})| + |r(x_{i(l)}, \xi^{0})|$$

$$\leq K|\xi_{i(l)} - \xi^{0}| + |r(x_{i(l)}, \xi^{0})| \to 0 \quad (\text{as } l \to \infty).$$

Since this violates (3.2), we get the conclusion.

(2) It follows from Theorem 2.2 that $q \in S^0_{1,\delta}(\mathbb{R}^n \times \mathbb{R}^n; M; \mathcal{L}(\mathbb{C}^N))$. Combining this with (2.7) we have $q \in C^{0,\sigma}S^0_{1,\delta}(\mathbb{R}^n \times \mathbb{R}^n; M; \mathcal{L}(\mathbb{C}^N))$. But,

$$p\in C^{0,\sigma}S^0_{1,\tau}(\mathbb{R}^n\times\mathbb{R}^n;M;\mathcal{L}(\mathbb{C}^N))\subset C^{0,\sigma}S^0_{1,\delta}(\mathbb{R}^n\times\mathbb{R}^n;M;\mathcal{L}(\mathbb{C}^N)).$$

So, $r \in C^{0,\sigma}S^0_{1,\delta}(\mathbb{R}^n \times \mathbb{R}^n; M; \mathcal{L}(\mathbb{C}^N))$. This, together with assertion (1) and Lemma 2.1, yields the conclusion.

Put $d(A) = \det A$ for $A \in \mathcal{L}(\mathbb{C}^N)$. We have

$$|\det(p(x,\xi)) - \det(q(x,\xi))| \le \max_{0 \le t \le 1} |(\nabla d)(tp(x,\xi) + (1-t)q(x,\xi))||r(x,\xi)|.$$

This, combined with the boundedness of $p(x,\xi)$ on $\mathbb{R}^n \times \mathbb{R}^n$ and (1) of Lemma 3.1, implies that $\lim_{|x|+|\xi|\to\infty} |\det(p(x,\xi)) - \det(q(x,\xi))| = 0$. So, we see from condition (i) that there exist R>0 and $C_0>0$ such that

$$|\det(q(x,\xi))| \geqslant C_0 \quad \forall x, \xi \in \mathbb{R}^n \quad \text{with} \quad |x| + |\xi| \geqslant R.$$

Furthermore, it follows from condition (ii) and (1) of Lemma 2.2 that

(3.5)
$$q(x,\xi) \stackrel{|x| \to \infty}{\longrightarrow} p(\infty,\xi) \quad \forall \xi \in \mathbb{R}^n.$$

We choose a $\chi \in C^{\infty}(\mathbb{R}^n \times \mathbb{R}^n)$ such that $\chi(x,\xi) = 0$ for $|x| + |\xi| \leq R + 1$ and $\chi(x,\xi) = 1$ for $|x| + |\xi| \geq R + 2$. Let

$$w(x,\xi) = \chi(x,\xi)q(x,\xi)^{-1} \quad \forall x,\xi \in \mathbb{R}^n.$$

Because of (3.4) and the fact that $q \in S_{1,\delta}^0(\mathbb{R}^n \times \mathbb{R}^n; M; \mathcal{L}(\mathbb{C}^N))$, we obtain $w \in S_{1,\delta}^0(\mathbb{R}^n \times \mathbb{R}^n; M; \mathcal{L}(\mathbb{C}^N))$. Since $q, w \in S_{1,\delta}^0(\mathbb{R}^n \times \mathbb{R}^n; M; \mathcal{L}(\mathbb{C}^N))$, we claim by (2.7) that $q, w \in C^{\widetilde{m},\sigma}S_{1,\delta}^0(\mathbb{R}^n \times \mathbb{R}^n; M; \mathcal{L}(\mathbb{C}^N))$ for all $\widetilde{m} \in \mathbb{Z}_+$. Thus, the functions $q_{i,j}(x,\xi)w_{k,l}(x',\xi')$ and $w_{k,l}(x,\xi)q_{i,j}(x',\xi')$ belong to the class $C^{0,\sigma}S_{1,\delta}^{0,0}(\mathbb{R}^n \times \mathbb{R}^n \times \mathbb{R}^n \times \mathbb{R}^n; M, M)$, where $q_{i,j}, 1 \leq i,j \leq N$, and $w_{k,l}, 1 \leq k,l \leq N$, stand for the (i,j)-component of q or the (k,l)-component of w, respectively. We put

$$m_1(x,\xi) = (2\pi)^{-n} \cdot \text{Os-} \iint e^{-iy\cdot\eta} q(x,\xi+\eta) w(x+y,\xi) dy d\eta$$

and

$$m_2(x,\xi) = (2\pi)^{-n} \cdot \text{Os-} \iint e^{-iy\cdot\eta} w(x,\xi+\eta) q(x+y,\xi) dy d\eta.$$

Since $M \ge n+1$, we infer from Theorem 2.4 that $m_1, m_2 \in C^{0,\sigma}S^0_{1,\delta}(\mathbb{R}^n \times \mathbb{R}^n; M-(n+1); \mathcal{L}(\mathbb{C}^N))$. We also put

$$r_1(x,\xi) = m_1(x,\xi) - q(x,\xi)w(x,\xi)$$
 and $r_2(x,\xi) = m_2(x,\xi) - w(x,\xi)q(x,\xi)$.

Because $q(x,\xi)w(x,\xi)$ and $w(x,\xi)q(x,\xi)$ belong to $S^0_{1,\delta}(\mathbb{R}^n\times\mathbb{R}^n;M;\mathcal{L}(\mathbb{C}^N))$, we have $r_1,\ r_2\in C^{0,\sigma}S^0_{1,\delta}(\mathbb{R}^n\times\mathbb{R}^n;M-(n+1);\mathcal{L}(\mathbb{C}^N))$. Since $q_{i,j}(x,\xi)w_{k,l}(x',\xi')$ and $w_{k,l}(x,\xi)q_{i,j}(x',\xi')$ belong to the class $C^{0,\sigma}S^{0,0}_{1,\delta}(\mathbb{R}^n\times\mathbb{R}^n\times\mathbb{R}^n\times\mathbb{R}^n\times\mathbb{R}^n;M,M)$ and since $M\geqslant n+2$, we have by Theorem 2.5 that $r_1,r_2\in C^{0,\sigma}S^{-(1-\delta)}_{1,\delta}(\mathbb{R}^n\times\mathbb{R}^n;M-(n+2);\mathcal{L}(\mathbb{C}^N))$. Let us demonstrate the following assertion.

Lemma 3.2.

- (1) We have $\lim_{|x|+|\xi|\to\infty} r_1(x,\xi) = 0$ and $\lim_{|x|+|\xi|\to\infty} r_2(x,\xi) = 0$.
- (2) For $-(1-\delta)\sigma < s < \sigma$, the operators $r_1(x,D_x)$: $H_p^s(\mathbb{R}^n)^N \to H_p^s(\mathbb{R}^n)^N$ and $r_2(x,D_x)$: $H_p^s(\mathbb{R}^n)^N \to H_p^s(\mathbb{R}^n)^N$ are compact.

Proof. (1) On account of (3.4) and (3.5), we have

(3.6)
$$w(x,\xi) \xrightarrow{|x| \to \infty} p(\infty,\xi)^{-1} \quad \forall \xi \in \mathbb{R}^n.$$

Seeking a contradiction, we suppose that $r_1(x,\xi)$ does not tend to 0 as $|x|+|\xi| \to \infty$. Then, there are an $\varepsilon_0 > 0$ and a sequence $\{(x_k,\xi_k)\}_{k=1}^{\infty}$ in $\mathbb{R}^n \times \mathbb{R}^n$ such that $\lim_{k\to\infty} (|x_k|+|\xi_k|) = \infty$ and

$$(3.7) |r_1(x_k, \xi_k)| \geqslant \varepsilon_0 \quad \forall k \in \mathbb{N}.$$

Since $r_1 \in C^{0,\sigma}S_{1,\delta}^{-(1-\delta)}(\mathbb{R}^n \times \mathbb{R}^n; M - (n+2); \mathcal{L}(\mathbb{C}^N))$, there is a constant C_0 for which $|r_1(x,\xi)| \leqslant C_0 \langle \xi \rangle^{-(1-\delta)}$ for all $x,\xi \in \mathbb{R}^n$. This, combined with $-(1-\delta) < 0$ and (3.6), implies that the sequence $\{\xi_k\}_{k=1}^{\infty}$ is bounded. It then follows from the Bolzano-Weierstrass theorem that $\{\xi_k\}_{k=1}^{\infty}$ admits a convergent subsequence $\{\xi_{k(l)}\}_{l=1}^{\infty}$. Put $\xi^0 = \lim_{l \to \infty} \xi_{k(l)}$. We have

$$(3.8) r_1(x_{k(l)}, \xi_{k(l)}) = r_1(x_{k(l)}, \xi_{k(l)}) - r_1(x_{k(l)}, \xi^0) + r_1(x_{k(l)}, \xi^0).$$

Since $\nabla_{\xi} r_1(x,\xi)$ is bounded on $\mathbb{R}^n \times \mathbb{R}^n$, we get

(3.9)
$$\lim_{l \to \infty} (r_1(x_{k(l)}, \xi_{k(l)}) - r_1(x_{k(l)}, \xi^0)) = 0.$$

Since $w(x_{k(l)} + \cdot, \xi^0) \in C_b^{\infty}(\mathbb{R}^n; \mathcal{L}(\mathbb{C}^N))$, we obtain from (2.8)

$$r_1(x_{k(l)}, \xi^0) = (2\pi)^{-n} \cdot \text{Os-} \iint e^{-iy \cdot \eta} (q(x_{k(l)}, \xi^0 + \eta) - q(x_{k(l)}, \xi^0)) w(x_{k(l)} + y, \xi^0) \, dy \, d\eta.$$

We note that for any $\alpha \in \mathbb{Z}_+^n$ with $|\alpha| \leqslant 1$, there is a constant C_α such that $|\partial_\eta^\alpha q(x_{k(l)},\eta)| \leqslant C_\alpha \langle \eta \rangle^{-|\alpha|}$ for all $\eta \in \mathbb{R}^n$ and $l \in \mathbb{N}$ and that $|\partial_y^\alpha w(x_{k(l)}+y,\xi^0)| \leqslant C_\alpha$ for all $y \in \mathbb{R}^n$ and $l \in \mathbb{N}$. This, together with the Ascoli-Arzela theorem and the diagonalization argument, yields that $\{k(l)\}_{l=1}^\infty$ admits a subsequence $\{k(l(m))\}_{m=1}^\infty$ such that the sequence $[q(x_{k(l(m))},\xi^0+\eta)-q(x_{k(l(m))},\xi^0)]w(x_{k(l)}+y,\xi_0)$ converges uniformly on each compact subset of $\mathbb{R}_y^n \times \mathbb{R}_\eta^n$. But, (3.5), (3.6) and $\lim_{m \to \infty} |x_{k(l(m))}| = \infty$ yield that

$$\lim_{m \to \infty} [q(x_{k(l(m))}, \xi^0 + \eta) - q(x_{k(l(m))}, \xi^0)] w(x_{k(l)} + y, \xi^0)
= (p(\infty, \xi^0 + \eta) - p(\infty, \xi^0)) p(\infty, \xi^0)^{-1} \quad \forall y, \eta \in \mathbb{R}^n.$$

So, it holds that

(3.11)
$$\lim_{m \to \infty} [q(x_{k(l(m))}, \xi^0 + \eta) - q(x_{k(l(m))}, \xi^0)] w(x_{k(l)} + y, \xi^0)$$
$$= (p(\infty, \xi^0 + \eta) - p(\infty, \xi^0)) p(\infty, \xi^0)^{-1}$$

uniformly on each compact subset of $\mathbb{R}^n_y \times \mathbb{R}^n_\eta$.

Because $q, w \in S_{1,\delta}^0(\mathbb{R}^n \times \mathbb{R}^n; M; \mathcal{L}(\mathbb{C}^N))$, we have, for any $\alpha, \beta \in \mathbb{Z}_+^n$ with $|\alpha| \leq n+2$ and $|\beta| \leq n+2$, there is a constant $C_{\alpha,\beta}$ such that

(3.12)
$$|\partial_{\eta}^{\alpha}\partial_{y}^{\beta}[(q(x_{k(l(m))}, \xi^{0} + \eta) - q(x_{k(l(m))}, \xi^{0}))w(x_{k(l(m))} + y, \xi^{0})]| \leq C_{\alpha,\beta}$$

 $\forall \eta, y \in \mathbb{R}^{n} \text{ and } m \in \mathbb{N}.$

This, together with (3.11) and repeated use of Lemma 2.2, yields that, for any α , $\beta \in \mathbb{Z}_+^n$ with $|\alpha| \leq n+1$ and $|\beta| \leq n+1$,

(3.13)
$$\lim_{m \to \infty} \partial_{\eta}^{\alpha} \partial_{y}^{\beta} [(q(x_{k(l(m))}, \xi^{0} + \eta) - q(x_{k(l(m))}, \xi^{0}))w(x_{k(l)} + y, \xi^{0})]$$
$$= \partial_{\eta}^{\alpha} \partial_{y}^{\beta} [(p(\infty, \xi^{0} + \eta) - p(\infty, \xi^{0}))p(\infty, \xi^{0})^{-1}]$$

uniformly on each compact subset of $\mathbb{R}^n_y \times \mathbb{R}^n_\eta$. We infer from Theorem 2.3, (2.8), (3.10), (3.12) and (3.13) that

$$\lim_{m \to \infty} r_1(x_{k(l(m))}, \xi^0)$$
= $(2\pi)^{-n} \cdot \text{Os-} \iint e^{-iy \cdot \eta} (p(\infty, \xi^0 + \eta) - p(\infty, \xi^0)) p(\infty, \xi^0)^{-1} dy d\eta = 0.$

This, combined with (3.8) and (3.9), yields that

$$\lim_{m \to \infty} r_1(x_{k(l(m))}, \xi_{k(l(m))}) = 0.$$

Since this violates (3.7), we obtain $\lim_{|x|+|\xi|\to\infty} r_1(x,\xi)=0$. Similarly, we get $\lim_{|x|+|\xi|\to\infty} r_2(x,\xi)=0$.

(2) Combining assertion (1) with the fact that $r_1, r_2 \in C^{0,\sigma}S^0_{1,\delta}(\mathbb{R}^n \times \mathbb{R}^n; M - (n+1); \mathcal{L}(\mathbb{C}^N))$ and Lemma 2.1, we arrive at the conclusion.

Since $p, w \in C^{0,\sigma}S^0_{1,\delta}(\mathbb{R}^n \times \mathbb{R}^n; M; \mathcal{L}(\mathbb{C}^N))$ and $M > n \cdot \max\{1/2, 1/p\}$, we infer from Theorem 2.6 that for $-(1-\delta)\sigma < s < \sigma$ the operators $p(x,D_x): H^s_p(\mathbb{R}^n)^N \to H^s_p(\mathbb{R}^n)^N$ and $w(x,D_x): H^s_p(\mathbb{R}^n)^N \to H^s_p(\mathbb{R}^n)^N$ are bounded. Let I stand for the identity matrix of size N. Since the function $q(x,\xi)w(x,\xi)-I$ belongs to the class $C^{0,\sigma}S^0_{1,\delta}(\mathbb{R}^n \times \mathbb{R}^n; M; \mathcal{L}(\mathbb{C}^N))$ and has a compact support, we see from Lemma 2.1

that for $-(1-\delta)\sigma < s < \sigma$ the operator $\operatorname{Op}(qw-I)\colon H^s_p(\mathbb{R}^n)^N \to H^s_p(\mathbb{R}^n)^N$ is compact. We define

$$R_1 = \operatorname{Op}(r_1) + \operatorname{Op}(qw - I) + \operatorname{Op}(r) \circ \operatorname{Op}(w).$$

We see from Lemmas 3.1 and 3.2 and the observation above that for $-(1-\delta)\sigma < s < \sigma$ the operator $R_1: H_p^s(\mathbb{R}^n)^N \to H_p^s(\mathbb{R}^n)^N$ is compact. Furthermore, we obtain

$$\operatorname{Op}(p) \circ \operatorname{Op}(w) = (\operatorname{Op}(q) + \operatorname{Op}(r)) \circ \operatorname{Op}(w) = \operatorname{Op}(r_1) + \operatorname{Op}(qw) + \operatorname{Op}(r) \circ \operatorname{Op}(w)$$

= $\operatorname{Id} + R_1$.

We also define

$$R_2 = \operatorname{Op}(r_2) + \operatorname{Op}(wq - I) + \operatorname{Op}(w) \circ \operatorname{Op}(r).$$

As in the discussion above, we claim that for $-(1-\delta)\sigma < s < \sigma$ the operator $R_2 \colon H^s_p(\mathbb{R}^n)^N \to H^s_p(\mathbb{R}^n)^N$ is compact and that

$$\operatorname{Op}(w) \circ \operatorname{Op}(p) = \operatorname{Id} + R_2.$$

So we infer by the Atkinson theorem that for $-(1-\delta)\sigma < s < \sigma$ the operator $p(x, D_x)$: $H_p^s(\mathbb{R}^n)^N \to H_p^s(\mathbb{R}^n)^N$ is a Fredholm operator. Since we have chosen $\delta \in (\tau, 1)$ arbitrarily, the assertion of Theorem 1.2 for m = 0 holds true.

Next, we turn our attention to the general case. Assume that the conditions in Theorem 1.2 are satisfied. Put

(3.14)
$$\widetilde{a}(x,\xi) = a(x,\xi) \cdot \langle \xi \rangle^{-m} I.$$

Since $a \in C^{0,\sigma}S^m_{1,\tau}(\mathbb{R}^n \times \mathbb{R}^N; M; \mathcal{L}(\mathbb{C}^N))$, we have $\widetilde{a} \in C^{0,\sigma}S^0_{1,\tau}(\mathbb{R}^n \times \mathbb{R}^N; M; \mathcal{L}(\mathbb{C}^N))$. Thus, Theorem 1.2 for m=0 yields that for $-(1-\tau)\sigma < s < \sigma$ the operator $\widetilde{a}(x,D_x) \colon H^s_p(\mathbb{R}^n)^N \to H^s_p(\mathbb{R}^n)^N$ is a Fredholm operator. Note that (3.14) yields $a(x,D_x) = \widetilde{a}(x,D_x) \circ \operatorname{Op}(\langle \xi \rangle^m I)$. Since $\operatorname{Op}(\langle \xi \rangle^m I) \colon H^{s+m}_p(\mathbb{R}^n)^N \to H^s_p(\mathbb{R}^n)^N$ is a linear isomorphism for any $s \in \mathbb{R}$, we get the conclusion of Theorem 1.2.

References

- [1] H. Abels: Pseudodifferential and Singular Integral Operators: An Introduction With Applications. de Gruyter Graduate Lectures. Walter de Gruyter, Berlin, 2012.
- [2] H. Abels, C. Pfeuffer: Fredholm property of non-smooth pseudodifferential operators. Math. Nachr. 293 (2020), 822–846.
- [3] L. Hörmander. The Analysis of Linear Partial Differential Operators. III. Pseudo-Differential Operators. Grundlehren der Mathematischen Wissenschaften 274. Springer, Berlin, 1994.

zbl MR doi

zbl MR doi

zbl MR doi

- [4] J. J. Kohn, L. Nirenberg: An algebra of pseudo-differential operators. Commun. Pure Appl. Math. 18 (1965), 269–305.
- [5] H. Kumano-go: Pseudo-Differential Operators. MIT Press, Cambridge, 1982.
- [6] M. Nagase: The L^p -boundedness of pseudo-differential operators with non-regular symbols. Commun. Partial Differ. Equations 2 (1977), 1045–1061.
- [7] M. E. Taylor: Pseudodifferential Operators and Nonlinear PDE. Progress in Mathematics 100. Brikhäuser, Boston, 1991.

zbl MR doi

zbl MR doi

zbl MR

Author's address: Kazushi Yoshitomi, Department of Mathematical Sciences, Tokyo Metropolitan University, Minamiohsawa 1-1, Hachioji, Tokyo 192-0397, Japan, e-mail: yositomi@tmu.ac.jp.