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ARCHIVUM MATHEMATICUM (BRNO)
Tomus 59 (2023), 339–349

RATIONAL BÉZIER CURVES WITH INFINITELY MANY
INTEGRAL POINTS

Petroula Dospra

Abstract. In this paper we consider rational Bézier curves with control
points having rational coordinates and rational weights, and we give necessary
and sufficient conditions for such a curve to have infinitely many points with
integer coefficients. Furthermore, we give algorithms for the construction of
these curves and the computation of theirs points with integer coefficients.

1. Introduction

Let P0, . . . , Pn be points of the affine space A3 over R and w0, . . . , wn are nonzero
real numbers. We recall that the Bernstein polynomials of degree n are defined by

Bni (t) =
(
n

i

)
(1− t)n−iti (i = 0, . . . , n) .

A rational Bézier curve of degree n is defined by a map of the form

F : A −→ A3, t 7−→ w0P0B
n
0 (t) + · · ·+ wnPnB

n
n(t)

w0Bn0 (t) + · · ·+ wnBnn(t) .

The numbers w0, . . . , wn are called weights of F and the set F (A) is called the trace
of F . For w0 = . . . = wn, we obtain the classical (integral) Bézier curves. Rational
Bézier curves provide a curve fitting tool and are widely used in Computer Aided
Geometric Design, Computer Aided Design and Geometric Modelling [1, 2, 3].

In this paper, we study the integral points of rational Bézier curves, i.e., the
points having integer coordinates. Often, the manipulation of rational Bézier curves
uses some auxiliary points of the curve (see for instance [7] where some points of
the curve are used for interpolation). By knowing the integral points of such a curve
and using them for its manipulation, the necessary computations will be simplified.
Thus, we will deal with the cases where these curves have infinitely many integral
points. More precisely, we give necessary and sufficient conditions on their weights
to have infinitely many integral points which permit us to give algorithms for the
construction of such rational Bézier curves. Furthermore, we present algorithms
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for the computation of all the integral points of parametric space curves in cases
where these curves have infinitely many integral points.

The paper is organised as follows. In Section 2, we give necessary and sufficient
conditions for a parametric curve to have infinitely many integral points. In Section
3, we specialize these conditions for the rational Bézier curves in terms of theirs
weights. Finally, Section 4 is devoted in the presentation of an algorithm for the
computation of integral points of parametric space curves in these cases.

2. Curves with infinitely many integral points

Let Q be an algebraic closure of Q, and C an irreducible affine curve of (geometric)
genus 0 in the affine space AnQ defined by a finite family of polynomials having
integer coefficients. The points (x1, . . . , xn) of C with xi ∈ Z (i = 1, . . . , n) are
called integral points of C. We denote by C(Z) the set of integral points on C.
We denote by Q(C) the function field of C, by C the Zariski closure of C in the
projective space Pn and we set C∞ = (C \C)(Q). We say that a discrete valuation
ring U of Q(C) lies at infinity if there is a point P ∈ C∞ such that U contains the
local ring OP (C) of C at P and the maximal ideal of U contains the maximal ideal
of OP (C). We denote by Σ∞ the set of all the discrete valuation rings of Q(C) at
infinity. We call an element V of Σ∞ defined over a subfield k of Q(C), if τ(V ) = V
for every τ ∈ Gal(Q/k). Furthermore, two elements V and W of Σ∞ are said to
be conjugate over a quadratic field k if V and W are defined over k and there is
σ ∈ Gal(Q/Q) which is not the identity on k such that σ(V ) = W . By [4], we have
the following result:

Theorem 1. The set C(Z) is infinite if and only if one of the following two
conditions is satisfied:

(a) The set Σ∞ consists of one element and C(Z) contains at least one non-singular
point.

(b) The set Σ∞ consists of two elements which are conjugate over a real quadratic
field and C(Z) contains at least one non-singular point

Suppose that C has a rational parametrization over Q. Then, there are coprime
homogeneous polynomials, φi(S, T ) (i = 0, . . . , n), of the same degree and with
integer coefficients such that the map

φ : P1 −→ C, (s : t) 7−→ (φ0(s, t) : . . . : φn(s, t))

is a birational isomorphism. The correspondence f 7→ f ◦φ induces an isomorphism
φ̃ defined over Q from Q(C) onto Q(P1). If f(s, t) is a homogeneous polynomial,
then we set

Z(f) = {(s : t) ∈ P1/ f(s, t) = 0} .

Lemma 1. The correspondence P 7→ φ̃−1(OP (P1)) defines a bijection from Z(φ0)
onto Σ∞.

Proof. The proof is an easy generalization of [5, Lemma 2.2]. �
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The restriction of φ to A1 gives the map

φa : A1 −→ C, t 7−→
(
φ1(1, t)
φ0(1, t) : . . . : φn(1, t)

φ0(1, t)

)
.

Let U be the subset of t ∈ A1 with φ0(1, t) 6= 0. Combining Theorem 1 and
Lemma 1, we deduce immediately the following result:

Theorem 2. The set C(Z) ∩ φa(U) is infinite if and only if one of the following
two conditions is satisfied:

(a) The set φa(U) contains an integral non-singular point, and Z(φ0) has exactly
one element.

(b) The set φa(Q) contains an integral non-singular point, and Z(φ0) = {(1 :
a + b

√
d), (1 : a − b

√
d)}, where a, b, d ∈ Q, b 6= 0, and d is a square free integer

> 1.

3. Rational Bézier curves

In this section we specialize Theorem 2 for the case of rational Bézier curves.
Let F : A −→ A3 be a map defining a rational Bézier curve as in the Introduction.
Set Πn(t) = w0B

n
0 (t) + · · ·+ wnB

n
n(t). We have:

Πn(t) = A0t
n + · · ·+An ,

where

An−k =
k∑
j=0

wj(−1)k−j
(
n

j

)(
n− j
k − j

)
.

Lemma 2. We have the following:
a) The polynomial Πn(t) has the form

Πn(t) = c(t− α)n ,

where c, α ∈ Q \ {0} if and only if we have

wk = c(−1)n−kαn−k(1− α)k (k = 0, . . . , n) .

b) Let u = α+ β
√
d, where α, β ∈ Q and d is a square-free positive integer, and

ū = α− β
√
d the conjugate of u. The polynomial Πn(t) has the form

Πn(t) = c(t− u)m(t− ū)m

if and only if (w0, . . . , wm) is the solution of the lower triangular linear system
2m−l∑
j=0

wj

(
2m
j

)(
2m− j

2m− l − j

)
(−1)2m−l−j =

∑
i+j=l

0≤i,j≤m

(
m

i

)(
m

j

)
uiūj ,

where l = 2m, 2m− 1, . . . , 0 .
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Proof. a) Setting
Πn(t) = c(t− α)n ,

where c, α ∈ Z\{0}, we obtain the following linear system in unknowns w0, . . . , wn:
k∑
j=0

wj(−1)k−j
(
n

j

)(
n− j
k − j

)
= c(−1)n−kαn−k

(
n

k

)
(k = 0, . . . , n) .

We have w0 = c(−1)nαn and w1 = cαn−1(−1)n−1(1 − α). Suppose that ws =
c(−1)n−sαn−s(1− α)s (s = 2, . . . , k − 1). Then, we get:

wk = c(−1)n−kαn−k −
(
n

k

)−1 k−1∑
j=0

wj(−1)k−j
(
n

j

)(
n− j
k − j

)

= c(−1)n−kαn−k − c
k−1∑
j=0

(−1)n−jαn−j(1− α)j(−1)k−j
(
k

j

)

= c(−1)n−kαn−k
1−

k−1∑
j=0

αk−j(1− α)j
(
k

j

)
= c(−1)n−kαn−k

(1− α)k + 1−
k∑
j=0

αk−j(1− α)j
(
k

j

)
= c(−1)n−kαn−k

(
(1− α)k + 1− (α+ 1− α)k

)
= c(−1)n−kαn−k(1− α)k .

Hence, we deduce that wk = c(−1)n−kαn−k(1− α)k (k = 0, . . . , n).
b) Setting

Πn(t) = c(t− u)m(t− ū)m

we deduce the following linear system in unknowns w0, . . . , wn:
2m−l∑
j=0

wj

(
2m
j

)(
2m− j

2m− l − j

)
(−1)2m−l−j = c

∑
i+j=l

0≤i,j≤m

(
m

i

)(
m

j

)
(−u)i(−ū)j ,

where l = 2m, 2m− 1, . . . , 0. This system is a lower triangular linear system with
nonzero determinant, and so it has a unique solution which is easily computable. �

Thus we have the following result:

Theorem 3. The rational Bézier curve given by F has infinitely many integral
points if and only if the trace of F contains an integral non-singular point and one
of the following two conditions is satisfied:

(a) We have wk = c(−1)n−kαn−k(1− α)k (k = 0, . . . , n).
(b) The vector (w0, . . . , wm) is the solution of the linear system

2m−l∑
j=0

wj

(
2m
j

)(
2m− j

2m− l − j

)
(−1)2m−l−j =

∑
i+j=l

0≤i,j≤m

(
m

i

)(
m

j

)
uiūj ,
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where l = 2m, 2m− 1, . . . , 0.

We shall use the above Theorem 3 for the presentation of two algorithms which
provide rational Bézier curves having infinitely many integral points.

Algorithm 1. Construction of a rational Bézier curve of degree n having infinitely
many integral points and Πn(t) has only one root.

1. Select c, α ∈ Z \ {0, 1} and compute wk = c(−1)n−kαn−k(1 − α)k (k =
0, . . . , n).

2. Select n+ 1 distinct points Pi ∈ An (i = 0, . . . , n) such that the coordinates
of P0 are integers.

3. Output the rational Bézier curve defined by

F (t) = w0P0B
n
0 (t) + · · ·+ wnPnB

n
n(t)

c(t− α)n .

Proof of correctness of Algorithm 1. By Lemma 2(a), we deduce that

Πn(t) = c(t− α)n .

On the other hand, we have F (0) = P0 and so, the curve F has an integral point.
Furthermore, by [1, Section 4.3] the derivative of F at P0 is

F ′(0) = nw1

w0

−−−→
P0P1 6= 0 ,

where −−−→P0P1 denotes the vector that points from P0 to P1. Then, P0 is a non-singular
point of F . �

Example 1. We shall construct a rational Bézier curve of degree 3 with infinitely
many integral points using Algorithm 1. We take c = 1, α = −1 and we compute

w0 = 1 , w1 = 2 , w2 = 4 , w3 = 8 .

Next, we select the points

P0 = (1, 0, 1) , P1 = (0, 1, 2/3) , P2 = (1, 1/4, 0) , P3 = (2, 0, 1/2) .

Thus, we obtain the curve

F (t) = P0B
3
0(t) + 2P1B

3
1(t) + 4P2B

3
2(t) + 8P3B

3
3(t)

(t+ 1)3

= 1
(t+ 1)3 (3t3 + 15t2 − 3t+ 1, 3t3 − 9t2 + 6t, 7t3 − 5t2 + t+ 1)

which is a rational Bézier curve having infinitely many integral points.

Algorithm 2. Construction of a rational Bézier curve of degree 2m having infinitely
many integral points and Π2m(t) has only two roots of the form α± β

√
d, where

α, β, d ∈ Z, β 6= 0 and d square free > 1.
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1. Select α, β, c, d ∈ Z, βc 6= 0 and d square free > 1. Put u = α + β
√
d and

ū = α− β
√
d and find the unique solution of the lower triangular linear system:

2m−l∑
j=0

wj

(
2m
j

)(
2m− j

2m− l − j

)
(−1)2m−l−j = c

∑
i+j=l

0≤i,j≤m

(
m

i

)(
m

j

)
(−u)i(−ū)j ,

where l = 2m, 2m− 1, . . . , 0.
2. Select 2m+1 distinct points Pi ∈ An (i = 0, . . . , 2m) such that the coordinates

of P0 are integers.
3. Output the rational Bézier curve defined by

F (t) = w0P0B
2m
0 (t) + · · ·+ w2mP2mB

2m
2m(t)

c(t− u)m(t− ū)m .

Proof of correctness of Algorithm 2. By Lemma 2(b), we deduce that
Πn(t) = c(t− u)m(t− ū)m .

Since we have F (0) = P0, the curve F has an integral point. Further, by [1, Section
4.3] the derivative of F at P0 is

F ′(0) = nw1

w0

−−−→
P0P1 6= 0 ,

and, so, P0 is a non-singular point of F . �

Example 2. We shall construct a rational Bézier curve of degree 4 with infinitely
many integral points using Algorithm 2. We take c = 1, α = 5, β = 3 and d = 2.
For the computation of the appropriate weights w0, . . . , w4 we have the following
linear system:

w0 = 49
−w0 + w1 = −35

w0 + 3w1 − 3w2 + w3 = −5
w0 − 4w1 + 6w2 − 4w3 = 1 .

Thus, we have:
w0 = 49 , w1 = 14 , w2 = −2 , w3 = −4 , w4 = 4 .

Next, we select the points
P0 = (0, 1, 1) , P1 = (1, 1, 0) , P2 = (1/2, 0, 0) ,
P3 = (1, 1,−1/2) , P4 = (2, 1/2,−1) .

Thus, we obtain the curve

F (t) = 49P0B
4
0(t) + 14P1B

4
1(t)− 2P2B

4
2(t)− 4P3B

4
3(t) + 4P4B

4
4(t)

(t− (5 + 3
√

2))2 (t− (5− 3
√

2))2

= 1
t4 − 20t3 + 114t2 − 140t+ 49(f1(t), f2(t), f3(t)) ,
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where

f1(t) = −38t4 + 164t3 − 174t2 + 56t , f2(t) = 11t4 − 44t3 + 126t2 − 140t+ 49

and

f3(t) = 45t4 − 188t3 + 294t2 − 196t+ 49 .

4. Computation of integral points

Consider the rational map

φ : A1 −→ A3, t 7−→
(
φ1(t)
φ0(t) ,

φ2(t)
φ0(t) ,

φ3(t)
φ0(t)

)
,

where φi(t) ∈ Z[t] (0, 1, 2, 3) and gcd(φ0(t), φ1(t), φ2(t), φ3(t)) = 1. The Zariski
closure of φ(A1) in A3 is an affine curve K of genus 0. Consider the set:

IK = φ(Q) ∩ Z3 .

Let N be the maximum of the degrees of the polynomials φi(t) (i = 0, 1, 2, 3).
We put ψi(s, t) = sN−degφiφh,i(s, t) (i = 0, 1, 2, 3), where φh,i(s, t) is the homoge-
nization of φi(t). Thus the correspondence

(s : t) 7−→
(
ψ0(s, t) : ψ1(s, t) : ψ2(s, t) : ψ3(s, t)

)
defines a rational map ψ : P1 → P3 whose restriction on A1 is φ, and its image is
the projective closure K̄ of K. We shall give two algorithms for the computation
of the elements of IK in cases where this set is infinite (see Theorem 2). They are
variants of the algorithms presented in [6].

Algorithm 3.
Input: A rational map F : A1 → A3, as above.
Output: The elements of the set IK.

1. Factorize over Q the polynomial ψ0(s, t). If ψ0(s, t) = a(bs + ct)N , where
a 6= 0 and gcd(b, c) = 1, go to the next step, else output “FAIL”.

2. If bc 6= 0, then we set s = v, t = (u− bv)c−1. Otherwise, we set s = u, t = v
if (b, c) = (1, 0), and t = u, s = v if (b, c) = (0, 1). Thus we obtain a birational map

ω : P1 −→ K̄, (u : v) 7−→ (p1(u, v) : p2(u, v) : p3(u, v) : duN ) ,

where d is a nonzero integer (with d|acN ) and pi(u, v) have integer coefficients.
3. Let ai be the coefficient of vN in pi(u, v). Compute δ = gcd(a1, a2, a3).
4. Determine the set Σ of integers η such that

pi(δ, η) ≡ 0 (mod dδN ) (i = 1, 2, 3) .

5. For every η ∈ Σ, compute the values

xi = pi(δ, η)
dδN

(i = 1, 2, 3) .

6. Output the points (x1, x2, x3) computed in the previous step.
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Proof of correctness of Algorithm 3. Suppose that (x1, x2, x3) ∈ IK. Then,
there are coprime integers u0, v0 such that u0 6= 0 and

xi = pi(u0, v0)
duN0

(i = 1, 2, 3) .

Since φ0(t), φ1(t), φ2(t), φ3(t)) are coprime, it follows that p0(t), p1(t), p2(t), p3(t)
are coprime, and so (a1, a2, a3) 6= (0, 0, 0). Let δ = gcd(a1, a2, a3). Thus, u0 divides
δ. Setting η = v0δ/u0, we obtain

xi = pi(δ, η)
dδN

(i = 1, 2, 3)

and hence η ∈ Σ. Conversely, every point of this form belongs to IK. �

Example 3. We shall compute the integral points of the rational Bézier curve of
Example 1 defined by the rational map:

F (t) = P0B
3
0(t) + 2P1B

3
1(t) + 4P2B

3
2(t) + 8P3B

3
3(t)

(t+ 1)3

=
(

3t3 + 15t2 − 3t+ 1
(t+ 1)3 ,

3t3 − 9t2 + 6t
(t+ 1)3 ,

7t3 − 5t2 + t+ 1
(t+ 1)3

)
.

We apply Algorithm 3. Thus, the corresponding projective map F̃ : P1 7→ P3 is
defined by

F̃ (s : t) = (p1(s, t) : p2(s, t) : p3(s, t) : (t+ s)3) ,
where

p1(s, t) = 3t3 + 15t2s− 3ts2 + s3, p2(s, t) = 3t3 − 9t2s+ 6ts2 ,

p3(s, t) = 7t3 − 5t2s+ ts2 + s3 .

Setting s = v, t = u− v, we obtain the polynomials:

q1(u, v) = p1(v, u− v) = 3u3 + 6u2v − 24uv2 + 16v3 ,

q2(u, v) = p2(v, u− v) = 3u3 − 18u2v + 33uv2 − 18v3 ,

q3(u, v) = p3(v, u− v) = 7u3 − 26u2v + 32uv2 − 12v3 .

Next, we compute δ = gcd(16, 18, 12) = 2, and consider the polynomial congruences

qi(2, η) ≡ 0 (mod 8) (i = 1, 2, 3) .

For i = 1, we have the congruence 6η3 ≡ 0 (mod 8), whence 3η3 ≡ 0 (mod 4),
and so η ≡ 0, 2 (mod 4). For i = 2, we have −2η3 + 2η2 ≡ 0 (mod 8), whence
−η3 + η2 ≡ 0 (mod 4), and so, we have η ≡ 0, 1, 2 (mod 4). For i = 3, we get
4η3 ≡ 0 (mod 8), and so η ≡ 0 (mod 2). The common solutions of the above
congruences are:

η ≡ 0, 2 (mod 4) .
Thus, we have

η = 4k, 2 + 4k , k ∈ Z .
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For η = 4k, we get:

xk,1 = q1(2, 4k)
8 = 128k3 − 96k2 + 12k + 3 ,

xk,2 = q2(2, 4k)
8 = −144k3 + 132k2 − 36k + 3 ,

xk,3 = q3(2, 4k)
8 = −96k3 + 128k2 − 52k + 7 .

Therefore, we obtain the integral points Pk = (xk,1, xk,2, xk,3), k ∈ Z. For η = 2+4k,
we have:

yk,1 = q1(2, 2 + 4k)
128 = 128k3 + 96k2 + 12k + 1 ,

yk,2 = q2(2, 2 + 4k)
128 = −144k3 − 84k2 − 12k ,

yk,3 = q3(2, 2 + 4k)
128 = −96k3 − 16k2 + 4k + 1 .

Thus, we obtain the integral points Qk = (yk,1, yk,2, yk,3), k ∈ Z. It follows that
the integral points of F are Pk and Qk, k ∈ Z.

Algorithm 4.
Input: A rational map F : A1 −→ A3, as above.
Output: The elements of the set IK.

1. Factorize over Q the polynomial ψ0(s, t). If

ψ0(s, t) = k(as2 + bst+ ct2)N/2 ,

with δ = b2 − 4ac > 0, then go to the next step, else output “FAIL”.
2. Setting u = 2as+ bt and v = t, we compute a birational morphism

ω : P1 −→ K̄, (u : v) 7−→ (p1(u, v) : p2(u, v) : p3(u, v) : m(u2 − δv2)N/2) ,

where pi(u, v) (i = 1, 2, 3) are homogeneous polynomials in Z[u, v] of degree N and
m a non-zero integer.

3. For i = 1, 2, 3, compute the resultant Ri of pi(u, 1) and u2 − δ.
4. Compute D = gcd(R1, R2, R3).
5. Determine the set

Σ = {(u, v) ∈ Z2/ gcd(u, v) = 1 , u ≥ 0 , u2 − δv2|D} .

6. For every (u, v) ∈ Σ, compute the values

xi = pi(u, v)
m(u2 − δv2)N/2 (i = 1, 2, 3) .

7. Output the triples (x1, x2, x3), where x1, x2, x3 ∈ Z, computed in the previous
step.
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Proof of correctness of Algorithm 4. Suppose that (x1, x2, x3) ∈ IK. Then,
there are coprime integers u0, v0 such that u 6= 0 and

xi = pi(u0, v0)
m(u2

0 − δv2
0)N/2 (i = 1, 2, 3) .

Since the polynomials pi(u, v) (i = 1, 2, 3) and u2−δv2 have no common non-constant
factor, it follows that one of the resultants Ri is not zero, and so D 6= 0. Suppose
that Ri 6= 0. There are polynomials B(u) and C(u) with integer coefficients such
that

Ri = B(u)pi(u, 1) + C(u)(u2 − δ) .
Homogenizing this equation, we obtain

Riv
r = pi(u, v)B(u, v) + C(u, v)(u2 − δv2) ,

where r is a positive integer and B(u, v), C(u, v) are homogeneous polynomials such
that their dehomogenizations with respect to v are B(u) and C(u), respectively.
If (u0, v0) 6= (1, 0), then u2

0 − δv2
0 divides R1v

r
0. Since gcd(u2

0 − δv2
0 , v0) = 1, we

deduce that u2
0 − δv2

0 divides Ri, and so, u2
0 − δv2

0 divides D. Hence (u, v) ∈ Σ.
Thus, (x1, x2, x3) is given by the algorithm. �

Example 4. We shall compute the integral points of the rational Bézier curve of
Example 2 defined by the rational map:

F (t) = 1
t4 − 20t3 + 114t2 − 140t+ 49(f1(t), f2(t), f3(t)) ,

where

f1(t) = −38t4 + 164t3 − 174t2 + 56t ,
f2(t) = 11t4 − 44t3 + 126t2 − 140t+ 49 ,
f3(t) = 45t4 − 188t3 + 294t2 − 196t+ 49 .

The Zariski closure of F (A1) in A3 is an affine curve K. We denote by K̄ its
projective closure. We have the birational morphism

ψ : P1 −→ K̄, (s : t) 7−→ ((7s2 − 10ts+ t2)2 : ψ1(s, t) : ψ2(s, t) : ψ3(s, t)) ,

where ψi(s, t) is the homogenization of fi(t) (i = 1, 2, 3). Setting u = 14s − 10t,
v = t, we have s = (u+10v)/14 and t = v. Thus, we obtain the birational morphism

ω : P1 −→ K̄, (u : v) 7−→ ((u2 − 72v2)2 : p1(u, v) : p2(u, v) : p3(u, v)) ,

where

p1(u, v) = 8(2u3v − 27u2v2 + 8uv3 + 1056v4) ,

p2(u, v) = u4 − 96u2v2 − 384uv3 + 4384v4 ,

p3(u, v) = u4 − 16u3v + 96u2v2 + 192uv3 + 1600v4 .
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Now, we compute the resultant Ri of pi(u, 1) and u2 − 72 (i = 1, 2, 3). We have
R1 = R2 = R3 = 1, and so, D = gcd(R1, R2, R3) = 1. Next, we shall compute the
set

Σ = {(u, v) ∈ Z2/ u ≥ 0, u2 − 72v2 = ±1} .
If u2 − 72v2 = −1, then u2 ≡ −1 (mod 4) which is a contradiction. Further, the
integer solutions of the Pell equation u2 − 72v2 = 1, with u ≥ 0, are given by

un + vn
√

72 = (17± 2
√

72)n, (n = 1, 2, . . .) ,
whence we get:

un =
bn/2c∑
l=0

(
n

2l

)
17n−2l22l72l, vn = ±

b(n−1)/2c∑
l=0

(
n

2l + 1

)
17n−2l−122l+172l ,

where n = 1, 2, . . .. Therefore, the integral points of F are given by the following
triples:

(p1(un, vn), p2(un, vn), p3(un, vn)), (n = 1, 2, . . .) .
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