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LOCAL LINEAR ESTIMATION OF THE CONDITIONAL
MODE UNDER LEFT TRUNCATION FOR FUNCTIONAL
REGRESSORS

Halima Boudada and Sarra Leulmi

In this work, we introduce a local linear estimator of the conditional mode for a random
real response variable which is subject to left-truncation by another random variable where the
covariate takes values in an infinite dimensional space. We first establish both of pointwise and
uniform almost sure convergences, with rates, of the conditional density estimator. Then, we
deduce the strong consistency of the obtained conditional mode estimator. We finally illustrate
the outperformance of our method with respect to the kernel one through a simulation study
for a finite sample with different rates of truncation and sizes.

Keywords: functional regressors, left truncation model, conditional mode, almost sure
convergence, local linear estimator

Classification: 62G07, 62G20, 62R10, 62N99

1. INTRODUCTION

The functional data is widely used in practice. Hence, many statisticians are motivated
to study the relationship between a real response variable (r.v.) and a covariate that
takes its values in an infinite dimensional space. The classical way to investigate this link
is the regression method which is based on the conditional expectation. However, two
other techniques are used: the conditional quantile based on the conditional distribution
function and the conditional mode based on the conditional density.

One of the pioneer works in this research field is the monograph of [11], where the
authors established the pointwise almost-complete (a.co.) convergence for different non-
parametric kernel type estimators. However, lot of works show that the local linear
method not only generalizes the kernel’s one but it is also in possession of superior bias
properties. We refer to [9] for more comparison between the two methods.

In the functional data case and when the response random variable is complete, the
local linear estimation is studied by [18, 19] for conditional regression function, [21] for
conditional distribution function and[6] for conditional density function. Nevertheless,
in diverse fields, such as medicine, biology, public health, epidemiology, engineering, eco-
nomics and demography, the response random variable may be incomplete and subject
to random censorship or truncation model.
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Using the non-parametric kernel method, [14] studied the strong consistency of the
conditional quantile estimator for functional censored dependent data. Furthermore,
based on the so-called synthetic data, [1] defined an M -estimator for the functional
regression and established the strong consistency and the asymptotic normality for cen-
sored independent data. [20] examined, under mild conditions, the almost complete con-
sistency and the asymptotic normality of the estimator of the relative error in functional
regression and censored data. Whereas, for functional truncated data, [13] established
the strong uniform almost sure (a.s.) convergence rate of a conditional quantile estima-
tor. [7] studied the almost complete convergence rate of estimators for the Ψ-regression
model. The almost complete convergence rate of the M -estimator of the regression is
established by [8], when the sample is an α-mixing sequence.

Based on the local linear approach, we can refer to [16, 17], where the rates of the
pointwise and the uniform almost complete convergences of the conditional quantile
and the regression estimators are obtained for functional censored independent data.
[3] constructed a conditional density’s estimator and established its pointwise almost
sure convergence, for functional censored data under dependence condition. While for
functional truncated data, the estimation of the generalized regression is introduced in
[5] where the author is studied its pointwise and uniform almost sure convergences.

Unfortunately, the estimation of the regression is sensitive to outliers and even in-
appropriate especially when the distribution is strongly asymmetric. The estimation of
the conditional mode then constitutes an interesting alternative. It is more robust and
useful to better understand the relationship between the response variable and the set
of covariates in comparison with the regression estimation methods. To our knowledge,
the local linear estimation of the conditional mode under left truncation for functional
regressors has not been studied in statistical literature, what prompted us to study this
topic and organize our work as follows. in Section 2, we recall some background for the
truncated data and we present the new local linear estimator of the conditional mode.
Then, we establish in section 3 the pointwise almost sure convergence of the conditional
density estimator. Subsection 4.1 is devoted to its uniform version. Moreover, we apply
the previous results on the conditional mode estimator, in Subsection 4.2. A simulation
study and a real data application are made to illustrate the good accuracy of the pro-
posed estimator in Section 5. Finally, proofs of our theoretical results are relegated to
the Appendix.

2. MODEL AND ESTIMATION

Let us consider N independent pairs of random variables (Xi, Yi)i=1,...,N which are
assumed drawn from the pair (X,Y ). This later is valued in F × R, where F is a semi
metric space equipped with a semi metric d and Y being with unknown distribution
function (d.f.) F . In the complete case, the local linear estimator of the conditional
density function f(y|x) (see [6]) is given by

f̃n(y|x) =

∑n
i,j=1 ∆ij(x)H(h−1

H (y − Yj))
hH
∑n
i,j=1 ∆ij(x)

,

(
0

0
:= 0

)
, (1)



550 H. BOUDADA AND S. LEULMI

with

∆ij(x) := β(Xi, x) (β(Xi, x)− β(Xj , x))K(h−1
K d(Xi, x))K(h−1

K d(Xj , x)), (2)

where K and H are kernels, the bandwidth hK := hK,n (resp. hH := hH,n) is a sequence
of strictly positive real numbers which plays a smoothing parameter role and β(·, ·) is a
known operator from F × F into R such that, ∀x ∈ F , β(x, x) = 0.

Let now consider (Ti)i=1,...,N a sample of independent and identically distributed
(i.i.d.) random variables that are distributed as T which has unknown d.f G. T is
supposed independent of (X,Y ). N is unknown but deterministic. In the left truncation
model, the lifetime Yi and the truncation r.v. Ti are both observable only when Yi ≥ Ti.
We shall denote (Yi, Ti)i=1,...,n; (n ≤ N) the actual observed sample which its size n, as
a consequence of truncation, is a binomial r.v. with parameters N and µ = P(Y ≥ T ).
It is clear that if µ = 0, no data can be observed, and therefore, we suppose throughout
this article that µ > 0.

By the strong law of large numbers, we have

µ̂n :=
n

N
→ µ,P− a.s.

We point out that if the original data (Yi, Ti)i=1,...,N are i.i.d., the observed data (Yi, Ti),
i = 1, 2, . . . , n are still i.i.d. ([15]). Under random left truncation model, following [22],
the d.f.s of Y and T are expressed respectively as

F ∗(y) = µ−1

∫ y

−∞
G(u) dF (u) and G∗(t) = µ−1

∫ ∞
−∞

G(t ∧ u) dF (u),

where t ∧ u = min(t, u) and are estimated by their empirical estimators

F ∗n(y) = n−1
n∑
i=1

1{Yi≤y} and G∗n(t) = n−1
n∑
i=1

1{Ti≤t},

where 1A denotes the indicator function of the set A.
Define

C(y) := G∗(y)− F ∗(y) = µ−1G(y)(1− F (y)),

the empirical estimator of C(y) is defined by

Cn(y) = n−1
n∑
i=1

1{Ti≤y≤Yi}.

The non-parametric maximum likelihood estimators of F and G are given respectively
by

Fn(y) = 1−
∏

i/Yi≤y

[
nCn(Yi)− 1

nCn(Yi)

]
and Gn(y) =

∏
i/Ti>y

[
nCn(Ti)− 1

nCn(Ti)

]
.

According to [12], µ can be estimated by

µn = C−1
n (y)Gn(y)(1− Fn(y))
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which is independent of y.
Our results will be stated with respect to the conditional probability P(·) related

to the n-sample instead of the probability measure P(·) related to the N -sample. We
donate by E and E the respective expectation operators of P(.) and P(·).

For any d.f. L, let aL = inf {y : L(y) > 0} and bL = sup {y : L(y) < 1} be its two
endpoints. The asymptotic properties of Fn, Gn and µn are obtained only if aG ≤ aF
and bG ≤ bF , that’s why we consider this condition an important one in truncation
model. We take two real numbers c and d such that [c, d] ⊂ [aF , bF ], we are going to use
this inclusion in the uniform consistency of the distribution law G(·) of the truncated
r.v. T which is stated over a compact set (see Remark 6 in [23]).

Combining the ideas in [6] and [13], the local linear estimator of f(y|x) in the case of
truncated data is the coefficient â obtained by minimizing the following quantity

min
(a,b)∈R2

n∑
i=1

[
h−1
H H(h−1

H (y − Yi))− a− bβ(Xi, x)
]2
K(h−1

K d(Xi, x))G−1
n (Yi)

and we have
fn(y|x) = e′1 (Q′DQ)

−1
Q′DZ,

where

Q′ =

[
1 . . . 1

β(X1, x) . . . β(Xn, x)

]
, Z =

 h−1
H H(h−1

H (y − Y1))
...

h−1
H H(h−1

H (y − Yn))

 ,
D = diag(K(h−1d(X1, x))G−1

n (Y1), · · · ,K(h−1d(Xn, x))G−1
n (Yn)) and e′1 = (1, 0) ∈ R2.

By a simple calculus, one can derive the following explicit estimator

fn(y|x) =

∑n
i,j=1Wij(x)H(h−1

H (y − Yj))
hH
∑n
i,j=1Wij(x)

,

(
0

0
:= 0

)
, (3)

where
Wij(x) = ∆ij(x)G−1

n (Yi)G
−1
n (Yj),

with ∆ij(x) are defined by (2).

Remark 2.1. Notice that f(y|x) is the derivative of the conditional distribution func-
tion F (y|x) = P (Y ≤ y|X = x). So, the feasible estimator fn(y|x) is also given by

fn(y|x) = ∂Fn(y|x)
∂y , where Fn(y|x) is the local linear estimator of F (y|x). It was intro-

duced by [4] who studied its pointwise and uniform almost sure convergences.

It is very well known that the conditional mode θ(x), on a set [c, d], is given by

θ(x) = arg sup
y∈[c,d]

f(y|x),

this definition assumes implicitly that θ(x) exists on [c, d]. Therefore a natural estimator
of θ(x) is defined by

θn(x) = arg sup
y∈[c,d]

fn(y|x),

where fn(y|x) is defined in (3).
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3. THE POINTWISE ALMOST SURE CONVERGENCE

Let x be a fixed point in F , for any positive real r, B(x, r) := {y ∈ F ; d(x, y) ≤ r}
denotes a closed ball in F of center x and radius r. We also define Φx(r1, r2) := P(r1 ≤
d(x,X) ≤ r2), where r1 and r2 are two real numbers.

The following assumptions are necessary to study the asymptotic behaviour of our
estimator fn(y|x).

(H1) For any r > 0; Φx(r) := Φx(0, r) > 0.

(H2) The conditional density f(y|x) satisfies for some strictly positive constants b1, b2
and for all (y1, y2) ∈ [c, d]× [y1 − hH , y1 + hH ] and x1, x2 ∈ B(x, hK),

|f(y1|x1)− f(y2|x2)| ≤ Cx
(
db1(x1, x2) + |y1 − y2|b2

)
,

where Cx is a positive constant depending on x.

(H3) The function β(·, ·) is such that

∃0 < M1 < M2,∀x′ ∈ F ,M1d(x, x′) ≤ |β(x, x′)| ≤M2d(x, x′).

(H4) The kernel K is a positive and differentiable function on its support [−1, 1].

(H5) The kernel H is a positive, bounded and Lipschitzian continuous function, satis-
fying ∫

|t|b2H(t) dt <∞ and

∫
H2(t) dt <∞.

(H6) The bandwidths hK and hH satisfy

lim
n→∞

hK = 0, lim
n→∞

(
lnn

nhHΦx(hK)

)
= 0,

lim
n→∞

hH = 0 and lim
n→∞

nγhH =∞ for some γ > 0.

(H7) There exists an integer n0, such that

∀n > n0,
1

Φx(hK)

∫ 1

0

Φx(zhK , hK)
d

dz

(
z2K(z)

)
dz > 0

and

hK

∫
B(x,hK)

β(u, x) dPX(u) = o

(∫
B(x,hK)

β2(u, x) dPX(u)

)
,

where dPX is the distribution of X.

Remark 3.1. Notice that these hypotheses are standard in this context and they are
very similar to those used in [6].

We are now in position to state the pointwise a.s. convergence of fn(y|x).
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Theorem 3.2. Assume that assumptions (H1) – (H7) are satisfied, we have

sup
y∈[c,d]

|fn(y|x)− f(y|x)| = O(hb1K + hb2H ) +Oa.s.

(√
lnn

nhHΦx(hK)

)
.

P r o o f . Let us set the following pseudo-estimator of f(y|x) defined by

f̃n(y|x) =

∑n
i,j=1G

−1(Yi)G
−1(Yj)∆ij(x)H(h−1

H (y − Yj))
hH
∑n
i,j=1G

−1(Yi)G−1(Yj)∆ij(x)

=

µ2
n

n(n− 1)hHE (∆12(x))

∑n
i,j=1G

−1(Yi)G
−1(Yj)∆ij(x)H(h−1

H (y − Yj))

µ2
n

n(n− 1)E (∆12(x))

∑n
i,j=1G

−1(Yi)G−1(Yj)∆ij(x)

:=
Υ̃n(x, y)

r̃n(x)
,

which will play a prominent part in the proof thanks to the following decomposition.

fn(y|x)− f(y|x) =
Υn(x, y)

rn(x)
− f(y|x) (4)

=
1

rn(x)

{
Υn(x, y)− Υ̃n(x, y)

}
+

1

rn(x)

{
Υ̃n(x, y)−E(Υ̃n(x, y))

}
+

1

rn(x)

{
E(Υ̃n(x, y))− f(y|x)

}
+
f(y|x)

rn(x)
{(r̃n(x)− rn(x)) + (E(r̃n(x))− r̃n(x)) + (−E(r̃n(x)) + 1)} ,

where

Υn(x, y) =
µ2
n

n(n− 1)hHE (∆12(x))

n∑
i,j=1

G−1
n (Yi)G

−1
n (Yj)∆ij(x)H(h−1

H (y − Yj))

and

rn(x) =
µ2
n

n(n− 1)E (∆12(x))

n∑
i,j=1

G−1
n (Yi)G

−1
n (Yj)∆ij(x).

The proof of Theorem 3.2 is then a direct consequence of the following Lemmas, the
proofs of which are relegated to the Appendix. �

Lemma 3.3. Under the assumptions (H1), (H2) and (H4), we obtain

sup
y∈[c,d]

|E(Υ̃n(x, y))− f(y|x)| = O(hb1K + hb2H ).

Lemma 3.4. i) Under the assumptions (H1) – (H7), we get

sup
y∈[c,d]

|Υ̃n(x, y)−E(Υ̃n(x, y))| = Oa.co.

(√
lnn

nhHΦx(hK)

)
.
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ii) Under the assumptions (H1),(H3), (H4) and (H6), we have

r̃n(x)− 1 = Oa.co.

(√
lnn

nΦx(hK)

)

and

∃ϑ > 0, such that

∞∑
n=1

P (r̃n(x) < ϑ) <∞.

Lemma 3.5. Under the assumptions (H1), (H3), (H4) and (H6), we have

sup
y∈[c,d]

|Υn(x, y)− Υ̃n(x, y)| = Oa.s.

(√
lnn

nhHΦx(hK)

)

and

|rn(x)− r̃n(x)| = Oa.s.

(√
lnn

nΦx(hK)

)
.

It is clear, from Borel Cantelli lemma, that the almost-complete convergence (a.co.)1

is stronger than the almost sure (a.s.) one. We refer the reader to the appendix of [11]
for more details.

4. UNIFORM ALMOST SURE CONVERGENCE

In practice, the uniform consistency has great importance because it is used to improve
the efficiency of the estimation and to solve some problems such as data-driven band-
width choice or bootstrapping. Unlike in the multivariate case, the uniform consistency
is not a standard extension of the pointwise one. So, suitable additional tools and
topological conditions are needed.

In this section, we will investigate the uniform almost sure convergence of fn(y|x)

and θn(x) on some subset SF of F , such that SF ⊂
⋃dn
k=1B(xk, zn), where xk ∈ SF and

zn (respectively dn) is a sequence of positive real (respectively integer) numbers.

4.1. Conditional density function estimator

In this study, we need the following assumptions.

(U1) There exist a differentiable function Φ and strictly positive constants C,C1 and
C2 such that

∀x ∈ SF , 0 < C1Φ(hK) ≤ Φx(hK) ≤ C2Φ(hK) <∞
1 Recall that a sequence of real random variables r.r.v. (Wn)n∈N∗ converges almost completely to

some r.r.v. W , and we note Wn −→a.co. W , if and only if ∀ε > 0,
∑∞

n=1 P (|Wn − W | > ε) < ∞.
Moreover, let (vn)n∈N∗ be a sequence of positive real numbers going to zero; we say that the rate of the
almost complete convergence of (Wn)n∈N∗ to W is of order (vn) and we note Wn −W = Oa.co.(vn), if
and only if ∃ε0 > 0,

∑∞
n=1 P (|Wn −W | > ε0vn) <∞.
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and
∃η0 > 0,∀η < η0,Φ

′(η) < C,

where Φ′ denotes the first derivative of Φ with Φ(0) = 0.

(U2) The conditional distribution f(y|x) satisfies for some strictly positive constants
C, b1 and b2 and for all (y1, y2) ∈ [c, d] × [y1 − hH , y1 + hH ] and (x1, x2) ∈ SF ×
B(x, hK),

|f(y1|x1)− f(y2|x2)| ≤ C
(
db1(x1, x2) + |y1 − y2|b2

)
.

(U3) The function β(·, ·) satisfies (H3) uniformly on x and the following Lipschitz’s
condition

∃C > 0,∀x1, x2 ∈ SF ,∀x ∈ F , |β(x, x1)− β(x, x2)| ≤ Cd(x1, x2).

(U4) The kernel K fulfils (H4) and is Lipschitzian on [0, 1].

(U5) limn−→∞ hK = 0 , limn→∞ hH = 0 , limn→∞ nγhH =∞ for some γ > 0
and for zn = O

(
lnn
n

)
, we have for n large enough

(lnn)2

nhHΦ(h)
< ln dn <

nhHΦ(h)

lnn
and

∞∑
n=1

n(3γ+1/2)d(1−α)
n <∞; for some α > 1.

(U6) The bandwidth hK satisfies ∃n0 ∈ N,∃C > 0, such that

∀n > n0,∀x ∈ SF ,
1

Φx(hK)

∫ 1

0

Φx(zhK , hK)
d

dz
(z2K(z)) dz > C > 0

and

hK

∫
B(x,hK)

β(u, x) dPX(u) = o

(∫
B(x,hK)

β2(u, x) dPX(u)

)
,

uniformly on x.

Remark 4.1. Remark that most of these hypothesis are the uniform version of the
corresponding conditions in the pointwise case. Beside they have already been used in
the literature, We refer for example to [6] and [21].

Theorem 4.2. Under assumptions (U1) – (U6), we have

sup
x∈SF

sup
y∈[c,d]

|fn(y|x)− f(y|x)| = O(hb1K + hb2H ) +Oa.s.

(√
ln dn

nhHΦ(hK)

)
.

The proof of Theorem 4.2 is based on the decomposition (4) and the following Lemmas
for which the proofs are given in the Appendix.

Lemma 4.3. Under the assumptions (U1), (U2) and (U4), we obtain that

sup
x∈SF

sup
y∈[c,d]

|E(Υ̃n(x, y))− f(y|x)| = O(hb1K ) +O(hb2H ).
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Lemma 4.4. i) Under the assumptions (U1) – (U6), we have

sup
x∈SF

sup
y∈[c,d]

|Υ̃n(x, y)−E(Υ̃n(x, y))| = Oa.co.

(√
ln dn

nhHΦ(hK)

)
.

ii) If assumptions (U1), (U3) – (U6) are satisfied, we get

sup
x∈SF

|r̃n(x)− 1| = Oa.co.

(√
ln dn

nΦ(hK)

)
and

∃ϑ > 0, such that

∞∑
n=1

P

(
inf
x∈SF

r̃n(x) < ϑ

)
<∞.

Lemma 4.5. Under the assumptions (U1), (U3) and (U4) – (U6) we get

sup
x∈SF

sup
y∈[c,d]

|Υn(x, y)− Υ̃n(x, y)| = Oa.s.

(√
ln dn

nhHΦ(hK)

)
and

sup
x∈SF

|rn(x)− r̃n(x)| = Oa.s.

(√
ln dn

nΦ(hK)

)
.

4.2. Conditional mode estimator

To study the almost sure convergence of the local estimator of the conditional mode of
Y given X = x uniformly on a fixed subset SF of F , we introduce the following uniform
uniqueness properties used for example in [6] and [10].

(U7) For all ε > 0,∃ς > 0 such that for any function ζ from SF into [c, d] we have

sup
x∈SF

|θ(x)− ζ(x)| ≥ ε ⇒ sup
x∈SF

|f(θ(x)|x)− f(ζ(x)|x)| ≥ ς.

(U8) There exists some integer j > 1,∀x ∈ SF , f(·|x) is j-times continuously differen-
tiable on the topological of [c, d] with respect of y and satisfies f (l)(θ(x)|x) = 0
if 0 ≤ l < j, f (j)(θ(x)|x) > C > 0 and f (j)(·|x) is uniformly continuous on [c, d]
where f (l)(·|x) stands for the lth-order derivative of f(·|x).

A known method can be applied to derive the following result from 4.2, see for example
the proof of Corollary 7 in [10].

Theorem 4.6. If the conditional density f(y|x) satisfies assumptions (U7) and (U8) in
addition of the hypotheses of Theorem 4.2, then we get

sup
x∈SF

|θn(x)− θ(x)|j = O(hb1K ) +O(hb2H ) +Oa.s.

(√
ln dn

nhHΦ(hK)

)
.
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5. NUMERICAL RESULTS

In this section, two examples of simulation and a real data set are drawn to illustrate the
performance of the local linear estimator of the conditional mode (LLM) studied in this
paper, for finite size sample n. More precisely, we compare it to the kernel conditional
mode estimator (KM) graphically and by measuring the prediction accuracy.

For the computation of the LLM and the KM estimators, we use the quadratics kernels
and the bandwidths hK and hH are chosen by the 2-fold cross-validation method. Take
into account of the smoothness of the curves Xi(t) (see Figures 1, 5 and 7), we choose the
semi-metric d based on the derivative described in [11] (see routines ”semimetric.deriv”
in the website http://www.lsp.ups-tlse.fr/staph/npfda) and we take β = d (for the LLM
estimator).

5.1. Simulation study

To show the finite-sample performance of our LLM estimator, we generate the observed
sequences (Xi(t), Yi, Ti)1≤i≤n by the following steps.

• Step 1. We fix the random size n (recall that n is known), then we generate the
random variables T1, X1(t) and Y1.

• Step 2. Test:
We begin by setting:
N = 0,
j = 0,
While j ≤ n:
We put N = N + 1. We test: if Y1 < T1 we reject the triplet (X1(t), Y1, T1).
Otherwise, we keep the triplet (X1(t), Y1, T1). At the end of this count we get the
deterministic N . which permits us to get the truncation rate (TR).

Example 1. We fixe n = 200 and we generate the scalar response variable as

Y = R(X) + ε,

where X and ε are assumed independent, the error ε ↪→ N (0, 0.1) and the operator R(·)
is defined by

R(X) = exp

(
1

1 +
∫ 1

0
(X ′1(t))

2
dt

)
The functional covariate X(t) is defined, for t ∈ [0, π] as follows

X(t) = sin (tW ) ,

where W ↪→ N (0, 1). The curves are discretized on the same grid which is composed of
200-equidistant values in [0, π] (see Figure 1).
The truncation variable T has an exponential distribution with parameter λ which is

adapted in order to get different rate of truncation TR.
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Fig. 1. A sample of 200 curves representing a realization of the

functional random variable X.

Given X = x, we can easily see that Y ↪→ N (R(x), 0.1), and therefore, the conditional
mode function will coincide and will be equal to R(x).

Under this model, we compute our LLM estimator θn and the KM estimator θ̂KM
defined by θ̂KM (x) = arg supy∈[c,d] f̂n(y|x), where f̂n(y|x) is proposed by [13], with the
observed data (Xi, Yi, Ti)1≤i≤n (i.e Yi ≥ Ti).

In this simulation, to illustrate the performance of our estimator, we proceed with
the following algorithm.

• Step 1. We split our data into two subsets
– (Xi, Yi)1≤i≤100: The learning sample used to build the estimators.
– (Xi, Yi)101≤i≤200: The testing sample used to make a comparison.

• Step 2. We calculate the two estimators by using the learning sample and we find
the LLM and KM estimators of the conditional mode (θn and θ̂KM ).

• Step 3. We plot the true values (θ(Xi)) for all i (101 ≤ i ≤ 200) against the
predicted ones by means of the two estimators LLM and KM (one in each graph),
this is displayed in Figures 2, 3 and 4.

• Step 4. To be more precise we evaluate the prediction errors given by

MSE(LLM) :=
1

100

200∑
j=101

(θn(Xj)− θ(Xj))
2

and

MSE(KM) :=
1

100

200∑
j=101

(
θ̂KM (Xj)− θ(Xj)

)2

.

It can be seen clearly from Figures 2, 3 and 4 that our estimator performs better than the
kernel one estimator. Also, we note that the quality of both estimators become slightly
worse when we have high percentage of truncation TR, however it remains acceptable.

To make a better decission, we choose an other example.
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Fig. 2. Complete data.
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Example 2. In this example we vary the sample size n = 100, 300, 500 and we
consider the functional covariate X(t) generated in the following equation

X(t) = 3A1 sin (2πt) + ηt, t ∈ [0, 1],

where η ↪→ N (0, 1) and A ↪→ N (0, 0.5). We carried out the simulation with a 300-sample
of the curve X which is represented in the Figure 5.

Fig. 5. A sample of 300 curves representing a realization of the

functional random variable X.

The scalar response variable is defined as

Y = R(X) + ε,

where X and ε are independent, the error ε ↪→ N (0, 0.1) and

R(X) =

∫ 1

0

dt

1 +X2(t)
.

For this model, we adopt the mechanism of truncation on the basis of the sample
(Xi, Yi, Ti){1≤i≤n} where the truncation variable T1 ↪→ N (0, 2) which taken to fix the
percentage of truncation TR.

Next, we split our data into a learning sample with size n1 and a test sample with
size n2 = n− n1, for a different sample sizes.

To give a visual impression of the quality of estimation we draw the curves correspond-
ing to the true values of conditional mode TCM (the solid lines ) and both estimated
values LLM and KM (the green dotted ones and the blue dotted ones) for n = 300 in
Figure 6.

In order to get a more precise, for different values of n, we evaluate the prediction
errors given by  MSE(LLM) := 1

n2

∑n
j=n1+1 (θn(Xj)− θ(Xj))

2

MSE(KM) := 1
n2

∑n
j=n1+1

(
θ̂KR(Xj)− θ(Xj)

)2

The obtained results are in the Table 1. Figure 6 and Table 1 show that the local linear
estimator performs better than the kernel one for the different values of n. Also, the
quality of both estimators increases when the the sample size n increase.
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Fig. 6. Representation of the studied estimators for n = 300.

n MSE(LLM) MSE(KM)

100 0.0542 0.1117

300 0.0302 0.095

500 0.0284 0.0496

Tab. 1. MSE comparison for LLM and KM methods for the three

samples sizes (n).

5.2. Real data application

We consider the spectrometry curves of 215 pieces of meat and we aim to predict the
fat content Y in a piece of meat from its spectrometric curve X. These curves X are
displayed in Figure 7. Notice that these data are one of the most popular functional
data sets used in the functional statistical literature which can be found at (www:\lib.
stat.cmu.edu/datasets/tecator).

The LLM and the KM estimators are computed with the artificial observed real
data (Yi, Xi, Ti)1≤i≤150, where Yi ≥ Ti and the truncation r.v Ti has an exponential
distribution with parameter 1, with TR ' 30%.

Next, we split these real data into a learning sample containing the first n1 units
and a test sample containing n2 = 150 − n1 units. To illustrate the performance of
our estimator, we first plot the true values (provided in the test sample) against the
predicted ones by means of the two estimators (one in each graph). This is displayed in
Figure 8.

Secondly, the criteria allowing us to compare between the both estimators is the
prediction errors (MSE), defined by

MSE(LLM) :=
1

n2

150∑
j=n1+1

(θn(Xj)− Yj)2

www:\lib.stat. cmu.edu/datasets/tecator
www:\lib.stat. cmu.edu/datasets/tecator
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and

MSE(KM) :=
1

n2

150∑
j=n1+1

(
θ̂KR(Xj)− Yj

)2

.

The obtained results are MSE(LLM) = 5.0453 and MSE(KM) = 6.4567.
It appears clearly that, the LLM method outperforms the kernel method.

Fig. 7. Spectrometric data.
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Fig. 8. Performance of the two methods for the Spectrometric data.

CONCLUSION

The contribution of this paper is the particular focus on the study of the local linear
non parametric estimation of the conditional mode when the explanatory variable is
functional and the response variable is subject to left truncation by another random
variable. Firstly, we establish the pointwise and the uniform almost sure convergence of
the conditional density estimator. Then, we obtained the uniform almost sure conver-
gence of the proposed local linear conditional mode estimator. Finaly, our theoretical
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and practical studies show that the local linear method outperforms the kernel one even
for trancation data. Moreover, our results confirmed without surprise that the behavior
of the LLM and the KM estimators are better for a weak percentage of truncation TR
and a large sample size n.

APPENDIX

In what follows, let C be some strictly positive generic constant. Moreover, we put, for
any x ∈ F , and for all i = 1, . . . , n:

Ki(x) := K
(
h−1
K d(Xi, x)

)
, βi(x) := β(Xi, x) and Hi(y) := H

(
h−1
H (y − Yi)

)
.

Furthermore, for any random vector L, we denote by σ(L) the σ- algebra generated by
L.

To treat the pointwise almost sure convergence of fn(y|x), we need Lemma A1 intro-
duced in [2].

P r o o f . of Lemma 3.3.
Since (Xi, Yi, Ti) are identically distributed then

E(Υ̃n(x, y)) = E

 µ2

n(n− 1)hHE (∆12(x))

∑
i 6=j

G−1(Yi)G
−1(Yj)∆ij(x)Hj(y)


=

µ2

hHE (∆12(x))
E

(
1

G(Y1)G(Y2)
∆12(x)H2(y)

)
=

µ2

hHE (∆12(x))
E

[
E
(

∆12(x)H2(y)
1{Y1≥T1}1{Y2≥T2}

µ2G(Y1)G(Y2)
|σ(X1, Y1, X2, Y2)

)]
=

1

hHE (∆12(x))
E (∆12(x)H2(y))

=
1

E (∆12(x))
E
(
∆12(x)E

(
h−1
H H2(y)|X2

))
.

So, we can write

|E(Υ̃n(x, y))− f(y|x)| = 1

|E (∆12(x)) |
|E
(
∆12(x)

(
E
(
h−1
H H2(y)

)
|X2

)
− f(y|x)

)
|.

On the other hand,

h−1
H E (H2(y)|X2) = h−1

H

∫
R
H(h−1

H (y − u))f(u|X2) du

=

∫
R
H(z)f(y − zhH |X2) dz,

so, we obtain

|h−1
H E (H2(y)|X2)− f(y|x)| ≤

∫
R
H(z)|f(y − zhH |X2)− f(y|x)|dz. (5)
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Moreover, we have

|f(y − zhH |X2)− f(y|x)| ≤ |f(y − zhH |X2)− f(y − zhH |x)|+ |f(y − zhH |x)− f(y|x)|.

By using the last relation, together with hypothesis (H2) and (H5), we obtain the claimed
result. �

P r o o f . of Lemma 3.4.
We will proceed by two steps as follows.

1. Firstly, we show that

∑
n

P

(
|Υ̃n(x, y)−E(Υ̃n(x, y))| > ε

√
lnn

nhHΦx(hK)

)
<∞.

For this, we can write

Υ̃n(x, y) = Q(x)
[
P x2,1(y)P x4,0 − P x3,1(y)P x3,0

]
, (6)

where for p = 2, 3, 4 and l = 0, 1

Q(x) =
n2h2

KΦ2
x(hK)

n(n− 1)E (∆12(x))
(7)

and

P xp,l(y) =
1

nΦx(hK)

n∑
i=1

µKi(x)βp−2
i (x)H l

i(y)

hlHh
p−2
K G(Yi)

, (8)

with

P x4,0(y) := P x4,0 and P x3,0(y) := P x3,0.

So, we have

Υ̃n(x, y)−E
(

Υ̃n(x, y)
)

= Q(x)
{
P x2,1(y)P x4,0 −E

(
P x2,1(y)P x4,0

)}
−Q(x)

{
P x3,1(y)P x3,0 −E

(
P x3,1(y)P x3,0

)}
. (9)

Notice that Q(x) = O(1), see [2], so, we need to show that, for p = 2, 3, 4 and l = 0, 1

E(P xp,l(y)) = O(1), P xp,l(y)−E(P xp,l(y)) = Oa.co

(√
lnn

nhHΦx(hK)

)
,

E(P x2,1(y))E(P x4,0)−E(P x2,1(y)P x4,0) = O

(√
lnn

nhHΦx(hK)

)
,

E(P x3,1(y))E(P x3,0)−E(P x3,1(y)P x3,0) = O

(√
lnn

nhHΦx(hK)

)
.
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• Applying [2, Lemma A.1 (i)] we can easily have for p = 2, 3, 4 and l = 0, 1

E(P xp,l(y)) = E

(
1

Φx(hK)

n∑
i=1

µKi(x)βp−2
i (x)H l

i(y)

hlHh
p−2
K G(Yi)

)

= µh2−p
K Φ−1

x (hK)E

[
h−lH E

(
K1(x)βp−2

1 (x)H l
1(y)

1{Y1≥T1}

µG(Y1)
|σ(X1, Y1)

)]
= h−lH h

2−p
K Φ−1

x (hK)E
(
K1(x)βp−2

1 (x)H l
1(y)

)
= h−lH h

2−p
K Φ−1

x (hK)E
(
K1(x)βp−2

1 (x)E(H l
1(y)|X1)

)
= h−lH h

2−p
K Φ−1

x (hK)O
(
hlHE(K1(x)βp−2

1 (x))
)

= O(1). (10)

• Treatment of the term P xp,l(y)−E(P xp,l(y))
We put

P xp,l(y)−E(P xp,l(y)) =
1

n

n∑
i=1

M
(p,l)
i ,

where

M
(p,l)
i =

1

hlHh
p−2
K Φx(hK)

{
µKi(x)βp−2

i (x)H l
i(y)

G(Yi)
−E

(
µKi(x)βp−2

i (x)H l
i(y)

G(Yi)

)}
.

(11)
The main point is to evaluate asymptotically the mth-order moment of the r.r.v.

M
(p,l)
i .

We have

E|
{
M

(p,l)
i

}m
| = h−lH h

(−p+2)m
K Φ−mx (h)E

∣∣∣∣ m∑
k=0

Ckm(−1)m−k

(
µKi(x)βp−2

i (x)H l
i(y)

G(Yi)

)k
(
E

[
µKi(x)βp−2

i (x)H l
i(y)

G(Yi)

])m−k ∣∣∣∣
≤ h−lH h

(−p+2)m
K Φ−mx (h)

m∑
k=0

Ckm

E

∣∣∣∣∣µKi(x)βp−2
i (x)H l

i(y)

G(Yi)

∣∣∣∣∣
k


∣∣∣∣∣E
[
µKi(x)βp−2

i (x)H l
i(y)

G(Yi)

]∣∣∣∣∣
m−k

.

It’s easy to get, for all k ≤ m and l = 0, 1, that

E
(
H lk
i (y)|X

)
= O(hlH).
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So, By using [2, Lemma A.1], one gets

E|
{
M

(p,l)
i

}m
| = O

(
(hlHΦx(hK))(−m+1)

)
.

Finally, it suffices to apply [11, Corollary A.8-(ii)] with a2
n = (hlHΦx(hK))−1 and

taking account that for l = 0

P

(
P x3,0 −E(P x3,0) > ε

√
lnn

nhHΦx(hK)

)
≤ P

(
P x3,0 −E(P x3,0) > ε

√
lnn

nΦx(hK)

)

and

P

(
P x4,0 −E(P x4,0) > ε

√
lnn

nhHΦx(hK)

)
≤ P

(
P x4,0 −E(P x4,0) > ε

√
lnn

nΦx(hK)

)
.

We get, for p = 2, 3, 4 and l = 0, 1

P xp,l(y)−E(P xp,l(y)) = Oa.co

(√
lnn

nhHΦx(hK)

)
. (12)

• Treatment of the term E(P x2,1(y))E(P x4,0)−E(P x2,1(y)P x4,0).
We can write

E(P x2,1(y))E(P x4,0)−E(P x2,1(y)P x4,0) =

(
1− n(n− 1)

n2

)
h−2
K Φ−2

x (hK)

E
(
K1(x)β2

1(x)
)
E
(
h−1
H K1(x)H1(y)

)
+O((nΦx(hK))−1)

= O((nΦx(hK))−1).

We get the last result, always, by using [2, Lemma A.1] and conditional expecta-
tion.
Under (H5), O((nΦx(hK))−1) is negligible with respect to O

(√
lnn

nhHΦx(hK)

)
.

• By similar arguments, one can prove that

E(P x3,1(y))E(P x3,0)−E(P x3,1(y)P x3,0) = O

(√
lnn

nhHΦx(hK)

)
.

For the second part of the Lemma, it’s easy to find that E (r̃n(x)) = 1 and this leads
us to get the last result.

2. Secondly, to study the uniform convergence of f(y|x) on y ∈ [c, d], we must first
point out that since [c, d] is a compact of R, so we can cover it by a finite number sn of
intervals of length ln. Precisely, we have [c, d] ⊆ ∪snk=1]tk − ln, tk + ln[, where sn = C

ln

and ln = n−3γ−1/2.
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Taking

ty = arg min
t∈{t1,t2,...,tsn}

|y − t|.

Then, we can write

sup
y∈[c,d]

|Υ̃n(x, y)−E(Υ̃n(x, y))|

≤ sup
y∈[c,d]

|Υ̃n(x, y)− Υ̃n(x, ty)|+ sup
y∈[c,d]

|Υ̃n(x, ty)−E(Υ̃n(x, ty))|

+ sup
y∈[c,d]

|E(Υ̃n(x, ty))−E(Υ̃n(x, y))|

:= R1 +R2 +R3.

Starting with treatment of R1.

We get, using lipschitz argument, that

R1 = sup
y∈[c,d]

|Υ̃n(x, y)− Υ̃n(x, ty)|

≤ sup
y∈[c,d]

∣∣∣∣∣∣ µ2

hHn(n− 1)E (∆12(x))

∑
i 6=j

G−1(Yi)G
−1(Yj)∆ij(x)

∣∣∣∣∣∣
×
∣∣H(h−1

H (y − Yj))−H(h−1
H (ty − Yj))

∣∣
≤ C sup

y∈[c,d]

∣∣∣∣∣∣ µ2|y − ty|
h2
Hn(n− 1)E (∆12(x))

∑
i 6=j

G−1(Yi)G
−1(Yj)∆ij(x)

∣∣∣∣∣∣
≤ C µ2ln

G2(aF )h2
H

∣∣∣∣∣∣ µ2
n

n(n− 1)E (∆12(x))

n∑
i,j=1

∆ij(x)

∣∣∣∣∣∣
≤ C ′ ln

h2
H

∣∣∣∣∣∣ µ2
n

n(n− 1)E (∆12(x))

n∑
i,j=1

∆ij(x)

∣∣∣∣∣∣ .
Using [21, Lemma 2.2] and nγhH −→∞, we obtain

R1 = Oa.co.

(√
lnn

nhHΦx(hK)

)

and we can derive

R3 = Oa.co.

(√
lnn

nhHΦx(hK)

)
.
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It remains to trait the term R2. For this main, we write

P

(
R2 > ε

√
lnn

nhHΦ(hK)

)

= P

(
max

ty∈{t1,...,tsn}
|Υ̃n(x, ty)−E(Υ̃n(x, ty))| > ε

√
lnn

nhHΦ(hK)

)

≤ sn × max
ty∈{t1,...,tsn}

P

(
|Υ̃n(x, ty)−E(Υ̃n(x, ty))| > ε

√
lnn

nhHΦ(hK)

)
.

Using arguments as we see before, taking account of the fact that sn = Cn3γ+1/2, we
deduce, for an appropriate choice of ε that

R2 = Oa.co.

(√
lnn

nhHΦx(hK)

)
.

�

P r o o f . of Lemma 3.5.
Because of the assumptions aG ≤ aF and bG ≤ bF and the definitions of Υn(x, y) and
Υ̃n(x, y), we can write

sup
y∈[c,d]

|Υn(x, y)− Υ̃n(x, y)|

= sup
y∈[c,d]

∣∣∣∣ µ2
n

hHn(n− 1)E (∆12(x))

∑
i6=j

G−1
n (Yi)G

−1
n (Yj)∆ij(x)Hj(y)

− µ2

hHn(n− 1)E (∆12(x))

∑
i 6=j

G−1(Yi)G
−1(Yj)∆ij(x)Hj(y)

∣∣∣∣
≤

[
|µ2
n − µ2|
G2
n(aF )

+ µ2

(
supy∈[c,d] |G2

n(y)−G2(y)|
G2(aF )G2

n(aF )

)]

×

∣∣∣∣∣∣
∑
i6=j

∆ij(x)Hj(y)

n(n− 1)hHE (∆12(x))

∣∣∣∣∣∣ .
From [12, Theorem 3.2] we have |µn − µ| = Oa.s(n

−1/2).
Moreover, |Gn(aF )−G(aF )| = Oa.s(n

−1/2).
On the other hand, supy∈[c,d] |Gn(y)−G(y)| = O(n−1/2), P−a.s., which are negligible

with respect to O

(√
ln(n)

nhHΦx(hK)

)
.

The second term can be treated by following the same steps of the proof of Lemma
3.4 by replacing the terms P xp,l(y) for p = 2, 3, 4 and l = 0, 1 by the terms Bxp,l(y) gived
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by

Bxp,l(y) =
1

nΦx(hK)

n∑
i=1

Ki(x)βp−2
i (x)H l

i(y)

hlHh
p−2
K

. (13)

Thus, we have

sup
y∈[c,d]

|Υn(x, y)− Υ̃n(x, y)| = Oa.s.

(√
lnn

nhHΦx(hK)

)
.

Using the same arguments, we can proof the second part of Lemma. �

To treat the unifom almost sure convergence of fn(y|x), we need Lemma 4.1 intro-
duced in [21].

P r o o f . of Lemma 4.3.
The proof is similar to that of Lemma 3.3 and using the equation (5) and hypothesis
(U2), we get our result. �

P r o o f . of Lemma 4.4.
By considering the same decompositions and notations (6)-(9), following the same steps
as in the proof of Lemma 3.4 and using [21, Lemma 4.1 (i)] instead of [2, Lemma A.1
(i)], we get under assumptions (U1), (U3), (U4) and (U6)

sup
x∈SF

Q(x) = O(1) and sup
x∈SF

sup
y∈[c,d]

E(P xp,l(y)) = O(1), (14)

for p = 2, 3, 4 and l = 0, 1,

sup
x∈SF

sup
y∈[c,d]

|E(P x2,1(y))E(P x4,0)−E(P x2,1(y)P x4,0)| = O

(
1

nhHΦ(hK)

)

and

sup
x∈SF

sup
y∈[c,d]

|E(P x3,1(y))E(P x3,0)−E(P x3,1(y)P x3,0)| = O

(
1

nhHΦ(hK)

)
,

which is, using hypothesis (U5), equals to O
(√

ln dn
nhHΦ(hK)

)
.

Now we prove that

sup
x∈SF

|P xp,l(y)−E(P xp,l(y))| = Oa.co

(√
ln dn

nhlHΦ(hK)

)
.

To satisfy this aim, let be j(x) = arg minj∈{1,2,...,dn} d(x, xj) and we consider the follow-



570 H. BOUDADA AND S. LEULMI

ing decomposition

sup
x∈SF

sup
y∈[c,d]

|P xp,l(y)−E(P xp,l(y))| ≤ sup
x∈SF

sup
y∈[c,d]

|P xp,l(y)− P xj(x)

p,l (y)|

+ sup
x∈SF

sup
y∈[c,d]

|P xj(x)

p,l (y)− P xj(x)

p,l (ty)|

+ sup
x∈SF

sup
y∈[c,d]

|P xj(x)

p,l (ty)−E(P
xj(x)

p,l (ty))|

+ sup
x∈SF

sup
y∈[c,d]

|E(P
xj(x)

p,l (ty))−E(P
xj(x)

p,l (y))|

+ sup
x∈SF

sup
y∈[c,d]

|E(P
xj(x)

p,l (y))−E(P xp,l(y))|

:=

5∑
i=1

Dp,l
i .

We start by treating the term Dp,l
1 and Dp,l

5

First, let us analyze the term Dp,l
1 .

Under (U3) and (U4), we get

Dp,l
1 ≤

Czn
nhlHhKΦ(hK)

sup
x∈SF

n∑
i=1

µH l
i(y)

G(Yi)
1B(x,hK)∪B(xj(x),hK)(Xi).

Taking

Ψi =
Czn

hlHhKΦ(hK)

H l
i(y)µ

G(Yi)
sup
x∈SF

1B(x,hK)∪B(xj(x),hK)(Xi),

so, we obtain

|Ψ1| ≤
Czn

hKhlHΦ(hK)
, E|Ψ1| ≤

Czn
hlHhK

and E|Ψ2
1| ≤

Cz2
n

h2l
Hh

2
KΦ(hK)

.

So, by applying corollary A.8 (ii) in [11] and under the assumptions (U1) and (U5), we
obtain

Dp,l
1 = Oa.co

(√
ln dn

nhlHΦ(hK)

)
. (15)

For the term Dp,l
5 , since

Dp,l
5 ≤ E

(
sup
x∈SF

sup
y∈[c,d]

|P xj(x)

p,l (y)− P xp,l(y)|

)
.

Thus,

Dp,l
5 = Oa.co

(√
ln dn

nhlHΦ(hK)

)
. (16)
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Treating the term Dp,l
3 , we have For all η > 0

P

(
Dp,l

3 > η

√
ln dn

nhlHΦ(hK)

)

= P

(
sup
x∈SF

sup
y∈[c,d]

|P xj(x)

p,l (ty)−E(P
xj(x)

p,l (ty))| > η

√
ln dn

nhlHΦ(hK)

)

≤ dnsn max
ty∈{t1,...,tsn}

max
xj(x)∈{x1,...,xdn}

P

(
|P xj(x)

p,l (ty)−E(P
xj(x)

p,l (ty))|

> η

√
ln dn

nhlHΦ(hK)

)
.

Taking for p = 2, 3, 4,M
(p,l)
i defined in relation (11) There for, we can apply a

Bernstein-type inequality as done in [11, Corollary A.8 (i)], to obtain

P

 1

n

∣∣∣∣∣∣
n∑
j=1

M
(p,l)
j

∣∣∣∣∣∣ > η

√
ln dn

nhlHΦ(hK)

 ≤ 2exp
(
−Cη2 ln dn

)
.

Thus, by choosing α such that Cη2 = α, we get

dnP

(
|P xj(x)

p,l (ty)−E(P
xj(x)

p,l (ty))| > η

√
ln dn

nhlHΦ(hK)

)
≤ Cd1−α

n .

Then, the fact that sn = O(l−1
n ) = O(n3γ+1/2) and hypothesis (U5) allow us to write

Dp,l
3 = Oa.co

(√
ln dn

nhlHΦ(hK)

)
. (17)

Treatment of term Dp,l
2 and Dp,l

4

Remark that

Dp,l
2 ≤ C

ln

hl+1
H

sup
x∈SF

P
xj(x)

p,0 .

In view of relations (14), (17) and the hypothesis (U5), we obtain that

Dp,l
2 = Oa.co

(√
ln dn

nhlHΦ(hK)

)
(18)

and

Dp,l
4 = Oa.co

(√
ln dn

nhlHΦ(hK)

)
. (19)

Finally, the result of Lemma 4.4 follows from the relations (15) – (19).
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The second part can be directly deduced from the proof of the first one such that
E(r̃n(x)) = 1.

For the last part, it comes straightforward that

inf
x∈SF

r̃n(x) <
1

2
⇒ ∃x ∈ SF

such that

1− r̃n(x) >
1

2
⇒ sup

x∈SF
|1− r̃n(x)| > 1

2
⇒

∞∑
n=1

P

(
inf
x∈SF

r̃n(x) <
1

2

)
<∞.

�

P r o o f . of Lemma 4.5.
By following the same steps as the proof of Lemma 3.5 and studying the uniform consis-

tency of
∑
i 6=j

∆ij(x)Hj(y)
n(n−1)hHE(∆12(x)) as we did in the proof of Lemma 4.4 we get our result.

�
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