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Fréchet differentiability via partial Fréchet differentiability

Luděk Zaj́ıček

Abstract. Let X1, . . . , Xn be Banach spaces and f a real function on X =
X1 × · · · × Xn. Let Af be the set of all points x ∈ X at which f is partially
Fréchet differentiable but is not Fréchet differentiable. Our results imply that
if X1, . . . , Xn−1 are Asplund spaces and f is continuous (respectively Lipschitz)
on X, then Af is a first category set (respectively a σ-upper porous set). We
also prove that if X, Y are separable Banach spaces and f : X → Y is a Lipschitz
mapping, then there exists a σ-upper porous set A ⊂ X such that f is Fréchet
differentiable at every point x ∈ X \A at which it is Fréchet differentiable along
a closed subspace of finite codimension and Gâteaux differentiable. A number
of related more general results are also proved.

Keywords: Fréchet differentiability; partial Fréchet differentiability; first cate-
gory set; Asplund space; σ-porous set

Classification: 46G05, 46T20

1. Introduction

If f is a real function on R
n, denote by Af the set of all points x ∈ R

n at

which f has all (finite) partial derivatives f ′
1(x), . . . , f

′
n(x) but it is not (Fréchet)

differentiable. Of course, Af can be nonempty and Stepanoff’s examples in [16]

show that Af can have positive measure for a continuous function on R
2 (he con-

structed even such a function which is everywhere partially differentiable and also

a continuous function on R
2 which is partially differentiable almost everywhere

but it is nowhere differentiable).

However, the situation is different, if we consider “topological smallness” in-

stead of “measure smallness”, as the following result shows.

Theorem C. Let G ⊂ R
n be an open set and f : G → R a continuous function.

Then

Af := {x ∈ G : f ′
1(x) ∈ R, . . . , f ′

n(x) ∈ R and f ′(x) does not exist}

is a first category (=meagre) set.
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For n = 2, this result follows from Gorlenko’s 1977 article [6]. For general n,

it was proved in [10] (even for f : G → Y , where Y is a separable Banach space)

by K. S. Lau and C.E. Weil in 1978.

A related remarkable result from [15] gives that the conclusion of Theorem C

holds if f is an arbitrary function which is partially differentiable everywhere in G.

D.N. Bessis and F.H. Clarke in [1] in 1999 proved the following “Lipschitz

version” of Theorem C.

Theorem L. Let G ⊂ R
n be an open set and f : G → R a Lipschitz function.

Then

Af := {x ∈ G : f ′
1(x) ∈ R, . . . , f ′

n(x) ∈ R and f ′(x) does not exist}

is a σ-porous set.

In the present article, σ-porosity is “σ-upper porosity”, see Definition 2.1 below,

cf. [19], i.e. it is considered in “Denjoy–Dolzhenko sense”. Note that if A ⊂ R
n is

σ-porous, then it is both of the first category and Lebesgue null, but the opposite

implication does not hold. So Theorem L does not follow from Theorem C and

the Rademacher theorem.

In the present article we prove some generalizations of Theorem C and The-

orem L in the infinite-dimensional setting. Namely, let X1, . . . , Xn and Y be

Banach spaces, G an open subset of X := X1 × · · · × Xn (equipped with the

maximum norm), and f : G → Y a mapping. Denote by Af the set of all points

x ∈ G at which all partial Fréchet derivatives of f exist but the Fréchet derivative

f ′(x) does not exist.

In Section 4 we prove in Theorem 4.5 that Af is a first category set whenever

f is continuous and

(1.1)
the spaces of continuous linear mappings

L(X1, Y ), . . . ,L(Xn−1, Y ) are separable.

We obtain this result as an immediate consequence of an easy known result from

[13] (Proposition 4.4 below) and Theorem 4.1 (which can be of an independent

interest) which says that, under some conditions, Fréchet differentiability along

a subspace V generically implies strict differentiability along V .

In Section 5 we prove by a different (more technical) method Theorem 5.2

which implies that, under condition (1.1), the generalization of Theorem L also

holds.

In Section 6, using the method of separable reduction, we show in Theorem 6.7

that generalizations of Theorem C and Theorem L hold also under a condition

more general than condition (1.1). In particular, we prove that generalizations
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of Theorem C and Theorem L hold if Y = R and X1, . . . , Xn−1 are Asplund

spaces, see Corollary 6.8.

I do not believe that condition (1.1) can be omitted in Theorem 4.5 and/or

Theorem 5.2. Unfortunately, I was not able to find any counterexample. So it is

still possible that the Banach space generalizations of Theorem C and/or Theo-

rem L hold in the full generality and for this reason I do not discuss all cases in

which the validity of these generalizations follow by the methods of the present

article, cf. Remark 6.9.

In the proof of Theorem 6.7, we use a result (Proposition 3.3) on the Borel type

of the set of all points at which a partial derivative of a continuous (or a slightly

more general) function exists. This result which generalizes a proposition on

functions on R
2 from [12] and can be of an independent interest is proved in

Section 3.

We consider (mainly in Section 5) also related problems where instead of a prod-

uct spaceX := X1×· · ·×Xn we consider an arbitrary Banach spaceX and instead

of Fréchet partial derivatives we consider Fréchet derivatives along subspaces. In

this direction, we obtain Propositions 4.8, Proposition 5.3, and Corollary 5.6

which is an immediate consequence of more general Proposition 5.5, which can

be of an independent interest. Another consequence of this proposition is Corol-

lary 5.7 which says that if X , Y are separable Banach spaces and f : X → Y is

a Lipschitz mapping, then there exists a σ-upper porous set A ⊂ X such that f is

Fréchet differentiable at every point x ∈ X \A at which it is Fréchet differentiable

along a closed subspace of finite codimension and Gâteaux differentiable.

2. Preliminaries

In the following, we consider real nontrivial (i.e. not equal to {0}) Banach

spaces. In any fixed Banach space, we denote the zero vector by 0 and the norm

by |·|. By a subspace Y of a Banach space X , we will mean a Banach subspace

of X , i.e. a closed linear subspace Y 6= {0}. We set SX := {x ∈ X : |x| = 1}. By

spanM we denote the linear span of M ⊂ X . The equality X = X1 ⊕ · · · ⊕Xn

means that the Banach space X is the topological direct sum of its subspaces

X1, . . . , Xn. The symbol B(x, r) will denote the open ball with center x and

radius r.

Definition 2.1. Let A be a subset of a Banach space X .

(i) We say that A is porous at a point x ∈ X if there exists c > 0 such that

for each δ > 0 there exists t ∈ B(x, δ)\{x} such thatB(t, c|t−x|)∩A = ∅.

(ii) A is called a porous set if A is porous at each point x ∈ A.

(iii) A is called a σ-porous set if it is a countable union of porous sets.
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If X and Y are Banach spaces, the space of all continuous linear mappings

ϕ : X → Y (equipped with the usual norm) will be denoted by L(X,Y ).

The word “generically” has the usual sense; it means “at all points except

a first category set”.

Recall that a Banach space X is called an Asplund space if each continuous

convex function on X is generically Fréchet differentiable and that

(2.1)
X is Asplund if and only if Y ∗ is separable

for each separable subspace Y ⊂ X.

Let X , Y be Banach spaces, G ⊂ X an open set, and f : G → Y a mapping.

We say that f is Lipschitz at x ∈ G if lim supy→x |f(y)− f(x)|/|y − x| < ∞. The

directional and one-sided directional derivatives of f at x ∈ G in the direction

v ∈ X are defined respectively by

f ′(x, v) := lim
t→0

f(x+ tv)− f(x)

t
and f ′

+(x, v) := lim
t→0+

f(x+ tv)− f(x)

t
.

Definition 2.2. Let X and Y be Banach spaces, V a closed subspace of X ,

G ⊂ X an open set, a ∈ G and f : G → Y a mapping. We say that f is Fréchet

differentiable at a along V , if the mapping g(v) := f(a+ v), v ∈ V ∩ (G− a), is

Fréchet differentiable at 0 ∈ V and set f ′
V (a) := g′(0) ∈ L(V, Y ).

We say that f is strictly differentiable at a along V if f ′
V (a) exists and

(2.2) lim
(x,x̃)→(a,a), 06=x̃−x∈V

|f(x̃)− f(x)− f ′
V (a)(x̃ − x)|

|x̃− x|
= 0.

Remark 2.3.

(i) In the above definition, some authors write “with respect to V ” or “ in

the direction of V ” instead of “ along V ”.

(ii) The standard strict differentiability coincides with strict differentiabil-

ity along V := X . Note that some authors by “strict differentiability”

mean (a weaker) “Gâteaux strict differentiability” which is stronger than

Gâteaux differentiability.

(iii) Condition (2.2) can be clearly rewritten as

(2.3)
∀ ε > 0 ∃ δ > 0 ∀ v ∈ V : {x, x+ v} ⊂ B(a, δ)

⇒ |f(x+ v)− f(x)− f ′
V (a)v| ≤ ε|v|.

The notions of partial Fréchet differentiability and strict partial differentiabil-

ity are factually special cases of notions of “directional” and “strict directional”

differentiability along a subspace. If X1, . . . , Xn are Banach spaces, we consider

the Banach space X := X1 × · · · ×Xn (equipped with the maximum norm). In
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the following definition, we consider, if 1 ≤ i ≤ n is given, Xi as a subspace of X

(identifying, as usual, xi ∈ Xi with (0, . . . , 0, xi, 0, . . . , 0) ∈ X).

Definition 2.4. Let X1, . . . , Xn and Y be Banach spaces, X := X1 × · · · ×Xn,

G ⊂ X an open set, a ∈ G and f : G → Y a mapping. Then, for i = 1, . . . , n,

(i) we set f ′
i(a) := f ′

Xi
(a) and call it (if it exists) partial Fréchet derivative

of f at a with respect to the ith variable and

(ii) we say that f is partially strictly differentiable at a with respect to the

ith variable if f is strictly differentiable at a along Xi.

3. Borel type of the set of points where a partial derivative exists

If X,Y are Banach spaces, G ⊂ X an open set and f : G → Y an arbitrary

mapping, then, see [18, Theorem 2],

(3.1)
the set D(f) of all x ∈ G at which f is Fréchet differentiable

is an Fσδ set.

This result was proved in [18] using a characterization of Fréchet differentiability

points (the proof in [11, Corollary 3.5.5] is quite different). Applying this char-

acterization to partial functions, we immediately obtain a characterization, see

Lemma 3.2 below, of points at which f has a partial Fréchet derivative. We need

the following notation.

Definition 3.1. Let X1, X2, Y be Banach spaces, G ⊂ X := X1 ×X2 an open

set and f : G → Y a mapping.

(i) We denote by C1(f) the set of all points x = (x1, x2) ∈ G at which f is

continuous with respect to the first coordinate (i.e. f(·, x2) is continuous

at x1).

(ii) For c > 0, ε > 0 and δ > 0, denote by D1(f, c, ε, δ) the set of all points

x = (x1, x2) ∈ G such that

(3.2)
∣∣∣
f(z + kv, x2)− f(z, x2)

k
−

f(z, x2)− f(z − hv, x2)

h

∣∣∣ ≤ ε

whenever v ∈ X1, |v| = 1, h > 0, k > 0, z ∈ X1, z ∈ B(x1, δ), z − hv ∈

B(x1, δ), z + kv ∈ B(x1, δ) and min(h, k) > c|z − x1|.

Then, by the definitions, x = (x1, x2) ∈ D1(f, c, ε, δ) if and only if x1 ∈

D(F, c, ε, δ), where F := f(·, x2) and D(F, c, ε, δ) is as in [18, Definition 3]. Since

f ′
1(x) exists if and only if F ′(x1) exists, [18, Theorem 1 and Note 2 ] immediately

imply the following result.
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Lemma 3.2. Let X1, X2, Y,G and f be as in Definition 3.1 and x ∈ G. Then

the following conditions are equivalent:

(i) f ′
1(x) exists.

(ii) x ∈ C1(f) ∩
⋂

c>0

⋂
ε>0

⋃
δ>0 D1(f, c, ε, δ).

(iii) x ∈ C1(f) ∩
⋂

n∈N

⋃
p∈N

D1(f, 1/n, 1/n, 1/p).

Using Lemma 3.2, we will prove the following proposition generalizing the

corresponding result on real functions in R
2 which was proved in [12] by a quite

different elementary method. This proposition will be used in the proofs of Propo-

sition 4.7 and Theorem 6.7.

Proposition 3.3. Let X1, X2, Y be Banach spaces, G ⊂ X := X1 ×X2 an open

set and f : G → Y a mapping which is continuous with respect to the second

variable (i.e. all partial mappings f(a1, ·), (a1, a2) ∈ G, are continuous). Then

the set D1(f) := {x ∈ G : f ′
1(x) exists} is an Fσδ set.

Proof: For each k ∈ N, set Fk := {x ∈ G : dist(x,X \G) ≥ 1/k} if X 6= G and

Fk := X if X = G. Clearly each Fk is a closed set and G =
⋃

k∈N
Fk. So by

Lemma 3.2 we obtain

(3.3)

D1(f) =
⋃

k∈N

(Fk ∩D1(f))

=
⋃

k∈N

(
Fk ∩ C1(f) ∩

⋂

n∈N

⋃

p∈N

D1

(
f,

1

n
,
1

n
,
1

p

))
.

Consequently it is sufficient to prove that, for each k ∈ N, both

(3.4) Fk ∩ C1(f) is an Fσδ set

and

(3.5) Fk ∩
⋂

n∈N

⋃

p∈N

D1

(
f,

1

n
,
1

n
,
1

p

)
is an Fσδ set.

Indeed, (3.4) and (3.5) imply that

Zk := Fk ∩ C1(f) ∩
⋂

n∈N

⋃

p∈N

D1

(
f,

1

n
,
1

n
,
1

p

)

is an Fσδ set for each k ∈ N. Observing that for each x ∈ G there exists an open

neighbourhood Ux ⊂ G of x such that the set {Zk ∩ Ux : k ∈ N} is finite, we

obtain that D1(f) ∩ Ux is an Fσδ set. Thus D1(f) is an Fσδ set by [9, §30, X,

Theorem 1, page 358].
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First we will prove (3.4). To this end, fix an arbitrary k ∈ N and denote for

m, j ∈ N

Cm,j :=
{
x = (x1, x2) ∈ G : |f(t, x2)− f(τ, x2)| ≤

1

m

whenever |t− x1| <
1

j
, |τ − x1| <

1

j

}
,

and observe that

C1(f) =

∞⋂

m=1

∞⋃

j=k

Cm,j , Fk ∩C1(f) =

∞⋂

m=1

∞⋃

j=k

(Fk ∩ Cm,j).

So it is sufficient to prove that Fk ∩Cm,j is a closed set whenever j ≥ k. To this

end, fix arbitrary m, j ∈ N with j ≥ k and suppose that (xi
1, x

i
2) ∈ Fk ∩ Cm,j ,

i ∈ N, and (xi
1, x

i
2) → (x1, x2), i → ∞. Then (x1, x2) ∈ Fk since Fk is closed. To

prove (x1, x2) ∈ Cm,j , consider arbitrary t, τ ∈ X1 with |t− x1| < 1/j, |τ − x1| <

1/j. Then, for all sufficiently large i, we have |t − xi
1| < 1/j, |τ − xi

1| < 1/j,

and consequently |f(t, xi
2) − f(τ, xi

2)| ≤ 1/m. Since (x1, x2) ∈ Fk and j ≥ k,

we obtain that (t, x2) ∈ G and (τ, x2) ∈ G. Since f is continuous with respect

to the second variable, f(t, xi
2) → f(t, x2), f(τ, xi

2) → f(τ, x2), and therefore

|f(t, x2)− f(τ, x2)| ≤ 1/m. So we obtain that (x1, x2) ∈ Cm,j and we are done.

To prove (3.5), fix an arbitrary k ∈ N. Since clearly

D1

(
f,

1

n
,
1

n
,
1

p1

)
⊂ D1

(
f,

1

n
,
1

n
,
1

p2

)
whenever p1 ≤ p2,

we have

Fk ∩
⋂

n∈N

⋃

p∈N

D1

(
f,

1

n
,
1

n
,
1

p

)
=

∞⋂

n=1

∞⋃

p=k

(
Fk ∩D1

(
f,

1

n
,
1

n
,
1

p

))
.

So it is sufficient to prove that Fk ∩ D1(f, 1/n, 1/n, 1/p) is a closed set when-

ever p ≥ k. To this end, fix arbitrary n, p ∈ N with p ≥ k and suppose

that xi = (xi
1, x

i
2) ∈ Fk ∩ D1(f, 1/n, 1/n, 1/p), i ∈ N, and xi = (xi

1, x
i
2) →

x = (x1, x2), i → ∞. Then (x1, x2) ∈ Fk since Fk is closed. To prove that

x = (x1, x2) ∈ D1(f, 1/n, 1/n, 1/p), consider arbitrary v ∈ X1 with |v| = 1, re-

als h > 0, k > 0 and z ∈ X1 such that z ∈ B(x1, 1/p), z − hv ∈ B(x1, 1/p),

z + kv ∈ B(x1, 1/p) and min(h, k) > (1/n)|z − x1|. Since (x1, x2) ∈ Fk and

p ≥ k, we obtain that (z, x2) ∈ G, (z + kv, x2) ∈ G and (z − hv, x2) ∈ G. Our

aim is to prove that

(3.6)
∣∣∣
f(z + kv, x2)− f(z, x2)

k
−

f(z, x2)− f(z − hv, x2)

h

∣∣∣ ≤
1

n
.
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Since xi
1 → x1, for all sufficiently large i we have z ∈ B(xi

1, 1/p), z − hv ∈

B(xi
1, 1/p), z + kv ∈ B(xi

1, 1/p) and min(h, k) > (1/n)|z − xi
1|, which together

with xi ∈ D1(f, 1/n, 1/n, 1/p) implies

(3.7)
∣∣∣
f(z + kv, xi

2)− f(z, xi
2)

k
−

f(z, xi
2)− f(z − hv, xi

2)

h

∣∣∣ ≤
1

n
.

Since f is continuous with respect to the second variable, we have f(z, xi
2) →

f(z, x2), f(z + kv, xi
2) → f(z + kv, x2), f(z − hv, xi

2) → f(z − hv, x2), and con-

sequently (3.7) implies (3.6). So we obtain that x ∈ D1(f, 1/n, 1/n, 1/p) and we

are done. �

4. Case of continuous mappings

4.1 Strict directional differentiability via Fréchet directional differen-

tiability. A well-known theorem, see e.g. [18, Theorem B, page 476], asserts that

Fréchet differentiability at a point x of an arbitrary mapping f : X → Y , where

X , Y are arbitrary Banach spaces, generically implies strict differentiability of f

at x. The following result which is a partial generalization of this theorem will be

applied in the proof of Theorem 4.5.

Theorem 4.1. Let X,Y be Banach spaces and let V be a subspace of X such

that the space L(V, Y ) is separable. Let G ⊂ X be an open set and f : G → Y

a continuous mapping. Then the set A of all a ∈ G such that f ′
V (a) exists and f

is not strictly differentiable at a along V is a first category set.

Proof: Choose a countable dense subset Φ of L(V, Y ) and consider an arbitrary

point a ∈ A. By (2.3) we can choose n ∈ N such that

(4.1)

∀ δ > 0 ∃x ∈ X ∃ v ∈ V : {x, x+ v} ⊂ B(a, δ),

|f(x+ v)− f(x)− f ′
V (a)v| >

4

n
|v|.

Further choose p ∈ N such that

(4.2) |f(a+ v)− f(a)− f ′
V (a)v| ≤

1

n
|v| whenever v ∈ V, |v| ≤

1

p

and choose ϕ ∈ Φ such that

(4.3) |f ′
V (a)− ϕ| ≤

1

n
.

Denote, for each n ∈ N, p ∈ N and ϕ ∈ Φ, by An,p,ϕ the set of all a ∈ A for which

the conditions (4.1), (4.2) and (4.3) hold. Then A =
⋃
{An,p,ϕ : n, p ∈ N, ϕ ∈ Φ}

and so it is sufficient to show that all sets An,p,ϕ are nowhere dense.
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To this end, suppose to the contrary that for some fixed n, p, ϕ, the set An,p,ϕ

is not nowhere dense. Then there exist z ∈ An,p,ϕ and ω > 0 such that An,p,ϕ is

dense in B(z, ω). Now observe that, using (4.2) and (4.3), we easily obtain that

(4.4) |f(a+ v)− f(a)− ϕ(v)| ≤
2

n
|v| whenever a ∈ An,p,ϕ, v ∈ V, |v| ≤

1

p
.

Applying (4.1) to a := z with δ := min(ω, 1/2p), we can choose x ∈ B(z, δ) and

v ∈ V such that x+ v ∈ B(z, δ) and

(4.5) |f(x+ v)− f(x)− f ′
V (z)v| >

4

n
|v|.

Clearly |v| < 1/p. By the choice of z, ω and δ, there exist ak ∈ An,p,ϕ, k ∈ N,

such that ak → x, and therefore ak + v → x + v. Since |v| < 1/p, using (4.4) to

a := ak, k ∈ N, and continuity of f , we easily obtain |f(x + v) − f(x) − ϕ(v)| ≤

(2/n)|v|. This inequality together with |f ′
V (z) − ϕ| ≤ 1/n implies |f(x + v) −

f(x)− f ′
V (z)v| ≤ (3/n)|v| which contradicts (4.5). �

Remark 4.2. Theorem 4.1 can be applied e.g. in the following cases:

(i) V is finite-dimensional and Y is separable.

(ii) V is a separable Asplund space and Y is finite-dimensional.

(iii) V = C(K) for a countable compact set and Y is separable with the

Radon–Nikodým property.

(iv) V is a closed subspace of c0 and Y is separable with the Radon–Niko-

dým property.

(v) V = lp, Y = lq, 1 ≤ q < p < ∞.

Indeed, in all these cases, the space L(V, Y ) is separable. The most natural

cases (i) and (ii) are almost obvious. For the cases (iii) and (iv) see [11, pages

114–115]. In the well-known case (v) Pitt’s theorem, see, e.g., [5, Proposition 6.25],

says that L(V, Y ) coincides with the space K(V, Y ) of compact operators which

is separable (e.g. by well-known result [17, Fact 5.4, page 20]).

For some other cases involving classical Banach spaces see [17, Example 5.5].

Remark 4.3. I do not believe that the assumption that L(V, Y ) is separable can

be omitted in Theorem 4.1, but I do not know any counterexample.

4.2 Fréchet differentiability of continuous functions via partial Fréchet

differentiability. The main result of the present section (Theorem 4.5 below)

is an almost immediate consequence of Theorem 4.1 and the following known

result (see [13, Proposition 2.57], where “strict differentiability” is called “circa-

differentiability”).
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Proposition 4.4 ([13]). Let X1, . . . , Xn and Y be Banach spaces, X := X1 ×

· · ·×Xn, G ⊂ X an open set, a ∈ G and f : G → Y a mapping. Let f be partially

Fréchet differentiable at a with respect to the nth variable and let f be strictly

differentiable at a with respect to the jth variable for each 1 ≤ j ≤ n− 1. Then

f is Fréchet differentiable at a.

Theorem 4.5. Let X1, . . . , Xn and Y be Banach spaces, X := X1 × · · · ×Xn,

G ⊂ X an open set, and let f : G → Y be a continuous mapping. Suppose

that the spaces L(X1, Y ), . . . ,L(Xn−1, Y ) are separable. Then there exists a first

category set A ⊂ G such that, for all x ∈ G \A, the following implication holds:

f has all Fréchet partial derivatives at x ⇒ f is Fréchet differentiable at x.

Proof: Let Ai, 1 ≤ i ≤ n − 1, be the set of all x ∈ G such that f ′
Xi

(x) exists

and f is not strictly differentiable at x along Xi (recall that we identify Xi with

a subspace of X by the usual way). By Theorem 4.1 each Ai is a first category set

and consequently A := A1 ∪ . . . ∪ An−1 is also a first category set. If x ∈ G \A

and f has all Fréchet partial derivatives at x, then f is strictly differentiable

at x with respect to the jth variable for each 1 ≤ j ≤ n− 1 and so f is Fréchet

differentiable at x by Proposition 4.4. �

Remark 4.6. Probably the most interesting is the case of a real function f (i.e.

Y = R). Then we assume that the dual space (Xi)
∗ is separable (i.e. Xi is

a separable Asplund space) for each 1 ≤ i ≤ n−1. Using the method of separable

reduction, we will show that the result holds also if Xi, 1 ≤ i ≤ n− 1, are general

Asplund spaces, see Corollary 6.8 below. A number of other concrete applications

of Theorem 4.5 can be easily obtained using the facts from Remark 4.2.

As an easy consequence of Theorem 4.5 (and Proposition 3.3) we obtain the

following result on generic Fréchet differentiability of functions whose all partial

functions are generically Fréchet differentiable.

Proposition 4.7. Let X1, . . . , Xn and Y be Banach spaces, X := X1×· · ·×Xn,

and let f : X → Y be continuous. Suppose that all Xi, 1 ≤ i ≤ n, are separable

and the spaces L(X1, Y ), . . . ,L(Xn−1, Y ) are separable. Let each partial function

f(x1, . . . , xi−1, ·, xi+1, . . . , xn), 1 ≤ i ≤ n,

be generically Fréchet differentiable on Xi. Then f is generically Fréchet differ-

entiable.

Proof: For each 1 ≤ i ≤ n, denote

Pi := {x ∈ X : f ′
i(x) does not exist}.
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Identifying by the natural way X with Yi ×Xi, where Yi := X1 × · · · ×Xi−1 ×

Xi+1×· · ·×Xn, observe that, by the assumptions, the set {t ∈ Xi : (y, t) ∈ Pi} is

a first category set in Xi for each y ∈ Yi. Since Pi is a Borel set by Proposition 3.3,

it has the Baire property and consequently the Kuratowski–Ulam theorem, see,

e.g., [8, Theorem 8.41], implies that Pi is a first category set. Thus f has all

Fréchet partial derivatives outside the first category set P1 ∪ · · · ∪ Pn and conse-

quently f is generically Fréchet differentiable by Theorem 4.5. �

Similarly as Theorem 4.5, we obtain the following result.

Proposition 4.8. Let X,Y be Banach spaces, G ⊂ X an open set and f : G → Y

a continuous mapping. Let V1 be a subspace of X such that the space L(V1, Y )

is separable. Then there exists a first category set A ⊂ G such that, for each

x ∈ G \A, the following assertion holds:

(∗) If f is Fréchet differentiable at x along V1 and along some topological

complement V x
2 of V1, then f is Fréchet differentiable at x.

Proof: Let A be the set of all x ∈ G such that f ′
V1
(x) exists and f is not

strictly differentiable at x along V1. By Theorem 4.1, A is a first category set.

Now fix an arbitrary x ∈ G \A and suppose that f is Fréchet differentiable at x

along V1 and along some topological complement V x
2 of V1. Further identify X

with X̃ := V1 × V x
2 by the canonical isomorphism. Then f (considered on X̃)

is strictly differentiable at x along V1 (considered as a subspace of X̃) and it

is Fréchet differentiable along V x
2 . So Proposition 4.4 implies that f is Fréchet

differentiable at x. �

5. Lipschitz case

Lemma 5.1. Let X , Y be Banach spaces, G ⊂ X an open set and f : G → Y an

arbitrary mapping. Let V1 be a subspace of X such that L(V1, Y ) is separable.

Then there exists a σ-porous set A ⊂ G such that the following assertion holds

for each x ∈ G \A:

(∗) Let f be Lipschitz at x and Fréchet differentiable at x along V1, and

let V x and V x
2 be subspaces of X such that V x = V1 ⊕ V x

2 and f is

Fréchet differentiable at x along V x
2 . Then f is Fréchet differentiable

at x along V x.

Proof: First choose a countable dense subset Φ of L(V1, Y ). Further denote

by A the set of all x ∈ G for which assertion (∗) does not hold.
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Then, for each x ∈ A, f is Lipschitz at x and Fréchet differentiable at x

along V1, and we can fix spaces V x and V x
2 such that V x = V1 ⊕V x

2 , f is Fréchet

differentiable at x along V x
2 and f is not Fréchet differentiable at x along V x.

Now consider an arbitrary fixed x ∈ A. We can write any v ∈ V x in a unique

way as v = vx1 + vx2 with vx1 ∈ V1 and vx2 ∈ V x
2 and choose p ∈ N such that

(5.1) max(|vx1 |, |v
x
2 |) ≤ p|v| for each v ∈ V x.

Further, since f is Lipschitz at x, we can choose l ∈ N so big that

(5.2) |f(y)− f(x)| ≤ l|y − x| whenever |y − x| ≤
1

l
.

Define Ψx : V x → Y setting Ψx(v) = f ′
V1
(x)vx1 + f ′

V x

2

(x)vx2 , v ∈ V x. Then

Ψx ∈ L(V x, Y ). Since f ′
V x(x) does not exist, we can choose n ∈ N such that

(5.3) lim sup
v→0,v∈V x

|f(x+ v)− f(x)− (f ′
V1
(x)vx1 + f ′

V x

2

(x)vx2 )|

|v|
>

7

n
.

Further choose m ∈ N such that

(5.4) |f(x+ h1)− f(x)− f ′
V1
(x)h1| ≤

1

pn
|h1| whenever h1 ∈ V1, |h1| <

1

m

and

(5.5) |f(x+ h2)− f(x)− f ′
V x

2

(x)h2| ≤
1

pn
|h2| whenever h2 ∈ V x

2 , |h2| <
1

m
.

Finally choose ϕ ∈ Φ such that

(5.6) |f ′
V1
(x) − ϕ| ≤

1

pn
.

For p, l, n,m ∈ N and ϕ ∈ Φ, denote by Ap,l,n,m,ϕ the set of all x ∈ A for which

conditions (5.1), (5.2), (5.3), (5.4), (5.5), (5.6) hold. Then

A =
⋃

{Ap,l,n,m,ϕ : p, l, n,m ∈ N, ϕ ∈ Φ}

and thus it is sufficient to prove that, for each fixed p, l, n,m ∈ N and ϕ ∈ Φ, the

set A∗ := Ap,l,n,m,ϕ is porous.

Suppose to the contrary that x ∈ A∗ such that A∗ is not porous at x is given.

Then, by Definition 2.1, we can choose 0 < δ < 1 such that

(5.7) B
(
t,
|t− x|

2p ln

)
∩ A∗ 6= ∅ whenever t ∈ B(x, δ) \ {x}.
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By (5.3) we can choose v ∈ V x such that

(5.8) 0 < |v| <
δ

pm
< 1

and

(5.9) D := |f(x+ v)− f(x)− (f ′
V1
(x)vx1 + f ′

V x

2

(x)vx2 )| >
7

n
|v|.

By (5.1) and (5.8) we obtain

(5.10) max(|vx1 |, |v
x
2 |) ≤ p|v| < p ·

δ

pm
=

δ

m
<

1

m

and so (5.5) and (5.1) imply

(5.11) |f(x+ vx2 )− f(x)− f ′
V2
(x)vx2 | ≤

1

pn
|vx2 | ≤

1

n
|v|.

By (5.10) we have |vx2 | < δ. Further we have vx2 6= 0, since otherwise v = vx1 and

so (5.4) with (5.10) imply D ≤ (1/n)|v| which contradicts (5.9). Thus we can

apply (5.7) to t := x+ vx2 and obtain a point y ∈ A∗ such that

(5.12) |(x+ vx2 )− y| <
|vx2 |

2p ln
≤

p|v|

2p ln
=

|v|

2 ln
≤

1

l

(we have used also (5.1) and (5.8)). Similarly, since 0 < |v| < δ by (5.8), we

obtain by (5.7) a point z ∈ A∗ such that

(5.13) |(x+ v)− z| <
|v|

2p ln
≤

1

l
.

Since y ∈ A∗ and z ∈ A∗, by (5.12), (5.13) and (5.2) we obtain

(5.14) |f(x+ vx2 )− f(y)| ≤ l · |(x+ vx2 )− y| ≤ l ·
|v|

2 ln
≤

1

n
|v|

and

(5.15) |f(x+ v)− f(z)| ≤ l · |(x+ v)− z| ≤ l ·
|v|

2p ln
≤

1

n
|v|.

Since y ∈ A∗ and |vx1 | < 1/m by (5.10), using (5.4) and (5.1) we obtain

(5.16) |f(y + vx1 )− f(y)− f ′
V1
(y)vx1 | ≤

1

pn
|vx1 | ≤

1

n
|v|.

We have |(x+v)−(y+vx1 )| = |(x+vx2 )−y| ≤ (2ln)−1|v| by (5.12) and consequently

(5.17) |z− (y+vx1 )| ≤ |(x+v)−z|+ |(x+v)− (y+vx1)| ≤
|v|

2p ln
+

|v|

2 ln
≤

|v|

ln
≤

1

l
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by (5.13). Since z ∈ A∗, we obtain by (5.17) and (5.2)

|f(z)− f(y + vx1 )| ≤ l|z − (y + vx1 )| ≤ l ·
|v|

ln
=

1

n
|v|,

which together with (5.15) gives

(5.18) |f(x+ v)− f(y + vx1 )| ≤ |f(x+ v)− f(z)|+ |f(z)− f(y + vx1 )| ≤
2

n
|v|.

Since y ∈ A∗, we obtain by (5.6) (with x := y) |f ′
V1
(y) − ϕ| ≤ (pn)−1, which

together with (5.6) gives |f ′
V1
(y)− f ′

V1
(x)| ≤ 2(pn)−1. Using also (5.1), we obtain

(5.19) |f ′
V1
(y)vx1 − f ′

V1
(x)vx1 | ≤

2

pn
· |vx1 | ≤

2

n
|v|.

Using (5.11), we obtain the following upper estimate of D (from (5.9))

D := |f(x+ v)− f(x)− (f ′
V1
(x)vx1 + f ′

V x

2

(x)vx2 )|

= |(f(x+ v)− f(x+ vx2 )− f ′
V1
(x)vx1 ) + (f(x+ vx2 )− f(x)− f ′

V x

2

(x)vx2 )|(5.20)

≤ |f(x+ v)− f(x+ vx2 )− f ′
V1
(x)vx1 |+

1

n
|v|.

Further, using (5.16), (5.18), (5.14) and (5.19), we obtain

|f(x+ v)− f(x+ vx2 )− f ′
V1
(x)vx1 |

≤ |f(y + vx1 )− f(y)− f ′
V1
(y)vx1 |+ |f(x+ v)− f(y + vx1 )|

+ |f(y)− f(x+ vx2 )|+ |f ′
V1
(y)vx1 − f ′

V1
(x)vx1 |

≤
1

n
|v|+

2

n
|v|+

1

n
|v|+

2

n
|v| =

6

n
|v|.

Thus (5.20) gives D ≤ (7/n)|v| which contradicts (5.9). �

By induction, we easily infer from Lemma 5.1 the following analogue of Theo-

rem 4.5.

Theorem 5.2. Let X1, . . . , Xn and Y be Banach spaces, X := X1 × · · · ×Xn,

G ⊂ X an open set and f : G → Y an arbitrary mapping. Let the spaces

L(X1, Y ), . . . ,L(Xn−1, Y ) be separable. Then there exists a σ-porous set A ⊂ G

such that, for all x ∈ G \A, the following implication holds:

(∗) f is Lipschitz at x and has all Fréchet partial derivatives at x

⇒ f is Fréchet differentiable at x.

Proof: We will proceed by induction on n. For n = 2 the assertion immediately

follows from Lemma 5.1 used for V1 := X1 and V x
2 := X2.
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Now suppose that n ≥ 3 and “the theorem holds for n := n − 1”. Further

suppose that X1, . . . , Xn, Y , G and f which satisfy the assumptions of the

theorem are given. Since L(Xn−1, Y ) is separable, we can use Lemma 5.1 with

V1 := Xn−1, and obtain a σ-porous set A1 ⊂ G such that, for each x ∈ G \ A1,

the following assertion holds:

(α1) If f is Lipschitz at x and Fréchet differentiable at x along Xn−1 and

along Xn, then f is Fréchet differentiable at x along the space X̃n−1 :=

Xn−1 ×Xn.

Now we identify X with X̃ := X1 × · · · ×Xn−2 × X̃n−1 by the usual way. By

the inductive assumption, there exists a σ-porous set A2 ⊂ G such that, for each

x ∈ G \A2, the following assertion holds:

(α2) If f is Lipschitz at x and Fréchet differentiable at x along all spaces

X1, . . . , Xn−2, X̃n−1, then f is Fréchet differentiable at x (in X̃ = X).

Setting A := A1 ∪ A2, and using for each x ∈ G \ A the validity of (α1)

and (α2), we obtain that implication (∗) holds for each x ∈ G \A. �

As an immediate consequence of Lemma 5.1, we obtain the following analogue

of Proposition 4.8.

Proposition 5.3. Let X,Y be Banach spaces, G ⊂ X an open set and f : G → Y

an arbitrary mapping. Let V1 be a subspace of X such that the space L(V1, Y ) is

separable. Then there exists a σ-porous set A ⊂ G such that, for each x ∈ G\A,

the following assertion holds:

(∗) If f is Lipschitz at x and Fréchet differentiable at x along V1 and

along some topological complement V x
2 of V1, then f is Fréchet dif-

ferentiable at x.

In connection with Propositions 4.8 and 5.3, it is natural to ask, for which

Banach spaces X,Y the following statement holds:

(S) Let f : X → Y be continuous (respectively Lipschitz). Denote by Ef the

set of all points x ∈ X at which there exist a subspace V x of X and

its topological complement W x such that f is Fréchet differentiable at x

both along V x and W x but is not Fréchet differentiable at x. Then Ef

is a first category set (respectively a σ-porous set).

If dimX < ∞ and Y = R, then the “continuous part” of (S) holds; it easily

follows from [7]. Further, if dimX < ∞, then the “Lipschitz part” of (S) easily

follows from [14, Theorem 2] (and also from Corollary 5.6 below).

I conjecture that no part of (S) holds if X is an infinite-dimensional space,

but I do not know any counterexample.

For the weaker version of (S) (which we obtain demanding that V x in the def-

inition of Ef is finite-dimensional), see Corollary 5.6 below. It is an immediate
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consequence of Proposition 5.5 below, which can be of an independent interest.

In its proof we use substantially Lemma 5.1 and the following result which im-

mediately follows from [21, Corollary 3.4] (since each σ-directionally porous set

is clearly σ-porous).

Proposition 5.4 ([21]). Let X be a separable Banach space, Y a Banach space,

G ⊂ X an open set, and f : G → Y an arbitrary mapping. Then there exists

a σ-porous set A ⊂ G such that, for each x ∈ G \ A, the following assertion

holds:

(∗) If f is Lipschitz at x and the one-sided directional derivative f ′
+(x, u)

exists in all directions u from a set Sx ⊂ X whose linear span is dense

in X , then f is Gâteaux differentiable at x.

Proposition 5.5. Let X,Y be separable Banach spaces, G ⊂ X an open set

and f : G → Y an arbitrary mapping. Then there exists a σ-porous set A ⊂ G

such that, for each x ∈ G \A, the following assertion holds.

(∗∗) Let f be Lipschitz at x and Fréchet differentiable at x along a sub-

space Mx of finite codimension, and let there exist a set Sx ⊂ X such

that spanSx is dense in X and f ′
+(x, u) exists for all u ∈ Sx. Then f

is Fréchet differentiable at x.

Proof: For the given f , we define A as the set of all x ∈ G for which assertion

(∗∗) does not hold; we will prove that A is σ-porous.

Choose a dense countable set D ⊂ X and for each point x ∈ A set

kx := inf{k ∈ N ∪ {0} : f is Fréchet differentiable at x

along a subspace Mx of codimension k},

(where we adopt the convention that X has codimension 0). Note that, if x ∈ A,

then clearly 1 ≤ kx < ∞. Further, for each x ∈ A, choose a subspace Mx of X

of codimension kx such that f is Fréchet differentiable at x along Mx and then

choose a vector 0 6= vx ∈ D \Mx. For each k ∈ N and v ∈ D, set

Ak,v := {x ∈ A : kx = k, vx = v}.

Then A =
⋃
{Ak,v : k ∈ N, v ∈ D} and thus it is sufficient to prove that, for each

fixed k ∈ N and v ∈ D, the set Ak,v is σ-porous.

To this end, set V1 := span{v} and observe that L(V1, Y ) is separable. Let

Ã ⊂ G be a σ-porous set which corresponds to V1 and f by Lemma 5.1; i.e.

(5.21) assertion (∗) from Lemma 5.1 holds for each x ∈ G \ Ã.

Further, let ˜̃A be a σ-porous set which corresponds to f by Proposition 5.4.
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Now it is sufficient to prove that Ak,v ⊂ Ã∪ ˜̃A. To prove this inclusion, suppose

to the contrary that there exists a point x ∈ Ak,v \ (Ã ∪ ˜̃A). Set V x
2 := Mx and

V x := V1 + V x
2 . We know that V x

2 has codimension 1 ≤ kx < ∞ and V1 ∩

V x
2 = {0}. Consequently, V x is closed, V x = V1 ⊕ V x

2 , see, e.g., [5, Exercise 5.27

and Proposition 5.3], and it is easy to see that V x has codimension kx − 1. Since

x ∈ A, we have that the assumptions of assertion (∗∗) hold and so also the

assumptions of assertion (∗) of Proposition 5.4 hold. So, since x ∈ G \ ˜̃A, by the

choice of ˜̃A we obtain that f is Gâteaux differentiable at x, and consequently,

f is Fréchet differentiable along V1 at x. Since f is Fréchet differentiable at x

along the space V x
2 = Mx and x ∈ G \ Ã, we can use (5.21) and obtain that f is

Fréchet differentiable along the space V x of codimension kx−1 which contradicts

the definition of kx. �

As immediate consequences, we obtain the following results.

Corollary 5.6. Let X,Y be separable Banach spaces, G ⊂ X an open set and

f : G → Y an arbitrary mapping. Then there exists a σ-porous set A ⊂ G such

that the following assertion holds.

(∗) Let f be Lipschitz at x and let there exist a finite-dimensional sub-

space V x of X and its topological complement W x of X such that f is

Fréchet differentiable at x along V x and W x. Then f is Fréchet differ-

entiable at x.

Corollary 5.7. Let X,Y be separable Banach spaces, G ⊂ X an open set and

f : G → Y a Lipschitz mapping. Then there exists a σ-upper porous set A ⊂ G

such that f is Fréchet differentiable at every point x ∈ G \ A at which it is

Fréchet differentiable along a closed subspace of finite codimension and Gâteaux

differentiable.

Remark 5.8. In some cases, the setA from Corollary 5.7 is necessarily nonempty.

To show this, set X := l2, Y := R and denote by en, n ∈ N, the canonical basis

vectors in l2. Set

pn :=
1

n
(e1 + en), n ≥ 2,

F := X \
∞⋃

n=2

B
(
pn,

1

2n

)
and

f(x) := dist(x, F ), x ∈ X.

Then f is Lipschitz on G := X and it is easy to check that 0 ∈ A, whenever A

is as in Corollary 5.7.
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6. Results proved by the separable reduction method

In this section, we will use the well-known method of separable reduction.

Namely, we will first prove “the separable case” and from it we will obtain the

“nonseparable case” using some known results which say that some notions are

“separably determined in the sense of rich families”. For the following notion of

a “rich family”, see e.g. [11, page 37] or [3].

Definition 6.1. Let X be a Banach space. A family F of separable subspaces

of X is called a rich family if:

(R1) Vi ∈ F , i ∈ N, and V1 ⊂ V2 ⊂ . . . , then
⋃
{Vn : n ∈ N} ∈ F ;

(R2) for each separable subspace V0 of X there exists V ∈ F such that

V0 ⊂ V .

A basic (easy) fact, see e.g. [11, Proposition 3.6.2], concerning rich families is

the following.

Lemma 6.2. Let X be a Banach space and let {Fn : n ∈ N} be rich families

of separable subspaces of X . Then F :=
⋂
{Fn : n ∈ N} is also a rich family of

separable subspaces of X .

We will use also the following simple fact which is a reformulation of [20,

Lemma 4.4].

Lemma 6.3. Let X1, . . . , Xn be Banach spaces and X := X1 × · · · ×Xn. Let

Fk be a rich family of separable subspaces of Xk, 1 ≤ k ≤ n. Then

F := {V1 × · · · × Vn : Vk ∈ Fk, 1 ≤ k ≤ n}

is a rich family of separable subspaces of X .

Much more difficult is the following result which says that Fréchet differentia-

bility at a point is “separably determined in the sense of rich families”.

Theorem 6.4 ([11, Theorem 3.6.10]). Let X,Y be Banach spaces, G ⊂ X an

open set and f : G → Y a mapping. Then there exists a rich family F of separable

subspaces of X such that for every V ∈ F , f is Fréchet differentiable (with

respect to X) at every x ∈ V ∩ G, at which its restriction to V ∩ G is Fréchet

differentiable (with respect to V ).

(In fact, [11, Theorem 3.6.10] is formulated for G = X only, but if we apply this

formally weaker theorem to any extension f̃ of f to X , we obtain the assertion

of Theorem 6.4.)

The following result on “separable determination of first category sets and σ-

upper porous sets” were first proved in [2] and [4] “in the sense of suitable models”

and then transferred to the following result in [3].
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Theorem 6.5 ([3, Corollary 5]). Let X be a Banach space and A ⊂ X a Souslin

set. Then there exists a rich family F of separable subspaces of X such that for

every V ∈ F we have:

(i) A is of the first category in X ⇐⇒ A ∩ V is of the first category in V ,

(ii) A is σ-porous in X ⇐⇒ A ∩ V is σ-porous in V .

Recall that every Borel set in X is Souslin. We will use also the following

known fact.

Theorem 6.6 ([20, Theorem 4.7]). Let X,Y be Banach spaces, G ⊂ X an open

set, and let f : G → Y be an arbitrary mapping. Then the following conditions

are equivalent:

(i) Mapping f is generically Fréchet differentiable.

(ii) There exists a rich family F of separable subspaces of X such that f |V ∩G

is generically Fréchet differentiable (with respect to V ) on V ∩G for each

V ∈ F .

Now we will prove, using Theorem 4.5, Theorem 5.2 and the method of sep-

arable reduction, the following result which generalizes Theorem 4.5 and partly

generalizes Theorem 5.2.

Theorem 6.7. Let X1, . . . , Xn and Y be Banach spaces, X := X1×· · ·×Xn and

G ⊂ X an open set. Suppose that each space L(X̃i, Ỹ ) is separable whenever

X̃i is a separable subspace of Xi, i = 1, . . . , n− 1, and Ỹ is a separable subspace

of Y . Let f : G → Y be a continuous (respectively Lipschitz) mapping.

Then there exists a first category (respectively σ-porous) set A ⊂ G such that,

for each x ∈ G \A, the following implication holds:

f has all Fréchet partial derivatives at x ⇒ f is Fréchet differentiable at x.

Proof: We will prove the “continuous part” and the “Lipschitz part” of the

theorem together.

In the first step of the proof, we will prove the theorem in the special case

when all spaces X1, . . . , Xn are separable. In this case observe that the space

Ỹ := span f(G) is separable and therefore the spaces L(X1, Ỹ ), . . . ,L(Xn−1, Ỹ )

are separable by the assumptions of the theorem. Further observe that f : G → Y

is partially Fréchet differentiable (respectively Fréchet differentiable) at x ∈ G

if and only if f : G → Ỹ has this property. So, if f is continuous (respectively

Lipschitz), then the existence of a first category (respectively σ-porous) set A

from the conclusion of the theorem follows from Theorem 4.5 (respectively The-

orem 5.2).

In the second step, we will prove the general case using the method of sepa-

rable reduction. Denote by A the set of all x ∈ G at which all partial Fréchet
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derivatives f ′
i(x), i = 1, . . . , n, exist but f is not Fréchet differentiable. Our aim

is to prove that

A is a first category set if f is continuous, and(6.1)

A is a σ-porous set if f is Lipschitz.(6.2)

Notice that (3.1) and Proposition 3.3 give that A is a Borel set (and hence a Sous-

lin set) in X . Thus Theorem 6.5 implies that there exists a rich family F1 of

separable subspaces of X such that for every V ∈ F1 we have that

(6.3)
A is of the first category in X whenever

A ∩ V is of the first category in V, and

(6.4) A is of σ-porous in X whenever A ∩ V is σ-porous in V.

By Lemma 6.3, the family

F2 := {V1 × · · · × Vn : Vk is a separable subspace of Xk, 1 ≤ k ≤ n}

is a rich family of separable subspaces of X .

By Theorem 6.4 there exists a rich family F3 of separable subspaces of X

such that for every V ∈ F3, f is Fréchet differentiable (with respect to X) at

every x ∈ V ∩ G at which its restriction to V ∩ G is Fréchet differentiable (with

respect to V ).

Now, by Lemma 6.2, F := F1∩ F2∩ F3 is a rich family of separable subspaces

of X .

Choose an arbitrary V ∈ F . Since V ∈ F2, we have V = V1 × · · · × Vn where

Vk is a separable subspace of Xk, 1 ≤ k ≤ n.

If A ∩ V 6= ∅, set g := f |(V ∩G). Using the definition of A, we easily see

that g′i(x) = g′Vi
(x), i = 1, . . . , n, exist for each x ∈ A ∩ V . Since f is Fréchet

nondifferentiable at each x ∈ A ∩ V and V ∈ F3, we conclude that g is Fréchet

nondifferentiable at each x ∈ A∩V . Further, by the assumptions of the theorem,

the space L(X̃i, Ỹ ) is separable whenever X̃i is a separable subspace of Vi, i =

1, . . . , n − 1, and Ỹ is a separable subspace of Y . So, using for g on G ∩ V ⊂

V = V1 × · · · × Vn the special case of the theorem proved in the first step of the

proof, we obtain that A ∩ V is a first category (respectively σ-porous) set in V

if f is continuous (respectively Lipschitz). Therefore, since V ∈ F1, we obtain

that both (6.3) and (6.4) hold. �
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Using (2.1), we see that Theorem 6.7 has the following interesting consequence.

Corollary 6.8. Let X1, . . . , Xn be Banach spaces such that X1, . . . , Xn−1 are

Asplund spaces, and let G ⊂ X := X1 × · · · × Xn be an open set. Let f be

a continuous (respectively Lipschitz) real function on G.

Then there exists a first category (respectively σ-porous) set A ⊂ G such that,

for each x ∈ G \A, the following implication holds:

f has all Fréchet partial derivatives at x ⇒ f is Fréchet differentiable at x.

Remark 6.9.

(i) There are also other concrete consequences of Theorem 6.7. For example,

using facts from Remark 4.2, it is easy to show that Theorem 6.7 can

be used if each Xi, i = 1, . . . , n − 1, is a Hilbert space (respectively

a subspace of c0(Γ)) and Y = lq(Γ), 1 ≤ q < 2, (respectively Y has the

Radon–Nikodým property).

(ii) Theorem 6.7 can be further slightly generalized to a more complicated

general theorem (working with “rich families of X̃i”) which has further

concrete applications. Let us note that the case with n = 2, X1 =

X2 = l1 and Y = R remains open.

(iii) I do not know any example excluding the possibility that the assumptions

concerning Banach spaces X1, . . . , Xn, Y can be omitted in Theorem 6.7.

For this reason the observations in (i) and (ii) are mentioned without any

details.

By the separable reduction method, we prove also the following result on con-

tinuous functions whose all partial functions are DC (recall that a function on

a Banach space is called DC if it is the difference of two continuous convex func-

tions).

Proposition 6.10. Let X1, . . . , Xn be Asplund spaces and f a continuous real

function on X := X1 × · · · ×Xn. Let each partial function

f(x1, . . . , xi−1, ·, xi+1, . . . , xn), 1 ≤ i ≤ n,

is DC on Xi. Then f is generically Fréchet differentiable.

Proof: By Lemma 6.3, the family

F := {V1 × · · · × Vn : Vk is a separable subspace of Xk, 1 ≤ k ≤ n}

is a rich family of separable subspaces of X . Choose an arbitrary V = V1 × · · · ×

Vn ∈ F and set g := f |V . Then each partial function

g(v1, . . . , vi−1, ·, vi+1, . . . , vn), 1 ≤ i ≤ n,
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is DC on the Asplund space Vi, see (2.1), and consequently is generically differ-

entiable on Vi. Since the spaces V ∗
1 , . . . , V

∗
n−1 are separable, we can use Proposi-

tion 4.7 and obtain that g is generically differentiable. Therefore f is generically

differentiable by Theorem 6.6. �

Remark 6.11.

(i) In the case of a locally Lipschitz f , Proposition 6.10 immediately follows

from [20, Corollary 8.1] and also from [20, Corollary 8.4].

(ii) The proof of Proposition 6.10 works if we weaken the assumption that

each partial function of f is DC to the assumption that it is a difference

of two approximately convex functions. Thus we obtain that, in [20,

Corollary 8.1], it is possible to suppose the continuity of f instead of the

local Lipschitzness of f .

(iii) Proposition 6.10 could be proved quite similarly as Theorem 6.7, but the

present proof based on Theorem 6.6 is shorter.
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[19] Zaj́ıček L., On σ-porous sets in abstract spaces, Abstr. Appl. Anal. 2005 (2005), no. 5,

509–534.
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