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Monadic quasi-modal distributive nearlattices

Ismael Calomino

Abstract. We prove that there is a one to one correspondence between monadic
finite quasi-modal operators on a distributive nearlattice and quantifiers on the
distributive lattice of its finitely generated filters, extending the results given in
“Calomino I., Celani S., González L. J.: Quasi-modal operators on distributive
nearlattices, Rev. Unión Mat. Argent. 61 (2020), 339–352”.
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1. Introduction and preliminaries

A modal algebra is pair 〈B,�〉 such that B is a Boolean algebra and � : B → B

a map such that � 1 = 1 and � (a∧ b) = � a∧� b for all a, b ∈ B. It is well know

that the variety of modal algebras is the algebraic semantic of classical normal

modal logics. A generalization of the notion of modal operator in a Boolean

algebra B was studied in [4] where the author introduces a map that sends each

element a ∈ B to an ideal I of B. This type of maps are not operations in the

sense of universal algebra, but have some similar properties to modal operators.

The class of distributive nearlattices are a natural generalization of semi-

boolean algebras, in the sense of Abbott, see [1], and also of bounded distributive

lattices. Several authors have studied these structures from an algebraic, see [12],

[19], [8], [9], [10], [2], [15], [3], [16], topological, see [5], [6], [7], and logical, see [13],

[14], point of view. In particular, a notion of necessity modal operator on dis-

tributive nearlattices was studied in [7]. Later, inspired by [4], in [3] was studied

a class of operators on a distributive nearlattice, called finite quasi-modal oper-

ators, which are in one to one correspondence with possibility modal operators

on the distributive lattice of its finitely generated filters. The finite quasi-modal

operators are a generalization of the necessity modal operators given in [7]. Fol-

lowing the results given in [3], the main aim of this paper is to prove that there

is a one to one correspondence between monadic finite quasi-modal operators on
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a distributive nearlattice and quantifiers on the distributive lattice of its finitely

generated filters. Also, the concept of qm-subnearlattice is introduced in the class

of quasi-modal distributive nearlattices as a generalization of the �-subalgebras

given in [7].

Let A = 〈A,∨, 1〉 be a join-semilattice with greatest element. A subset U of A

is said to be upper (lower) if for every x, y ∈ U such that x ∈ U (y ∈ U) and x ≤ y,

then y ∈ U (x ∈ U). For each X ⊆ A, the upper (lower) set generated by X is

[X) = {a ∈ A : ∃x ∈ X(x ≤ a)} ((X ] = {a ∈ A : ∃x ∈ X(a ≤ x)}). If X = {a},

then we will write [a) and (a] instead of [{a}) and ({a}], respectively. A filter is

a subset F of A such that 1 ∈ F , F is upper and if a, b ∈ F , then a ∧ b ∈ F ,

whenever a ∧ b exists. If X is a subset of A, the least filter containing X is

called the filter generated by X and will be denoted by Fig(X). A filter G is

said to be finitely generated if G = Fig(X) for some finite subset X of A. If

X = {a}, then Fig({a}) = [a) = {x ∈ A : a ≤ x}, called the principal filter of a.

We denote by Fi(A) and Fif(A) the set of all filters and finitely generated filters

of A, respectively. A nonempty subset I of A is called an ideal if I is lower and

if a, b ∈ I, then a ∨ b ∈ I. If X is a subset of A, the least ideal containing X

is called the ideal generated by X and will be denoted by Idg(X). Then we have

the following characterization of the ideal generated by a subset X of A:

Idg(X) = {a ∈ A : ∃x1, . . . , xn ∈ X(a ≤ x1∨ . . .∨xn)}.

We shall say that a proper ideal P is prime if for all a, b ∈ A, a ∧ b ∈ P implies

a ∈ P or b ∈ P , whenever a ∧ b exists. Denote by Id(A) and X(A) the set of all

ideals and prime ideals of A, respectively.

In the rest of this section we recall some concepts about distributive nearlattices

and quasi-modal operators. The reader is referred to [12], [8], [9], [10], [7], [3].

1.1 Distributive nearlattices.

Definition 1. Let A be a join-semilattice with greatest element. Then A is

a distributive nearlattice if for each a ∈ A, the principal filter [ a) is a bounded

distributive lattice with respect to the induced order.

Let A be a distributive nearlattice. For each a ∈ A, the meet operation

of the lattice [ a) is well defined and is denoted by “∧a”. Thus, the structure

〈[ a),∨,∧a, a, 1〉 is a bounded distributive lattice. It should be noted that for all

x, y ∈ A, the meet x ∧ y exists in A if and only if x, y have a common lower

bound in A. Thus, for all x, y ∈ [ a), the meet of x, y in [ a) coincides with their

meet in A, that is, x ∧a y = x ∧ y. This should be kept in mind since we will

use it without mention. We can define a ternary operation m : A3 → A given by

m(x, y, z) = (x∨ z)∧ (y∨ z). The operation m is very useful and characterize the
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class of distributive nearlattices, for more details see [19], [10], [2]. We introduce

the following notation: for each natural number n we define inductively for every

a1, . . . , an, b ∈ A the element mn−1(a1, . . . , an, b) as follows:

◦ m0(a1, b) = m(a1, a1, b),

◦ for n > 1, mn−1(a1, . . . , an, b) = m(mn−2(a1, . . . , an−1, b), an, b).

Then mn−1(a1, . . . , an, b) = (a1∨b)∧. . .∧(an∨b). In particular, m0(a1, b) = a1∨b

and m1(a1, a2, b) = m(a1, a2, b).

On the other hand, if A is a distributive nearlattice, then by results given in

[12] the structure Fi(A) = 〈Fi(A),∨,∧, {1}, A〉 is a bounded distributive lattice,

where the least element is {1}, the greatest element is A, G∧H = G ∩ H , and

G∨H = Fig(G ∪H) for every G,H ∈ Fi(A). We have the following characteri-

zation of the filter generated by a subset X of A:

Fig(X)1 = {a ∈ A : ∃x1, . . . , xn ∈ [X)(a = x1∧ . . .∧xn)}.

If X = {a1, . . . , an}, then

Fig(X) = [ a1)∨ . . .∨ [ an) = {a ∈ A : a = mn−1(a1, . . . , an, a)}.

Moreover, Fif(A) = 〈Fif(A),∨,∧, {1}, A〉 is a bounded distributive lattice.

Theorem 2 ([17], [9]). Let A be a distributive nearlattice. Let I ∈ Id(A) and

F ∈ Fi(A) be such that I ∩ F = ∅. Then there exists P ∈ X(A) such that I ⊆ P

and P ∩ F = ∅.

1.2 Quasi-modal operators.

Definition 3. Let A be a distributive nearlattice. A quasi-modal operator de-

fined on A is a map ∇ : A → Fi(A) such that:

(1) ∇1 = {1},

(2) ∇(a ∧ b) = ∇a ⊻∇b, whenever a ∧ b exists.

A finite quasi-modal operator defined on A is a quasi-modal operator such that

∇a ∈ Fif(A) for every a ∈ A. A pair 〈A,∇〉 is a quasi-modal distributive near-

lattice, or qm-distributive nearlattice for short, if A is a distributive nearlattice

and ∇ is a quasi-modal operator on A. Analogously, a pair 〈A,∇〉 is a finite

quasi-modal distributive nearlattice, or fqm-distributive nearlattice for short, if A

is a distributive nearlattice and ∇ is a finite quasi-modal operator on A.

Remark 4. It is easy to prove that the condition (2) of Definition 3 is equivalent

to the equation ∇m(a, b, c) = ∇(a ∨ c)∨∇(b ∨ c) for every a, b, c ∈ A.

1Note that in the class of distributive nearlattices it is also valid Fig(X) = {a ∈ A :
∃x1, . . . , xn ∈ [X)(a ≥ x1∧ . . .∧xn)}. However, in this paper we will work with the equal-

ity, following the line of research proposed in [13], [14], [3].



164 I. Calomino

Example 5. A necessity modal operator on a distributive nearlattice A is a mo-

notone map � : A → A such that � 1 = 1 and� (a∧b) = � a∧� b, whenever a∧b

exists, see [7]. If for each a ∈ A we put ∇�(a) = [� a), then � induces a finite

quasi-modal operator ∇�. Conversely, if 〈A,∇〉 is a fqm-distributive nearlattice

such that for each a ∈ A the filter ∇a is principal, then the map �∇ : A → A

given by �∇(a) = b if and only if ∇a = [ b) defines a necessity modal operator

on A. Thus, finite quasi-modal operators are a natural generalization of necessity

modal operators.

Example 6. Let A be a distributive nearlattice. We consider the map ∇ :

A → Fi(A) given by

∇a =

{

{1} if a = 1,
∨

{F ∈ Fi(A) : a /∈ F} if a < 1.

Let a, b ∈ A be such that a∧ b exists and F ∈ Fi(A). Note that a∧ b /∈ F if and

only if a /∈ F or b /∈ F . Then

∇(a ∧ b) =
∨

{F ∈ Fi(A) : a ∧ b /∈ F}

=
∨

{F ∈ Fi(A) : a /∈ F or b /∈ F} = ∇a ⊻∇b.

Hence, 〈A,∇〉 is a qm-distributive nearlattice.

Let 〈A,∇〉 be a qm-distributive nearlattice and D ⊆ A. Consider the set

γ(D) = {a ∈ A : ∇a ∩D = ∅}

and the binary relation R∇ ⊆ X(A) ×X(A) given by

(P,Q) ∈ R∇ ⇐⇒ γ(P ) ∩Q = ∅.

It is easy to check that ⊆−1 ◦R∇ ⊆ R∇.

Theorem 7 ([3]). Let A be a distributive nearlattice and ∇ : A → Fi(A) a map.

Then the following conditions are equivalent:

(1) ∇ is a quasi-modal operator on A,

(2) ∇ inverts the order and γ(P ) ∈ Fi(A) for every P ∈ X(A).

Proposition 8 ([3]). Let 〈A,∇〉 be a qm-distributive nearlattice. Let a ∈ A

and P ∈ X(A). Then ∇a ∩ P 6= ∅ if and only if there exists Q ∈ X(A) such that

γ(P ) ∩Q = ∅ and a ∈ Q.

A possibility modal operator on a bounded distributive lattice L =

〈L,∨,∧, 0, 1〉 is a map ♦ : L → L such that ♦ 0 = 0 and ♦ (a ∨ b) = ♦ a ∨ ♦ b

for every a, b ∈ L.
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Definition 9. Let 〈A,∇〉 be a qm-distributive nearlattice. For a subset X ⊆ A,

we define

(•) ♦∇(X) = Fig
(

⋃

{∇x : x ∈ X}
)

.

Remark 10. Note that ♦∇([a)) = ∇a for every a ∈ A.

In the following result we show the connection between finite quasi-modal op-

erators on a distributive nearlattice A and possibility modal operators on the

bounded distributive lattice Fif(A).

Theorem 11 ([3]). Let A be a distributive nearlattice.

(1) If ∇ : A → Fi(A) is a finite quasi-modal operator on A, then the map

♦∇ : Fif(A) → Fif(A) given by (•) is a possibility modal operator on

Fif(A), i.e., ♦∇({1}) = {1} and ♦∇(F ⊻G) = ♦∇(F ) ⊻ ♦∇(G) for every

F,G ∈ Fif(A).

(2) If ♦ : Fif(A) → Fif(A) is a possibility modal operator on Fif(A), then

the map ∇♦ : A → Fif(A) given by ∇♦a = ♦([a)) is a finite quasi-modal

operator on A.

If ∇ is a finite quasi-modal operator on A, then ∇ = ∇♦∇
. Analogously, if ♦ is

a possibility modal operator on Fif(A), then ♦ = ♦∇♦
. Moreover, there is a one

to one correspondence between finite quasi-modal operators on A and possibility

modal operators on Fif(A).

1.3 Qm-subnearlattices. Let A be a distributive nearlattice. We say that

a structure B = 〈B,∨, 1〉 is a subnearlattice of A if B is a subset of A, B is

closed under the operation “∨”, 1 ∈ B and if a, b ∈ B are such that if a∧b exists

in A then a ∧ b ∈ B. It follows that subnearlattices are equivalent to structures

〈B,m, 1〉 such that B is a subset of A, 1 ∈ B and m(a, b, c) ∈ B for every

a, b, c ∈ B.

Now we introduce the notion of qm-subnearlattice in the class of quasi-modal

distributive nearlattices. In what follows to distinguish about the algebra we are

working on, we are going to use subscripts.

Remark 12. Note that if A is a distributive nearlattice and B is a subnearlat-

tice of A, then for each Q ∈ X(A) we have Q ∩B ∈ X(B) ∪ {∅}.

Proposition 13. Let A be a distributive nearlattice and B be a subnearlattice

of A. Then for each P ∈ X(B) there exists Q ∈ X(A) such that P = Q ∩B.

Proof: Let P ∈ X(B). Then B − P ∈ Fi(B) and we consider the ideal IdgA(P )

generated by P in A. On the other hand, since B − P is closed under existing

meets, we take the filter FigA(B − P ) generated by B − P in A. Thus we have
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IdgA(P ) ∩ FigA(B − P ) = ∅ and by Theorem 2 there exists Q ∈ X(A) such that

IdgA(P ) ⊆ Q and Q ∩ FigA(B − P ) = ∅. It follows that P = Q ∩B. �

Remark 14. It is easy to see that if A is a distributive nearlattice and B is

a subnearlattice of A, then FigB(X) = FigA(X) ∩B for every X ⊆ B.

Definition 15. Let 〈A,∇A〉, 〈B,∇B〉 be two qm-distributive nearlattices. We

say that the structure 〈B,∇B〉 is a qm-subnearlattice of 〈A,∇A〉 if B is a sub-

nearlattice of A, and for each b ∈ B we have

FigA(∇B(b)) = ∇A(b).

Theorem 16. Let 〈A,∇A〉 be a qm-distributive nearlattice and B be a sub-

nearlattice of A. Then the following conditions are equivalent:

(1) There exists a map ∇B : B → Fi(B) such that 〈B,∇B〉 is a qm-subnear-

lattice of 〈A,∇A〉,

(2) For each b ∈ B we have

FigA(∇A(b) ∩B) = ∇A(b).

Proof: (1) ⇒ (2) Let b ∈ B. As ∇B is a quasi-modal operator on B, we have

∇A(b) = FigA(∇B(b)) ⊆ FigA(FigA(∇B(b)) ∩B)

= FigA(∇A(b) ∩B) ⊆ ∇A(b).

Hence, FigA(∇A(b) ∩B) = ∇A(b).

(2) ⇒ (1) We define the map ∇B : B → Fi(B) given by ∇B(b) = ∇A(b)∩B. It

is easy to see that ∇B is well defined and ∇B(1) = {1}. Let a, b ∈ B be such that

a∧ b exists in B. We prove the equality ∇A(a∧ b) = FigA((∇A(a)∪∇A(b))∩B).

By Theorem 7, ∇ inverts the order and

FigA((∇A(a) ∪ ∇A(b)) ∩B) ⊆ ∇A(a ∧ b).

We see the other inclusion. If we suppose the contrary, then there is x ∈ ∇A(a∧b)

such that x /∈ FigA((∇A(a) ∪ ∇A(b)) ∩ B). Then by Theorem 2 there exists

P ∈ X(A) such that x ∈ P and P ∩ FigA((∇A(a) ∪ ∇A(b)) ∩B) = ∅. So,

P ∩ (∇A(a) ∪ ∇A(b)) ∩B = (P ∩B ∩ ∇A(a)) ∪ (P ∩B ∩ ∇A(b)) = ∅.

Since x ∈ ∇A(a ∧ b) = FigA(∇A(a ∧ b) ∩ B), there exist x1, . . . , xn ∈ [∇A(a ∧

b) ∩ B)A such that x1 ∧ . . . ∧ xn exists and x = x1 ∧ . . . ∧ xn. So, there exist

y1, . . . , yn ∈ ∇A(a ∧ b) ∩ B such that yi ≤ xi for all i ∈ {1, . . . , n}. It follows

that y1, . . . , yn ∈ ∇A(a) ⊻ ∇A(b) = FigA(∇A(a) ∪ ∇A(b)). Thus, there exist

za1 , . . . , z
a
n ∈ ∇A(a) and zb1, . . . , z

b
n ∈ ∇A(b) such that yi = zai ∧ zbi for all i ∈
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{1, . . . , n}. As x = x1 ∧ . . . ∧ xn ∈ P and P is prime, there is j ∈ {1, . . . , n}

such that xj ∈ P . Then yj = zaj ∧ zbj ∈ P and again, since P is prime, we have

zaj ∈ P or zbj ∈ P .

We suppose zaj ∈ P . As zaj ∈ ∇A(a) = FigA(∇A(a) ∩ B), then there exist

w1, . . . , wm ∈ [∇A(a)∩B)A such that w1∧. . .∧wm exists and zaj = w1∧. . .∧wm.

So, there exist w1, . . . , wm ∈ ∇A(a)∩B such that wi ≤ wi for all i ∈ {1, . . . ,m}.

Since P is prime and zaj ∈ P , there is k ∈ {1, . . . ,m} such that wk ∈ P . Thus,

wk ∈ P . In summary, wk ∈ P ∩B ∩ ∇A(a) and

(P ∩B ∩ ∇A(a)) ∪ (P ∩B ∩ ∇A(b)) 6= ∅,

which is a contradiction. If we suppose zbj ∈ P , the argument is analogous. Then

x ∈ FigA((∇A(a) ∪ ∇A(b)) ∩B) and we have

∇A(a ∧ b) = FigA((∇A(a) ∪ ∇A(b)) ∩B).

Then, by Remarks 14, we get

∇B(a ∧ b) = ∇A(a ∧ b) ∩B = FigA((∇A(a) ∪ ∇A(b)) ∩B) ∩B

= FigA(∇B(a) ∪ ∇B(b)) ∩B = FigB((∇B(a) ∪∇B(b))

= ∇B(a) ⊻∇B(b).

Therefore, the pair 〈B,∇B〉 is a qm-subnearlattice of 〈A,∇A〉. �

Remark 17. Following Example 5, let 〈A,� 〉 be a distributive nearlattice with

a necessity modal operator and ∇� the quasi-modal operator associated with �

given by ∇�(a) = [� a). Let B be a subnearlattice of A. If condition (2) of

Theorem 16 is satisfied, then for each b ∈ B we have FigA([� b) ∩ B) = [� b).

Thus, � b ∈ FigA([� b) ∩B) and there exist x1, . . . , xn ∈ [ [�b) ∩B)A such that

x1 ∧ . . .∧ xn exists and � b = x1 ∧ . . .∧ xn. So, there exist y1, . . . , yn ∈ [� b)∩B

such that yi ≤ xi for all i ∈ {1, . . . , n}. It follows

� b ≤ y1 ∧ . . . ∧ yn ≤ x1 ∧ . . . ∧ xn = � b,

i.e., � b = y1 ∧ . . . ∧ yn. On the other hand, since B is a subnearlattice of A,

y1 ∧ · · · ∧ yn ∈ B and � b ∈ B. Therefore, the qm-subnearlattices are a general-

ization of the �-subalgebras studied in [7].

2. Some extensions of qm-distributive nearlattices

Our aim is to introduce and study the classes of topological and monadic quasi-

modal distributive nearlattices through the binary relation R∇ and the operator
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♦∇ given by (•), and the connection that exists with the distributive lattice of its

finitely generated filters. We begin this section by noting that Proposition 8 can

be reformulated in a more general context. This result will be of great importance

for the rest of the paper.

Proposition 18. Let 〈A,∇〉 be a qm-distributive nearlattice. Let F ∈ Fi(A)

and P ∈ X(A). Then ♦∇(F ) ∩ P 6= ∅ if and only if there exists Q ∈ X(A) such

that (P,Q) ∈ R∇ and F ∩Q 6= ∅.

Proof: It follows from Proposition 8 and (•). �

If 〈A,∇〉 is a qm-distributive nearlattice and X ⊆ A, we define recursively

♦0
∇
(X) = Fig(X),

and

♦n
∇
(X) = ♦∇(♦n−1

∇
(X))

for n > 0. It follows that ♦1
∇
(X) = ♦∇(X), which agrees with Definition 9. The

next result is a generalization of Proposition 18.

Proposition 19. Let 〈A,∇〉 be a qm-distributive nearlattice. Let F ∈ Fi(A)

and P ∈ X(A). Then for n ≥ 1, ♦n
∇
(F ) ∩ P 6= ∅ if and only if there exists

Q ∈ X(A) such that (P,Q) ∈ Rn
∇

and F ∩Q 6= ∅.

Proof: The proof is by induction on n. The case n = 1 is Proposition 18.

Assume that ♦n
∇
(F ) ∩ P 6= ∅ if and only if there exists Q ∈ X(A) such that

(P,Q) ∈ Rn
∇

and F ∩ Q 6= ∅. Suppose ♦
n+1

∇
(F ) ∩ P 6= ∅. Then ♦∇(♦n

∇
(F )) ∩

P 6= ∅ and by Proposition 18 there exists R ∈ X(A) such that (P,R) ∈ R∇

and ♦n
∇
(F ) ∩ R 6= ∅. By inductive hypothesis there is Q ∈ X(A) such that

(R,Q) ∈ Rn
∇

and F ∩Q 6= ∅. Hence (P,Q) ∈ Rn+1

∇
and F ∩Q 6= ∅.

Conversely, suppose there exists Q ∈ X(A) such that (P,Q) ∈ Rn+1

∇
and F ∩

Q 6= ∅. Then there is R ∈ X(A) such that (P,R) ∈ R∇ and (R,Q) ∈ Rn
∇
. It

follows by inductive hypothesis ♦n
∇
(F ) ∩ R 6= ∅. Then there is y ∈ R such that

y ∈ ♦n
∇
(F ). So, ∇y ⊆ ♦n+1

∇
(F ). On the other hand, since (P,R) ∈ R∇, we have

γ(P ) ∩R = ∅ and y /∈ γ(P ), i.e., ∇y ∩ P 6= ∅. Therefore, ♦n+1

∇
(F ) ∩ P 6= ∅. �

Theorem 20. Let 〈A,∇〉 be a qm-distributive nearlattice. Then the following

properties are satisfied:

(1) F ⊆ ♦∇(F ) for every F ∈ Fi(A) if and only if R∇ is reflexive.

(2) ♦2
∇
(F ) ⊆ ♦∇(F ) for every F ∈ Fi(A) if and only if R∇ is transitive.

(3) ♦n
∇
(F ) ⊆ F for every F ∈ Fi(A) if and only if for all P,Q ∈ X(A),

(P,Q) ∈ Rn
∇

implies Q ⊆ P .

(4) ♦
n+1

∇
(F ) ⊆ F ⊻ ♦∇(F ) ⊻ . . . ⊻ ♦n

∇
(F ) for every F ∈ Fi(A) if and only if

for all P,Q ∈ X(A), if (P,Q) ∈ Rn+1

∇
and F ∩ Q 6= ∅, then there exists

j ∈ {0, . . . , n} such that ♦
j
∇
(F ) ∩ P 6= ∅.
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Proof: (1) Let F ∈ Fi(A) and suppose F ⊆ ♦∇(F ). Let P ∈ X(A) such

that γ(P ) ∩ P 6= ∅. Then, since γ(P ) ∈ Fi(A) by Theorem 7, we have by

hypothesis ♦∇(γ(P )) ∩ P 6= ∅. So, by Proposition 18, there exists Q ∈ X(A)

such that (P,Q) ∈ R∇ and γ(P ) ∩ Q 6= ∅, which is a contradiction. Then

γ(P ) ∩ P = ∅ and R∇ is reflexive. Reciprocally, suppose there is F ∈ Fi(A) such

that F * ♦∇(F ). Then there is x ∈ F such that x /∈ ♦∇(F ). By Theorem 2

there exists P ∈ X(A) such that x ∈ P and ♦∇(F ) ∩ P = ∅. Since (P, P ) ∈ R∇

and F ∩P 6= ∅, by Proposition 18 it follows ♦∇(F )∩P 6= ∅ which is impossible.

(2) Let F ∈ Fi(A) and suppose ♦2
∇
(F ) ⊆ ♦∇(F ). Let P,Q,R ∈ X(A) be such

that (P,Q), (Q,R) ∈ R∇. If (P,R) /∈ R∇, then γ(P ) ∩ R 6= ∅. As (Q,R) ∈ R∇,

by Proposition 18 we have ♦∇(γ(P )) ∩ Q 6= ∅. Since (P,Q) ∈ R∇, again by

Proposition 18 it follows ♦2
∇
(γ(P )) ∩ P 6= ∅. Thus, by Proposition 19 there

exists T ∈ X(A) such that (P, T ) ∈ R∇ and γ(P ) ∩ T 6= ∅ which is impossible.

Conversely, suppose there is F ∈ Fi(A) such that ♦2
∇
(F ) 6⊆ ♦∇(F ). So, there is

x ∈ ♦2
∇
(F ) such that x /∈ ♦∇(F ). Then by Theorem 2 there exists P ∈ X(A)

such that x ∈ P and ♦∇(F ) ∩ P = ∅. On the other hand, ♦2
∇
(F ) ∩ P 6= ∅ and

by Proposition 19 there exists Q ∈ X(A) such that (P,Q) ∈ R2
∇

and F ∩Q 6= ∅.

By hypothesis R∇ is transitive and R2
∇
⊆ R∇, then (P,Q) ∈ R∇ and F ∩Q 6= ∅.

Thus by Proposition 18 it follows ♦∇(F ) ∩ P 6= ∅, which is a contradiction.

Therefore ♦2
∇
(F ) ⊆ ♦∇(F ) for every F ∈ Fi(A).

(3) Let F ∈ Fi(A) be such that ♦n
∇
(F ) ⊆ F . Let P,Q ∈ X(A) be such that

(P,Q) ∈ Rn
∇
. If a ∈ Q, then [ a) ∩ Q 6= ∅ and by Proposition 19 we have

♦n
∇
([ a)) ∩ P 6= ∅. As ♦n

∇
([ a)) ⊆ [ a), then [ a) ∩ P 6= ∅ and a ∈ P . So, Q ⊆ P .

For the other implication, suppose there is F ∈ Fi(A) such that ♦n
∇
(F ) 6⊆ F , i.e.,

there is x ∈ ♦n
∇
(F ) such that x /∈ F . Then by Theorem 2 there exists P ∈ X(A)

such that x ∈ P and F ∩ P = ∅. Since ♦n
∇
(F ) ∩ P 6= ∅, by Proposition 19 there

exists Q ∈ X(A) such that (P,Q) ∈ Rn
∇

and F ∩ Q 6= ∅. Then by hypothesis

Q ⊆ P and F ∩ P 6= ∅, which is impossible. Hence ♦n
∇
(F ) ⊆ F for every

F ∈ Fi(A).

(4) Let F ∈ Fi(A) and suppose ♦
n+1

∇
(F ) ⊆ F ⊻ ♦∇(F ) ⊻ . . . ⊻ ♦n

∇
(F ). Let

P,Q ∈ X(A) be such that (P,Q) ∈ Rn+1

∇
and F ∩ Q 6= ∅. By Proposition 19,

♦n+1
∇

(F ) ∩ P 6= ∅ and by hypothesis,

(F ⊻ ♦∇(F ) ⊻ . . . ⊻ ♦n
∇
(F )) ∩ P 6= ∅,

i.e., there is x ∈ P such that x ∈ F ⊻ ♦∇(F ) ⊻ . . . ⊻ ♦n
∇
(F ). So, there exist

x1, . . . , xn ∈ F ∪ ♦∇(F ) ∪ . . . ∪ ♦n
∇
(F ) such that x1 ∧ . . . ∧ xn exists and x =

x1 ∧ . . . ∧ xn. As x ∈ P and P is prime, there is k ∈ {1, . . . , n} such that

xk ∈ P and there is j ∈ {0, . . . , n} such that xk ∈ ♦
j
∇
(F ). Then ♦

j
∇
(F ) ∩

P 6= ∅. Reciprocally, suppose there is F ∈ Fi(A) such that ♦
n+1

∇
(F ) * F ⊻



170 I. Calomino

♦∇(F ) ⊻ . . .⊻ ♦n
∇
(F ), i.e., there is x ∈ ♦

n+1

∇
(F ) such that x /∈ F ⊻ ♦∇(F ) ⊻ . . . ⊻

♦n
∇
(F ). By Theorem 2 there exists P ∈ X(A) such that x ∈ P and

(⋆) (F ⊻ ♦∇(F ) ⊻ . . . ⊻ ♦n
∇
(F )) ∩ P = ∅.

On the other hand, ♦n+1

∇
(F )∩P 6= ∅ and by Proposition 19 there exists Q ∈ X(A)

such that (P,Q) ∈ Rn+1
∇

and F ∩ Q 6= ∅. Thus, by hypothesis, there exists

j ∈ {0, . . . , n} such that ♦
j
∇
(F ) ∩ P 6= ∅ which is impossible by (⋆). �

Definition 21. Let 〈A,∇〉 be a qm-distributive nearlattice. We say that ∇ is

topological if it satisfies the following conditions for each a ∈ A:

(R) [ a) ⊆ ∇a,

(T) ♦∇(∇a) ⊆ ∇a.

Moreover, we say that ∇ is monadic if it is topological and verifies the following

additional condition for each a, b ∈ A:

(M) ∇a ∩ ∇b ⊆ ♦∇([ a) ∩∇b).

A pair 〈A,∇〉 is a topological qm-distributive nearlattice if A is a distributive

nearlattice and∇ is a topological quasi-modal operator on A. Analogously, a pair

〈A,∇〉 is a monadic qm-distributive nearlattice if A is a distributive nearlattice

and ∇ is a monadic quasi-modal operator on A.

The topological and monadic qm-distributive nearlattices are generalizations

of the S4-nearlattices and the S5-nearlattices, respectively, studied in [7].

Remark 22. If 〈A,∇〉 is a topological qm-distributive nearlattice, then we have

♦∇(∇a) = ∇a for every a ∈ A.

Now we are going to focus on the class of fqm-distributive nearlattices.

Theorem 23. Let 〈A,∇〉 be a fqm-distributive nearlattice. Then 〈A,∇〉 is to-

pological if and only if F ⊆ ♦∇(F ) and ♦2
∇
(F ) ⊆ ♦∇(F ) for every F ∈ Fif(A).

Proof: Let F ∈ Fif(A). Then there exist a1, . . . , an ∈ A such that F =

[ a1) ⊻ . . . ⊻ [ an). By Remark 10 and condition (R) of Definition 21 we have

F ⊆ ∇a1 ⊻ . . . ⊻∇an = ♦∇([ a1)) ⊻ . . . ⊻ ♦∇([ an))

= ♦∇([ a1) ⊻ . . . ⊻ [ an)) = ♦∇(F ).

On the other hand, F = [ a1)⊻ . . .⊻ [ an) implies ♦∇(F ) = ∇a1 ⊻ . . .⊻∇an. Thus,

by the condition (T) of Definition 21,

♦2
∇(F ) = ♦∇(∇a1 ⊻ . . . ⊻∇an) = ♦∇(∇a1) ⊻ . . . ⊻ ♦∇(∇an)

⊆ ∇a1 ⊻ . . . ⊻∇an = ♦∇(F )

i.e., ♦2
∇
(F ) ⊆ ♦∇(F ). The converse is just restriction to principal filters. �
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Corollary 24. Let 〈A,∇〉 be a topological fqm-distributive nearlattice. Then

♦∇(F ∩ ♦∇(G)) ⊆ ♦∇(F ) ∩ ♦∇(G),

for every F,G ∈ Fif(A).

Proof: Let F,G ∈ Fif(A) and suppose there is x ∈ ♦∇(F ∩ ♦∇(G)) such that

x /∈ ♦∇(F ) ∩ ♦∇(G). By Theorem 2 there exists P ∈ X(A) such that x ∈ P

and ♦∇(F ) ∩ ♦∇(G) ∩ P = ∅. Since ♦∇(F ∩ ♦∇(G)) ∩ P 6= ∅, by Proposition 18

there exists Q ∈ X(A) such that (P,Q) ∈ R∇ and F ∩ ♦∇(G) ∩ Q 6= ∅. Since

(P,Q) ∈ R∇ and F ∩ Q 6= ∅, again by Proposition 18 we have ♦∇(F ) ∩ P 6= ∅.

On the other hand, as (P,Q) ∈ R∇ and ♦∇(G) ∩ Q 6= ∅, by Proposition 18 it

follows ♦2
∇
(G) ∩ P 6= ∅. By hypothesis 〈A,∇〉 is a topological fqm-distributive

nearlattice, then by Theorem 23 we have ♦2
∇
(G) ⊆ ♦∇(G) and ♦∇(G) ∩ P 6= ∅.

So, ♦∇(F )∩♦∇(G)∩P 6= ∅, which is impossible. We conclude ♦∇(F ∩♦∇(G)) ⊆

♦∇(F ) ∩ ♦∇(G). �

Consider the relation E∇ = R∇ ∩R−1

∇
.

Lemma 25. Let 〈A,∇〉 be a topological fqm-distributive nearlattice. Then

E∇ = {(P,Q) ∈ X(A)×X(A) : γ(P ) = γ(Q)}.

Proof: Let P,Q ∈ X(A) be such that (P,Q) ∈ E∇. Then (P,Q) ∈ R∇ and

(Q,P ) ∈ R∇. If a /∈ γ(Q), then ∇a ∩ Q 6= ∅ and since (P,Q) ∈ R∇ by Propo-

sition 18 we have ♦∇(∇a) ∩ P 6= ∅. By Remark 22 it follows ∇a ∩ P 6= ∅ and

a /∈ γ(P ). Thus, γ(P ) ⊆ γ(Q). The other inclusion is similar and γ(P ) = γ(Q).

The reciprocal is immediate because R∇ is reflexive by Theorems 23 and 20. �

Theorem 26. Let 〈A,∇〉 be a topological fqm-distributive nearlattice. If R∇ ⊆

E∇◦ ⊆−1, then 〈A,∇〉 is monadic.

Proof: Let a, b ∈ A. Suppose there is x ∈ ∇a∩∇b such that x /∈ ♦∇([ a)∩∇b).

Then by Theorem 2 there exists P ∈ X(A) such that x ∈ P and ♦∇([ a) ∩

∇b) ∩ P = ∅. Then x ∈ ∇a ∩ P , i.e., ∇a ∩ P 6= ∅ and by Proposition 8

there is Q ∈ X(A) such that (P,Q) ∈ R∇ and a ∈ Q. Thus, by hypothesis,

(P,Q) ∈ E∇◦ ⊆−1 and there exists R ∈ X(A) such that (P,R) ∈ E∇ and Q ⊆ R.

By Lemma 25 we have γ(P ) = γ(R) and a ∈ R. On the other hand, x ∈ ∇b ∩ P

implies b /∈ γ(P ) = γ(R) and ∇b ∩R 6= ∅. So, there is y ∈ ∇b such that y ∈ R.

Then [ a ∨ y) ⊆ [ a) ∩ ∇b and ♦∇([ a ∨ y)) = ∇(a ∨ y) ⊆ ♦∇([ a) ∩ ∇b). As

a, y ∈ R, a ∨ y ∈ R and ∇(a ∨ y) ∩ R 6= ∅ by condition (R) of Definition 21.

Then ♦∇([ a) ∩ ∇b) ∩ R 6= ∅ and as (P,R) ∈ R∇, by Proposition 18 we have

♦2
∇
([ a) ∩ ∇b) ∩ P 6= ∅. Then, by Theorem 23, ♦∇([ a) ∩ ∇b) ∩ P 6= ∅ which is

a contradiction. Thus, ∇a ∩ ∇b ⊆ ♦∇([ a) ∩ ∇b). �
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Theorem 27. Let 〈A,∇〉 be a topological fqm-distributive nearlattice. Then

〈A,∇〉 is monadic if and only if

♦∇(F ) ∩ ♦∇(G) ⊆ ♦∇(F ∩ ♦∇(G))

for every F,G ∈ Fif(A).

Proof: Let F,G ∈ Fif(A). Then there exist a1, . . . , an, b1, . . . , bm ∈ A such

that F = [ a1) ⊻ . . . ⊻ [ an) and G = [ b1) ⊻ . . . ⊻ [ bm). Thus, by Remark 10 we

have ♦∇(F ) = ∇a1 ⊻ . . .⊻∇an and ♦∇(G) = ∇b1 ⊻ . . .⊻∇bm. Then since Fif(A)

is a distributive lattice and by condition (M) of Definition 21, it follows

♦∇(F ) ∩ ♦∇(G) = (∇a1 ⊻ . . . ⊻∇an) ∩ (∇b1 ⊻ . . . ⊻∇bk)

=
∨

{∇ai ∩ ∇bj : 1 ≤ i ≤ n, 1 ≤ j ≤ m}

⊆
∨

{♦∇([ai) ∩∇bj) : 1 ≤ i ≤ n, 1 ≤ j ≤ m}.

Note that [ ai) ∩ ∇bj is a principal filter for all i ∈ {1, . . . , n} and for all j ∈

{1, . . . ,m}. Indeed, since ∇bj ∈ Fif(A), then there exist c1, . . . , ck ∈ A such that

∇bj = [ c1) ⊻ . . . ⊻ [ ck). So,

[ ai) ∩ ∇bj = [ ai) ∩ ([ c1) ⊻ . . . ⊻ [ ck)) = [ c1 ∨ ai) ⊻ . . . ⊻ [ ck ∨ ai)

= [ (c1 ∨ ai) ∧ . . . ∧ (ck ∨ ai)) = [mk−1(c1, . . . , ck, ai))

and [ ai) ∩ ∇bj = [mk−1(c1, . . . , ck, ai)). Then for each i ∈ {1, . . . , n} and each

j ∈ {1, . . . ,m}, let dij ∈ A be such that [ ai) ∩∇bj = [ dij). Thus,

♦∇(F ) ∩ ♦∇(G) ⊆
∨

{♦∇([ ai) ∩ ∇bj) : 1 ≤ i ≤ n, 1 ≤ j ≤ m}

=
∨

{♦∇([ dij)) : 1 ≤ i ≤ n, 1 ≤ j ≤ m}

= ♦∇

(

∨

{[ dij) : 1 ≤ i ≤ n, 1 ≤ j ≤ m}
)

= ♦∇

(

∨

{[ ai) ∩ ∇bj : 1 ≤ i ≤ n, 1 ≤ j ≤ m}
)

= ♦∇(([ a1) ⊻ . . . ⊻ [ an)) ∩ (∇b1 ⊻ . . . ⊻∇bm))

= ♦∇(F ∩ ♦∇(G)).

Reciprocally, if a, b ∈ A, then by Remark 10 and by hypothesis we have

∇a ∩ ∇b = ♦∇([ a)) ∩ ♦∇([ b)) ⊆ ♦∇

(

[ a) ∩ ♦∇([ b))
)

= ♦∇([ a) ∩ ∇b).

Therefore, 〈A,∇〉 is a monadic fqm-distributive nearlattice. �
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The notion of quantifier on a Boolean algebra was introduced by P.R. Halmos

in [18] and later by R. Cignoli in the class of bounded distributive lattices, see [11].

Recall that a quantifier on a bounded distributive lattice L = 〈L,∨,∧, 0, 1〉 is

a unary operator ∆: L → L that verifies the following conditions for every

a, b ∈ A:

◦ ∆0 = 0,

◦ a ∧∆ a = a,

◦ ∆(a ∧∆ b) = ∆ a ∧∆ b,

◦ ∆(a ∨ b) = ∆ a ∨∆ b.

We have the main result of this paper which is a consequence of Theorem 11,

Corollary 24 and Theorem 27.

Theorem 28. Let A be a distributive nearlattice. Then there is a one to one cor-

respondence between monadic finite quasi-modal operators on A and quantifiers

on Fif(A).
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[14] González L. J., Selfextensional logics with a distributive nearlattice term, Arch. Math. Logic
58 (2019), no. 1–2, 219–243.
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