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Isomorphic properties in spaces of compact operators

Ioana Ghenciu

Abstract. We introduce the definition of p-limited completely continuous opera-
tors, 1 ≤ p < ∞. The question of whether a space of operators has the property
that every p-limited subset is relative compact when the dual of the domain and
the codomain have this property is studied using p-limited completely continuous
evaluation operators.

Keywords: p-limited set; limited set; space of compact operators

Classification: 46B20, 46B25, 46B28

1. Introduction

A subset A of a Banach space X is called limited (or Dunford–Pettis (DP))

if every w∗-null (weakly null, respectively) sequence (x∗n) in X∗ tends to 0 uni-

formly on A; i.e.,

sup
x∈A

|x∗n(x)| → 0.

A subset A of a dual Banach space X∗ is called an L-set in X∗ if every weakly

null sequence (xn) in X converges uniformly on A.

A Banach space X has the Gelfand–Phillips (GP) property (or is a Gelfand–

Phillips space) if every limited subset of X is relatively compact.

Spaces with the Gelfand–Phillips property include, among others, Schur spaces,

spaces with w∗-sequential compact dual unit balls, separable spaces, reflexive

spaces, spaces whose duals do not contain l1, see [3], [11], [24, page 31].

A Banach space X has the Dunford–Pettis relatively compact property (DPrcP)

if every DP subset of X is relatively compact.

It is known that l1 6 →֒ X if and only if X∗ has the DPrcP if and only if any

L-subset of X∗ is relatively compact, see [12], [11].

An operator T : X → Y is called limited completely continuous (or lcc),

see [23], (or Dunford–Pettis completely continuous (DPcc), see [25]) if T takes

weakly null limited (DP, respectively) sequences in X to norm null ones in Y .
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176 I. Ghenciu

A. K. Sinha and D. P. Karn in [19] extended the idea of limited sets to a p-level

by introducing the following definition.

A subset A of a Banach space X is p-limited, 1 ≤ p < ∞, if for every

weak∗ (weak) p-summable sequence (x∗n) in X∗, there exists (αn) ∈ lp such

that |x∗n(x)| ≤ αn for all x ∈ A and n ∈ N.

We say that a Banach space X has the p-limited relatively compact property,

p-limited rcP, if every p-limited set in X is relatively compact.

We say that an operator T : X → Y is called p-limited completely continuous

(or p-limited cc) if T takes weakly null p-limited sequences in X to norm null

ones in Y , 1 ≤ p <∞.

Numerous papers have investigated whether spaces of operators inherit the

Dunford–Pettis relative compact property or the Gelfand–Phillips property when

the codomain and the dual of the domain possess the respective property; e.g.,

see [12], [14], [17], [10], [23], [4], and [25].

In [23], [14], and [25], limited completely continuous evaluation operators and

Dunford–Pettis completely continuous evaluation operators were used to give suf-

ficient conditions for the Gelfand–Phillips property and the DPrcP of some spaces

of operators. In this paper p-limited completely continuous evaluation operators

are used to study the p-limited relatively compact property in spaces of operators.

We show that if every operator T : Y ∗ → X∗ is p-summing, Y has the p-

limited rcP, and M is a closed subspace of L(X,Y ) = K(X,Y ) such that the

evaluation operator ψy∗ : M → X∗ is p-limited completely continuous for each

y∗ ∈ Y ∗, then M has the p-limited rcP, 1 < p < ∞. We prove that if X

has the p-limited rcP, Y has the Schur property, and M is a closed subspace of

Lw∗(X∗, Y ) = Kw∗(X∗, Y ), then M has the p-limited rcP. We also prove that if

Kw∗(X∗, Y ) has the p-limited rcP property, then at least one of the spaces X

and Y does not contain l2.

2. Definitions and notation

Throughout this paper, X and Y will denote Banach spaces. The unit ball

of X will be denoted by BX , the closed linear span of a sequence (xn) in X will

be denoted by [xn], and X∗ will denote the continuous linear dual of X . The

spaceX embeds in Y (in symbols X →֒ Y ) if X is isomorphic to a closed subspace

of Y . An operator T : X → Y will be a continuous and linear function. The

set of all operators, weakly compact operators, and compact operators from X

to Y will be denoted by L(X,Y ), W (X,Y ), and K(X,Y ). The space of all

w∗ −w continuous (or w∗ −w continuous compact) operators from X∗ to Y will

be denoted by Lw∗(X∗, Y ) (Kw∗(X∗, Y ), respectively). The projective tensor

product of X and Y will be denoted by X ⊗π Y .
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An operator T : X → Y is called completely continuous (or Dunford–Pettis)

if T maps weakly convergent sequences to norm convergent sequences.

A Banach space X has the Dunford–Pettis property (DPP) if every weakly

compact operator T : X → Y is completely continuous for any Banach space Y .

If X is a C(K)-space or an L1-space, then X has the DPP. The reader can check

[7] and [6] for results related to the DPP.

For 1 ≤ p < ∞, p∗ denotes the conjugate of p. If p = 1, c0 plays the role

of lp∗ . The unit vector basis of lp will be denoted by (en).

Let 1 ≤ p < ∞. The space of weakly p-summable (or p-summable) sequences

in X is denoted by lwp (X) (lp(X), respectively) endowed with its norm

‖(xn)‖wp = sup

{( ∞
∑

n=1

|〈x∗, xn〉|
p

)1/p

: x∗ ∈ BX∗

}

(

‖(xn)‖p =

( ∞
∑

n=1

‖xn‖
p

)1/p

, respectively

)

.

If p < q, then lwp (X) ⊆ lwq (X). Further, the unit vector basis of lp∗ is weakly

p-summable for all 1 < p < ∞. The weakly 1-summable sequences are precisely

the weakly unconditionally convergent series.

We recall the following isometries: L(lp∗ , X) ≃ lwp (X) for 1 < p < ∞;

L(c0, X) ≃ lwp (X) for p = 1; T → (T (en)), see [8, Proposition 2.2, page 36].

Let 1 ≤ p < ∞. A sequence (x∗n) in X∗ is called weak∗ p-summable if

(〈x∗n, x〉) ∈ lp for each x ∈ X . Let lw
∗

p (X∗) denote the set of all weak∗ p-

summable sequences in X∗. This is a Banach space with the norm

‖(x∗n)‖w
∗

p = sup

{( ∞
∑

n=1

|〈x∗n, x〉|
p

)1/p

: x ∈ BX

}

.

The map (x∗i ) → L(x∗

i
), where L(x∗

i
)(x) = (〈x∗i , x〉), identifies lw

∗

p (X∗) and

L(X, lp) isometrically for all 1 < p < ∞. The spaces lw
∗

p (X∗) and lwp (X∗) are

the same for 1 ≤ p <∞, see [13].

Let 1 ≤ p < ∞. An operator T : X → Y is called p-summing (or absolutely

p-summing) if (Txn) ∈ lp(Y ) whenever (xn) ∈ lwp (X). The set of all p-summing

operators from X to Y is denoted by Πp(X,Y ).
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3. Spaces of operators in which p-limited subsets are relatively com-

pact

In the following we use p-limited completely continuous evaluation operators

to give necessary and sufficient conditions for some spaces of operators to have

the p-limited rcP.

If H ⊆ L(X,Y ), x ∈ X and y∗ ∈ Y ∗, let H(x) = {T (x) : T ∈ H} and

H∗(y∗) = {T ∗(y∗) : T ∈ H}.

Suppose that X and Y are Banach spaces and M is a closed subspace of

L(X,Y ). If x ∈ X and y∗ ∈ Y ∗, the evaluation operators ϕx : M → Y and

ψy∗ : M → X∗ are defined by

ϕx(T ) = T (x), ψy∗(T ) = T ∗(y∗), T ∈M.

Let 1 ≤ p < ∞. A subset A of X∗ is called a p-L-set in X∗, see [16], if for

every weakly p-summable sequence (xn) in X , there exists (αn) ∈ lp such that

|x∗(xn)| ≤ αn for all x∗ ∈ A and n ∈ N.

We will use the following facts:

(A) Let 1 ≤ p < ∞. A subset A of X∗ is a p-L-set in X∗ if and only if it is

a p-limited set in X∗ [16, Corollary 3 (ii)].

(B) A sequence (x∗n) in X∗ is p-limited (i.e. the set of its terms is p-limited)

if and only if (x∗n(xn)) ∈ lp for every (xn) ∈ lwp (X), by [16, Theorem 14].

(C) A sequence (xn) in X is p-limited if and only if (x∗n(xn)) ∈ lp for every

(x∗n) ∈ lwp (X∗), by [16, Corollary 15].

(D) The Banach space X has the p-limited rcP if and only if every weakly null

p-limited sequence in X is norm null (since p-limited sets are relatively

weakly compact, see [5, Proposition 2.1]).

(E) The unit vector basis (en) of c0 is p-limited for all p ≥ 1 and not relatively

compact [5, page 717]. If X has the p-limited rcP, then c0 6 →֒ X .

If l1 6 →֒ X , then X∗ has the p-limited rcP, 1 ≤ p < ∞, see [16, Corollary 11].

Schur spaces have the p-limited rcP.

Lemma 1. Let 1 ≤ p < ∞. Suppose that L(Y,X∗) = Πp(Y,X∗). If (yn) is

weakly p-summable in Y and (xn) is bounded in X , then (xn ⊗ yn) is weakly

p-summable in X ⊗π Y .

Proof: Without loss of generality suppose ‖xn‖ ≤ 1. Let T ∈ (X ⊗π Y )∗ ≃

L(X,Y ∗), see [9, page 230]. Then T ∗|Y : Y → X∗ is p-summing and

∑

n

|〈T, xn ⊗ yn〉|
p ≤

∑

n

‖T ∗(yn)‖p <∞.

�
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Theorem 2. Let 1 < p < ∞. Suppose that L(Y,X∗) = Πp(Y,X∗) and Y ∗ has

the p-limited rcP. If M is a closed subspace of L(X,Y ∗) = K(X,Y ∗) such that

the evaluation operator ψy∗∗ : M → X∗ is p-limited completely continuous for

each y∗∗ ∈ Y ∗∗, then M has the p-limited rcP.

Proof: Let T : X → Y ∗ be an operator. Since T ∗|Y : Y → X∗ is p-summing,

T (BX) is a p-limited set in Y ∗, see [16, Theorem 7], thus relatively compact.

Hence L(X,Y ∗) = K(X,Y ∗).

Let (Tn) be a weakly null p-limited sequence in M such that ‖Tn‖ = 1 for

each n. Let (xn) be a sequence in BX such that ‖Tn(xn)‖ > 1/2 for each n.

Let y∗∗ ∈ Y ∗∗. The sequence (ψy∗∗(Tn)) = (T ∗

n(y∗∗)) is norm null in X∗.

Hence 〈y∗∗, Tn(xn)〉 ≤ ‖T ∗

n(y∗∗)‖ → 0, and thus (Tn(xn)) is weakly null.

Suppose (yn) ∈ lwp (Y ) and (xn) is a sequence in BX . By Lemma 1, (xn⊗yn) is

weakly p-summable in X ⊗π Y . Since (Tn) is a p-limited sequence in L(X,Y ∗) ≃

(X ⊗π Y )∗, see [9, page 230]), (〈Tn, xn ⊗ yn〉) = (〈Tn(xn), yn〉) ∈ lp. Therefore

(Tn(xn))n is p-limited in Y ∗, see [16, Corollary 3 (ii)], hence relatively compact.

Thus ‖Tn(xn)‖ → 0, and we have a contradiction. �

The Banach–Mazur distance d(E,F ) between two isomorphic Banach spaces E

and F is defined by inf(‖T ‖‖T−1‖), where the infimum is taken over all isomor-

phisms T fromE onto F . A Banach spaceE is called an L∞-space (or L1-space),

see [2], if there is a λ ≥ 1 so that every finite dimensional subspace of E is con-

tained in another subspace N with d(N, ln
∞

) ≤ λ (d(N, ln1 ) ≤ λ, respectively) for

some integer n. Complemented subspaces of C(K) spaces (or L1(µ)) spaces) are

L∞-spaces (L1-spaces, respectively), see [2, Proposition 1.26]. The dual of an

L1-space (or L∞-space) is an L∞-space (L1- space, respectively), see [2, Propo-

sition 1.27]. The L∞-spaces, L1-spaces, and their duals have the DPP, see [2,

Corollary 1.30].

Observation 1. (i) Let 1 ≤ p ≤ 2. If X is an L∞-space and Y is an Lp-space,

then every operator T : X → Y is 2-summing, see [8, Theorem 3.7, page 64].

(ii) If X and Y are L∞-spaces, then L(X,Y ∗) = Πp(X,Y ∗), 2 ≤ p < ∞.

Indeed, by (i), every operator T : X → Y ∗ is 2-summing, and thus p-summing,

2 ≤ p <∞.

Observation 2 ([1]). If T : Y → X∗ is an operator such that T ∗|X is compact

(or weakly compact), then T is compact (weakly compact, respectively).

Corollary 3. Let 1 ≤ p < ∞. Suppose that L(Y,X∗) = Πp(Y,X∗) and X∗

and Y ∗ have the p-limited rcP. If M is a closed subspace of L(X,Y ∗)=K(X,Y ∗),

then M has the p-limited rcP. Further, l1 6
c

→֒ X ⊗π Y .
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Proof: Since X∗ has the p-limited rcP, ψy∗∗ : M → X∗ is p-limited cc for each

y∗∗ ∈ Y ∗∗. Apply Theorem 2. Since L(X,Y ∗) has the p-limited rcP, c0 6 →֒

L(X,Y ∗) ≃ (X ⊗π Y )∗. Thus l1 6
c

→֒ X ⊗π Y by a result of Bessaga–Pe lczyński,

[7, Theorem 10, page 48]. �

A topological space S is called dispersed (or scattered) if every nonempty closed

subset of S has an isolated point. A compact Hausdorff space K is dispersed if

and only if l1 6 →֒ C(K), see [21, Main theorem].

Corollary 4. (i) Let 2 ≤ p < ∞. Suppose X and Y are L∞-spaces, l1 6 →֒ X ,

and Y ∗ has the p-limited rcP. Then L(X,Y ∗) = K(X,Y ∗) has the p-limited rcP.

(ii) Let 2 ≤ p < ∞. Suppose X = C(K1), K1 is dispersed, Y is an L∞-space,

and Y ∗ has the p-limited rcP. Then L(X,Y ∗) = K(X,Y ∗) has the p-limited rcP.

Proof: (i) By Observation 1, L(Y,X∗) = Πp(Y,X∗), 2 ≤ p < ∞. Suppose

l1 6 →֒ X . Since X has the DPP and l1 6 →֒ X , X∗ has the Schur property [6,

Theorem 3]. Apply Corollary 3. �

Theorem 5. Let 1 < p < ∞. Suppose that L(Y ∗, X∗) = Πp(Y ∗, X∗) and Y

has the p-limited rcP. If M is a closed subspace of L(X,Y ) = K(X,Y ) such that

the evaluation operator ψy∗ : M → X∗ is p-limited cc for each y∗ ∈ Y ∗, then M

has the p-limited rcP.

Proof: Let T : X → Y be an operator. Since T ∗ : Y ∗ → X∗ is p-summing,

T (BX) is a p-limited set in Y , see [5, Theorem 3.1], and thus relatively compact.

Hence T is compact. Thus L(X,Y ) = K(X,Y ).

Let (Tn) be a weakly null p-limited sequence in M such that ‖Tn‖ = 1. Let

(xn) be a sequence in BX such that ‖Tn(xn)‖ > 1/2. Then (ψy∗(Tn)) = (T ∗

n(y∗))

is norm null for each y∗ ∈ Y ∗ and 〈Tn(xn), y∗〉 ≤ ‖T ∗

n(y∗)‖ → 0. Therefore

(Tn(xn)) is weakly null.

Suppose (y∗n) is a weakly p-summable sequence in Y ∗. By Lemma 1, (xn ⊗ y∗n)

is weakly p-summable in X ⊗π Y ∗. Now L(X,Y ) embeds isometrically in

L(X,Y ∗∗) ≃ (X ⊗π Y
∗)∗ and (Tn) is a p-limited sequence in L(X,Y ∗∗). Then

(〈Tn, xn ⊗ y∗n〉) = (〈Tn(xn), y∗n〉) ∈ lp. Therefore (Tn(xn)) is p-limited in Y , and

thus relatively compact. Thus ‖Tn(xn)‖ → 0, and we have a contradiction. �

Corollary 6. Let 1 < p < ∞. Suppose that X∗ and Y have the p-limited rcP

and L(Y ∗, X∗) = Πp(Y ∗, X∗). If M is a closed subspace of L(X,Y ) = K(X,Y ),

then M has the p-limited rcP.

Proof: Since X∗ has the p-limited rcP, ψy∗ : M → X∗ is p-limited cc for each

y∗ ∈ Y ∗. Apply Theorem 5. �
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Corollary 7. Let 2 ≤ p < ∞. Suppose that X is an L∞-space, l1 6 →֒ X , Y is

an L1-space, and Y has the p-limited rcP. Then L(X,Y ) = K(X,Y ) has the

p-limited rcP.

Proof: By Observation 1, L(Y ∗, X∗) = Πp(Y ∗, X∗), 2 ≤ p < ∞. Since X has

the DPP and l1 6 →֒ X , X∗ has the Schur property. Apply Theorem 5. �

The operator T : X → Y is p-limited cc if and only if T takes p-limited sets

to relatively compact sets (since p-limited sets are relatively weakly compact, see

[5, Proposition 2.1]).

Theorem 8. Let 1 < p < ∞. Suppose that X∗ has the p-limited rcP,

L(X,Y ∗∗) = Πp(X,Y ∗∗), and M is a closed subspace of L(X,Y ) = K(X,Y )

such that the evaluation operator ϕx : M → Y is p-limited cc for each x ∈ X .

Then M has the p-limited rcP.

Proof: Let T : X → Y be an operator. Since T ∗∗|X : X → Y ∗∗ is p-summing,

T ∗(BY ∗) is a p-limited set in X∗, see [16, Theorem 7], and thus relatively com-

pact. Therefore T ∗, and thus T , is compact.

Let H be a p-limited subset of M . We show that H is relatively compact. By

[20, Theorems 2.1, 2.2], [14, Theorem 2.2], it is enough to show that (a) H∗(BY ∗)

is relatively compact and (b) H(x) is relatively compact for each x ∈ X .

Let (Tn) be a sequence in H . For each x ∈ X , ϕx : M → Y is p-limited cc,

hence (Tn(x)) = (ϕx(Tn)) is relatively compact.

Let (y∗n) be a sequence in BY ∗ and let (xn) be a weakly p-summable sequence

in X . Then (xn ⊗ y∗n) is weakly p-summable in X ⊗π Y
∗ by [15, Lemma 9]. Now

L(X,Y ) embeds isometrically in L(X,Y ∗∗) and (Tn) is a p-limited sequence in

L(X,Y ∗∗) ≃ (X ⊗π Y
∗)∗. Hence (〈Tn, xn ⊗ y∗n〉) = (〈T ∗

n(y∗n), xn〉) ∈ lp. Therefore

(T ∗

n(y∗n)) is p-limited in X∗, and thus relatively compact.

Then H is relatively compact. �

Corollary 9. Let 1 < p < ∞. Suppose that X∗ and Y have the p-limi-

ted rcP, and L(X,Y ∗∗) = Πp(X,Y ∗∗). Then any closed subspaceM of L(X,Y ) =

K(X,Y ) has the p-limited rcP.

Proof: Since Y has the p-limited rcP, ϕx : M → Y is p-limited cc for each

x ∈ X . Apply Theorem 8. �

We recall the following well-known isometries, see [22, page 60]:

1) Lw∗(X∗, Y ) ≃ Lw∗(Y ∗, X), Kw∗(X∗, Y ) ≃ Kw∗(Y ∗, X) (T → T ∗)

2) W (X,Y ) ≃ Lw∗(X∗∗, Y ) and K(X,Y ) ≃ Kw∗(X∗∗, Y ) (T → T ∗∗).

Theorem 10. Let 1 < p < ∞. Let X and Y be Banach spaces and M be

a closed subspace of Lw∗(X∗, Y ) such that the evaluation operator ψy∗ : M → X
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is p-limited cc for each y∗ ∈ Y ∗. If M does not have the p-limited rcP, then

there is a separable subspace Y0 of Y and an operator A : Y0 → c0 which is not

completely continuous.

Proof: Suppose M does not have the p-limited rcP. Let (Tn) be a weakly null

p-limited sequence in M such that ‖Tn‖ 6→ 0. By passing to a subsequence,

suppose that for some ε > 0, ‖Tn‖ > ε for each n. Let (x∗n) be a sequence in BX∗

so that ‖Tn(x∗n)‖ > ε for each n.

Let y∗ ∈ Y ∗. Since ψy∗ : M → X is p-limited cc, ‖ψy∗(Tn)‖ = ‖T ∗

n(y∗)‖ → 0.

Then 〈y∗, Tn(x∗n)〉 = 〈T ∗

n(y∗), x∗n〉 ≤ ‖T ∗

n(y∗)‖ → 0. Therefore (yn) := (Tn(x∗n)) is

weakly null in Y . By the Bessaga–Pe lczyński selection principle [7, page 43], we

may (and do) assume that (yn) is a seminormalized weakly null basic sequence

in Y . Let Y0 = [yn] be the closed linear span of (yn) and let (y∗n) be the sequence of

coefficient functionals associated with (yn). Define A : Y0 → c0 by A(y) = (y∗k(y)),

y ∈ Y0. Note that ‖A(yn)‖ ≥ 1 for each n. Then A is a bounded linear operator

defined on a separable space, and A is not completely continuous. �

Corollary 11. (i) Let 1 < p <∞. Suppose that X has the p-limited rcP and M

is a closed subspace of Lw∗(X∗, Y ). If M does not have the p-limited rcP, then

there is a separable subspace Y0 of Y and an operator A : Y0 → c0 which is not

completely continuous.

(ii) Let 1 < p < ∞. Suppose that X has the p-limited rcP and Y has the

Schur property. If M is a closed subspace of Lw∗(X∗, Y ) = Kw∗(X∗, Y ), then

M has the p-limited rcP.

(iii) Let 1 < p < ∞. Suppose that X has the Schur property and Y has the

p-limited rcP. If M is a closed subspace of Lw∗(X∗, Y ) = Kw∗(X∗, Y ), then M

has the p-limited rcP.

Proof: (i) Since X has the p-limited rcP, ψy∗ : M → X is p-limited cc. Apply

Theorem 10.

(ii) Suppose that X has the p-limited rcP and Y has the Schur property. Let

T ∈ Lw∗(X∗, Y ). Since T is weakly compact and Y has the Schur property, T is

compact. Suppose that M does not have the p-limited rcP. By Theorem 10, there

is a non-completely continuous operator defined on a closed linear subspace Y0
of Y . This is a contradiction since Y has the Schur property.

(iii) By the previous argument and the isometries 1), M has the p-limited rcP.

�

The space l2 has the p-limited rcP, since l1 6 →֒ l2, see [16, Corollary 11]. The

space Kw∗(l2, l2) does not have the p-limited rcP, since c0 →֒ Kw∗(l2, l2) by [18,

Theorem 20].



Isomorphic properties in spaces of compact operators 183

Theorem 12. Let 1 ≤ p <∞. Suppose that Kw∗(X∗, Y ) has the p-limited rcP.

Then X and Y have the p-limited rcP property and either l2 6 →֒ X or l2 6 →֒ Y .

If moreover Y is a dual space Z∗, the condition l2 6 →֒ Y implies l1 6 →֒ Z.

Proof: Suppose that Kw∗(X∗, Y ) has the p-limited rcP. Then X and Y have the

p-limited rcP, since the p-limited rcP is inherited by closed subspaces. Suppose

l2 →֒ X and l2 →֒ Y . Then c0 →֒ Kw∗(X∗, Y ) by [18, Theorem 20]. This

contradiction proves the first assertion.

Now suppose Y = Z∗ and l1 →֒ Z. Then L1 →֒ Z∗, see [7, page 212]. Also,

the Rademacher functions span l2 inside of L1, hence l2 →֒ Z∗. �

Corollary 13. Let 1 ≤ p < ∞. Suppose that K(X,Y ) has the p-limited rcP.

Then X∗ and Y have the p-limited rcP and either l1 6 →֒ X or l2 6 →֒ Y . If

moreover Y is a dual space Z∗, the condition l2 6 →֒ Y implies l1 6 →֒ Z.

Proof: Apply Theorem 12 and the isometries 2). �
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