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Abstract. We prove that the vector play operator with a uniformly prox-regular charac-
teristic set of constraints is continuous with respect to the BV -norm and to the BV -strict
metric in the space of rectifiable curves, i.e., in the space of continuous functions of bounded
variation. We do not assume any further regularity of the characteristic set. We also prove
that the non-convex play operator is rate independent.
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1. INTRODUCTION

Several phenomena in elasto-plasticity, ferromagnetism, and phase transitions are
modeled by the following evolution variational inequality in a real Hilbert space H
with the inner product (-, -):

(1.1) (z—u(t) +y(t),y'(t) <0 Vze 2, tel0,T]
(1.2) ult) —y(t) € 2 Vtelo,T).

Here u: [0,7] — H is a given “input” function, T > 0 being the final time of
evolution, and y: [0,7] — H is the unknown function, y’ being its derivative. It is
assumed that the set Z in the constraint (1.2) is a closed convex subset of 7, and it

The work of the first author was supported by the institutional support for the devel-
opment of research organizations ICO 47813059. The second author is a member of
GNAMPA-INdAM. Open Access funding provided by Politecnico di Torino within the
CRUI-CARE Agreement.

DOI: 10.21136/AM.2023.0257-22 727

© The author(s) 2023.


http://dx.doi.org/10.21136/AM.2023.0257-22

is usually called the characteristic set. We refer to the monographs [18], [25], [36],
[5], [20], [26] for surveys on these physical models. It is well-known (see, e.g., [20]),
that if u is absolutely continuous, then there exists a unique absolutely continuous
solution y of (1.1)—(1.2) together with the given initial condition

(1.3) u(0) —y(0) =29 € Z.

If we set P(u, zg) := y, we have defined a solution operator P: W11([0,T]; H) x Z —
WLL([0,T); H) which is called the play operator. Here W([0,T]; H) denotes the
space of H-valued Lipschitz continuous functions defined on [0, T'] (precise definitions
is given in Sections 2 and 3). An important feature of P is its rate independence, i.e.,

(14) P(’LLO(b, ZO) = P(’U,,ZQ) O¢a

whenever ¢: [0,7] — [0,T] is an increasing surjective Lipschitz continuous repara-
metrization of time. The play operator can be extended to the space of rectifiable
curves in H, i.e., to the space of continuous H-valued functions of bounded variation
C([0, T); H) N BV([0,T];H) (see [20]). This can be done by reformulating (1.1) as
an integral variation inequality

(1.5) / (2(8) — u(t) + (1), dy()) <O V= € BV(0,T}; £),

where the integral can be interpreted as a Riemann-Stieltjes integral (see, e.g., [20]),
but also as a Lebesgue integral with respect to the differential measure Dy, the distri-
butional derivative of y (see [30] for the equivalence of the two formulations). By [20]
for every u € C([0,T];H) N BV([0,T]; H) there exists a unique y € C([0,T];H) N
BV ([0,T]; H) such that (1.5), (1.2), (1.3) hold. Therefore, the play operator can
be extended to the operator P: C([0,T];H) N BV ([0,T];H) x Z2 — C([0,T]; H) N
BV ([0, T]; H). Its domain of definition is naturally endowed with the strong BV -norm
defined by

(1.6) lullBv = llulloc + V(u,[0,T]), we BV([0,T];H),

where ||t is the supremum norm of v and V(u, [0, T]) is the total variation of u. For
absolutely continuous inputs the BV-norm is exactly the standard W'!'-norm, and
the continuity of P on W11(0,T;H) in this special case was proved in [19] for finite
dimensional H and in [20] for separable Hilbert spaces. For such spaces #, assum-
ing Z having a smooth boundary, the BV-norm continuity of P on BV ([0, T];H) N
C(]0,T); H) (or on BV ([0,T]; H)) was proved in [4] (or in [23]). Under this additional
regularity of Z, in [4], [23] it is also shown that P is locally Lipschitz continuous.
In [17] we were able to drop the regularity of Z and we proved that P is BV -norm
continuous on BV ([0, T]; H) for an arbitrary characteristic set Z.
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Another relevant topology in BV is the one induced by the so-called strict metric,
which is defined by

(17) dS(uav) = HU_UHOO+|V(ua [O,T])—V(U, [OvT])|7 u,v GBV([OaT]vH)

Indeed, any u € BV([0,T]; H) can be approximated by a sequence u,, € AC([0,T]; H)
converging to w in the strict metric. In [20] it is proved that P is continuous on
C([0,T); H) N BV ([0, T]; H) with respect to the strict metric (shortly, “strictly con-
tinuous”), provided Z has a smooth boundary. In [30] this regularity assumption is
dropped and it is proved that P is continuous on C([0,T];H) N BV ([0,T]; H) with
respect to the strict metric for every characteristic convex set Z. In [30] it is also
proved that in general, P is not strictly continuous on the whole BV ([0, T]; H). For
other results on the continuity properties of P we refer to [29], [31], [16].

Previous results are concerned with the case of a convex set Z, but the character-
istic set of constraints can be non-convex in some applications, e.g. in problems of
crowd motion modeling (see [34]).

In the following we will restrict ourselves to uniform prox-regular sets—these are
closed sets having a neighborhood, where the projection exists and is unique. For
the notion of prox-regularity we refer the reader to [14], [35], [7], [27], [10]. Following
e.g. [9], [22], we see that the proper formulation of (1.5) in the case of a prox-regular
set Z reads

(18) / (2(t) — u(t) +y(t), dy(t))
1 T

So 12(t) = u(t) +y()*dVy(t) ¥z € BV((0,T]; 2),

where V,(t) = V(y,[0,¢]) for t € [0,T] and ||-|| is the norm in #. It is well-known
(cf., e.g., [13] or [22]) that for every v € C([0,T];H) N BV([0,T];H) there exists
a unique y = P(u, z9) € C([0,T]; %) N BV ([0, T); H) which satifies (1.8), (1.2), (1.3).
Thus, also in the non-convex case the solution operator

P: C([0,T;;H)Nn BV ([0, T}; H) x Z2 — C([0,T]; H) N BV([0,T]; H)

of problem (1.8), (1.2), (1.3) can be defined, which we will call non-convex play
operator. In [21] it is proved that in W1([0,T];H) the operator P is continuous
(and also local Lipschitz continuous) with respect to the strong BV-norm under the
assumption that Z satisfies a suitable regularity assumption, to be more precise it is
required that Z is the sublevel set of a Lipschitz continuous function. In the present
paper we prove that P is BV-norm continuous on the larger space C([0,T];H) N
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BV([0,T];H) and for every characteristic prox-regular set Z. We also prove that it
is continuous with respect to the strict metric on the space of continuous functions of
bounded variation. The technique of our proof is obtained via a reparametrization
method by the arc length. In order to perform this reparametrization we use the rate
independence of P, which, to the best of our knowledge is proved here for the first
time for the non-convex case. The question of the BV -norm continuity on the whole
space BV ([0,T]; H) will be addressed in a future paper: in that case the presence
of jumps makes the problem considerably more difficult and the reparametrization
method studied in [32], [33] is needed.

The plan of the paper is the following: In Section 2, we recall the preliminaries
needed to prove our results, which are stated in Section 3. In Section 4, we perform
all the proofs.

2. PRELIMINARIES
The set of integers greater or equal to 1 will be denoted by N.

2.1. Prox-regular sets. Throughout this paper we assume that

‘H is a real Hilbert space with the inner product (x,y),
(2.1) H # {0},

lz|| := (z,z)'/? for x € H.
If S CH and z € H, we set ds (z) := inf{||jz — s||: s € S}.

Definition 2.1. If K is a closed subset of H, K # 0, and y € H, we define the
set of projections of y onto K by setting

(22) Projc(y) i= {z € K: o —y|l = inf |2~y }
and the (exterior) normal cone of K at x by
(2.3) Ni(z) :={ My —2x): = € Proje(y), y € H, A > 0}.

We recall the notion of prox-regularity (see [7], Theorem 4.1 (d)), which can also
be called “mild non-convexity”.

Definition 2.2. If K is a closed subset of H and if  €]0, oo, we say that K is r-
proz-regular if for every y € {v € H: 0 < dx(v) < r} we have that Proji(y) # 0 and

x € Proji (m + ryi) Vz € Proji(y).

-z
ly — |
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It is well-known and easy to prove that if € Proji(yo) for some yo € H, then
Proji(y) = {«} for every y lying in the segment with endpoints yy and z. Thus, it
follows that if K is r-prox-regular for some r > 0, then Proji-(y) is a singleton for
everyy € {v € H: 0 < di(v) <r}.

Prox-regularity can be characterized by means of a variational inequality, indeed
in [27], Theorem 4.1 and in [10], Theorem 16 one can find the proof of the following:

Theorem 2.1. Let K be a closed subset of H and let r €]0,00[. Then K is
r-prox-regular if and only if for every x € K and n € N (z) we have
l[n

(nyz —z) < 2—H||z—x|\2 Vze k.
r

2.2. Functions of bounded variation. Let I be an interval of R. The set of
‘H-valued continuous functions defined on I is denoted by C(I;H). For a function f:
I — H and for S C I we write Lip(f, S):=sup{||f(t) — f(s)||/]t — s|]: s,t € 5,s #t},
Lip(f) := Lip(f,I), the Lipschitz constant of f, and Lip(I; X) = {f: I — H:
Lip(f) < oo}, the set of H-valued Lipschitz continuous functions on I.

Definition 2.3. Given an interval I C R, a function f: I — H, and a subinter-
val J C I, the variation of f on J is defined by

V) = sup{ (S 5-0) = S m €N, 15 € TV, to <o <t
j=1

If V(f,I) < oo, we say that f is of bounded variation on I and we set
BV(I;H):={fel: ->H: V(f,I) < oo}

It is well known that the completeness of H implies that every f € BV(I;H)
admits one sided limits f(¢—), f(t+) at every point ¢ € I, with the convention that
f@nfI—):= f(inf I) if inf I € I, and that f(supI+):= f(sup!) ifsupl € I. If I is
bounded, we have Lip(I; H) C BV (I; H).

2.3. Differential measures. Given an interval I of the real line R, the family
of Borel sets in [ is denoted by #(I). If u: AB(I) — [0, 00] is a measure, p € [1, 0],
then the space of H-valued functions which are p-integrable with respect to p will
be denoted by LP(I, u; H) or simply by LP(u;H). For the theory of integration of
vector valued functions we refer, e.g., to [24], Chapter VI. When p = £!, where £}
is the one dimensional Lebesgue measure, we write LP(I;H) := LP(I, u; H).
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We recall that a H-valued measure on I is the map v: HB(I) — H such that
( U B ) Z v(B,,) for every sequence (B,,) of mutually disjoint sets in A(I).

n=1
The total variation of v is the positive measure |v|: () — [0, 00] defined by

lvI(B —sup{Z| : B= UB"’ B, € B(1), BhﬂBk:@ifh;ék}.
n=1
The vector measure v is said to be with bounded variation if |v|(I) < co. In this
case the equality ||v| := |vI(I) defines a complete norm on the space of measures
with bounded variation (see, e.g., [12], Chapter I, Section 3).
If u: B(I) — [0,00] is a positive bounded Borel measure and if g € L*(I, u; H),
then gu: AB(I) — H denotes the vector measure defined by

gu(B) :=/Bgdu, B e #(I).
In this case we have that

(2.4) \gul (B / lg@)lldu VB e B(T)

(see [12], Proposition 10, p. 174).

Assume that v: Z(I) — H is a vector measure with bounded variation and
f: I — H and ¢: I — R are two step maps with respect to v, i.e., there exist
fi,ooosfm€H, b1, .., 0m €EH and Ay, .. Ap € ,@( ) mutually disjoint such that
lvI(Aj) < oo for every j and f = E Ta, f], ¢ = Z T4, ¢;. Here Tg is the character-

Jj=
istic function of a set S, i.e., Ig(x) :=1if x € S and T1s(z) :=01if x ¢ S. For such

step maps we define [;(f, dv) := i (fj;v(Aj)) € Rand [, ¢dv := fj ov(A)) € H.
i=1

If St(lvl;H) (or St(lvl)) is the set of H-valued (or real valued)j step maps with
respect to v, then the maps St(lvl;H) — H: f+— [,(f, dv) and St(Ivl) = H: ¢ —
J; ¢ dv are linear and continuous when St(lvl;#H) and St(Iv|) are endowed with the
L'-seminorms || f||p1 i) = f; [If] dlvl and |¢[[rury == [, [¢]dIvl. Therefore,
they admit unique continuous extensions l,: L'(lvl;H) — R and J,: L'(lvl]) — H,
and we set

/(f, dvy :=1,( /qbdy =J,(8), feL' (lvl;H), ¢ L' (Ivl).

If p is a bounded positive measure and g € L'(u;H), arguing first on step func-
tions, and then taking limits, it is easy to check that

/ (. d(gu) = / (fra)du ¥ e L®(uH).
I I
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The following results (cf., e.g., [12], Section III.17.2-3, pages 358—362) provide the
connection between functions with bounded variation and vector measures which
will be implicitly used in this paper.

Theorem 2.2. For every f € BV (I;H) there exists a unique vector measure of
bounded variation vy: (1) — H such that

whenever inf I < ¢ < d < sup I and the left-hand side of each equality makes sense.

Conversely, if v: #B(I) — H is a vector measure with bounded variation, and if
fu: I — H is defined by f,(t) :== v([inf I,¢[NI), then f, € BV(I;H) and vy, = v.

Proposition 2.1. Let f € BV (I;H), let g: I — H be defined by ¢(t) := f(t—),
for t € int(I), and by g¢(t) := f(t) if t € OI, and let V;: I — R be defined by
Vy(t) :=V(g,[inf I,t] N I). Then vy = vy and lvgI(I) = vy, (I) = V(g,I).

The measure vy is called the Lebesgue-Stieltjes measure or differential measure
of f. Let us see the connection between the differential measure and the distributional
derivative. If f € BV (I;H) and if f: R — H is defined by

f(t) iftel,
(2.5) ft):=<{ f(infI) ifinfTeR, t &I, t<infl,
f(supI) ifsupl eR,t&1,t>supl,

then, as in the scalar case, it turns out (cf. [30], Section 2) that v¢(B) = Df(B) for
every B € %(R), where Df is the distributional derivative of f, i.e.,

—/sﬁ’(t)?(t)dt:/@de V€ CL(R;R),
R R

where C!(R; R) is the space of continuously differentiable functions on R with com-
pact support. Observe that Df is concentrated on I: Df(B) = v¢(B N 1I) for every
B € A(I), hence in the remainder of the paper, if f € BV (I,H), then we simply write

(2.6) Df:=Df =vs, fe€BV([;H),
and from the previous discussion it follows that
(2.7) DA = 1DAIU) = [lvell = V(f, 1) Ve BV(LH).
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If I is bounded and p € [1,00], then the classical Sobolev space WP(I;H) con-
sists of those functions f € C(I;H) for which Df = g£! for some g € LP(I;H)
and W1>°(I;H) = Lip(I;H). Let us also recall that if f € W11(I;#), then the
derivative f'(t) exists L'-a.e. int € I, Df = f'L', and V(f,I) = [, ||f'(t)]| dt (see,
e.g., [3], Appendix).

3. MAIN RESULTS
From now on we will assume that
(3.1) Z is a r-prox-regular subset of H for some r >0, 7" > 0.
We consider on BV ([0, T']; H) the classical complete BV -norm defined by (1.6), where
1l = sup{ll£ 1)1+ ¢ € [0,T}.
The norm (1.6) is equivalent to the norm defined by
By == [[F O + V{0, T]),  feBV(0,T];H).
From (2.7) it also follows that
1Flsv = Ifloe + DS = [l + IDFI0,T]) V¥ f € BV(0,T]: ),

where Df is the differential measure of f and |Df] is the total variation measure
of Df. We also have

T
||f||BV:||f||oo+/O If/ @l dt v feWhi([0,T]; H).

On BV([0,T];H) we will consider also the so-called strict metric defined by (1.7).
We say that f,, — f strictly on [0,T] if ds(fn, f) — 0 as n — oo. Let us recall
that ds is not complete and the topology induced by d; is not linear. We now define
the so-called “non-convex play operator”.

Definition 3.1. Assume that (2.1) and (3.1) hold. A (non-convex) play operator
is the mapping

P: C([0,T;;H)Nn BV ([0, T}; H) x Z2 — C([0,T]; H) N BV([0,T]; H)
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associating with every (u, z9) € C([0,T]; )N BV ([0,T]; H) x Z the unique function
y =P(u, 20) € C([0,T}; H) N BV([0,T]; 1) such that

(3.2) wu(t)—y)ezZ Vtel0,T],
63) [ (a0~ u(®) +y(e), dDy(®) < - [ a0) — u(t) + y(0) Dyl ()
0,7] " Jo,1]

Vze BV([0,T];H),2(0,T]) € Z,
34)  u(0) —y(0) = 2.

The existence and uniqueness of such a function y = P(u, 2z) is well-known and is
guaranteed by Theorem 3.1 below.

The integrals in (3.3) are Lebesgue integrals with respect to the measures Dy and
IDyl. The inequality can be equivalently written using Riemann-Stieltjes integrals,
by virtue of [30], Lemma A.9 and the discussion in Section 2.3.

Here is the existence and uniqueness theorem mentioned in Definition 3.1.

Theorem 3.1. Assume that (2.1) and (3.1) hold, w € C([0,T]; H)NBV ([0, T]; H)
and zg € Z. Then there exists a unique function y € C([0,T]; H)NBV ([0, T]; H) such
that (3.2)—(3.4) hold, in other words, the non-convex play operator is well defined in
C([0,T);H)NBV([0,T]; H).

As we pointed out in the previous definition, the existence and uniqueness of the
solution to problem (3.2)—(3.4) is well-known. The reader can refer for instance
to [22], where the problem is dealt with exclusively within the framework of the inte-
gral formulation. But the result could also be inferred by a careful comparison of [9],
Proposition 3.1 and of [13], Corollary 3.1. However, since the literature contains dif-
ferent formulations, and the equivalence of those is not always explicitly proved, for
the sake of completeness we show here how the existence and uniqueness of a solution
to (3.2)—(3.4) can be derived from [13], which to the best of our knowledge contains
the first proof of the existence of the solution to the non-convex problem (3.5)—(3.8)
(see also [6], [8], [1], [2]). We need the following auxiliary result showing that (3.3)
can be equivalently stated as a differential inclusion. We prove it in the next section.

Proposition 3.1. Assume that (2.1) and (3.1) hold and that u € C([0,T];H) N
BV([0,T];H) and zo € Z. Then a function y € C([0,T];H) N BV([0,T]; H) sat-
isfies (3.2)—(3.4) if and only if there exists a measure p: Z([0,T]) — [0,00[ and a
function v € L'(u,H) such that

(3.5) Dy = vp,
(3.6) u(t) —y(t) € 2 Vtelo,T),
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(3.7) —v(t) € Nywy—-z(y(t)) for p-ae. t €0,T],
u(0) — y(0) = z.

Now let observe that thanks to [13], Corollary 3.1 we have that under the assump-
tions of Proposition 3.1 there exists a unique solution to (3.5)—(3.8). Thus, by virtue
of Proposition 3.1 we infer Theorem 3.1.

When the “input” function u of the play operator is more regular, we have the
following characterization of solutions (see, e.g., [22], Corollary 6.3).

Proposition 3.2. Let (2.1) and (3.1) hold. If u € W'P([0,T); H), z0 € Z, and if
y = P(u, 20) satisfies (3.2)—(3.4), then y € WH?([0,T]; H) and

(3.9) wu(t)—ylt)e Z Vtel0,T],
(3.10) (z —u(t) +y(t), y'(t))
< Iyl llz(t) — u(t) +y(@)||* for L'-ae. t €[0,T] Vze Z,

(3.11) u(0) — y(0) = zo.
Moreover, y is the unique function in W?([0, T|; 1) such that (3.10)—(3.11) hold.
Now we can state our main theorems. The first result states that P is continuous

with respect to the BV-norm on C([0,T];H) N BV ([0,T]; H).

Theorem 3.2. Let (2.1) and (3.1) hold. The play operator P: C([0,T];H) N
BV([0,T];H) x Z2 — C([0,T); H) N BV ([0, T];H) is continuous with respect to the
BV-norm (1.6), i.e., if

lu —unllBv = 0, ||z0— zon]| = 0 asn — oo,

then
[IP(u, z0) — P(un, zon)||By = 0 asn — oo
whenever u, u, € C([0,T];H) N BV ([0,T); H) and zo, zon, € Z for every n € N.
We also prove that the play operator is continuous with respect to the strict metric.
Theorem 3.3. Let (2.1) and (3.1) hold. The play operator P: C([0,T];H) N

BV([0,T;H) x Z2 — C([0,T); H) N BV ([0, T];H) is continuous with respect to the
strict metric ds defined by (1.7), i.e., if

ds(u,un) =0, |lz0— zonl]| = 0 asn — oo,

then
dS(P(u7 ZO)) P(uru ZOn)) —0 asn— o

whenever u, u, € C([0,T];H) N BV ([0,T); H) and zo, zon, € Z for every n € N.

736



The proofs of our main theorems are strongly based on the fact that the play
operator is rate independent, which is the property (3.12) of P proved in the following
theorem.

Theorem 3.4. Let (2.1) and (3.1) hold, u € C([0,T];H) N BV ([0, T];H), and
z0 € Z. If ¢: [0,T] — [0, T] is a continuous function such that (¢(t)—¢(s))(t—s) = 0
and ¢([0,T]) = [0,T], and if y := P(u, z9) satisfies (3.2)—(3.4), then

(3.12) P(uo ¢,20) = P(u, 2z) 0 ¢.

We will prove Theorems 3.2, 3.3, and 3.4 in Section 4.

4. PROOFS
Let us start with an integral characterization of the differential inclusion (3.7).

Lemma 4.1. Assume that r >0, T > 0, u: $([0,T]) — [0, 0] is a measure. If
u € C([0,T;H)NBV([0,T]:H), v € LY H), y € C([0,T];H) N BV ([0, T]; H), and
u(t) —y(t) € Z for every t € [0,T], then the following two conditions are equivalent.
(i) —v(t) € Nywy—z(y(t)) for p-a.e. t €[0,T].
(ii) For every z € BV ([0,T]; H) such that z([0,T]) C Z one has

(0 =0+, 0) 40 < 5 [ O — ) + 5O )
[0,7] T Jo,1

Proof. Assume first that (i) holds and let z € BV ([0,T];H) be such that
z(t) € Z for every t € [0,T]. Then it follows that

(=00 ) + 90,00 < ) —ut) 19017 for pene. 1 0,71

and after integrating with respect to p over [0,T] we infer condition (ii).

Now assume that (ii) is satisfied. Let L be the set of u-Lebesgue points of v,
according to the definition given in Theorem 5.2 of Appendix. If we fix ¢ € L, and
choose ¢ € Z and f € C(]0,T]; H) arbitrarily, it is trivially seen that ¢ is a y-Lebesgue
point of f, and we have

(4.1) / [(f(7),v(7)) = (f(#),v(t))| du(T)
[t—h,t-+h]N[0,T]
< / (L lfscllv(m) = @l + v @IHLF () = FOI) dpelT),
[t—h,t-+h]N[0,T]
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therefore,
(42) lim . / (), 0(r)) dpu(r) = (F(8),0(8))
' WO ([t — hyt + h] N[0, T7) [t—h,t+h]N[0,T] T ST = Y .

An analogous argument also shows that ¢ is a pu-Lebesgue point of the real function
7= [lo(n)[[[£(7)]|?, indeed,

oL = To@IILF I < lo(r) = oI + Te@IILF I = 1O
and 7+ || f(7)||? is continuous. Therefore

1

TR AT /[t_mt%]ﬂ[m [ (DI dr = lo@] ] @)1

For any h > 0 we define the function z: [0,T7] — H by

2(7) = Vo, m)nit=h,e+1) (T)C + Vo, )\ jt=h,e4n) (T) (u(T) —y(71)), 7 €[0,T].

We have that z is of bounded variation and that z(r) € Z for every 7 € [0, T, thus,
we can take such z in condition (ii) and we get

/ (€ = u(r) + (), (7)) du()
[t—h,t+h]N[0,T]

1
<5 [o(DII¢ = u(r) +y(r)|I? du(r).
T J[t—h,t4+h]N[0,T]
Dividing this inequality by p([t — h,t+h]N[0,T]) and taking the limit as h \, 0, and
considering the continuous function f(t) = ¢ —u(t) +y(t), by the previous discussion
we get (¢ —u(t) +y(t),v(t)) < [lo(®)|[I¢ —u(t)+y(t)|?/(2r). Therefore, as u(L) = 0,
we have proved that

(¢ —ut) +y0,00) < Pye )y 1y veez for pac e o)

i.e., condition (i) holds using Theorem 2.1. O

Now we can prove Proposition 3.1.

Proof of Proposition 3.1. Let us first assume that (3.5)—(3.8) hold for a measure
w: AB([0,T]) — [0,00[ and a function v € L'(u, H). In particular, it follows that
Dyl = ||v||, hence |IDyl is p-absolutely continuous, thus by the Radon-Nicodym
theorem there exists h € L!(u;R) such that |h(t)] < 1 for p-a.e. t € [0,T], and
Dyl = hu. On the other hand, thanks to Theorem 5.3 from Appendix there exists
g € L*(IDyl; #H) such that ||g(¢)|| = 1 for u-a.e. t € [0,T], and Dy = g|Dyl, therefore,
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Dy = hgp. In particular, it follows (see (2.4)) that |[Dyl = |h|||g||p and v(t) =
h(t)g(t) for p-a.e. t € [0, T]. Hence, applying also Lemma 4.1, we obtain that

/ (2(t) — u(t) + y(¢), dDy(t)) / (2(8) — u(t) + y(8), () du(?)
[0,77 [0,T7]
1

2r [0,T

]
1
= 5 [, IOl — ) + v ()
1

N

[o(®)112(2) = u(t) + y(@®)|* du(t)

=5 12(t) = u(t) + y @R @)l du(t)
" Jio.1)

1

= o= [l — u(t) + y(@)* Dyl (1)
" Jo,7)

and (3.3) is proved. Vice-versa let us assume that (3.2)—(3.4) hold. Then the condi-

tion (ii) of Lemma 4.1 is obtained by taking u = |Dyl and v equal to the density of

Dy with respect to |[Dyl, and we are done. O
Now we prove that P is rate independent.

Proof of Theorem 3.4. Set y := P(u, 2z0), and recall that V,,(¢) = V(y, [0,¢]) for
every t € [0,T]. Hence |Dyl = DV,, and by the vectorial Radon-Nikodym theorem
([24], Corollary VIL.4.2) there exists v € L'(IDyl;H) such that Dy = vDV,,. Let
us fix z € BV([0,T];H) such that z([0,7]) C [0,7] and recall the following well-
known formula holding for any measure pu: %([0,T]) — [0,00[, g € L*(p;H), and
Ae A(0,T)):

(616 dutt) = [ 9(r)d(6.n) (7).
$=1(A) A
where ¢.p: B([0,T]) — [0, 00[ is the measure defined by ¢.u(B) := u(¢p~1(B)) for

B € #([0,T]). (This formula can be proved by approximating ¢g by a sequence of
step functions and then taking the limit.) If 0 < o < 8 < T, we have

¢.D(Vy 0 9)([av, B]) = D(V, 0 9)(¢~ " ([ev, B])) = DV ([ev, B]),

hence,
¢*D(Vy © ¢) = DVyv
and for 0 < a < b < T we find that

D(y o ¢)([a, b)) = y(4(b)) — y(¢(a)) = Dy([¢(a), 4(b)])

- o(r) dDV, (r) = / o(r) d. (D(V, 0 6))(r)
[P(a),d(b)] [¢(a),o(b)]

v((t)) dD(V; 0 ¢)(t) = (v 0 ¢)D(V, © §)([a, b)),

[a,0]
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so that

D(yo¢) = (vo@)D(V,09¢), ID(yoa)l=|vod|D(V,odp).

If ¢(7) := inf ¢~1(7), then 1 is increasing and 7 = ¢(¢)(7)). Therefore, since D(V}, o
®) = 0 on every interval where ¢ is constant, we find that for every h € C(R?) we
have

/’ mawwa»axwo¢wo=/‘ h(=((6(1)), 6(1)) AD(V, o #)(1).
[0, [0,T]
Hence,
(4.3) / (2(8) — u(6(t)) + y(&(1)), dD(y © B)(1))
[0,7]
::Aﬂfaw—uwu»+m¢wxmwo»mwa¢xﬂ
——AﬂﬁAM¢m»—uwa»+m¢mxwww»axwo¢xw
:/“<4wv»—wﬂ+yw»wﬂMwa>
[0,T7]
=L/ (2(@(7)) — u(r) + y(r), dDy(r)),
[0,T7]
and
(4.4) / 2(6) — u(6() + y((8) |2 dID(y 0 )1 ()
[0,T]
=j4Tﬂdﬂ—u@@»+ﬁﬂﬂWﬂM#ﬂwdﬂ%o@@)
=Aéﬁvwww»—uwa»+MWﬂmwwWﬂmmxwo@@>
—Aéﬂvww»—wﬂ+yvmwwﬂnﬂwuﬂ
::/ |2(6(r)) — u(r) + y(r)|> dIDyl (7).
[0,T7]

Since y = P(u, 20), we have that the right-hand side of (4.3) is less or equal to the
right-hand side of (4.4) times (27)~! and this implies that

(4.5) Aﬂ%dﬂ—u@@ﬂ+y@@%dD@o@@»

<o [ la) — (@) + y(6(E)]? dID(y o )l (1),

= 27“ [O,T]

which is what we wanted to prove. O
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In the next result, we prove a normality rule for the non-convex play operator,
thereby we generalize to the non-convex case the result in [20], Proposition 3.9. The
idea of the proof is analogous to the one of [20], Proposition 3.9.

Proposition 4.1. Assume that (2.1) and (3.1) hold, v € Lip([0,T];H), 20 € Z,
and that y = P(u, z09). Let = S(u,20): [0,T] = H and w = Q(u, 20): [0,T] = H
be defined by

(4.6) 2(t) = S(u, 20)(t) == u(t) — y(t), te0,T),
w(t) == Q(u, 20)(t) := y(t) — x(t), t€0,7T7].

Then w = Q(u, z0) € Lip([0,T]; H), « = S(u, 20) € Lip([0,T]; 1), 2(t) € Z for every
t €10,T], and

(4.8) (' (t),2'(t)) =0 for L'-a.e. t €10,T],
and
(4.9) lw' ()| = ||/ (t)] for L*-a.e. t € [0,T].

Proof. Lett € [0,7] be a point where x is differentiable. Taking z(t) =
x(t+ h) € Z for every h > 0 sufficiently small, we find that

L' 0,20 — o+ ) > -0y ooy

therefore letting h N\, 0, we get
(4.10) (' (t),—2'()) > 0.

Taking z(t) = x(t — h) for every h > 0, we also have

L/ 0. 2(0) (e ) > 1201

therefore letting h ~\, 0, we obtain

lo(t) — @ (t = B)II?,

(' (t),2'(t)) >0,
which together with (4.10) yields (4.8). This formula implies that
(4.11) ' @)I7 = [ly' () =2’ O] = (' (&) =" (1), ' () =" () = |y’ O+ 12" (D)1,
and
(4.12) '@ = ly' (O +2' )] = (' () +2' (1), 9" () +2"(8)) = |y’ @) +[|2" ()],
therefore (4.9) follows. O
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Let us observe that, in the previous proposition, the geometrical meaning of (4.11)—
(4.12) is that w'(t) and '(t) are the diagonals of the rectangle with sides z'(t) and
y'(t), so that we have (4.9).

In order to prove the BV-norm continuity of P on C([0,T]; H) N BV ([0, T]; H) we
need the following two auxiliary results. The first is the following:

Proposition 4.2. Assume that (2.1) holds. For every f € C([0,T];H) N
BV ([0,T];#H), let £¢: [0,T] — [0,T] be defined by

———V(f,[0,t]) if V(£,[0,T 0,
(4.13) 0(t) =14 V(£,0,1) U 101]) (0.7 #
0 if V(f,[0,T]) =0,
which we call normalized arc-length of f. Then there exists f € Lip([0,T); H), the
reparametrization of f by the normalized arc-length such that
(4.14) f=folty.

Moreover, there exists a L!-representative f’ of the distributional derivative of f
such that

(4.15) 17 (o)) = w Vo el[o,T).

Proof. The existence of a function f € Lip([0,T];H) satisfying (4.14) is easy
to prove (see, e.g., [28], Proposition 3.1). Moreover, we know from [30], Lemma 4.3
that if g is a £!-representative of the distributional derivative of f, then ||g(c)| =
V(f,[0,T])/T for every o € F, for some F' C [0,T] with full measure in [0, T]. Thus,
(4.15) follows if we define the following Lebesgue representative of the derivative of f

N g(o) itoeF,
Flo)= Lf’f’ﬂ)eo ifo g F,

where ey € H is chosen so that ||eg| = 1. O

Then, as for the Lipschitz case, we need to introduce the operator Q defined by
Q(v) =2P(v) — v for v € C([0, T]; H) N BV ([0, T]; H).

Lemma 4.2. Assume that v € C([0,T];H) N BV([0,T};H), 20 € Z, and let
Q: C([0, T;H)NBV([0,T];H) x Z — C([0,T];H) N BV([0,T]; H) be defined by

(4.16) Q(v, 20) :=2P(v,20) —v, v € C([0,T];H)NBV([0,T]; H).
Then Q is rate independent, i.e.,
(4.17) Qvog,20) = Qv,20) 0 Vv e C(0,T];H)NBV([0,T);H)
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for every continuous function ¢: [0,T] — [0,T] such that (¢(t) — ¢(s))(t —s) = 0
and ¢([0,T]) = [0,T]. Moreover, if {, is the arc-length defined in (4.13), then

(4.18) DQ(v, 20) = (AT, 20))’ o £)Dbs,
(419)  DQ(v,z0)(B) = /B Q@ 20))(6,(£)) dDE, (), VB € B(0.T)),

where formulas (4.18)—(4.19) hold with any L!-representative (Q(v, z9)) of the distri-
butional derivative of Q(v, 29). Finally, we can take such an L'-representative so that

| _ Ve [0.7)

(4.20) 1(Q(7, 20))' (o) T

Vo e[0,T].

Proof. From Theorem 3.4 it follows that
Q(vog,z0) =2P(vo¢,20) —vog=2P(v,20) 09 —vo¢=Q(v,20) o,

which is (4.17). Moreover, since v is Lipschitz continuous, we have that Q(v, z9) €
Lip([0,T]; H), therefore by [30], Theorem A.7, we infer that if Q(v, 2)" is any L£!-
representative of the distributional derivative of Q(7, zp), then the bounded measur-
able function Q(v, 29)’ o £, is a density of Q(v, zg) with respect to the measure DZ,,
i.e., (4.18) holds. Finally, (4.20) follows from (4.9) of Proposition 4.1 and from (4.15)
of Proposition 4.2. O

Now we can prove our first main result.

Proof of Theorem 3.2. Let us consider v € BV ([0, T]; H) and u,, € BV ([0, T]; H)
for every n € N, and assume that ||u, —ul| pv(jo,r);) — 0 asn — oo. Thenlet £ := £,
and £, := ¢, be the normalized arc-length functions defined in (4.13), so we have

u=uofl, U,=upol, VneN.
Let us also set
(4.21) w = Q(u, 20), Wn = QUn,z20n), nEN,

where the operator Q is defined in Lemma 4.2. By the proof of [22], Theorem 5.5,
we have that P(up, zon) — P(u, 20) uniformly on [0, 7], because ||u, — ]| — 0 as
n — oo. Therefore, from formula (4.16) it follows that

(4.22) wy, — w  uniformly on [0, T7.
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Let us observe that Q(u,zp) and Q(un,z0) are Lipschitz continuous for every
n € N and let us define the bounded measurable functions h: [0,7] — H and
hn: [0,T] = H by

(4'23) h(t) = (Q(ﬂ, Zo))/(fu(t)), hn(t) = (Q(anvz()n)),(en(t))a te [OaT]v

where by Lemma 4.2, formula (4.20) we have that the L!-representatives of the
distributional derivatives of Q(u, z9) and Q(uy, z9) can be chosen in such a way that

Q@ ) @)l = 0Dy Q)@ = Iy e o1,
Consequently,
(.10, 7)

| = V(un, [0,T])

(24) o)) = - a

1 (£) Viel0,T], ¥neN.

T )
Since u,, — u in BV ([0,T]; H), from the inequality
(4.25) V(u, [a,b]) = V(un, [a,b])] < V(u—un,[a,b]),

holding for 0 < a < b < T, we infer that V(u,,[0,7]) — V(u,[0,T]) as n — oo,
hence the sequence {V(uy, [0,T])} is bounded. Therefore, from (4.24) we infer that
there exists C' > 0 such that

(4.26) sup{||hn(®)]|: t€[0,T]} <C VneN
and
(2n) g (o)) = i Yo BTD VEITD v e o, 1)

It follows that

lim [ (8)]|2 dDE(E) = lim (W)2 dDe(t)

/[O,T] (VU 0TDY iy /[

" Ih(£)]|* dDL(E),

)

hence

(4.28) nh—>120 ||hn||2L2(Dz;7{) = ||h||2L2(De;H)-

Now let us observe that from Lemma 4.2 and formulas (4.19), (4.21) and (4.23), we
have that

(4.29) Dw = hD¢, Duw, = h,De,.
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Let us also recall that the vector space of (vector) measures v: %B([0,T]) — H can be
endowed with the complete norm ||v|| := |vI([0,T]), where |v| is the total variation
measure of v. Moreover, from the definition of variation, inequality (4.25), and the
triangle inequality, we infer that

(4.30) |D¢—DL,|| =D — £,)I([0,T]) = V(¥ —¢,,[0,T]) -0 asn — co.

From (4.26) it follows that
@3 Dwl(B) = [ ha(0]dD60) < CIDLIB) VB € B(0.T)),
B

therefore, since D¢,, — D/ in the space of real measures, we infer that for every e > 0
there exists § > 0 such that

ID¢I(B) < § = sup |IDw,|(B) <€
neN

for every B € (|0, T]). This allows us to apply the weak sequential compactness
Dunford-Pettis theorem for vector measures (cf. Theorem 5.1 of Appendix) and we
deduce that, at least for a subsequence, Dw, is weakly convergent to a measure
v: %A(]0,T]) — H. On the other hand, by (4.22), we have that w, — w uniformly,
therefore invoking Lemma 5.1 of Appendix we can identify the weak limit v with Dw
and we infer that

(4.32) Dw,, converges weakly to Dw.

In particular, for every bounded Borel function ¢: [0,7] — H, the functional v —
f[o 7) {p(t), dv(t)) is linear and continuous on the space of measures with bounded

variation and

im [ {p(t), dDuw, () = /[ | {pt0), dDu(e),

that is,

(4.33) im [ ((t), ha()) dDC(E) = / (), h(t)) dDE(2).

n=0 J10,T] [0,T

On the other hand, by (4.26) there exists n € L*(D¢;H) such that h, is weakly
convergent to 1 in L%(D¢; H), therefore, setting 1, (t) := (p(t), hy(t)) and ¥(t) :=
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((t),n(t)) for t € [0,T], 1y is weakly convergent to ¢ in L?(D¢; R), and

(4.34) Yn(t)dDL,(t) — [ w(t) dDE(t)

‘ [0,T7] (0,77

< [ ntolame, - o \/OT]wn()—w(t»dDe(t)\

< l@lloollnloo 1D (En = O)I([0, TT) + /[OT](wn(t)—w(t))de(t)‘—>0

as n — oo, because (4.26) and (4.30) hold, and 1, is weakly convergent to ¢ in
L?(D/; R). Therefore, we have found that

im [ (o(t), ha(t) dDE (1) = /[ , (P00 aDetD),

n—oo [O,T]

hence, by (4.33),

(4.35) /[ , {pl0), dDOD) = / (o(t). d(mDE)(H)).

(0,77

The arbitrariness of ¢ and (4.35) implies that nD¢ = hD{ (cf. [12], Proposition 35,
page 326), hence 7(t) = h(t) for Dl-a.e. t € [0,T] and we have found that

(4.36) h, —h in L*(D6;H).

Since L?(D¢;H) is a Hilbert space, from (4.28) and (4.36) we deduce that
(4.37) hn, — h in L*(D6;H),

and, since D¢([0, T1) is finite,

(4.38) hn — h in LY(DE6H).

Hence, at least for a subsequence which we do not relabel, h,(t) — h(t) for Dé-a.e.
t € 0,7, thus

V(w, — w,[0,T]) = [|D(w, —w)|| = ||Dwy, — Dw|| = ||h,DE, — hDZ||
< ||ha Dy, — £)]] + || (hn — R)DY||

< C|D(tn — 0] + [0  hatt) = ()] aDe() 0

as n — oo, which proves that ||w—wy| pv — 0 as n — co. We can conclude recalling
(4.21) and that Q(v) = 2P(v) — v for every v € C([0,T); H) N BV ([0, T]; H). O
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We can finally infer the strict continuity of the play operator on C([0,T];H) N
BV ([0,T]; H).

Proof of Theorem 3.3.  The proof of Theorem 3.3 is now a consequence of
Theorem 3.2 and [30], Theorem 3.4. O

5. APPENDIX

In this appendix we collect some results on vector measures which are needed in
some proofs of the paper. As we pointed out in Section 2.3, if I C R, then the vector
space of H-valued measures v: Z(I) — H with bounded variation is a real Banach
space when endowed with the norm ||v|| := |vI(I). Therefore, we can define on it
the notion of weak convergence.

Definition 5.1. Assume that (2.1) holds and that I C R is an interval. Let
M(I; H) denote the real Banach space of H-valued measures on #(I) having bounded
variation according to Section 2.3. If v, v, € M(I;H) for every n € N, then we say
that v, is weakly convergent to v if nh_{r;o (T,vy) = (T, v) for every linear continuous

function T belonging to the topological dual space of M(I;H).

For the reader’s convenience we restate the Dunford-Pettis weak compactness the-
orem for measures [11], Theorem 5, page 105 in a form which is suitable to our
purposes.

Theorem 5.1. Assume that (2.1) holds and that I C R is an interval and let B
be a bounded subset of M(I;H). Then B is weakly sequentially precompact if and
only if there exists a bounded positive measure v: %B(I) — [0, 00 such that for every
€ > 0 there exists § > 0 which satisfies the implication
(5.1) Ve>038>0: (Be,@(f), V(B)<§:>sug|u|(3)<a).

pne

Theorem 5.1 is stated in [11], Theorem 5, page 105 as a topological precompactness
result. An inspection of the proof easily shows that this is actually a sequential
precompatness theorem, since an isometric isomorphism reduces it to the well-known
Dunford-Pettis weak sequential precompactness theorem in L' (v;H) (see, e.g., [11],
Theorem 1, page 101).

The following lemma is a vector measure counterpart of a well-known weak deriva-
tive argument and is proved in [17], Lemma 7.1.

Lemma 5.1. Assume that (2.1) holds and that I C R is an interval. Let
w,w, € BV(I;H) for everyn € N and let v: () — H be a measure with bounded
variation. If w, — w uniformly on I and Dw,, — v, then Dw = p.
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Now we are going to state the theorem concerning Lebesgue point of vector value
functions with respect to a Borel measure.

Theorem 5.2. Assume that (2.1) holds, that I C R is an interval, and let pu:
B(I) — [0,00[ be a finite Borel measure on I. If f € L'(u;H), then there exists
L € #(I) such that p(I\ L) =0, u([t —h,t+h]NI) >0 for every h > 0, and

(5.2)  lim ! / If(r) — f(O)| du(r) =0 Vte L.
[t—h,t+h]NI

O ([t — hyt + RN )

The points ¢ satisfying (5.2) are called u-Lebesgue points of f.

A proof of this theorem can be found in [15] in a much more general framework.
In order to help the reader we show how to derive it. The family V := {(¢,[t — h,
t+hlNI):t e I h > 0} satisfies the definition of Vitali relation given in [15],
Section 2.8.16, page 151. In [15], Section 2.9.1, page 153, the left-hand side of (5.2)
is called V-derivative of 1: 7 +— ||f(7) — f(t)|| with respect to u at ¢. Since there
exists a u-zero measure set Z such that f([0,7]\ Z) is separable (see, e.g., [24],
Property M11, page 124), we can repeat “mutatis-mutandi” the proof of [15], Corol-
lary 2.9.9., page 156 (where it is formally assumed that # is separable), and we infer
the result of Theorem 5.2. We conclude with the following result which is proved
e.g. in [24], Section VII, Theorem 4.1.

Theorem 5.3. Assume that (2.1) holds, that I C R is an interval and let v:
PB(I) — H be a Borel measure with bounded variation. Then there exists g €
LY(lvl;H) such that ||g(t)|| = 1 for p-a.e. t € [0,T], and v = glv| (cf. (2.4)).
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