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Abstract. We analyze a simple macroeconomic model where rational inflation expecta-
tions are replaced by a boundedly rational, and genuinely sticky, response to changes in the
actual inflation rate. The stickiness is introduced in a novel way using a mathematical op-
erator that is amenable to rigorous analysis. We prove that, when exogenous noise is absent
from the system, the unique equilibrium of the rational expectations model is replaced by an
entire line segment of possible equilibria with the one chosen depending, in a deterministic
way, upon the previous states of the system. The agents are sufficiently far-removed from
the rational expectations paradigm that problems of indeterminacy do not arise.
The response to exogenous noise is far more subtle than in a unique equilibrium model.

After sufficiently small shocks the system will indeed revert to the same equilibrium but
larger ones will move the system to a different one (at the same model parameters). The
path to this new equilibrium may be very long with a highly unpredictable endpoint. At
certain model parameters exogenously-triggered runaway inflation can occur.
Finally, we analyze a variant model in which the same form of sticky response is intro-

duced into the interest rate rule instead.

Keywords: macroeconomic model; rational expectation; hysteresis play operator; equi-
librium point; path-dependence; sticky inflation
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1. Introduction

Modern macroeconomics has been dominated by a modeling framework in which

the economy is assumed to always be at (or rapidly moving back towards) a unique

and stable equilibrium. This has had profound implications both for the way in

which the modelers perceive real-world events and their policy prescriptions for

dealing with them.
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The critiquing of equilibrium models has a long history which we shall not at-

tempt to detail here. But many antagonists, see for example [32], [19], [34], [10],

have eloquently pointed out profound issues concerning the assumed equilibrating

processes and the ways in which the ‘aggregation problem’ was being solved. In

this paper we will focus upon one specific pillar of the equilibrium approach which

is the assumption of rational expectations introduced by Muth in 1961 [30]. This

posits that not only are individuals perfectly rational, optimizing, far-sighted and

independent of each other but that their expectations about future uncertainties are

in agreement with the model itself.

Our mathematical analysis, and the supporting numerics, rigorously show that,

when rational expectations about future inflation are replaced by an aggregated

‘sticky’ expectation, a simple macroeconomic model changes from a unique equilib-

rium system to one with an entire continuum of path-dependent equilibria. The

form of stickiness that we use is, to our knowledge, new in a macroeconomic setting

and differs from, for example, the stickiness of the Calvo pricing model [8], where

hypothetical agents are only allowed to adjust (to the correct price) at a fixed rate.

The way in which we incorporate stickiness into the model will be justified and

described more fully below but, briefly, our sticky variables can only be in one of two

modes. They are either currently ‘stuck’ at some value or they are being ‘dragged’

along by some other (related) variable because the maximum allowable difference be-

tween them has been reached. Each of these modes (which we shall also refer to as the

‘inner’ and ‘outer’ modes, respectively) can be analyzed separately as linear systems

using standard stability techniques. However, the full ‘hybrid’ system is nonlinear

and displays far richer dynamics in the presence of exogenous noise and shocks.

It must be emphasized right away that our modelling approach and analytical

tools are not restricted to inflation expectations or even to macroeconomics. The

form of stickiness described above belongs to a class of operators that have well-

understood and very desirable properties. These have already been used to develop

nonequilibrium asset-pricing models [24], [25] that have (almost-) analytic solutions.

Here we are able to prove the existence of an entire line interval of feasible equi-

librium points, examine their stability, and identify some important consequences

of path dependence regarding the effects of exogenous shocks and policy changes

upon the state of the system. Furthermore, these changes are realistic in that they

both correspond closely to observed, but potentially puzzling, economic situations

and are robust enough to be observed numerically in more sophisticated variants

of the model.

The level of mathematical knowledge required to follow most of the arguments is

not much more than is needed to examine the existence and stability of equilibria in

more traditional, fully linear, models. Another useful aspect of this simple model is
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that the stickiness can be smoothly ‘dialed back’ to zero and the unique equilibrium

case is recovered. Or, to put it another way, we can rigorously show that a plausible,

boundedly rational yet fully analyzable, change to a fully rational model significantly

alters the qualitative behaviour of the system in recognizable ways.

At the time of writing (the summer of 2023) the world economy has been hit by

severe shocks in both supply and demand, caused by the COVID pandemic and the

invasion of Ukraine. A rapid rise in inflation has forced Central Banks to respond

and there is much debate about how high interest rates will need to rise and whether

the initial responses were rapid enough. There has also been much criticism, both

internally and externally, of the models used by Central Banks and their inability

to forecast inflation sufficiently well—even over the short term. For the first time

in decades, some Central Banks appear to be at least as concerned with inflation

expectations as the level of inflation due to fears of a runaway wage-price spiral.

This makes both the stickiness of those expectations and delays in the effects of

Central Bank policy matters of great modeling significance.

Before introducing the model and starting the mathematical analysis, it is worth

stepping back to consider the effects of stickiness and friction in physical rather than

economic systems. This helps develop our intuition about the nature of equilibria in

such systems but the comparison also offers a high-level explanation of the failure of

mainstream economics to foresee economic crises, even when not caused by exogenous

shocks, and then to formulate consistent policy responses.

1.1. Economics, earthquakes and friction. In early 2009, Alan Greenspan,

former Chairman of the Federal reserve, wrote the following:

“We can model the euphoria and the fear stage of the business cycle. Their

parameters are quite different. . . . we have never successfully modelled the transition

from euphoria to fear.” —Alan Greenspan, Financial Times, March 27th 2009.

The implication is that Central Bank models work well ‘most of the time’ with

suitably calibrated parameters. Occasionally, the parameters suddenly change but

once these are measured, the model again works well in the neighbourhood of a new

equilibrium.

The above response to models that suddenly fail is only justified when the transi-

tions between euphoria and fear and the changes in parameters are truly exogenously

triggered. If they are due to endogenous causes, then the model was never really

working before the transition and it probably will not after the transition either!

A useful analogy here is with earthquakes and seismology. Earthquake zones ap-

pear to be stable (i.e., in an equilibrium) for very long periods of time with only

very brief, but violent, ‘transitions’. A tectonic-plate-denying ‘equilibrium seismolo-

gist’ might argue that the earthquake-free equilibrium model was essentially correct
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except for some occasional unpredictable exogenous events (unobserved meteorite

strikes!?) that did not in any way cast doubt on the modelling assumptions.

Of course, earthquakes are almost always endogenously generated and the analogy

can be pushed further. An earthquake is a very fast shift from one (meta-)stable1

internal configuration to another and this leads us consider the concept of ‘balance-

of-forces’ in both physics and economics.

Ever since the time of Walras and Jevons the idea that there should be a complete

and unique set of equilibrium prices that exactly balances all of the competing needs

and desires of economic agents has offered a compelling view of a perfectly balanced

economy with tâtonnement processes somehow achieving this outcome. But this

view is based upon a comparison with physical systems that is misleading. A spring

or piece of elastic subject to competing forces will achieve a unique equilibrium but

this is because there is no complex internal structure capable of absorbing any of the

stresses without yielding.

A more complicated physical system such as a tectonic fault line has myriad in-

ternal configurations capable of balancing the forces applied to it—up to a point.

Which particular configuration exists at any given moment will depend upon the

previous states of the system. And when one small part of the fault line suddenly

shifts, this can transfer excess stress to neighbouring parts resulting in a large cas-

cading failure/earthquake. There is a balance of forces before the earthquake and

after the earthquake but not during the earthquake!

A modern economy is arguably the most complicated man-made construct on

the planet with an immensely intricate internal description which cannot simply

be averaged away. The analogy is also useful in that the fundamental source of

earthquakes is friction. Without it, continental plates would gracefully and safely

glide rather than stick and then briefly grind. Frictions and stickiness are present

in many forms in an economy or financial system and it should not be a surprise if

they cause similar qualitative effects.

This brings us to the notion of timescales. In an equilibrium system there is no

notion of any timescale except for ones imposed exogenously2. If one examines an

earthquake fault line on a long-enough timescale, maybe tens of thousands of years,

then it does not look like an equilibrium at all. The mere presence of frictional

effects can introduce surprisingly long timescales into a system via the existence of

metastable states.

1Metastability in physics is when a system can stay in a particular state for an indefinite
amount of time even though it is not the state of lowest energy. It occurs when there is
some kind of barrier to true equilibration.

2 There is no notion of history either. If a system is at its unique equilibrium, there is no
way of telling where it has been.
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If economies feel like they are close to a unique equilibrium, maybe that’s be-

cause most of the time tomorrow does indeed turn out to be a lot like yesterday!

Over short timescales, unique equilibrium models will frequently appear to be

working—especially when their parameters are being updated to match incoming

real-world data!

Finally, it must be pointed out that the analogy between earthquakes and the

models that we will analyze below is not perfect. Fault lines are being consistently

forced in a single direction while the changes experienced by economies are more

random. Also, our main model has a very small number of variables and only one

sticky component and so ‘slippage cascades’ are not possible. However, even a single

sticky component allows for the existence of an entire interval of equilibria and

complicated transitions between them.

1.2. Permanence and path-dependence. If the presence of stickiness/frictions

in economics does indeed induce a myriad of coexisting equilibria, then phenomena

that are not possible (or require a posteriori model adjustments) in unique equi-

librium models become not just feasible but inevitable. Perhaps the most obvious

of these is permanence, also known as remanence, where a system does not re-

vert to its previous state after an exogenous shock is removed. It is of course a

central concern of macreconomics whether or not economies affected by, say, sig-

nificant negative shocks can be expected to have permanently reduced productiv-

ity levels.

For the models studied in this paper, sufficiently small shocks (whether exogenous

or applied by policy makers) will not change the equilibrium point and a standard

linear stability analysis determines the rate at which the system returns to it. Larger

shocks will move the equilibrium point along a line of potential equilibria in the

expected direction. But even larger shocks may move the system far enough away

from the equilibrium interval that the return path and ending point on the interval

are very hard to predict. Furthermore, in neither of the last two cases will the

system exhibit a tendency to return to its pre-shocked state—the model displays true

permanence. And the model parameters alone cannot determine which equilibrium a

system is currently in without knowing important information about the prior states

of the system—true path dependence. This does not, however, prevent the system

from being iterated once the initial conditions are fully specified.

1.3. Sticky models and indeterminacy. The most widely-used sticky models

are the sticky-prices of Calvo [8] and the sticky-information of Mankiw and Reis [28].

These models are conceptually very similar to each other in that agents do not

instantaneously move to the ‘correct’ price or opinion but rather do so at a fixed
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rate and can be represented mathematically by introducing a delay term into the

relevant equations. In the absence of noise the same optimal equilibrium solution

will be reached as if the stickiness were absent.

Continua of possible equilibria can also occur in such models (see for example

[4], [13]) and is considered an extreme form of indeterminacy. This is especially

problematic within a rational expectations framework since it makes it (even) harder

to justify how the agents’ expectations can be consistent with the model.

Our hypothetical agents are less rational than those above. They are truly stuck

(not just delayed) until forced to adjust by the discrepancy with the actual inflation

rate.3 If an equilibrium is reached, it is chosen by the prior states of the system and

not by modeling assumptions about the future and, as we shall see, a continuum of

equilibria is an intrinsic feature and not an inconvenience that occurs only in certain

special cases (such as a passive interest-rate policy [8], [2]).

The research into how expectations are formed is extensive but far from conclu-

sive, see for example [11], [33], [6], [9], [29]. However, the idea of threshold effects

and a ‘harmless interval’ of inflation is not new in economics [5], [26], [35], [14],

[20]. In the absence of any exogenous forcing it would be very easy to distinguish

between Calvo-type stickiness and the stuck-then-dragged behavior we investigate

here—indeed, Calvo stickiness would most likely be observed since agents could tell

far more easily over time that, for example, their wage demands were too low and

they were losing purchasing power. However, given the uncertainty of reality and

the very limited cognitive skills or interest in forecasting of most economic agents,

that may no longer hold.

Our model of expectation formation is thus both mathematically tractable and has

some basis in both observed data (see also [15], [16]) and models of bounded rational-

ity. As such it provides a potentially useful, analytically tractable, alternative to stag-

gered/delayed models—and one with additional complexity and explanatory power.

1.4. Bounded rationality and aggregation. As mentioned above, the stan-

dard approach to the problem of aggregating expectations is to introduce a ‘Repre-

sentative Agent’ whose expectations are fully-informed and rational and consistent

with the model itself. Here, an aggregation of boundedly rational agents into a similar

Representative will be required.

A similar problem was encountered in De Grauwe [12]. In [12] both the expec-

tations terms in inflation and output gap were linear combinations of the expec-

tations of two kinds of agent—rational ‘fundamentalists’ and boundedly rational

3 This is now very close to the situation where a frictional force has to be overcome before
an object will move.
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‘extrapolators’—with the probability of an agent using each being dictated by dis-

crete choice theory [1], [7]. In other words, discrete choice theory was the aggre-

gating mechanism used to avoid ending up with an agent-based model where each

agent had to be individually simulated. It was then shown numerically that cycles

of booms-and-busts occurred with changes in the ‘animal spirits’ and corresponding

nonGaussian ‘fat-tailed’ distributions for the model variables.

We start from the empirical evidence cited above that individual agents’ expec-

tations are often sticky and may lag behind the currently observable values before

they start to move. We also posit that this gap between future expectations and cur-

rent reality cannot grow too large. This leads us in a very natural way to the play

operator that is described fully in Section 2.1 as a model for each individual agent’s

expectations. However, the composition/aggregate of even two play operators is no

longer a play operator – although the output will still display inactive (as well as less

active) modes and there is still a maximum allowable difference between the input

and output.

Play operators and their complements, stop operators, are special cases of a wider

class of Prandtl-Ishlinskii or PI operators that have a remarkable aggregation prop-

erty. When connected together in an arbitrary network (under mild technical con-

ditions), they collectively act as a single, but different, PI operator. Thus, as long

as individual agents are represented by PI operators, there is a rigorous aggregation

process by which a network of interacting heterogeneous agents can be reduced to

a single representative agent. This ability to rigorously aggregate nontrivial agents is

very unusual – and not just within economics. Furthermore, this new composite PI

operator can be identified analytically in simple cases or, more generally, by measur-

ing the network’s response to a monotonic input. The result and further references

to PI operators can be found in [23].

Returning to the expectations aggregation problem, we can imagine agents in the

economy/model being connected in a way that reflects how much influence each

agent’s expectations affects their neighbors on the network. Then each agent’s in-

dividual inflation expectation can be modeled by a play operator (or by something

‘close’ within the space of PI operators) whose input is some combination of both

the actual inflation rate and the expectations of their neighbors. By the composition

property of PI operators, the aggregate response will also be a (more complicated)

PI operator that should nevertheless still have stuck, less active, and more ac-

tive regimes while still limiting the difference between the actual and aggregated

expected inflation.

Importantly, when agents are connected via a network, internal ‘cascades’ of

changes in expectations can occur, bringing us closer to the previous earthquake anal-

ogy. For example, if one especially significant agent suddenly starts to increase their
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expectation of inflation, this may trigger increases in its network neighbors’ expecta-

tions and so on. Nevertheless, such cascades can still be completely represented by a

single composite PI operator. If cascades can occur, then the output of the operator

when given a smoothly varying input will have corresponding discontinuities [23].

Rather than study a sticky expectations model with a single, complicated, aggre-

gated PI operator, we shall instead assume that the aggregated PI operator is itself

just a single play operator. This case can be analyzed in detail and is a necessary

prerequisite for a deeper understanding of the dynamics of such systems (although we

do also present simulations for a multi-agent model in Section 3.7). Also, the space

of all possible boundedly rational perturbations to rational models is very large and

very hard to study rigorously or even define. This makes the existence of an analyt-

ically tractable, plausible, boundedly-rational variant of a rational model, a subject

of independent interest, and provides an additional justification for our nonstandard

but conceptually simple Representative Agent.

1.5. Outline of the paper. We start from a dynamic stochastic general equilib-

rium (DSGE) macroeconomics model, which includes aggregate demand and aggre-

gate supply equations

(1) yt = yt−1 − a(rt − pt) + εt, xt = b1pt + (1 − b1)xt−1 + b2yt + ηt

augmented with the rate-setting rule

(2) rt = c1xt + c2yt,

where yt is output gap (or unemployment rate, or another measure of economic

activity such as gross domestic product), xt is inflation rate, rt is interest rate, pt

is the economic agents’ aggregate expectation of future inflation rate and εt, ηt are

exogenous noise terms. All the parameters are nonnegative and in addition, b1 < 1.

This model is close to the starting model used in [12] but simpler in that we do

not include the aggregate expectation of the output gap and the correlation between

the subsequent values of the interest rate. We also choose to remove the noise term

from the interest rate update rule. The inclusion of such factors does not affect our

most significant qualitative observations, but would complicate some aspects of the

rigorous analysis that we present.

The novelty of our modeling strategy is in how we define the relationship between

the aggregate expectation of inflation pt and the inflation rate xt. This relationship

is defined precisely in the next section where we introduce the play operator to model

the economic agents’ aggregate expectation of future inflation.

In Sections 2.4–2.5 we present the main stability analysis for various parameter

regimes, with some details relegated to Appendices. The stability properties of the
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system are not as clear cut as in a truly linear system. In fact, our equations define

a piecewise linear (PWL) system, and certain nonlinear effects come into play. In

particular, in nonlinear systems an equilibrium may only be locally stable. This

means that the equilibrium is only stable to perturbations of a certain size—ones

that do not move the system outside of a ‘basin of attraction’—and this phenomenon

is responsible for much of the interesting dynamics in the presence of shocks.

In Sections 3.1–3.6 we present various numerical simulations. We are particularly

interested in the transitions between equilibrium states caused by exogenous shocks,

and the effects of increasing or decreasing stickiness. Where possible we compare

results against the nonsticky model. Permanence is the rule, not the exception

and there are even parameter regimes where a large enough shock will completely

destabilise an apparently stable system via a runaway inflation mechanism.

We also compare the statistical output of the model against that of De Grauwe [12]

at similar parameters and see the same boom-and-bust cyclicality and heavy-tailed

distributions.

Then, in Section 3.7 we briefly consider a more complicated version of the model

with three representative agents all with different levels of stickiness. This is pri-

marily to demonstrate that multiple play operators can indeed be used together to

simulate different representative agents within a model and that the most important

qualitative features are unchanged.

Finally, in Section 3.8 we emphasize that play operators are not just a potential

tool for modeling expectations—we remove the stickiness from the inflation expecta-

tions and add it into the response of the Central Bank instead. We perform a second

stability analysis and obtain some interesting new effects—there is the possibility of

(quasi)-periodic behavior in the absence of noise and the stickiness does appear to

destabilize equilibria. We conclude with a summary of the main results and some

suggestions for future work.

2. The model

2.1. Play and stop operators. We assume the following rules that define the

variations of the expectation of future inflation rate pt with the actual inflation

rate xt at integer times t:

(i) The value of the difference |pt − xt| never exceeds a certain bound ̺;

(ii) As long as the above restriction is satisfied, the expectation does not change,

i.e., |xt − pt−1| 6 ̺ implies pt = pt−1;

(iii) If the expectation has to change, it makes the minimal increment consistent

with constraint (i).
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Rule (ii) introduces stickiness in the dependence of pt on xt, while (i) states that

the expected inflation rate cannot deviate from the actual rate more than prescribed

by a threshold value ̺. Hence pt follows xt reasonably closely but on the other hand

is conservative because it remains indifferent to variations of xt limited to a (moving)

window p− ̺ 6 x 6 p+ ̺. The last rule (iii) enforces continuity of the relationship

between pt and xt and, in this sense, can be considered as a technical modeling

assumption that is mathematically convenient.

x

p

O

A1

A2

A3

A4

A5 A6

p= x− ̺

p= x+ ̺

x

p

O

B1

B2

B3

B4B5

B6

s=−̺

s= ̺

(a) (b)

Figure 1. (a) An illustration of the input-output sequence of the (a) play operator and (b)
stop operator. (a) The polyline OA1A2A3A4A5A6 represents a sample input-
output trajectory for the play operator. The input-output pair (x, p) is bounded
to the gray strip between the two parallel lines p = x ± ̺. In [16], this strip is
called band of inactivity, the line x = x− ̺ is called upward spurt line while the
line p = x + ̺ is called downward spurt line. The ouptut p remains unchanged
for a transition from (xt−1, pt−1) to the next point (xt, pt) as long as the pair
(xt, pt−1) fits to the band of inactivity (for example, the transitions from A2 =
(x2, p2) to A3 = (x3, p3) with p2 = p3 or from A5 = (x5, p5) to A6 = (x6, p6) with
p5 = p6). If xt > xt−1 and the point (xt, pt−1) lies to the right of the inactivity
band, then the output increases resulting in the point (xt, pt) to lie on the upward
spurt curve (for example, the transition from A1 = (x1, p1) to A2 = (x2, p2)).
Similarly, if xt < xt−1 and the point (xt, pt−1) lies to the left of the inactivity
band, then the output decreases and the point (xt, pt) lies on the downward spurt
line (for example, the transition from A3 = (x3, p3) to A4 = (x4, p4)). (b) The
input-output trajectory of the dual stop operator corresponding to the trajectory
of the play operator shown in panel (a). Here st = xt − pt; the trajectory is
limited to the horizontal strip −̺ 6 s 6 ̺ at all times.

Rules (i)–(iii) are expressed by the formula

(3) pt = xt +Φ̺(pt−1 − xt)

with the piecewise linear saturation function

(4) Φ̺(x) =





̺ if x > ̺,

x if − ̺ < x < ̺,

−̺ if x 6 −̺.
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Relationship (3) is known as the play operator with threshold ̺, see Fig. 1 (a). A dual

relationship

(5) st = Φ̺(xt − xt−1 + st−1)

between xt and the variable

st = xt − pt

is referred to as the stop operator, see Fig. 1 (b). In the context of our model, st

measures the difference between the inflation rate and the expectation of the future

inflation rate, hence st remains within the bound |st| 6 ̺ at all times. Interestingly,

the explicit relationship (3) has been observed in actual economic data [15], [16].

One can think of the play operator as having two modes. A ‘stuck mode’ where

it will not respond to small changes in the input and a ‘dragged mode’ where the

absolute difference between the input and output are at the maximum allowable and

changes to the input, in the correct direction, will drag the output along with it.

Equations (3) and (7) will now be denoted by

(6) pt = P̺[xt], st = xt − pt = S̺[xt],

where P̺ and S̺ are the play and stop operators with threshold ̺, respectively.

R em a r k 1. The form (7) of the function Φ̺ postulates the same magnitude

of response by the representative agent to positive and negative increments of x.

However, there is almost certainly an assymmetry in the perception gap such as, for

example, in Kahneman and Tversky’s behavioral prospect theory [18]. One way to

incorporate such an asymmetry in the relationship between the inflation rate x and

the expectation p of future inflation rate by the agents, is to adapt rules (i)–(iii) and

replace function (4) with the function

(7) Φ̺l,̺r
(x) =





̺l if x > ̺l,

x if − ̺r < x < ̺l,

−̺r if x 6 −̺r,

which has different positive thresholds ̺l and ̺r; formula (3) changes accordingly to

(8) pt = xt +Φ̺l,̺r
(pt−1 − xt).

For example, if ̺l > ̺r, then the agents are responsive to smaller positive increments

of the inflation rate compared to its negative increments. By inspection, system (1),
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(2), (7), (8) with asymmetric response can be reduced to system (1)–(4) with sym-

metric thresholds ̺ = (̺l + ̺r)/2 by the following shift of the variables:

y = ŷ −
b1δ

b2
, x = x̂+ κδ, p = p̂+ (1 + κ)δ,

where

δ =
̺l − ̺r

2
, κ =

b1c2 + b2
(c1 − 1)b2

.

Keeping in mind this simple transformation, we restrict our further analysis to system

(1)–(4).

R em a r k 2. Without loss of generality, one can set the threshold ̺ of the play

operator to unity. Indeed, the simple rescaling of the variables and noises, which

replaces y, p, x, r, ε, η with ̺y, ̺p, ̺x, ̺r, ̺ε, ̺η, respectively, preserves linear

equations (1), (2), while transforming equation (3) to

pt = xt +Φ1(pt−1 − xt)

due to the identity Φ̺(̺x) = ̺Φ1(x). As such, dynamics is controlled by the ratio

of the noise amplitude and the threshold, while the threshold ̺ controls the scale of

the dynamics.

2.2. A model with sticky inflation expectations. Equations (1) and (2),

completed with formulas (3) and (4), form a closed model for the evolution of the

aggregated variables xt, yt, rt, pt. However, the dependence of these quantities at

time t upon their values at time t−1 is implicit. In order to implement the model, we

proceed by solving equations (1)–(4) with respect to the variables xt, yt. As shown

in Appendix A, the model can be written in the following equivalent form:

(9) zt = Azt−1 + std+Nξt,

where zt = (yt, xt)
⊤, ξt = (εt, ηt)

⊤, the superscript ⊤ denotes transposition, the

matrices A,N and the column vector d are defined by

A =
1

∆

(
1− b1 a(1− b1)(1 − c1)

b2 (1− b1)(1 + ac2)

)
, N =

1

∆

(
1− b1 a(1− c1)

b2 1 + ac2

)
,(10)

d =
1

∆

(
a(b1c1 − 1)

−(ab2 + b1(1 + ac2))

)

with

(11) ∆ = (1− b1)(1 + ac2) + ab2(c1 − 1)
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and st = xt − pt is defined by the equation

(12) st =
1

1 + α
Φ̺(1+α)

(b2
β
yt−1 +

(1− c1)ab2
β

xt−1 + αst−1 +
b2
β
εt +

1 + ac2
β

ηt

)

with

(13) α =
∆

b1(1 + ac2) + ab2
, β = b1(1 + ac2) + ab2.

Equations (9), (12) express yt, xt and st = xt − pt explicitly in terms of the previous

values of the same variables and the exogenous noises εt, ηt. We use these equations

in all the simulations that follow.

We shall refer to the variable st = xt − pt as the perception gap. Note that (12)

can be equivalently written as (see Appendix A)

(14) st =
1

1 + α
Φ(1+α)̺(ft − ft−1 + (1 + α)st−1),

where

(15) ft =
1

β
(b2yt−1 + (1 − b1)(1 + ac2)xt−1 + b2εt + (1 + ac2)ηt).

These formulas define the stop operator with input ft and threshold (1+α)̺, which

is different from ̺ (cf. (4)). That is, (14) can be written as

st =
1

1 + α
S(1+α)̺[ft]

using the notation (6). It is important to note that the transition from system (1)–(4)

to equations (9), (12) (equivalent to (9), (14), (15)) is justified under the condition

that α is positive, and we assume this constraint to hold in the rest of the paper. In

particular, α > 0 whenever c1 > 1 (see Section 2.5).

2.3. An entire line segment of equilibrium points. We begin the analysis of

the model (9), (12) by looking at the case of no exogenous noise, i.e., we set ξt = 0

and consider the equations

zt = Azt−1 + std, zt = (yt, xt)
⊤,(16)

st =
1

1 + α
Φ̺(1+α)

(b2
β
yt−1 +

(1 − c1)ab2
β

xt−1 + αst−1

)
(17)

instead of (9) and (12). This model has an entire line segment of equilibrium points

which corresponds to a continuum of feasible equilibrium states of the economy as
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a function of the inflation expectations of economic agents. Indeed, equation (16)

implies

(18) z∗(s∗) = s∗(I −A)−1d = s∗

(b1
b2
,

b2 + b1c2
b2(1− c1)

)⊤
, −̺ 6 s∗ 6 ̺,

for an equilibrium point (z∗(s∗), s∗) = (y∗(s∗), x∗(s∗), s∗), where I is the 2×2 identity

matrix. Substituting (18) in (17), i.e., setting zt−1 = (yt−1, xt−1) = z∗ and st =

st−1 = s∗, one obtains

(1 + α)s∗ = Φ̺(1+α)((1 + α)s∗),

which is satisfied for all −̺ 6 s∗ 6 ̺. In other words, there is a different equilibrium

(z∗(s∗), s∗) for each admissible value of the perception gap variable s∗, i.e., −̺ 6

s∗ 6 ̺. Thus, the set of all equilibrium points is a closed line segment in the

phase space R2 × [−̺, ̺] of the system, see Fig. 2. In particular, the value of the

output gap at an equilibrium, y∗(s∗) ranges over the interval [−̺b1/b2, ̺b1/b2] and

the equilibrium value of the actual inflation belongs to the range

x∗(s∗) = s∗
b2 + b1c2
b2(1− c1)

with − ̺ 6 s∗ 6 ̺.

Interestingly, at least in this simple model, the range of equilibrium values of the

output gap is unaffected by the controls c1, c2 applied by the regulator through

Taylor’s rule (2). However, these controls do affect the range of possible values of

the equilibrium inflation rate.

x

s

s= ̺

s=−̺

x

s

s= ̺

s=−̺

(a) (b)

Figure 2. The projection of the line segment of equilibrium points (blue) onto the (x, s)
plane for (a) c1 > 1 and (b) c1 < 1. The segment has a negative slope in (a) and
a positive slope in (b). Sample trajectories of system (16) are shown in black.

Equation (18) indicates the difference between the cases c1 > 1 and c1 < 1. When

c1 > 1, the equilibrium z∗(̺) corresponding to the lowest expectation of inflation has
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the highest value of the output gap and the lowest inflation of all the equilibrium

points. Similarly, the equilibrium z∗(−̺) with the highest expectation of inflation

has the lowest value of the output gap and the highest inflation. On the other

hand, in case c1 < 1, the equilibrium z∗(̺) with the highest output gap value has

simultaneously the highest inflation rate.

The difference between the cases c1 > 1 and c1 < 1 will be further highlighted in

Section 2.5.

2.4. Local stability analysis. System (16), (17) is locally linear in some neigh-

borhood of any equilibrium point from the linear segment (18) with the exception of

the two end points z∗(±̺) corresponding to equilibria where the play is right at one

end of its inactive band. More precisely, let us consider the open domain

(19) U = {w = (y, x, s) : ‖w−(x−s)v0‖2 < C(pmax−|x−s|),−pmax < x−s 6 pmax}

of the phase space R2 × [−̺, ̺], where

‖w‖2 =
√
x2 + y2 + s2, pmax = ̺

b1c2 + b2c1
b2|1− c1|

,(20)

v0 =
1

b1c2 + b2c1
(b1(1 − c1), b2 + b1c2, b2(1− c1))

⊤(21)

and C is defined in Appendix B. One can see that the domain U contains all the

internal equilibrium states

(22) (z∗(s∗), s∗) = s∗((I−A)−1d, 1), −̺ < s∗ < ̺,

of the line segment of equilibria given by (18). Moreover, as shown in Appendix B,

any trajectory (yt, xt, st) of dynamical system (16), (17) that starts in U satisfies

xt−st = const, i.e., (y0, x0, s0) ∈ U implies xt−st = x0−s0 for all t > 1. Therefore,

for such trajectories, equation (16) is equivalent to

zt = Azt−1 + (xt − x0 + s0)d, zt = (yt, xt)
⊤.

Solving for zt gives the explicit system

zt = Bzt−1 −
(x0 − s0)∆

1 + a(b2c1 + c2)
d

with

(23) B =
1

1 + a(b2c1 + c2)

(
1 a(b1 − 1)c1
b2 (1− b1)(1 + ac2)

)
.
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By inspection, this is equivalent to the iterations

(24) zt − z∗(s∗) = B(zt−1 − z∗(s∗)), st = xt − p0, t > 1,

where

(25) p0 = x0 − s0, s∗ =
b2(1− c1)p0
b1c2 + b2c1

.

We further show in Appendix B that the matrix B is stable for any admissible

set of parameter values, hence every equilibrium (22) is locally stable. As such,

any trajectory (yt, xt, st) starting in U converges to an equilibrium along the plane

x − s = x0 − s0. The equilibrium (y∗(s∗), x∗(s∗), s∗) = (z∗(s∗), s∗), to which the

trajectory converges, is a unique intersection point of the open line segment (22)

with the plane x − s = x0 − s0 defined by the initial condition. Moreover, the two-

dimensional dynamics in each slice {(y, x, s) ∈ U : x− s = x0 − s0} of U is linear.

The local stability of equilibrium states ensures that if a sufficiently small pertur-

bation is applied to the system residing at an equilibrium (z∗(s∗), s∗), removing the

perturbation returns the system to the same equilibrium. Further, the eigenvalues

of the matrix B determine how quickly (or slowly) the system returns to the equilib-

rium state. This situation is of course very similar to the expected response in a fully

linear equilibrium model. The dependence of the eigenvalues of the parameters of

the system is discussed in Appendix C.

However, the situation for these interior equilibria changes markedly for larger per-

turbations. This is related to the stability properties of the two extreme equilibria

(z∗(±̺),±̺) and is far more subtle as discussed in the next subsection. In particular,

for c1 < 1, the basin of attraction of the equilibrium decreases and finally vanishes as

one approaches either of the extreme equilibrium points along the line segment (18).

2.5. Global stability analysis. System (16) without stickiness (̺ = 0) simply

has the form

(26) zt = Azt−1.

As shown in Appendix B, its unique zero equilibrium is globally stable if c1 > 1 and

is unstable if c1 < 1.

For system (16) with stickiness (̺ > 0), equation (26) approximates the dynamics

far from equilibrium points, because the term st in (16) is bounded in absolute value

by ̺. In particular, since (26) is unstable for c1 < 1, so is system (16). This creates

the possibility of run-away inflation at these values of c1 (see Section 3.5).
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Interestingly, the same condition c1 > 1 that ensures the global stability of sys-

tem (26) also guarantees the global stability of the set of equilibrium states for the

sticky nonlinear system (16). In order to show this, one can use a family of Lyapunov

functions

V (xt, st,∇tx,∇ts) =
1

2
(C(∇tx)

2 +G(∇ts)
2 + (Cxt +Gst)

2)

+ γ
(
(Cxt +Gst)∇tx+

H

2C
(Cxt +Gst)

2
)
,

where ∇tu = ut − ut−1, u = x, s. A proper choice of the parameters C, G, H , γ

ensures that such a function is nonnegative, achieves its minimum zero value on the

linear interval of equilibrium states, and decreases to zero along every trajectory of

system (16). This allows us to prove that every trajectory of system (16) converges

to one of the equilibrium states (18). Details of the proof can be found in [27].

R em a r k 3. We see that the parameter c1 in rate-setting rule (2) is important

because for c1 < 1 equilibrium states (possibly, with the exception of end points of

the segment) form a local attractor with another attractor at infinity, while for c1 > 1

the segment of equilibrium states is the unique global attractor. In particular, in the

case c1 < 1, due to instability of (26), trajectories starting sufficiently far away from

equilibrium states tend to infinity. On the other hand, for c1 > 1 each trajectory

converges to an equilibrium state. Hence, we observe a global bifurcation at the

critical value c1 = 1.

As parameter c1 increases from a small value to 1, the segment of equilibrium

states grows longer according to (18). At the bifurcation value c = 1, the equilibrium

states form the whole straight line y = s = 0, x ∈ (−∞,∞). For c1 > 1 the segment

of equilibria becomes longer with decreasing c1.

R em a r k 4. Let us consider system (16), (17) close to the bifurcation point

c1 = 1. Let λi(c1) be the eigenvalues of the matrixA given by (10). At the bifurcation

point, the larger eigenvalue is λ1(1) = 1 (with an eigenvector (0, 1)⊤), the other

eigenvalue is λ2(1) = 1 − b1 ∈ (0, 1). Hence, λ1(c1) > 1 > λ2(c1) for c1 < 1

and 1 > λ1(c1) > λ2(c1) (when c1 is sufficiently close to 1). Denote by u(c1) =

(u1(c1), u2(c1))
⊤ the eigenvector of A, which corresponds to the larger eigenvalue

λ1(c1) and is normalized by the condition

(27)
b2
β
u1(c1) +

(1− c1)ab2
β

u2(c1) = 1.

Let us consider iterations (16), (17) starting from the initial point w0 = (y0, x0, s0)

with

(y0, x0)
⊤ = z∗(̺) + εu(c1), s0 = ̺,
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where ε > 0 and (z∗(̺), ̺) is an end point of the segment of equilibrium states. One

can easily conclude by induction that these iterations are given by

(yt, xt) = z∗(̺) + ελt
1(c1)u(c1), st = ̺, t > 0,

hence they converge to the equilibrium (z∗(̺), ̺) for c1 > 1 but tend to infinity

for c1 < 1. Therefore, the equilibrium (z∗(̺), ̺) is stable for c1 > 1 and unstable for

c1 < 1. The same is true for the equilibrium (z∗(−̺),−̺). Thus, the bifurcation

at c1 = 1 changes the stability of the end points of the segment of equilibrium

states, while the internal points of this segment remain (locally) stable. Also, by

the continuity argument, for c1 < 1 there is an open set of initial conditions, from

which trajectories converge to infinity, and the boundary of this open set includes

the equilibrium states (z∗(±̺),±̺).

For system (9) with noise, this global stability result implies that trajectories tend

to return towards the segment of equilibrium points after large fluctuations and hover

in a vicinity of equilibrium states for extended periods of time (for c1 > 1). The rate

with which the system returns towards the line segment of equilibrium states after

a large perturbation is removed is determined by the eigenvalues of the matrix A,

see Appendix C. Interestingly, at the bifurcation point c1 = 1, equations for s and y

decouple from the equation for x and become

st =
1

1 + α
Φ̺(1+α)

(b2
β
yt−1 + αst−1 +

b2
β
εt +

1 + ac2
β

ηt

)
,

yt =
yt−1

1 + ac2
−

ast
1 + ac2

+
εt

1 + ac2
.

Dynamics of such systems was studied in [3].

3. Numerical results

3.1. Parameter values. The default parameter set that we use for numerical

simulation is the same as in [12], see Table 1, and we shall explore in detail the

surrounding parameter space.

Parameters a b1 b2 c1 c2
Values 0.2 0.5 0.05 1.5 0.5

Table 1. The set of parameter values.

Note that, as an example, if with the above parameters we choose ̺ = 1
2 , then

the components of the equilibrium points z∗(s∗) = (y∗(s∗), x∗(s∗))
⊤ range over the

intervals

y∗(s∗) ∈ [−5, 5], x∗(s∗) ∈ [−6, 6].
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The choice of ̺ is somewhat arbitrary as there is of course no corresponding

reference parameter in [12] and so in many of the simulations it will be varied. Also

it should be emphasized that these reference parameters are motivated by [12] but

very similar numerical results were obtained for other choices.

3.2. Lower inflation volatility due to stickiness. The range of the equilibrium

points of the system is directly proportional to the threshold value ̺ of the play

operator, because the perception gap s∗ in (18) can take any value in the interval

−̺ 6 s∗ 6 ̺. In particular, ̺ = 0 corresponds to the system without stickiness in

which the expectation of inflation coincides with the current inflation rate, p = x.

This system is simply described by the equation

(28) zt = Azt−1 +Nξt

(cf. (9)). In the absence of noise, it has a unique equlibrium at x = y = 0.
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t

0

8

xt
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t
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0 1 2̺
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0 1 2̺
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0.8
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0.0
0.2
0.5
1.5

0.0
0.2
0.5
1.5

(a) (b)

(c) (d)

Figure 3. Trajectories of (a) inflation rate xt and (b) output gap yt. Measure of volatility
of (c) inflation rate and (d) output gap for different values of ̺ with standard
deviation (SD).

The sticky system exhibits lower volatility in the inflation rate than the system

without stickiness, see Fig. 3. This can be explained by the stability properties of

matrices A and B, where B is the linearization matrix of (24) for the sticky system

at an equilibrium. For the parameter values of Table 1, the spectral radius of the
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matrix B is smaller than the spectral radius of A (see Appendix C), hence the sticky

system tries to revert to equilibrium more strongly within the basin of attraction

of individual equilibria, i.e. as long as the perception gap does not become extreme.

Fig. 3 shows that the volatility decreases with ̺. For large (compared to ̺) deviations

of zt from the set of equilibrium points, system (9) behaves as (28).
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(a) (b) (c)

(d) (e) (f)

Figure 4. Transitions between the equilibrium states. (a)–(c) Time traces of inflation rate;
(d)–(f) the corresponding plots in the (x, s)-space exhibiting different transition
scenarios. The noise is turned off before and after the interval of time of interest
in order to show the equilibrium state at the ends of this interval. (a), (d) The
perception gap remains within the bounds |st| < ̺, and the system stays in the
basin of attraction of one equilibrium point. The inflation rate x∗(s∗) is the
same before and after the noisy interlude. (b), (e) The perception gap reaches
the extreme value −̺ (the highest expectation of inflation), and the trajectory
transits from the basin of attraction of an equilibrium state with higher inflation
rate and lower output gap (the right slanted segment in (e)) to the basin of
attraction of an equilibrium state with a lower inflation rate and higher output
gap (the left slanted segment in (e)). (c), (f). A transition from the equilibrium
with the highest inflation rate (the rightmost point in (f)) to an equilibrium state
with a more moderate inflation rate through the basins of attraction of several
other equilibrium states.

3.3. Transitions between equilibrium states. The system remains within the

basin of attraction of a particular equilibrium state z∗(s∗) as long as the perception

gap st does not reach either of the extreme values ±̺ and remains confined to the

interval |st| < ̺, see Fig. 4 (a), (d). But as soon as the perception gap hits the end of

its range and starts being ‘dragged’ by the actual inflation rate (Fig. 4 (b), (e)), the

system transitions to the basin of attraction of a different equilibrium state where st
becomes ‘stuck’ again. For this reason, the system stays near equilibrium states

which correspond to nonextreme perception gaps for longer periods of time than

near extreme ones. Figures 4 (c), (f) illustrate a transition from the equilibrium state
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with an extreme perception gap, z∗(̺), to one with a more moderate perception gap.

Higher noise amplitudes promote more often transitions from the basin of attraction

of one equilibrium state to another (Fig. 5).
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Figure 5. Transitions between the equilibrium states for different noise amplitudes. (a)–(c)
Time traces of inflation rate; (d)–(f) the corresponding plots in the (x, s)-space.
The noise is turned off before and after the interval of time of interest as in
Figure 4. (a), (d) For the noise of amplitude σ = 0.1, the perception gap remains
within the bounds |st| < ̺, and the system stays in the basin of attraction of
one equilibrium state. The inflation rate x∗(s∗) is the same before and after
the noisy interlude. (b), (e) For the noise level σ = 0.25, the perception gap
reaches the extreme value −̺ once (the highest expectation of inflation), and
the trajectory transits from the basin of attraction of an equilibrium state with
higher inflation rate and lower output gap (the right slanted segment in (e)) to
the basin of attraction of an equilibrium state with a lower inflation rate and
higher output gap (the left slanted segment in (e)). (c), (f) For the noise level
σ = 0.5, the perception gap reaches the extreme value −̺ multiple times and
transits from the basin of attraction of one equilibrium to another. The noise
is modeled by a sequence of independent Gaussian random variables with zero
mean and variance σ2.

3.4. Response to shocks. We shall stress the system by applying supply shocks

through the term ηt. The response of the system to demand shocks applied through

the term εt is similar. However, the parameter regime being considered diminishes

the effect of relatively small demand shocks due to the small value of b2 = 0.05.

System (28) without stickiness, which has a unique globally stable equilibrium

state x∗ = y∗ = 0, as expected returns to the equilibrium (and hovers near it due

to noise) after each shock, see Fig. 6 (a). Shocks applied to the sticky system (9),

(12) result in transitions between equilibrium states, see Figure 6 (b). Numerical

simulation shows that shocks of small magnitude typically move the system in the

direction of the shock (see Fig. 7 (a)). For example, after a shock that pushes up
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the inflation rate, the system settles to a new equilibrium state, which has higher

inflation rate (and lower output gap) than the equilibrium occupied prior to the

shock. On the other hand, shocks of larger magnitude cause a transition to an

equilibrium state that can be hard to predict because such shocks cause a longer and

more complex excursion into the phase space far from equilibrium set. In Fig. 7 (b),

the system resides near an equilibrium with high inflation rate before a shock is

applied. Although the shock pushes the inflation even higher, the system eventually

settles to an equilibrium with nearly zero inflation rate after the shock is removed.
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Figure 6. Response to shocks. (a) The system without stickiness (̺ = 0) settles to the
same unique equilibrium after each shock. (b) The system with stickiness (̺ = 1)
settles to a new equilibrium after a shock is applied.
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Figure 7. Response to shocks of (a) small and (b) large magnitude.

3.5. The possibility of runaway inflation. According to Section 2.5 the system

is globally stable for c1 > 1, but becomes unstable for c1 < 1. The latter case creates

a possibility of the run-away inflation scenario. It is interesting that as shown in

Section 2.4 all the equilibrium points are locally stable even if c1 < 1. As a result,

dynamics appear to be stable as long as the trajectory is confined to the basin

of attraction of an equilibrium state. However, when noise or a shock or another

fluctuation drives the trajectory outside this bounded stability domain, the run-

away scenario may and is likely to start, see Fig. 8. Just to be clear, the behavior

is stable while the perception gap is not extreme, but if noise or a shock causes

772



that to change, then the runaway instability can suddenly occur with no change in

the system parameters. In particular, the higher the volatility of noise, the faster

trajectories leave the domain of attraction of the equilibrium set.
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Figure 8. Run-away inflation scenario. Parameters are ̺ = 1, a = 0.3, b1 = 0.5, b2 = 0.05,
c1 = 0.9, c2 = 0.01. The ranges of inflation rate and output gap values at
equilibrium states for this set of parameters are x∗ ∈ [−11, 11] and y∗ ∈ [−10, 10],
respectively. (a) Time series of inflation rate xt. (b) Trajectory in the (x, s)
space. For the noise amplitude σ = 0.25, the trajectory stays within the basin of
attraction of the equilibrium set over the observation time period. For larger noise
amplitudes, the trajectory leaves the domain of attraction to the equilibrium set.
The higher the volatility, the faster trajectories leave this domain.

3.6. A trade-off between inflation and output gap volatility. Parameters c1
and c2 of Taylor’s rule (2) control the volatility level of inflation and output gap

near an equilibrium state. Numerical simulations of the model with sticky inflation

expectation show that when c1 increases (which corresponds to stronger inflation

targeting by the Central Bank), the volatility of the inflation rate decreases, see

Fig. 9 (a). However, at the same time, the output gap becomes highly volatile with

increasing c1, see Fig. 9 (b).
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Figure 9. Numerical simulations of (a) inflation rate, xt and (b) output gap, yt for ̺ = 1
and various values of c1. The remaining parameters values are from Table 1.
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Figure 10. Numerical simulations of (a) inflation rate, xt and (b) output gap, yt for ̺ = 1
and various values of c2. The remaining parameter values are from Table 1.
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Figure 11. Measure of the effect of c2 on volatility of (a) xt and (b) yt with standard
deviation (SD).

When c2 increases (stronger output gap targeting), the output gap volatility de-

creases, see Fig. 10 (b). In particular, the case c2 = 0 corresponding to pure inflation

targeting in Taylor’s rule is characterized by the highest volatility of the output

gap. However, from Fig. 10 (a), it appears that the inflation rate volatility exhibits

a nonmonotone behavior with c2. This is confirmed by Fig. 11, which shows the de-

pendence of the standard deviation of xt and yt on c2 for the trajectories presented

in Fig. 10. The inflation rate volatility reaches its minimum for c2 ≈ 0.8 for the

parameter values a, b1, b2, c1 from Table 1 and ̺ = 1.

All the above results are in agreement with [12]. In addition, c1 and c2 affect

the range of the inflation rate value at the equilibrium states for the model (9).

According to (18), this range increases with c2 and decreases with c1−1 (for c1 > 1).

At the same time, the range of output gap equilibrium values is unaffected by the

parameters of Taylor’s rule.

3.7. A multi-agent model. Model (9) can be easily extended to account for

differing types of agent with different inflation rate expectation rules/thresholds. To
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this end, we replace the simple relationship (6) between pt and xt with the equation

(29) pt =

n∑

i=1

µiP̺i
[xt] = xt −

n∑

i=1

µiS̺i
[xt]

with

(30)

n∑

i=1

µi = 1.

Here the play operatorP̺i
models the expectation of inflation by the ith agent; pt is

the aggregate expectation of inflation; µi > 0 is a weight measuring the contribution

of agent’s expectation of inflation to the aggregate quantity; and, ̺i is an individual

threshold characterizing the behavior of the ith agent. Relation (29) is equivalent to

the formula

(31) st = I[xt] :=

n∑

i=1

µiS̺i
[xt],

which is a (discrete) Prandtl-Ishlinskii (PI) operator with thresholds ̺i and weights

µi [17], [31], [21], where st = xt − pt.

The implicit system (1), (2), (29) with multiple agents can be converted into an

explicit form using the same technique as we used for the system with one play

operator. Again this involves the inversion of the PI operator. The explicit system

(32) zt = Azt−1 + Î[c · zt−1 + ξ̂t]d+Nξt,

which is similar to its counterpart (9), includes a PI operator with rescaled thresh-

olds ̺̂i and weights µ̂i, see Appendix D for details; ξt, ξ̂t denote the noise terms.

The stability properties of the equilibrium states of system (32) with multiple

agents are similar to the stability properties considered above in Section 2.5. In

particular, if we consider the system without external noise for c1 > 1, then the

set of equilibrium states is globally stable, and every trajectory converges to an

equilibrium state.

In the simulations of this section, we classify economic agents into three categories,

strongly, moderately, and weakly sensitive to inflation rate variations (hence n = 3),

by assigning thresholds ̺1 < ̺2 < ̺3, respectively, to these groups, see Fig. 12.

Further, the contribution of each group to the aggregate expectation of inflation

carries equal weight, µi = 1/3.
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Figure 12. Different expectations of agents based on three thresholds ̺1 < ̺2 < ̺3 of (a)
play and (b) stop operators with a single input xt.
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Figure 13. Trajectory of the system with 3 agents near an equilibrium state when none
of the agents achieves an extreme perception gap (cf. Figure 4 (a), (d)). Here
c1 > 1. (a) Time trace of inflation. (b) Inflation versus expectation of inflation
by any of the agents.

Overall, numerical results obtained for model (1), (2), (29) with three agents are

qualitatively similar to the results described above for the model with one agent,

see Figs. 13–20, which are counterparts of Figs. 4–11, respectively. Asymmetry of

thresholds such as in Remark 1 can be incorporated in this model without difficulty.
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Figure 14. Trajectory of the system with 3 agents when the most sensitive agent reaches an
extreme perception gap but the two less sensitive agents do not (cf. Figure 4 (b),
and (e)). The parameter c1 satisfies c1 > 1. (a) Time trace of inflation. A change
of the equilibrium state occurs. (b) Inflation versus expectation of inflation by
the most sensitive agent. (c) Inflation versus expectation of inflation by each of
the two less sensitive agents.
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Figure 15. Trajectory of the system with 3 agents with the most sensitive agent and the
moderately sensitive agent having an extreme perception gap at the initial (equi-
librium) point (cf. Fig. 4 (c), (d)). The parameter c1 satisfies c1 > 1. (a) Time
trace of inflation. (b) Inflation versus expectation of inflation for the moder-
ately sensitive agent. (c) Inflation versus expectation of inflation for the most
sensitive agent. The least sensitive agent shows the behavior as in Fig. 14 (c).
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Figure 16. Changes of the equilibrium state in the model with 3 agents due to shocks
(cf. Figures 6, 7). (a) Small shocks. (b) Relatively large shocks.
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Figure 17. The run-away inflation scenario in the model with 3 agents in the case c1 < 1
(cf. Fig. 8).

3.8. A sticky Central Bank model. The Central Bank policy can presumably

exhibit stickiness, too. To explore this scenario in this section we replace the Taylor

rule (2) with the relation

(33) rt = Pσ[c1xt + c2yt]

also involving a play operator. But at the same time, for the sake of simplicity and

in order to isolate the effect of stickiness in the Central Bank response upon the
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system, we remove the play operator from equations (1), thus assuming that the

aggregate expectation of inflation equals to the current actual inflation rate, pt = xt;

this corresponds to setting ̺ = 0 in equations (1). In this case,

(34) yt = yt−1 − a(rt − xt) + εt, xt = xt−1 +
b2

1− b1
yt + ηt.

It would be interesting to consider the model with both sticky inflation expectation

and sticky Central Bank response; however, this is beyond the scope of this paper.

System (33), (34) can be written in the form (9) with

st = Sσ[c1xt + c2yt],

the matrix A defined by (10), N = A, and d = (a(1 − b1), ab2)
⊤/∆ with ∆ defined

by (11). The technique presented in Subsection 2.2 can be adapted to convert the

implicit system (33), (34) into a well-defined explicit system provided that

(35) 1− b1 − ab2 > 0

(see Appendix E). Hence, we assume that this condition is satisfied.

Equilibrium states of system (33), (34) with zero noise terms form the line segment

(36) (y∗(s∗), x∗(s∗)) =
(
0,

s∗
c1 − 1

)
, s∗ ∈ [−σ, σ].

Notice that the output gap value is zero for all the equilibrium states, while the

equilibrium inflation rate ranges over an interval of values. Notably, the local stability

analysis (see Appendix E) shows that all the equilibrium states with s∗ ∈ (−σ, σ)

are unstable for any set of parameter values. That is, stickiness in the Taylor rule

leads to destabilization of equilibrium states.
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Figure 18. Trade-off between the inflation and output gap volatility in the model with 3
agents as the inflation targeting parameter c1 in the Taylor rule is varied
(cf. Fig. 9). (a) Trajectories of xt. (b) Trajectories of yt.
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Figure 19. Trade-off between the inflation rate and output gap volatility in the model with 3
agents as the output gap targeting parameter c2 in the Taylor rule is varied
(cf. Fig. 10). (a) Trajectories of xt. (b) Trajectories of yt.

On the other hand, for large values of zt = (yt, xt)
⊤, the system can be approx-

imated by equation (26), which is exponentially stable (as shown in Appendix B).

This ensures that in system (33), (34), in the absence of noise, all trajectories con-

verge to a bounded domain Ω surrounding the segment of equilibrium states and,

upon entering this domain, remain there. However, since the equilibria are all un-

stable, more complicated bounded attracting orbits (such as periodic, quasiperiodic,

or even chaotic atractors) must occur. Fig. 21 shows a few possibilities for the at-

tractor of system (33), (34) obtained for different sets of parameter values. The

attractor belongs to Ω, whose size is controlled by the parameter σ of the sticky

Taylor rule (33). This size can be estimated using the Lyapunov function introduced

in Subsection 2.5.

Finally, we note that in the presence of noise, a trajectory will most likely wander

unpredictably around Ω unless kicked outside temporarily by a fluctuation.

4. Conclusions

In this paper we rigorously analyzed a simple macroeconomic model with sticky

inflation expectations. Perhaps surprisingly, although the model is nonlinear, it can

be considered as a hybrid (piecewise) linear system and analysed using a mostly

linear mathematical toolkit.

For such a simple model, defined via a single (and conceptually quite elementary)

change from a standard one, the sticky play operator introduces surprisingly com-

plicated, subtle-yet-recognizable phenomena into the dynamics. Some of the more

detailed conclusions of our simulations may be model-specific but, based upon the

mathematics presented here and additional numerical simulations with more com-

plex variants of the model, we believe at least the following two qualitative features

to be generic and robust.
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Figure 20. Measure of the effect of c2 on volatility of (a) inflation rate, xt and (b) output
gap, yt with standard deviation (SD) (cf. Fig. 11).
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Figure 21. An attractor of system (33), (34) for several parameter sets. (a)–(c) A periodic
orbit (with period 8, 10, 16, respectively) shown on the (x, y) plane for the
system without noise. (d) A quasiperiodic orbit. (e) Two equilibrium states
corresponding to s∗ = ±σ (the time trace of xt shown for 2 trajectories). (f)
Time trace of xt for a trajectory of the system with noise for the same parameters
as in (e).

Firstly, the presence of an entire continuum of equilibria rather than a unique one

(or even finite numbers of them as occurs in many New-Keynesian models). This

causes permanence and path dependence at a deep level. It should be noted that in

more sophisticated models, with more variables and more play operators, the set of

possible equilibria may be extremely complicated with the possibility of ‘cascades’

where one play operator starting to drag causes others to do so (the analogy with

earthquakes made in Introduction then becomes even closer).

Secondly, the existence of different modes depending upon whether particular play

operators are currently ‘stuck’ or ‘dragged’—in our case the ‘inner’ and ‘outer’ modes.

If some modes are less stable than others (in our main model the outer mode is less

stable than the inner one), then a large enough shock may move the system far enough
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away from the set of equilibria that the route back to an equilibrium is both long

and unpredictable. It may even move the system into an unstable regime—in this

case runaway inflation—without any change in the system parameters. Both these

features are highly significant not just because they correspond closely to actual eco-

nomic events but they have implications for forecasting and policy prescriptions too.

Our choice of inflation expectations as the candidate for an initial investigation was

influenced by the work of De Grauwe [12] on a different type of boundedly rational

expectation formation process in a simple DSGE model. However, play operators

are also a viable candidate for modeling other sticky economic variables at both the

micro- and macro-economic levels. To demonstrate this, in our final model we used

one to represent sticky responses by the Central Bank.

The modeling approach presented above can be thought of as a ‘stress test’ of

the usual rationality assumption in the underlying toy model. Or to put it another

way, it is examining the robustness of modeling assumptions rather than just the

stability of the solutions within a particular model. As such, we believe that the

introduction of a new form of plausible stickiness has intrinsic merit not just as a form

of expectation formation. It provides an additional class of perturbed models—

ones that are genuinely nonlinear, tractable, and capable of changing solutions (and

potentially policy prescriptions) in a way that merely changing the parameters of an

equilibrium model cannot.

Our second and third models demonstrated that there are various ways in which

this work can be extended, in particular to systems with multiple agents and multiple

play operators. Although it has not been relevant to this paper, play and stop oper-

ators, when combined appropriately [23], can have a remarkably simple aggregated

response, even when connected via a network. This allows for (almost)-analytic so-

lutions even when cascades and rapid transitions between states are occurring and

will be the subject of future work.

Appendix

A. Derivation of equations (9), (12). Here we show how to obtain equa-

tions (9), (12) from model (1)–(4). To this end, we substitute the equation for rt

into the equation for yt and obtain

(1 + ac2)yt = yt−1 − ac1xt + apt + εt.

Next, we substitute this equation into the equation for xt and simplify to obtain

(37) γxt − βpt = b2yt−1 + (1− b1)(1 + ac2)xt−1 + b2εt + (1 + ac2)ηt,
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where β is defined in (13) and

γ = 1 + ac2 + ab2c1.

Since pt = xt − st, equation (37) can be rewritten as

(38) αxt + st = ft

with α and ft defined by (13), (15). Therefore, xt = α−1(ft − st), which combined

with (13), (15) gives

(39) xt =
b2
∆
yt−1 +

(1− b1)(1 + ac2)

∆
xt−1 −

1

α
st +

b2
∆
εt +

1 + ac2
∆

ηt,

where ∆ = αβ, see (11). Subsequently, substituting equation (39) into equation (4)

gives

(40) yt =
ab2(1− c1) + ∆

∆(1 + ac2)
yt−1 +

a(1− c1)(1 − b1)

∆
xt−1

+
a(c1 − 1− α)

α(1 + ac2)
st +

∆+ ab2(1− c1)

∆(1 + ac2)
εt +

a(1− c1)

∆
ηt.

Equations (39), (40) can be written as system (9) with the matrices A, N and the

vector d defined by formulas (10).

Furthermore, substituting (39) in (7) gives

st = Φ̺

(
−
st
α

+ wt + st−1 − xt−1

)
,

where we denote

(41) wt =
b2
∆
yt−1 +

(1 − b1)(1 + ac2)

∆
xt−1 +

b2
∆
εt +

1 + ac2
∆

ηt.

Equivalently, introducing the notation

(42) ut = −
st
α

+ wt + st−1 − xt−1,

we obtain

α(wt + st−1 − xt−1) = Φ̺(ut) + αut.

By inspection, the function (Φ̺ + I)(u) = Φ̺(u) + αu is invertible and its inverse

equals

(Φ̺ + I)−1(u) =
u

α
−

1

α(1 + α)
Φ̺(1+α)(u),

hence

ut = wt + st−1 − xt−1 −
1

α(1 + α)
Φ̺(1+α)(α(wt + st−1 − xt−1)).
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Due to (42), this is equivalent to

(43) st =
1

(1 + α)
Φ̺(1+α)(αwt + αst−1 − αxt−1),

which, combined with (41), implies (12). This completes the derivation of the explicit

system (9), (12).

Since equations (15) and (41) imply ft = αwt and (38) implies αxt−1 = ft−1−st−1,

equation (43) is also equivalent to (14). Alternatively, equation (14) can be obtained

from relation (38) using the inversion formula for the play operator. This inversion

formula is presented for a more general Prandtl-Ishlinskii (PI) operator, including

the play operator as a particular case, in Appendix D.

B. Local stability analysis. First, let us consider the system without stiction.

The characteristic polynomial of matrix A is

PA(λ) = ∆λ2 − (1 − b1)(2 + ac2)λ+ 1− b1

with ∆ defined by (11). Applying Jury’s stability criterion, we obtain

PA(1) = 1−
(1− b1)(2 + ac2)

∆
+

1− b1
∆

> 0,

PA(−1) = 1 +
(1− b1)(2 + ac2)

∆
+

1− b1
∆

> 0, 1 >
1− b1
∆

.

Taking into account the constraints a, b2, c1, c2 > 0 and 0 < b1 < 1, these conditions

result in the relationship

c1 > 1.

Note that the system zt = Azt−1 is the linearization of sticky system (9) at infinity,

hence it describes the return of the sticky system towards near equilibrium dynamics

after a large perturbation. Thus, the stability condition c1 > 1 for A agrees with the

global stability criterion obtained in Section 2.5.

Now, let us consider local stability of equilibrium states. Define the open domain

Ω = {w = (y, x, s) ∈ R
2 × [−̺, ̺] : |(n · w)| < (1 + α)̺},

where

(44) n =
1

β
(b2, (1− c1)ab2,∆)⊤

and w ·u = w1 ·u1+w2 ·u2+w3 ·u3 is the standard scalar product in the phase space.

Note that the set Ω contains all the equilibrium states (22) of system (16), (17)
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(i.e., all the internal points of the whole segment of equilibrium states). Since

Φ̺(1+α)(x) = x for |x| 6 (1 + α)̺, equations (17) and (39), (40) imply that for

(yt−1, xt−1, st−1) ∈ Ω,

(45) (yt, xt, st)
⊤ = M(yt−1, xt−1, st−1)

⊤

with

M =
1

1 + a(b2c1 + c2)




1 a(1− c1) a(b1c1 − 1)

b2 1 + a(b2 + c2) −(b1 + ab2 + ab1b2)

b2 ab2(1− c1) 1 + a(b1(c1 − 1) + c2)− b1(1 + ac2)


 .

Consequently,

(46) xt − st = xt−1 − st−1, (yt−1, xt−1, st−1) ∈ Ω,

which means that each trajectory in Ω is restricted to a plane x − s = const. By

inspection, the restriction of (45) to a plane x − s = const is given by system (24)

with the matrix B defined by (23). Moreover, it follows that the matrix M has

the eigenvalue λ0 = 1, and the corresponding eigenvector is (21). Therefore, the

characteristic polynomial of M has the form PM (λ) = (λ − 1)PB(λ), where

PB(λ) = λ2 − λ
(2 + ac2 − b1(1 + ac2)

1 + a(b2c1 + c2)

)
+

1− b1
1 + a(b2c1 + c2)

is the characteristic polynomial of matrix (23). Applying Jury’s stability criterion to

PB(λ) gives the following set of inequalities:

PB(1) = 1−
2 + ac2 − b1(1 + ac2)

1 + a(b2c1 + c2)
+

1− b1
1 + a(b2c1 + c2)

> 0,

PB(−1) = 1 +
2 + ac2 − b1(1 + ac2)

1 + a(b2c1 + c2)
+

1− b1
1 + a(b2c1 + c2)

> 0, 1 >
1− b1

1 + a(b2c1 + c2)
.

It is easy to see that all the three inequalities above are satisfied for any set of

parameters a, b2, c1, c2 > 0 and 0 < b1 < 1. Hence, we conclude that each equilib-

rium state (22) is stable and locally attracting, the dynamics in a sufficiently small

neighborhood of any such state is linear and satisfies xt − st = const.

We proceed to construct an explicit open domain U ⊂ Ω of the form (19) such that

(i) U contains the open segment of equilibrium states (22);

(ii) w0 = (y0, x0, s0) ∈ U implies

(47) wt = (yt, xt, st) ∈ Ω, t > 1.
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Due to (ii), for (y0, x0, s0) ∈ U , the iterations (yt, xt, st) satisfy (46) and converge to

the equilibrium (z∗(s∗), s∗) defined by (18), (25). Equivalently,

(48) wt = (yt, xt, st) → (x0 − s0)v0 as t → ∞,

where v0 is given by (21).

Theorem 1. There exists a C > 0 such that the trajectory of system (16), (17)

satisfies (45)–(48) for each initial condition w0 = (y0, x0, s0) ∈ U from the domain U

defined by (19).

The constant C > 0 is found explicitly in the following lemmas, which distinguish

between the cases when the eigenvalues λ1, λ2 of the matrix B are real and complex.

For every p ∈ R, the intersection of the boundary ∂Ω of the domain Ω with the

plane x − s = p consists of the two parallel straight lines l±p . By inspection, the

minimum of the two distances dist(pv0, l
+
p ) and dist(pv0, l

−
p ) equals

(49) κ(p) =
∣∣∣1− b2|1− c1||p|

b1c2 + b2c2

∣∣∣ (1 + α)̺‖n′‖2
|n · n′|

,

where n is given by (44) and

n′ =
1

2β
(2b1, (1− c1)ab2 + α, (1− c1)ab2 + α)⊤.

Lemma 1. Let the matrix B have real eigenvalues λ1 6= λ2. Let v1, v2 be

eigenvectors of M corresponding to its eigenvalues λ1, λ2, respectively, and let ϕ be

the angle between v1 and v2. Then

(50) ‖w0 − (x0 − s0)v0‖2 6
1

2
| sinϕ|κ(x0 − s0)

implies (46), (47) and

(51) ‖wt − (x0 − s0)v0‖2 6 κ(x0 − s0), t > 1.

P r o o f. Since v1 and v2 belong to the plane 0 = x−s, we have the decomposition

(52) w0 = (x0 − s0)v0 + C1v1 + C2v2.

Let us show (51) by induction provided (50) holds. The base case is obvious. For the

induction step, assume that wτ ∈ Ω and xτ − sτ = x0 − s0 for 0 6 τ < t, therefore

using (45), we obtain

wt = (x0 − s0)v0 + C1λ
t
1v1 + C2λ

t
2v2,

and due to |λi| 6 1,

(53) ‖wt − (x0 − s0)v0‖2 = ‖C1λ
t
1v1 + C2λ

t
2v2‖2 6 |C2|‖v1‖2 + |C2|‖v2‖2.
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From relations (50) and (52), it follows that

1

2
| sinϕ|κ(x0 − s0) > ‖C1v1 + C2v2‖2 > ‖C1v1‖2| sinϕ|,

1

2
| sinϕ|κ(x0 − s0) > ‖C1v1 + C2v2‖2 > ‖C2v2‖2| sinϕ|,

therefore (53) implies (51). Finally, (45) implies xt−st = x0−s0, hence, by definition

of κ(x0 − s0), (51) implies wt ∈ Ω, which concludes the induction step. �

Lemma 2. Let the matrix B have complex eigenvalues λ1 = λ̄2. Let v1 = u1+iu2

be a complex eigenvector of the matrix M corresponding to its eigenvalue λ1, and

let ϕ be the angle between the real vectors u1 and u2. Then

(54) ‖w0 − (x0 − s0)v0‖2 6
‖u1‖2‖u2‖2

‖u1‖22 + ‖u2‖22
| sinϕ|κ(x0 − s0)

implies (46), (47) and (51).

P r o o f. The proof is obtained by a slight modification of the proof of Lemma 1

above. Since u1 and u2 belong to the plane 0 = x− s, we have the decomposition

(55) w0 = (x0 − s0)v0 + ℜe((C1 − iC2)(u1 + iu2))

with real C1, C2. Assuming that wτ ∈ Ω and xτ − sτ = x0 − s0 for 0 6 τ < t and

using (45), we obtain

wt = (x0 − s0)v0 + ℜe(λt
1(C1 + iC2)(u1 + iu2))

and due to |λ1| 6 1,

(56) ‖wt − (x0 − s0)v0‖2 6

√
(C2

1 + C2
2 )(‖u1‖22 + ‖u2‖22).

Relations (54), (55) imply

‖u1‖2‖u2‖2
‖u1‖22 + ‖u2‖22

| sinϕ|κ(x0 − s0) > ‖C1u1 + C2u2‖2

> | sinϕ|max{‖C1u1‖2, ‖C2u2‖2}.

Combining this with (56), one obtains (51). �
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Lemma 3. Let the matrix B have a double eigenvalue λ1 = λ2. Let v1 and v2

be, respectively, an eigenvector and a generalized eigenvector of the matrix M

corresponding to its double eigenvalue λ1, and let v1 and v2 be orthogonal. If

0 < λ1 6 1/e, then

(57) ‖w0 − (x0 − s0)v0‖2 6
‖v2‖2

‖v1‖2 + 2‖v2‖2
κ(x0 − s0)

implies (46), (47) and (51). If λ1 > 1/e, then

(58) ‖w0 − (x0 − s0)v0‖2 6
e| lnλ1|‖v2‖2

‖v1‖2 + 2e| lnλ1|‖v2‖2
κ(x0 − s0)

implies (46), (47) and (51).

P r o o f. As in the proof of Lemma 1, assuming that wτ ∈ Ω and xτ−sτ = x0−s0

for 0 6 τ < t and using decomposition (52), we obtain

wt = (x0 − s0)v0 + (C1λ
t
1 + tC2λ

t−1
1 )v1 + C2λ

t
1v2.

Let us notice that if λ1 6 1/e, then the derivative of function f(t) = tλt
1 satisfies

f ′(t) = λt
1 + ln(λ1)tλ

t
1 6 λt

1(1− t) 6 0, t > 1.

In this case, using f(t) 6 f(1) and |λ1| 6 1, we obtain for t > 1

(59) ‖wt − (x0 − s0)v0‖2 6 |C1|‖v1‖2 + |C2|(‖v1‖2 + ‖v2‖2).

But (57) implies

‖v2‖2
‖v1‖2 + 2‖v2‖2

κ(x0 − s0) > ‖C1v1 + C2v2‖2 > max{‖C1v1‖2, ‖C2v2‖2},

which, when combined with (59), gives (51).

On the other hand, if 1/e < λ1 < 1, then the function f(t) = tλt
1 achieves its

maximum f(tm) = −1/(e ln(λ1)) on the semi-axis t > 0 at tm = −1/ln(λ1). Hence,

in this case,

‖wt − (x0 − s0)v0‖2 6 |C1|‖v1‖2 + |C2|
( ‖v1‖2
e| ln(λ1)|

+ ‖v2‖2

)
.

If (58) holds, then

e| lnλ1|‖v2‖2
‖v1‖2 + 2e| lnλ1|‖v2‖2

κ(x0 − s0) > ‖C1v1 + C2v2‖2 > max{‖C1v1‖2, ‖C2v2‖2},

consequently (51) is valid. �
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Define

C0 =
(1 + α)̺b2|1− c1|‖n

′‖2
(b1c2 + b2c1)|n · n′|

.

According to the above lemmas, the conclusion of Theorem 1 holds if the constant C

in the definition of the domain (19) is equal to C = C0| sinϕ|/2 under the condi-

tions of Lemma 1, C = C0‖u1‖2‖u2‖2| sinϕ|/(‖u1‖
2
2 + ‖u2‖

2
2) under the conditions

of Lemma 2, C = C0‖v2‖2/(‖v1‖2 + 2‖v2‖2) under the conditions of Lemma 3 if

λ1 6 1/e, and C = C0e| lnλ1|‖v2‖2/(‖v1‖2 + 2e| lnλ1|‖v2‖2) under the conditions of

Lemma 3 if λ1 > 1/e.
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|λi|
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1.0

Figure 22. Variation of |λi| and |λe| with a. Other parameters are taken from Table 1.
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Figure 23. Dependence of (a) |λi| and (b) |λe| on b1 and b2. Other parameters are taken
from Table 1.
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Figure 24. Dependence of (a) |λi| and (b) |λe| on c1 and c2. Other parameters are taken
from Table 1.
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C. The effect of parameters on stability properties. Here we provide a nu-

merical analysis concerning the effect of the parameters on stability properties of the

equilibrium states. Stronger stability generally implies lower volatility and more in-

frequent transitions between different equilibrium states. We quantify local stability

using the maximum absolute value, |λi,e|, of eigenvalues of the linearized system at

an equilibrium point. The subscripts e and i refer to the system without stickiness

(̺ = 0) and with stickiness (̺ = 1), respectively.

The model contains five other parameters, a, b1, b2, c1 and c2. Fig. 22 shows the

dependence of |λi,e| on the parameter a and implies that the system with stickiness

is more stable than the system without stickiness. Other parameter values are taken

from Table 1. Interestingly, the system with stickiness becomes more stable for in-

creasing a, while this dependence for the nonsticky system is nonmonotone since |λe|

has a minimum at a ≈ 0.8.

The range of output gap equilibrium values is proportional to the ratio of param-

eters b1 and b2 according to (18). Fig. 23 presents the dependence of |λi,e| on these

parameters. The sticky system is more stable than its nonsticky counterpart for

b1 < 0.9, but becomes less stable than the nonsticky system as b1 approaches 1 (in

the latter case, the future inflation rate is defined predominantly by expectations).

The dependence of |λi,e| on b2 and the dependence of |λe| on b1 is monotone (stronger

stability for larger b1,2), while the dependence of |λi| on b2 is nonmonotone. The

strongest stability is achieved by the sticky system for some intermediate value of b1
between 0 and 1.

1 3 5 7 9c2
0.4
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Figure 25. Cross sections of the plots shown in Fig. 24 (a) for various c2 values and (b) for
various c1 values.
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Parameters c1 and c2 control the range of inflation rate equilibrium values ac-

cording to (18). This range contracts when c1 increases (for c1 > 1) and expands

when c2 increases. Fig. 24 shows that the sticky system is generally more stable than

the nonsticky one. Both systems become more stable with increasing c1 (stronger

inflation targeting in Taylor’s rule), see Figs. 24 (a), (b) and 25 (a), (b). The depen-

dence of |λi| on c2 demonstrates some slight nonmonotonicity for large c2 values, see

Figure 25 (b). The nonmonotonicity of |λi| with c2 is much more pronounced with

the minimum achieved for a certain value of c2 depending on c1, see Figs. 24 (b)

and 25 (b). This minimum corresponds to the strongest stability and, in this sense,

optimizes the Central Bank policy. In Fig. 24 (b), the strongest stability is achieved

on the ‘parabolic’ line.

D. Inversion of the PI operator. In this section, we consider the inversion of

the PI operator, which is necessary to transform the implicit system (1), (2) coupled

with relation (29) into the explicit form (32). Here we use the term ‘PI operator’ for

an input-output relationship of the form

(60) ft = αxt +

n∑

i=1

µiS̺i
[xt],

where the weights µi are allowed to have any sign, α > 0, and ̺1 < ̺2 < . . . < ̺n.

Such an operator is completely defined by the so-called Primary Response (PR) func-

tion ϕ(x), which describes the output in response to a monotonically increasing input.

Here, this is a piecewise linear continuous function satisfying ϕ(0) = 0 with the

slopes defined by

ϕ′(x) =





α+ µn + . . .+ µ2 + µ1, 0 < x < ̺1,

α+ µn + . . .+ µ2, ̺1 < x < ̺2,

...

α+ µn, ̺n−1 < x < ̺n,

α, x > ̺n,

see Fig. 26. As shown in [22], if the slopes of ϕ are all positive, then the PI opera-

tor (60) is invertible, and the inverse relationship is also a PI operator:

(61) xt = α̂ft +

n∑

i=1

µ̂iŜ̺i
[ft].

Further, the PR function of operator (61) is the inverse of the PR function ϕ of

operator (60). This allows one to express the weights α̂, µ̂i and the thresholds ̺̂i
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explicitly in terms of the weights α, µi and the thresholds ̺i. In particular, the

equation αxt + st = ft with st = S̺[xt] (see (38)) can be inverted as

xt =
1

α
ft −

1

α(1 + α)
S(1+α)̺[ft],

and this implies st = (1 + α)−1S(1+α)̺[ft], which is equivalent to (14) (cf. Ap-

pendix A).

ϕ

ϕ−1

̺3̺2̺1

̺̂3

̺̂2

̺̂1

0

Figure 26. PR function ϕ of PI operator (60) and PR function ϕ−1 of its inverse PI oper-
ator (61).

E. Sticky Taylor rule. In order to convert system (33), (34) to the explicit form,

we replace the variable yt with the variable gt = c1xt + c2yt and obtain

gt = (c1 + ac2)xt + gt−1 − c1xt−1 − ac2Pσ[gt] + c2εt,(62)

xt =
c2(1− b1)

b2c1 + c2(1 − b1)
xt−1 +

b2
b2c1 + c2(1− b1)

gt +
c2(1− b1)

b2c1 + c2(1− b1)
ηt.(63)

Further, substituting (63) into (62) gives

(64) αgt + κPσ[gt] = ft

with

α =
c2(1− b1 − ab2)

b2c1 + c2(1− b1)
, κ = ac2,

ft = gt−1 − c1xt−1 +
c2(1 − b1)(c1 + ac2)

b2c1 + c2(1 − b1)
(xt−1 + ηt) + c2εt.

Using that α > 0 due to (35), we can invert (64) as in Appendix D to obtain

gt =
1

α

(
ft −

κ

α+ κ
Pασ[ft]

)
.
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This equation together with (63) defines the explicit system for (33), (34). The

linearization zt = Bzt−1 of this system at any equilibrium point with s∗ ∈ (−σ, σ)

has the matrix

B =
1

1− b1 − ab2

(
1− b1 a(1− b1)

b2 1− b1

)
.

Since

detB =
1− b1

1− b1 − ab2
> 1,

all these equilibrium states are unstable.
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