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Abstract. Modeling real world objects and processes one may have to deal with hysteresis
effects but also with uncertainties. Following D. Davino, P. Krejéi, and C. Visone (2013), a
model for a magnetostrictive material involving a generalized Prandtl-Ishlinskii-operator is
considered here.

Using results of measurements, some parameters in the model are determined and inverse
Uncertainty Quantification (UQ) is used to determine random densities to describe the
remaining parameters and their uncertainties. Afterwards, the results are used to perform
forward UQ and to compare the generated outputs with measured data. This extends some
of the results from O.Klein, D. Davino, and C. Visone (2020).

Keywords: hysteresis; uncertainty quantification (UQ); magnetostrictive material;
Bayesian inverse problems (BIP)
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1. UNCERTAINTY QUANTIFICATION AND HYSTERESIS: MOTIVATION AND TOPICS

1.1. Uncertainties in models with hysteresis operators. Considering mag-
netization, piezo-electric effects, elasto-plastic behavior, or magnetostrictive materi-
als, one has to take into account hysteresis effects. Many models involve therefore
hysteresis operators and are also subject to uncertainties:

> Parameters in the models are identified using results from measurements. Hence,
they can be influenced by measurement errors.

> Parameters being identified for some sample specimens are also used for other
specimens.
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> Material/device may change after performing the measurements, for example, due
to temperature changes or aging.

> Moreover, if one is performing several measurements, there can be conditions not
considered in the model that change between the measurements, creating quite
different measurement results that correspond to different parameter values in the
used model.

The parameters in the hysteresis operators used to model hysteresis effects are there-
fore also subject to uncertainties. In the following, methods of Uncertainty Quan-
tification (UQ) will be applied to describe/determine the uncertainties and to inves-
tigate their influence.

1.2. Uncertainty quantification. In view of e.g., [17], [18], the following inter-
pretation of UQ is considered: Use of probability theory to deal with uncertainties,
i.e., parameters with uncertain values are represented by random variables model-
ing the information/assumptions/beliefs on the values and the uncertainties of the
parameter values. In the current paper, the following aspects of UQ will be discussed:

Forward UQ: Starting from representations of the uncertain parameter values by
random variables, one considers the model output as random variable
and computes properties like expected value, variation, probabilities
for outputs entering some interval, credible intervals, and other Quan-
tities of Interest (Qol).

Inverse UQ: Using data and measurements to determine values and the uncertainty
of the parameters, i.e., to determine a random variable taking into
account the information provided by the data and the measurements,
and use the random variable to represent the parameters afterwards.

Other subjects of /related to UQ, like sensitivity analysis, where one is investigating
which input parameters have the largest effect (in terms of uncertainty) on the output
quantity, will not be discussed here.

1.3. UQ for a model for magneto-mechanical components—topic of this
paper. A model with a hysteresis operator is used to describe a magnetostrictive
actuator. Using measurements for this actuator, parameters in the hysteresis oper-
ator and their uncertainty are identified by inverse UQ. Afterwards, forward UQ is
performed. This work extends results from Section 5 in [7].
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2. HYSTERESIS OPERATORS

2.1. Hysteresis operators—general definition. In this section, it is assumed
that some T > 0 is given. Following [2], [10], [19], it is defined:

Definition 2.1. Let nonempty sets X, Y, and H: D(H) — Map([0,7],Y) with

0 # D(H) € Map([0,T7], X) be given.

(a) H is a hysteresis operator < H is rate-independent and causal.

(b) H is rate-independent < for all v € D(H) for all a: [0,T] — [0,7] being
continuous and increasing (not necessary strictly increasing) with a(0) = 0,
a(T)=T,and voa € D(H) it holds: H[voa] = H[v]oa.

(c) H is causal < for all vi,vy € D(H) for all ¢ € [0,T): If vi(7) = va(7) for all

€ [0,¢], then Hlv1](t) = Hlva](¢).

2.2. The play-operator—definition and properties. The play-operator de-
fined below is an important example of an hysteresis operator and is used to define
further hysteresis operators.

Definition 2.2. Considering a yield limit r > 0 and an initial state z € R, the
play-operator Pr[z,-] maps u € C(]0,T]; R) being piecewise monotone to P, [z,u] €
C(]0,T); R) which is also piecewise monotone and it holds (see, e.g., [2], [9], [10], [19])
that
(2.1) Pz, u)(0) = max(u(0) — 7, min(u(0) + r, 2)),

max (P, [z, ul(ts),u(t) —r) if u is increasing on [t t],
(2.2) Pr[z,u](t)—{ (Prlz, u] (), u(t) —r) [t ¢]

min(P, [z, u|(t«),u(t) +r) if u is decreasing on [t,, ],

for all t,,t € [0,T] with ¢, < ¢ such that u is monotone on [t.,1].

As an example, the output of P3[0, u] for an input function w is considered. The
corresponding evolutions combined with plots for v + 2 and u — 2 are shown in
Figure 1. Moreover, the corresponding input-output diagram, showing the evolution
of (u, P2[0,u]), is presented in Figure 2.

Remark 2.3. Using e.g., [2], [9], [10], [19], one can show:

(a) It holds for all » > 0 and all z € R: the play-operator defined above can be
continuously extended to the well known and well defined play-operator Py[z, -]
from C([0,T]; R) to C([0,T]; R), being also a hysteresis operator.

(b) Let Ap: [0,00) — R being Lipschitz-continuous with Lipschitz constant 1 be
given such that there exists some R > 0 with Ao(r) = 0 for all » > R. Then
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it holds for all uw € C([0,T]; R) and all ¢t € [0,T]: the mapping P.[Ao(-),u](t):
[0,00) = R defined by [0,00) 3 r +— Pr[Ao(r), u](t) is continuous and there is
some R, ¢ > 0 such that P.[Ao(r),u](t) =0 for all r > R, ;.

- I\
6_
4_
C 7
2~ input function u
B e utr=u+2
0 L , e u—r=u—2
- . , \\/ \8 /
R 2N / \ . ! \ / — PQ[O,U]
- \ / \ ! \ /
—9 \ / v ! \ /
- \ ! V! v/
- v 1l /

Figure 1. Evolution of the input w(t), of u(t) — 2, of u(t) + 2, and of the output of the
play-operator P2[0, u](¢).

P[0, u]
4

2
&)
0“.
O~ 1
O

AR I
@)V\é IINCAN LA ) 4 ¢ input u

Figure 2. Input-output-diagram, derived using the data leading to Figure 1. Therein, the

evolution of (u(t), P2[0, u](t)) is shown. The size of the circles is decreasing while ¢
increases.

2.3. Prandtl-Ishlinskii-operator. Following [2], [9], [10], [19], it is defined:

Definition 2.4. Let ¢ € L\ _([0,00)) be given.

loc
(a) Let Ao: [0,00) — R being Lipschitz-continuous with Lipschitz constant 1 be
given such that there exists some R > 0 with A\g(r) = 0 for all » > R. Let
PLcho, ] : C([0,T);R) — C([0,T];R) be the Prandtl-Ishlinskii-operator for
the weight function ¢ and the initial state function Ay defined by mapping u €
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C([0,T); R) to the function PZ¢[Ag,u] € C([0,T]; R) with

(2.3) PT [0, u] / VP Do(r), (8 dr Vit € [0,T].

(b) The Prandtl-Ishlinskit-operator PZ¢[0, -] for the weight function ¢ and the trivial
initial state is defined as the operator in a) with Ay = 0 on [0, 00).

(c) The Prandtl-Ishlinskii-operator PZL¢[-,| for the weight function ¢ maps (Ao, u)
with Ao as in (a) and v € C([0,T]; R) to PZ¢[ o, u] as in (a).

(d) The initial loading curve Vpz ¢(s) for the Prandtl-Ishlinskit-operator PZL¢|-, -] is
defined by requesting that for all 5 € R:

(24)  Uprc(B) = PL0,us](T) with uy € C(0, T R)
defined by ug(t) = 6% vVt e [0,T].

Remark 2.5. Let ¢ € L{ ([0,00)) be given. For the initial loading curve Upz ¢
for the Prandtl-Ishlinskii-operator PZ¢[-, -] it holds for all s € R that

/OSQ(T)(s—r)dr if s > 0,
(2.5) \IIPLC(S) = if s = O7

—S8

Cr)(s+r)dr if s <0,
= —Uprc(—s)
2.4. Identification of initial loading curve from measurements.

Remark 2.6. Using [4], [11], [14], one can show: For v € C([0,T];R) and 0 <
ta < tp < t.<T with u being monotone on [t,, 5] and on [t,t.] and u(t,) = u(t.)
it holds that

(M) - %(PIC[)\O,u](t) — PZ[ho, ul(t)).

Remark 2.7. If one is considering a process mapping time-dependent input

(2.6) Vte[tb, ] \IJ’PI(

functions to a measurable time-dependent output quantity ¢, then one may like to
model this by applying a Prandtl-Ishlinskii-operator. To identify a corresponding
weight function, one can use a function u with a cycle as in Remark 2.6 as an input
to this process and determine given/measured values for u and @ at times sg < s1 <

. < sk with t, = sg and sk = t.. Hence, one gets 0 = vg < v1 < ... < vg and
Yo, Y1, ...,k € R defined by

u(si) — u(so)
2

(27) v; =

) Q. 9

1 { Q(si) — Q(so) ifu(sk) = u(so),
Q(s0) — Q(sy) ifu(sk) <
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By recalling (2.6), it can be deduced that one is looking for a weight function ¢ with
(28) \IIPI,C(Ui) %wl Vie {0,,K}

Since the definition yields that vg = 0 and ¢y = 0, it is deduced from (2.5) that
the equation in (2.8) is satisfied for k = 0 for all admissible weight functions ¢ such
that for determining ¢ one can ignore k = 0 in (2.8).

Remark 2.8. Starting from data as in Remark 2.7 one can derive an approxi-
mation for an initial loading curve on [0, v | by considering a function ¥ that is linear
on [vg, v1], [v1,v2],..., [Vk—1,vK] and satisfies ¥(vy) = ¢, for all k € {0,..., K}.

Remark 2.9. The considerations in Remark 2.7 can be extended to the follow-
ing situation: one is considering a function v € C([0,T]; R) and tp,t. € [0,T] with
tp < t. such that u is monotone on [y, t.] and one is able to show somehow that the
equation in (2.6) is at least approximately valid for all ¢ € [ty, t.].

3. UNCERTAINTIES IN A MODEL FOR MAGNETO-MECHANICAL COMPONENTS

3.1. General considerations. In [3], Section 5, a model for magneto-mechanical
devices has been derived. Therein, a generalized Prandtl-Ishlinskii-operator, see also
(8], [20],

(3'1) g617c2763 [)‘05 H] (t) = PICcl,c2 [/\Oa tanh(C3H)](t)

with (e, ¢, (r) == cre~"/ for all 7 > 0, parameters c¢;, ¢z, c3 > 0 and Ag: [0,00) = R
satisfying the conditions discussed above, is considered. In [3], it is shown that this
operator provides an approximation for the magnetization of Galfenol for an applied
magnetic field H; with c3 depending on the applied stress.

In the following, it will be assumed that the applied magnetic field H is propor-
tional to the applied current I such that one can consider G, ¢, c;[Ao, I] (with an
appropriate updated value for c3) instead of Ge, ¢, cs[Ao, H]-

The initial loading curve ¥pz, ., for PZ., . satisfies

(3.2) Ve en(8) = VDT e, e (s) = scica + clcg(efs/“’2 —-1) Vsz=0.

In [1], a magnetostrictive Terfenol-actuator is investigated and the hysteresis be-
tween the current generating the magnetic field and the resulting displacement is
considered. In this paper, data creating a First-Order-Reversal-Curves (FORC)—
diagram quite similar to the one in Figure 3 were used to determine the parameter
field/values in a Preisach-operator and a generalized Prandtl-Ishlinskii-operator.
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FORC + one inc. seq. for current

Z ! ! 1
0 020406 0810121416 1.8 2.0
current

Figure 3. A FORC-diagram for a magnetostrictive Terfenol-actuator similar to the one
considered in [1], and one additional curve derived for increasing current.

3.2. Considerations and results in [7], Section 5. The data used to prepare
the FORC-diagram in Figure 3 and one additional data set with increasing current
measured directly afterward are shown in Figure 4. In [7], Section 5, these data
have been used to identify parameter values ¢, co, cs > 0 such that the generalized
Prandtl-Ishlinskii-operator G, ¢,.c;[Ao, I](t) creates approximations for these data.
The resulting value for c3 = cgann = 0.682138 will be used in the following. Moreover,
the uncertainties for ¢; and co were also investigated.

data used for parameter identification
20 T T T T T

1.8 H B
1.6 - b
14+ B

1.2 F 7| —— length change (norm)
10 L -{ —— current (norm)

0.8 (\ (\ -
0.6 - -
0.4 -
0.2 F -

0 | |
0 20 40 60 80 100 120

Figure 4. Measured data used to generate the FORC-diagram in Figure 3, and one addi-
tional data set with increasing current measured directly afterwards.

In the following, let tg,t1,...,t5s3 denote the times of local extrema for the cur-
rent 1. The symbol L will be the relative length change determined from measure-
ments of a corresponding sensor. Thanks to the measurements, there are values for I
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and L at times 50,55 51,5y -+ SK;,*J' € [tjfl,tj] with tj,1 =50, <81, <...< SK;,*’]‘ = tj
for all j € {1,...,58} and

(3.3) Ki{=29, K;=Ki=28 K;=K:=27,..., K} =K} =2,
Kss =1, Ksr=2, Ksg=29.

In the following, results from a reformulation of Section 2 will be used. In this
reformulation every “[0,T]” is replaced with “[to,t5s]”, “@(0) = 0" and “a(T) =T”
in Definition 2.1 (b) are replaced with “a(tyg) = to” and “a(tss) = tss”, respectively,
“[0,¢]” in Definition 2.1 (c) is replaced with “[to,¢]”, “0” in (2.1) is replaced with “¢y”,
and “0 <ty <tp <t. <T” in Remark 2.6 is replaced with “tg <, <ty <t. < ts8”.

Considering any j € {2,...,57} and investigating the evolution of u := tanh(csI)
on [tj_2,tj—1] and on [t;_1,t,], it follows that one is dealing with the situation
discussed in Remark 2.6 with ¢t;_» =:t,, t;—1 =:t, and t; =: t..

For any ¢ € {1,...,28}, it holds that w is increasing on [t2;—1, t2;] = [S0,2i, Sk;,2i]
with K; := KJ,. Hence, by following Remark 2.7, one can compute vg,...,Vk,
and g, ..., VK, ; defined by

(34) Vk,i = %|tanh(03f(sk,2i)) — tanh(031(80’2i))|
= %(tanh(c;;](sk’gi)) — tanh(03I(so72i))),
Y = %(L(Sk,%) — L(s0,2i)),

for k=0,...,K,. Now, in view of (2.6) and (2.8), one would like to find density (;
for the Prandtl-Ishlinskii-operator such that

(35) \I/pI’Q (vk,i) ~ wk,i Vk e {0, RN Kl}

Moreover, one can either combine the return point memory property of the
Prandtl-Ishlinskil operator with its continuity or investigate the graphs [0, 00) 3 r —
PrlAo(r), u](t) and compute the resulting integrals to show for t, := t57 and t. := t55
that one is in a situation as in Remark 2.9. Hence, equations (3.4) and (3.5) can
also be derived for ¢ = 29 with Koy := K399 = KZg.

For any i € {31,...,58}, it holds that u is decreasing on [ta(;_30),t2(i—30)4+1] =
[50,2(1—30)+1, SK.,2(i—30)+1) With Kj := KQ*(F?)O)Jr1 and that one is in the situa-
tion discussed in Remark 2.6. Hence, by following this remark, one can compute
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V0,iy- -5 VE i and Yo, ..., VK, by

1
(36) Vk,i = 5 |tanh(63l(sk,2(i,30)+1)) — tanh(03l(so,2(i,30)+1))|

= %(taﬂh(CBI(So,Q(i—3o)+1)) — tanh(cs (sg,2(i-30)+1)));
Yryi = %(L(SO,Z(i—3O)+1) — L(8k,2(i—30)41));
for kK = 0,...,K;. Now, again in view of (2.6) and (2.8), one would like to find
density ¢; for the Prandtl-Ishlinskii-operator such that Upz ¢, (vi,:) = g, for all
ke{0,...,K;}.

Moreover, since the experiment is supposed to generate measurements allowing
to generate a FORC-diagram, it can be assumed that the preparation phase of the
measurement has been done in such a way that (2.6) is valid with ¢, := to = ta(30—30)
and t. := t1 = t3(30—30)+1, such that the above considerations can also be performed
for i = 30.

Combining the above considerations, it holds for any j € {1,...,58} that K},
V0,5, -+ VK, 4, and Yo j, ..., YK, ; have been determined such that one would like to
find density (; for the Prandtl-Ishlinskii-operator satisfying

(37) \I"pj;,(j(’ukJ') g Vk e {0,...,Kj}.

Following Remark 2.8, an approximation for an initial loading curve can also be
derived from this data set. In Figure 5, these approximations are shown.

0.50
0.45 -
0.40 -
0.35 -
0.30 -
0.25 -
0.20 -
0.15 -
0.10 -
0.05 -

P ona
le=tsosrT4e | L L L L L L
0 0.050.10 0.15 0.20 0.25 0.30 0.35 0.40
0.5 abs(tanh(cgann current))diff)

0.5 abs(sensor diff)

Figure 5. For every i € {1,2,...,58} the approximation of an initial loading curve gener-
ated from points (vo s, %0,:), (v1,5,¥1,4),- -, (VK, i, VK, :) following Remark 2.8 is
shown.
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As pointed out before (2.8), for determining (; one can ignore k = 0 in the above
equation. If one is only interested in dealing with densities as in Section 3.1, one
has (j = (¢, ;,c,;, With appropriate values c; j,co ; € (0,00) so that it holds, thanks
to (3.2),

(3.8) WClyj,CQ)j(/Ukhj)%wk},j Vk e {1,...,Kj}.
Remark 3.1. In [7], Section 5, appropriate pairs

(CI,KDV,la C2,KDV,1); (CI,KDV,Q; CQ,KDV,Q)a sy (CI,KDV,SB; CQ,KDV,58)

were computed such that (3.8) is satisfied for ¢1 ; = ¢1,kpv,; and c2 ; = ¢2, kK pv,; for
all j € {1,...,58}. Afterwards, a simple inverse UQ calculation was performed: for
a subset

((c1, KDV, C2,KDV,i)) 1230

of nice parameter pairs the discrete mean and the standard deviation were calculated.
Afterwards, ¢; and co were represented by independent random variables with the
corresponding normal distributions truncated to [0.0000001, co) and some forward
UQ computations were performed.

Performing a further simple inverse UQ by also computing the discrete mean and
the discrete standard deviation using all pairs ((c1,kpv,i, 2, kDV,i))50, it turned
out that the discrete mean for ¢y was 4.71742 and the discrete standard deviation
for ¢, was 7.94603, so that using a truncated normally distributed distribution does
not seem to be an appropriate description for c;. Moreover, it turned out that the
values in ((c1,k pv.i, ¢2,k DV,i))55, show a significant correlation and considering their
distribution (see [7], Figure 14), it became obvious that these pairs do not represent
samples of two independent truncated normally distributed random variables.

Also, the values in the subset ((c1,xpv,i;c2,kDV,i))225, of nice parameter pairs
show a significant correlation and investigating the distribution of these pairs, see [7],
Figure 15, it became obvious that these pairs also do not represent samples of two
independent truncated normally distributed random variables.

Because of these observations, it was tried in [7], Section 5 to find a random
variable on (0, c0)? such that the above pairs could be typical samples for this random
variable, by applying a formulation of Bayes’ Theorem as in [6], Theorem 3.1, see
also Section 3.4.

3.3. Likelihood and Bayes’ Theorem. The following definition of the likeli-
hood (compare, e.g., [17], [16], [6]) is quite often applied in situations with V; being
equal to the value of a model evaluated at ¢ with additional noise that is normally
distributed with mean 0.
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Definition 3.2. Let m,n € N be given. Let Q C R™ be a set of parameter
values. Assume that for every ¢ € () a continuous R"-valued random variable V,
with probability density o(-; ¢) on R™ is given. For all ¢ € @ and all v € R™ it holds
that the likelihood L(q | v) is defined by

(3.9) L(gq | v) := o(viq) = o(Vg = v;q).
The likelihood function L(- | v) for v is mapping ¢ € Q to L(q | v).
This combination of assumptions is used in the following:

Assumption 3.3.  Assume that one is in the situation of Definition 3.2 and
that integrals on @ are well defined. Assume that a known probability density mg
on @, denoted as prior density, is given. Assume that some vons € |J V; is given
such that fQ L(q' | vobs)mo(q') dg’ > 0. 9€Q

Having a close look at the proof of [6], Theorem 3.1, one realizes that the first
equation on page 51 only holds if therein the density of the to be identified random
variable representing the parameters is replaced by the prior density. Adapting now
the corresponding formulation of Bayes’ Theorem of Inverse Problems such that
the proof is valid, one ends up with the following theorem allowing to compute the
solution of the corresponding Bayesian Inverse Problems (BIP) with (3.10). Similar
formulations can also be found e.g., in [17], Result 8.1 or [12], Section 2.1.2.

Theorem 3.4. Assume that Assumption 3.3 is satisfied and that a random vari-
able Xy with values in () is given such that mq is its probability density, that vops
can be considered as a sample of Vx,, and that there exists a joint probability density
for X and Vx,. A Baysian’s belief mevw combining the information in X, and in the
observed datum veps is the posterior probability density Thew (- | Vx, = Vobs) of Xo,
given the data v.ps, and it holds that

L(q |Uobs) 0(q)

fQ q | 'Uobs (ql) dg’

(310) Wnew(q | VXO = vobs) Vq c Xo.

In [18], Section 6.22, the formulation of Bayes’ Theorem of Inverse Problems is
adjusted to the situation that () is a subset of a general separable Banach space
and V; is of the form described before Definition 3.2.

As one can see, the derived density does not depend on Xy, so that the following
theorem is proved.

Theorem 3.5. Assume that Assumption 3.3 is satisfied and that a random vari-
able X with values in () exits such that the assumptions in Theorem 3.4 are satisfied.
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A Baysian’s belief combining the information in g and in the observed datum vgps
by using Bayes’ Theorem of Inverse Problems is the posterior probability density for
the prior density 7y, given the data ve,s which is defined as the posterior probability
density Tpew (- | Vx, = vobs) of X, given the data vobs as in Theorem 3.4.

Remark 3.6. Assume that Assumption 3.3 is satisfied and that one tries to
identify a fixed, true, and unknown value @y € Q. Assume that the informa-
tions/beliefs on the value of gye in advance of an observation are summarized by
that
has been observed. A Baysian’s belief combining the information in 7y and in the

the prior probability density mg on ). Assume that vons is a sample of Vg, .
observed datum v,ps by using Bayes’ Theorem of Inverse Problems as in Theorem 3.5
is the posterior probability density for the prior density my, given the data vops. This
density is defined following Theorem 3.5 if it holds that there exists a random vari-
able Xy with values in @) such that the assumptions in Theorem 3.4 are satisfied.
(This implies that one needs to request that v,ps is also a sample of Vx,.)

Remark 3.7. For the “identification of a true value* formulation of Bayes’
Theorem as in Remark 3.6 one can subsequently apply the theorem for different
observations, using the last computed posterior density as new prior density. In this
situation one can show some kind of convergence of the computed densities to the
true value with the Bernstein-von Mises Theorem (see, e.g., [18], Theorem 6.17).
Hence, this yields that in most situations the posterior density computed by Bayes’
Theorem provides better approximation to the true value than the prior density.

Remark 3.8. In some references, e.g., [6], Theorem 3.1, a more general situ-
ation than in Remark 3.6 seems to be considered. Therein, the authors claim to
deal with the situation that there is a fized, true random variable Uyye with values
in @), such that the observations are samples of Vy,,.... If one has a prior probability
density 7y on @ representing the information on/beliefs about Upye in advance of
the observation(s), it is pointed out that for any observed datum v of this kind one
can use Bayes’ Theorem of Inverse Problems as in Theorem 3.5 to get the posterior
probability density for the prior density mp, given the data veps-

Warning: The posterior density one gets in this situation is the same as the
posterior density one would get if considering Bayes’ Theorem for the identification
of a true value as in Remark 3.6. There are some situations, in which the computed
posterior density can be a better approximation for Uy, than the prior density, but
contrary to the expectation, this does not hold typically. Instead, one can easily
produce situations with a given and known Uy, such that the posterior density
is the less accurate approximation of Ut e especially if V; is of the form described
before Definition 3.2.
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3.4. Adapting the identification problem to Bayes’ Theorem. Adapting
the situation considered in Section 3.2 to the framework of Bayes’ Theorem, it
is assumed that there exist independent random variables I'y 1,..., Tk, 1,1,2,.. .,
I'k,2,----T1,0, .-, Tk, 1 and samples v ; of I ; such that (3.8) can be rewritten as

(3.11) \PPI,Cl,z,Cz,z(Uk,l) F V=Yg VkE {1, ey Kl}, l e {1, RN L}.

In [7] it is assumed that T2 1,..., Tk, 1,T29,...,Tk,2,..., T2 1, ..., Tk, 1 have the
distribution N(0,0%) and that I'y1,T12,...,1, 1 have the distribution N(0, (20)?)
for a given o.

In view of the formulation of Bayes’ Theorem as in [6], Theorem 3.1, see also
Remark 3.8, it was believed that appropriate application of Bayes’ Theorem should
allow the determination of a posterior density such that ((c1, xpv.i,cexpv.i))2S, as
in Remark 3.1 could be considered as typical samples for a random variable with
this density. An idea to achieve this aim was to subsequently apply Bayes’ theo-
rem to (3.11) for the different values of I € {1,2,...,58}, using the last computed
posterior density as new prior density in each step.

But an inspection of this procedure yielded that the resulting final posterior density
can also be derived by applying Bayes’ Theorem just with the likelihood being the
product of all involved likelihoods, leading to a density for (c1, c2).

Considering the likelihoods for ¢ = 0.01 and ¢ = 0.02, shown in [7], Figures 16,
and 17, one observes that these functions are very small except for a quite small
region, but the values for ((¢1 xpv., 2. kDv,i))25, are distributed over a much larger
region, see [7], Figure 14. The pairs in the considered subset ((c1_xpv.i; c2.kDV.i))3250
of nice parameter pairs are also distributed over a much larger region, see [7], Fig-
ure 15.

Hence, with a normal choice for the prior density considered during the application
of Bayes’ Theorem it will also hold that the posterior density is concentrated in
a small region and a random variable with this density will not produce one of these
sets of parameter values as typical samples.

In view of these results, further investigation of the application of Bayes’ Theorem
was performed. It turned out that the posterior density computed by using this
product of likelihoods is just the density that one would get for ¢; an, c2.an € (0, 00)
such that (3.11) holds with ¢;; replaced by c1an and ca; replaced by c2an for all
1 €{1,...,58}, see also the Warning in Remark 3.8.
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4. INVERSE AND FORWARD U(Q COMPUTATIONS PERFORMED
AFTER COMPLETING [7]

4.1. Reformulation of problems to be considered for Bayes’ Theorem,
use of UQLab. In the following, Bayes’ Theorem will be applied for appropriate
parts of the BIP considered before and afterwards a convex combination of the re-
sulting posterior densities will be determined.

To be able to deal with the posterior density and integrals involving this density,
this density will be represented by samples resulting from dealing with BIPs using
Markov-Chain-Monte-Carlo (MCMC)-computations. This has been done by apply-
ing UQLab, the “The Framework for Uncertainty Quantification”, see [13], [21] and
https://www.uqlab.com/.

For subsets £ of {1,2,...,L} ={1,2,...,58}, it will be assumed that for all [ € £
it holds that the corresponding equations in (3.11) are evaluated with ¢;; replaced
by ci,¢ and ¢y replaced by co ¢. Hence, it can be deduced that

(41) \II’PI,CLQ,CQ)Q(,U]C,I) + Ve, = wk,l Vk e {1, .. .,Kl}, le L.

Moreover, it will be assumed that the independent random variables I';; have the
distribution NV'(0,0%) for all k € {1,..., K;} and for all [ € £ with some appropriate
o¢ > 0 that must be identified.

Hence, it follows that (1% i)k=1,... Kk, 1ce can be considered as sample of

(Upz,er ore2,2(Vr1) + Tht)r=1,...K,, 1c2-

Therefore, similarly to [21], (1.17), it holds for the likelihood that

(4.2) Le((er,e,02,.0,08) | (Yr)k=1,.... K, 1€2)

Ko ~1 )
=1111 N exp (Q(whl = UpTes pco e (Vi) )

leL k=1

4.2. Approximation of length change and shift value. If one plans to use
the results of inverse UQ to perform forward UQ and to reconstruct the measured
length change, it is important to take into account the following considerations:

If one is considering a triple ¢y, ¢, c3 and would like to construct an approximation
of the measured length change, it holds:

Variant 1: One could try to identify the initial internal state Ag describing the in-
ternal state of the specimen before the measurement started that cor-
responds to the O-length change situation such that G, c, ¢;[Mo, ] with
a shift should reproduce the measurements.
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Variant 2: One could take advantage of the fact that in the situation considered in
the measurements (also after the identification period is finished) it holds
that there is a constant difference between G, ¢, ¢;[Ao, I] and Ge, ¢, ¢,[0, 1],
with G, ¢,.¢5[0, I] denoting the generalized Prandtl-Ishlinskii-operator in-
volving the Prandtl-Ishlinskii-operator with a trivial initial state as in Def-
inition 2.4 (b). Then, one just needs to determine a shift-value such that
Gey,e2,¢510, I] + shift is an approximation for the measured length change.

In the following, Variant 2 will be used and the value for shift will be determined
by computing the output of the generalized Prandtl-Ishlinskii-operator with a trivial
initial state at a time ¢ being a minimum, i.e., t € {t1,ts,...,t57}, and comparing
the result with the measured length change L(t) at this time.

Remark 4.1. If one is investigating the properties of the play-operator with a
trivial initial state with the modification that ¢ is the start of the considered time in-
terval, see the discussions of the reformulation of Section 2 in Section 3.2, it holds that

(4.3)  Gereresl0,1](t0) = P, ., [0, tanh(csD)](to) = We, e, (tanh(csI(to))).

Moreover, following the discussion for the derivation of (3.7) for ¢ = 30, it can be
deduced that (2.6) is valid with ¢, = g, ¢t = ¢1, and uw = tanh(c3]). Using also (2.5)
and simplifying the notations by using that the value of c3 is fixed, it follows that

(4'4) 901702703 [071](t1) = Yci,c2 (tl)

with
(4.5)
Jei,e2 (t) = \1101,02 (tanh(C3I(t0)))

WP s 0cn e (%(tanh(@,](t)) - tanh(03I(t0)))) YVt € [to, tss)-

Taking advantage of the return-point memory of the generalized Prandtl-Ishlinskii-
operator and ignoring that there may be some differences, since the values of the
minima have some small variations, it follows that

(46) gCl,Cz,Cs [Oa I] (tl) ~ Jci,eo (tl) Vie {]-a 3,5,..., 57}

Now, considering the situation as in Section 4.1 for a subset £ of {1,...,L}, one
equation or several equations involving shifte and one or several measurements of
length changes needs/need to be formulated.

When doing forward UQ by considering samples representing the unknown pa-
rameters one also needs to somehow determine samples for shifte.
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Variant 1: If only one equation involving shifte is formulated, the following sim-
ple approach was used in previous computations: In the first step, one

can perform inverse UQ using the likelihood formulated in Section 4.1 to

N

generate a set of sample triples ((¢1,¢.n,C2,¢n,0% ,))n=1

representing the
joint posterior density for ¢ ¢, c2 ¢, and 0%. In the second step, one com-
putes for each pair (¢1,¢ n,¢2,¢ ) the corresponding sample value shifte ,

by inverting the equation discussed above. Afterwards, one could consider

N

the quadruple of samples ((¢1,¢.n, C2,¢ n,shifte ,, J%’n))nzl

as samples of
some joint density representing c; ¢, ¢z ¢, shifte, and 0%.

Variant 2: The more complicated approach is to perform the inverse UQ already
with shifte as a component and to use also the equation(s) for the shift
value in the formulation of the BIP. In the following, results for these

kind of computations are presented.

To derive a BIP combining (4.1) with an equation for shiftg, one needs to formu-
late one equation or several equations for this quantity such that the error can be
estimated. Moreover, to implement this within the framework of UQLab, one needs
to formulate equations such that the error should be a sample of a random variable
having the distribution N (0, 0%).

To prepare this, one will consider the times for minima belonging to the data sets
used to create ((vk,i, Vr1))k=1,... K, 1cc. Hence,

(4.7) £ ={2i]ie L, i<29}U{2(:—-30)+1]|i€ L, i>30}
is considered. Now, it is assumed that
(48) nz,j,ﬂ = g01762763 [07 I](skd) + shifte — L(SkJ)

for k € {0,..., K} and for j € £ are samples for independent random variables
all having the distribution A (0,0}23’*) for some appropriate o¢ . > 0. (Here, it is
ignored that in view of (4.9) and other already requested independencies one may
not be able to satisty all the requested independencies.) Considering any [ € £ with
[ <29 and any k € {1,..., K;} and recalling (4.1), (3.4), and (2.6) allows to deduce
that

(4.9)

1 1
Vit = §(L(Sk,2l) — L(s0,21)) = ¥PZe; 0r000 (§(tanh(031(8k,2l)) - taﬂh(CBI(SO,m))))
1 .
= §(L(Sk,2l) = Gey or0n, 0,030, I](8k,21) — shifte)
1 .
- §(L(50721) - g61,£702,.\:703 [07 I](5072l) - Shlftﬂ)
1 1

= - 5772,2@/2 + 5773,21,2-
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Using further argumentation similar to the one that was used to derive equations (3.4)
and (3.5) also for ¢ = 29, it can be shown that (4.9) is also valid for [ = 29.

Recalling the assumption for Niole and Lemma 6.1, see Appendix, yields that
the difference on the right-hand side of (4.9) is a sample of a random variable with
distribution N(O, (%02,*)2), and that this therefore also holds for ~y ;.

Considering any | € £ with [ > 29 and any k£ € {1,...,K;} and recalling
(4.1), (3.6), and (2.6) allows to deduce with a similar computation that ~y;; =
_%77572(1_30)“72 + %nz,2(1—30)+1,£' Recalling the assumption for 77;‘72(1_30)“72 and
Lemma 6.1, one deduces that this is a sample of a random variable with distribution
N(0, (Loe.)?) -

Since it holds for all | € £ and all & € {1,...,K;} that 74, is by assumption
a sample of a random variable with distribution N (0,0’%), but also a sample of
a random variable with distribution N (0, (%02,*)2), it follows that

1
—0¢ 4« =0g.
\/§L, £

4.3. Bayesian Inverse Problem for data sets with increasing current.

(4.10)

Considering the approximation for initial loading curves generated by following Re-
mark 2.8 for the data sets with increasing current, as shown in Figure 6, one observes
that they all seem to approximate the same function on different intervals.

generated init. load curves
for increasing current

T T T T T T T 9129
0.45 - |
040 -
o=}
= 0.35 -
z 0.30 - 2 _
g 0.25 - 6 -
o / _
Z 0.20 - 3
® 0.15 - |
] 0
< 0.10 - -
0.05 - _
0 =2 I I 1 1 1 1 L
0 0.050.10 0.15 0.20 0.25 0.30 0.35 0.40
0.5 abs(tanh(ctann input))diff)
Figure 6. For the data sets involving increasing current, i.e., for every i € {1, 2,...,29}, the
approximation of an initial loading curve generated from the points (vg ;,%0,:),
(v1,i,%1,4)s - - - (VK i> VK, i) following Remark 2.8 is shown.

To get samples representing the approximation of this function, a BIP for all
data sets with increasing current is considered, i.e., one deals with £ = {1,...,29}.
Using (4.7), it follows that £* = {2,4,...,58}.
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Equation for shift: In a situation without any noise or any model errors, one
could compute the average over all values for G, c, ¢, [0, I] evaluated in the 29 minima
of the current at t1,t3,...,¢57 and afterwards add shift; 29y to this average. The
result should be equal to the average over all values for L evaluated in the 29 minima
of the current.

In a situation with noise, one needs to consider the difference between these ex-
pressions and one has to check if it can be considered as a sample of a random
variable. Denoting the difference by 0y, .. 29y, it follows that

29 29
1 . 1
5{1""’29}25 E Gerearesl0, 1) (t2i—1) + shiftyr 29y — 29 E L(t2i-1)

i=1 i=1

29 29
1 , 1,
=59 2_Ger,ca.ca [0, T](50,20) + shiftys, 20y — L(s02:))=) 59710,2i,{1,2,...,20}*

i=1 i=1

Recalling Lemma 6.1, the assumption on 778_21._{1 2,...,20}) and (4.10), it is shown that
the sum on the right-hand side is a sample for a random variable with distribu-

29
tion '/\[(07 ;(%)20%1,2,...,29},*> = N(Oa %0?1,2,...,29},*) = N(Oa %0%1,2,...,29})' In

view of Lemma 6.1, it can be deduced that ,/%6{1,,“’29} would be a sample of

a random variable with distribution N(O,O’?1727___729}). Hence, using also (4.6), it

29
follows that |/2255>" L(t2i—1) is a sample of a random variable with distribution

N(@(% (291 gcl,; thil)) + Shift{l,...,zg}) ; Uf1,2,...,29})'

Attaching this random variable to (¥pzc, o.co o (Vk,1) + Thit)k=1,...K;, 1=1,... 20, ig-
noring in the following computations that the involved random variables are not
independent, and considering (4.2) with £ = {1,2,...,29}, it follows for the result-
ing likelihood that
(4.11)

Lfﬁl}z,,,,,gg}((01,{1,2,...,29},Cz,{1,2,...,29},Shift{1,2,...,29}70%1,2,,,,,29}) |
((Yr1)k=1,...K,,1=1,...,20, 1))
=L 2
= L2, 201 ((c1,{1,2,....2035 C2,{1,2,...29}, O [1.2,....20}) | (Yht)k=1,... K, 1=1.2,...,20)

X LYy 20y((C1{1,2,... 20}, €2, (1,2, 20}, Shift (19 203, 0%1,2,,,,,29}) | 1),
where
29
29 1
T =4/ —— L(to;—
V2 29; (t2i-1)
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and

(4.12) f12,20 (1,012,200 €2, 01,2, 20} SDifb (1.2 20}, 0715 2g)) | T)
29
1 -1
= L(to;_
5g? eXp<4 . 290%1 2....20) (Z ( 2 1)
{1,2,...,20} 2, i—1
29 9
- Z 9eyq1,2,...,20):C2,{1,2,...,29} (tQi—l) —29 Shift{1,2,...,29}) )
=1

Now, the product of appropriate uniform probability densities for ci 1,2, 29,
C2,{1,2,...,20}, shift(1 o 29y, and 0?1727___729} is used as prior density. Ignoring that
the prior density should not involve any information derived by using the observa-
tions to be considered in Bayes’ Theorem, the data pairs ((c1,xpv, CQ,KDV,k))?il
and the subset ((c1,xpv.,c2,kDVk))2250 of nice data pairs computed in [7], Sec-
tion 5 by using this observation, see Remark 3.1, have been used to define the prior
density. Moreover, the results of other inverse UQ computations for the considered
observation have also been used.

(1) The interval [0, 100] used for ¢; {1 2,... 29} is chosen so that all values (c1,kDv,i)2250
and almost all values (c1,xpv,i)35s, are within this interval.

(2) The interval [0.00001,4] used for cp (12, 20} satisfies that most of the values
(c2,kDV,i)?250 and many of the values for (c2 gpy,)?%; are within this inter-
val. The used upper bound 4 for ¢y (12, 29y Was derived by some heuris-
tic considerations to ensure that there is still some reasonable dependence of
Liia,... 201 ((c1,¢2,02) | (¥r)k=12,.... K, =1,2,....20) On ¢ on the complete inter-
val.

(3) Using data pairs for (c1, c2) derived by performing inverse UQ without the shift,
and computing the shift by inverting the considered equation, many samples for
shift had been computed. The interval [—3, 3] contains almost all of them.

(4) In view of other results for dealing with the considered problem, using the interval
[0,1073] to define the prior density for 0%1727___729} seemed reasonable.

Following Remark 3.6, one is interested in the posterior density according to Bayes’
Theorem of Inverse Problems as in Theorem 3.5.

To approximate the resulting posterior density a set of samples is computed by us-
ing the affine invariant ensemble algorithm, see [21], Section 1.3.4, a special Markov-
Chain-Monte-Carlo scheme, implemented in UQLab. An ensemble of 200 chains,
denoted as walkers, was considered, and 6000 iteration steps were performed. Af-
terwards, some walkers with improper evolutions were removed and the initial 90 %

of the iterations steps in the remaining walkers were also removed. Hence, one got

samples ((01,{1,2,...,29},m €2.{1,2,...,29},n> Shift{l,Q,...,zg},m 0%1727...729}%))%1:5?00.
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[ + mean
%)
0.2041 =
0.1576 I
—0.2466 = 0
Lj
—0.3362
0.0003
S
0.0002
A
(\Q

Figure 7. Scatter plot showing the samples (c; {12, ... 20},n:€2,{1,2,...,20},n> Shift {1 2 . 20} 1,
0%1727“.729}%) representing the posterior density following from dealing with all
data sets for increasing current.

These samples, i.e., a sufficient number of samples randomly selected from these
samples, are presented in the scatter plot in Figure 7.

4.4. Result of forward UQ for data sets with increasing current. As
pointed out in [21], the posterior predictive density can be computed by “averaging”
the model output with additional noise over the posterior distribution Thanks

to (3.3) and Gauss summation, it follows that this is a density with EKZ +1=

Z Ky +1= Z l+1= 2930 4 1 =436 components.
=1
Following [21], Section 1.2.6, one can generate samples for the posterior predic-

tive density: Starting with a sample (017{1727“.729}%,027{1727.“729}@,shift{1727___729}7n,

[R436

0?1 2,...,29} ,,) reflecting the posterior density, one gets a sample &, € reflecting

the posterior predictive density by the following computation.

> Considering an index k* € {1,...,435}, one defines
.
] = min{l* e {1,...,29}‘ YK > k:}
i=1

and afterwards one defines k = k* if | = 1, and k = k* — E K; otherwise. Now,

&, (E*) will be the sum of Ve o 29} .
variable with distribution N(0, 0{1 20}n)-

203, (V1) and a sample of a random
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> Moreover, £,(436) will be the sum of

20/ 1 (&
5 (29 (Z Geqqa,..,29 ,m0C2,(2,... 20} n (tQt 1)) + Shlft{l 29})

and a sample of a random variable with distribution N (07 0’%1 .29} n)

The considered data vector is

(?/11,17 cee 7¢K1,17w1,2; ceey ¢K2,2a .. '711)1,297 cee 7¢K29,297 T)

data group 1
0.6

| posterlor predlctlve
— data

0.5
0.4
0.3
0.2

0.1

0.0

_01 1 1 1 ] 1 1 ] ]
Y1 Y50 Yog Y146 Y195 Y243 Y291 Y340 Y388 Y436

data index (-)

Figure 8. Violin-plots of samples reflecting the posterior predictive density, derived by using
some of the samples shown in Figure 7 and marks for data points.

data group 1

0.36 ™ g;)f;erior predictive
0.34 F
0.32
0.30
0.28
0.26 -
y146

data index (-

Figure 9. Blow-up of a part of Figure 8.
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To plot the posterior predictive density, one is randomly choosing 1000 samples
(€,,)1090 and is showing a violin-plot for (&, (k))1%° for each k € {1,...,436},
see [15], Section uq-violinplot. In the plot, marks for the value of the components of
the data vector are also shown. In Figure 8 this is shown for all 436 components, in
the blow-up in Figure 9 one can see the result for the components 143, ..., 149.

4.5. Bayesian Inverse Problems for data sets with decreasing current.
Considering the approximation for initial loading curves generated for data sets with
decreasing current, it can be observed that the curves look different, see Figure 10.

generated init. load curves

for decreasing current
0.50 T T T T T T T T3 0

0.45 -
—~ 0.40
0.35 -
0.30 -
0.25 -
0.20 -
0.15 -
0.10 -
0.05 -

0.5 abs(output diff

0 Ll
0 0.050.10 0.15 0.20 0.25 0.30 0.35 0.40
0.5 abs(tanh(ctann input))diff)

Figure 10. For the data sets involving decreasing current, i.e., for every ¢ € {30,31,...,58}
the approximation of an initial loading curve generated from the points
(vo,i:%0,:)s (v1,6,¥1,4)s - - -5 (VK 05 VK, i) following Remark 2.8 is shown.

To get samples representing the approximation of these different functions, 29
Bayesian Inverse Problems are considered, one per each data set with decreasing
current.

Let any 7 € {30,...,58} be given. Considering now £ = {i}, it follows from (4.7)
that £* = {2(i — 30) + 1}.

Equation for shift(;;: The data set ((vk,i,¥k,i))f; is derived from information
on the current and the length change on the interval [ty(;_30),t2(i—30)+1]. Since
the current is decreasing on this interval, it is minimal at the end t3(;_30)41 =
5K,,2(i—30)+1 of the interval.

Since 77;<7:,2( i—30)+1,{i} is a sample of a random variable having the distribution
N(0, a%i}’*), it follows by recalling Lemma 6.1 and (4.10) that %n;(i,2(i—30)+1,{i} is
a sample of a random variable having the distribution N(0, U%i}). Considering (4.8)
fork = K; = K;(i_30)+1 and (4.6), it can be deduced that \%L(tg(i_go)ﬂ) is a sample
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of a random variable with distribution N(% (9er iy co. iy (F2(i—30)+1) +shift gy ), a?i}).
Attaching this random variable to (Vpz.c, ()0 iy, (Vi) + T.i)1,, ignoring in the
following computations that the involved random variables are not independent, and
considering (4.2) with £ = {i}, one gets for the resulting likelihood

full ) ] e 2 NG L )
(4.13) LY ((Cl,{z};CQ,{z}aShlft{z}aU{i}) ‘ ((Z/Jk,z)k:p ﬂL(t2(1—30)+1)))

= Lin((erqay e2.4, %) | (Vr,i)iy)
* . 1
X L{z‘} ((Cl,{i}, ¢2,iy> shift gy, gfi}) ‘ EL(Q(F%)H))
with
(4.14)
* . 9 1
Lty ((01,{1'},02,{1-}, shift iy, 07;,) ‘ EL(t2(i—3o)+1))

1 .
= == exXp <402 (L(t2(i-30)+1) = er iy ca. iy (F2(i—30) 1) — Shlft{i})Q)
A /2750{1‘} {i}

As in Section 4.3, the product of appropriate uniform probability densities for
C1,{i}»> Ca,{}, shiftg;y, and U?i} is used as prior density. Moreover, similarly to Sec-
tion 4.3, the interval [0, 100] is used for c; (4}, the interval [—3, 3] is used for shift,
and the interval [0,107?] is used for O’%i}.

The interval [0.00001, c3 yp s3] is used for ¢y ;3 with an upper bound cg up 11y
derived by some heuristic considerations to ensure that there is still a reasonable
dependence of Ly;((c1,c2,07) | (wk,l)kKél) on ¢y on the complete interval. It holds
that C2,up,{30} = 4, C2,up, {40} = 3.29284, C2,up, {50} = 1.76305, C2.up, {58} = 0.200779.

As in Section 4.3, following Remark 3.6, one is interested in the posterior density
according to Bayes’ Theorem of Inverse Problems as in Theorem 3.5. Again, the
affine invariant ensemble algorithm implemented in UQLab is applied.

In the first series of computations it turned out that for some values of i there are
problems with the convergence of the algorithm; it seemed that the scheme was not
able to find the region wherein the corresponding likelihood is not very small, since
this region is much smaller than the overall considered domain.

Hence, to support the algorithm somehow, it was decided that the starting values
for the walkers should no longer be determined using samples of the random variable
having the prior density and is therefore uniform on [0, 100] x [0.00001, ¢z, fi}] X
[—3,3] x [0,1073].

Instead, these initial values for the walkers were defined as the values of the walkers
at the end of computations for an appropriate BIP performed as preparation. In this
BIP it is requested that (4.1) is valid for £ = {30,...,58}. Moreover, it is requested
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in this BIP that the result of an incorrect derivation of the equation for shift in
Section 4.3 applies, wherein it is assumed incorrectly that d(; . 29 is a sample for
a random variable with distribution N (0, 0%1 2,...,29} *) The resulting modification of

58
the likelihood in (412) multlphed by H L{l}((cl,{30,...,58}; 627{30’“.’58}, 0'%30 58}) |
1=30

(ﬂ)k,z)kK:l 1) results in the likelihood considered for dealing with this intermediate BIP.
This BIP is considered with the prior density as for ¢ = 1, being the same as the
one considered in Section 4.3. This intermediate BIP is solved by applying the affine
invariant ensemble algorithm with 200 walkers and 6000 iteration steps.

After removing 5 walkers with improper evolutions, the final values of the remain-
ing 195 walkers were stored. These values were afterwards used as starting values for
the 195 walkers used when the algorithm was applied to deal with the BIP derived
above for £ = {i}.

4.6. Results of inverse and of forward UQ for the first data set for
decreasing current. Results of inverse UQ for the first data set with decreasing
current, i.e., the data set No. 30, are samples (c1,{30},n C2,{30},n Shift{30},n, Ufso}m)
as shown in Figure 11.

-+ mean

A

® > & SIS o
R SRS R N
< )0 SRR
% NSO N
/ 7/
€1 €2 shift o2

Figure 11. Resulting scatter plot of parameter samples (cy (30},n,C2, {30},n-Shift{30},n;
0%30} ,,) for the first data set with decreasing current, i.e., the data set No. 30.

Similarly to Section 4.4, samples for the posterior predictive density can be gen-
erated: Dealing with the first data set with decreasing current, i.e., with data set
No. 30, it holds that the posterior predictive density has K3o +1 = 294+ 1 = 30
components.
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Starting from a sample (c1,{30},n; C2,{30},n Shift{30},n, 0%30} ,,) reflecting the pos-
terior density, a sample &, € R30 reflecting the posterior predictive density can be
obtained by the following computation:

> For k € {1,...,29}, §,(k) will be the sum of We, .0 ¢, 40, (Vk,30) and a sample
of a random variable with distribution A/ (0, 0%30}171).
> Moreover, &, (30) will be the sum of %( (t1)+shift{30}) and a sam-

ple of a random variable with distribution A (O7 0%30}171).

gCl,{so},mCz,{so},n

The considered data vector is (wl,go, -, 129,30, \%L(tl)). In Figure 12, the re-
sulting violin-plots and the data vector values are shown.

data group 1
0.6 — —

Il posterior predictive

05k » data ”*

041

0.3F “

0.1F

0.0 W“”“ ‘

_01 I ‘ I I 1 1 I I I I I
Y1 Ys Ys Y11 Y14 Y18 Y21 Y24 Y27 Y30

data index (-)

Figure 12. Violin-plots for the first data set with decreasing current, i.e. for data set No. 30,

showing the posterior predictive density for the predicted values of the initial

loading curve (data index 1,...,29) and for L of the predicted length change

V2
at t; (data index 30).

4.7. Further results of Bayesian Inverse Problems for data sets with de-
creasing current. It was observed that for the data sets 22, ...,29 with decreasing
current, i.e., the data sets 51, ..., 58 in the complete numbering, the MCMC-scheme
has not reached convergence or may not reach convergence. Hence, only the data
sets for the first 21 data sets with decreasing current will be considered, i.e., the data
sets 30,...,50. A convex combination of the resulting posterior probability densities
is approximated by randomly choosing some samples from each data set (number
determined by some heuristic considerations involving the number of data points in
the data sets), and afterwards merging all these samples to derive the merged sample
set for decreasing current, see Figure 13.
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Figure 13. Scatter plot for a merged sample set for decreasing current.

4.8. Merging sample sets for data sets with increasing current and de-
creasing current. A number of samples are randomly chosen from the sample set
considered in the last subsection, and the same number of samples are randomly
chosen from the sample set for increasing currents, see Figure 7 and Figure 15. Af-
terwards, both these sample sets are merged, see Figure 14.

4.9. Result of forward UQ for merged data sets. In the following, one
considers for every sample (1, ¢a,p, shift,,, 02) the function

[th t58] St gcl,n702,n7c3 [07 I] (t) + shift,,

for the given value for c3 and the trivial initial state. This generates a set of sample
functions.

Now, for each of the time steps t in the measurement, sample values are created
by performing the following computation for all considered n: the sample function
number n is evaluated at ¢t and +/2 times a sample for a random variable with
distribution N(0,02) is added.

Some quantile values are computed from the resulting samples for the posterior

predictive density:

> the value of the 0.05—quantiles at a time t indicating that 5 % of all output sample
values at time ¢ are below this value and 95% are above this value,

> the value of the 0.95—quantiles at a time t indicating that 95 % of all output
sample values at time ¢ are below this value and 5% are above this value.
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Figure 14. Samples derived by merging the samples for data sets with decreasing current,
see Figure 13, and those for data sets with increasing current, see Figure 7 and
also Figure 15. The means of theses sample sets are also shown.
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Figure 15. Scatter plot for the samples derived for 29 data sets with increasing currents
is shown, and therein also the mean of these samples is also marked. These
samples are also presented in Figure 7. In the current figure the intervals for
plotting c1, ca, shift and o2 are the ones also used in Figure 14. Moreover, the
mean of the samples shown in Figure 14, i.e., the merge of the samples for data
sets with decreasing current and those for data sets with increasing current, is
also marked.

In Figure 4, the measured data used for identification are shown. Now, the shown
evolution of the measured length change in the identification period and the results

of forward UQ can be compared, see Figure 16.
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Figure 16. Result of forward UQ for merged data sets and measured length change during
identification period.

Now, the evolution of the measured length change after the identification period
and the results of forward UQ are also compared, see Figure 17 and Figure 18.

> For the period not used for identification with 210 data points it holds that for 61
data points, i.e., for 29 %, the measured value is not in the interval [0.05—quantile
value, 0.95—quantile value]. The values for 27 points are smaller than the 5%—
quantile value and the values for 34 points are larger than the 95%—quantile value.

> For the period used for identification with 872 data points it holds that for 398
data points, i.e., for 46 %, the measured value is not in the interval [0.05—
quantile value, 0.95—quantile value]. The values for 182 points are smaller than
the 5% quantile values and the values for 216 data points are larger than the 95%
quantile values.

> Further investigations indicate that modeling using the generalized Prandtl-
Ishlinskii-operator produces a systematic error, somehow reflecting the systematic
difference between the approximations for the initial loading curve for decreasing
current and the corresponding approximations for increasing current.

4.10. Consequences of the result of forward UQ: Using the potential
of the considered generalized Prandtl-Ishlinskii-operator. The consideration
in the previous subsection indicates that one may have to replace the generalized
Prandtl-Ishlinskii-operator in the model by another one.

FORC Diagrams are typically used to identify measures in so-called Preisach-
operators, special kinds of hysteresis operators. In view of the model derivation in [3],
Section 5, one should not use the generalized Prandtl-Ishlinskii-operator to model
the length change, but its counterclockwise admissible potential that is a Preisach-
Operator. Then it holds that the generalized Prandtl-Ishlinskii-operator Ge, ¢, cs[" °]
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should be used to model the magnetization. Reformulating the generalized Prandtl-
Ishlinskii-operator as a Preisach-Operator as in [3], Section 5 or [8], it follows that this
corresponds to the situation of the next subsection with p(r, v) = ge, cy.c5 (7, v) and

(4.15) Ger,ea,e5 (T, V) 1= %1 exp(;—ci(tanh(c;g(r +v)) + tanh(es(r — v))))
x 2 tanh’ (c3(r 4 v)) tanh’(c3(r — v)),

for all » > 0 and all v € R.

data not used for parameter identification
T T T T

1.8
1.6
14
1.2
1.0
0.8
0.6
0.4
0.2

—— length change (norm)
—— current (norm)

0
105 110 115 120 125 130

Figure 17. Evolution of current (input) and length change after identification period.
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Figure 18. Result of forward UQ for merged data sets and measured length change, after
identification period.

Some tests yield that using this operator generates a better approximation for the
data generated for increasing current, but the approximation for the data generated
for decreasing current time intervals gets worse, since the overfitting problem to the
data sets for increasing current discussed in the next subsection takes place. Since
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the data generated for decreasing current are the more relevant in this data set,
it seems that one should consider some other operator instead and/or to derive an
UQ-compatible way to reduce the overfitting problem.

4.11. Modifying model by using a general Preisach operator to model
the magnetization and its potential to model the length change. In view of
the last subsection, one would like to replace the potential of G, ¢, c;[-, -] by another
operator. To achieve this, one can consider [3], Section 5.1 and replacing there in the
equation for the magnetization the generalized Prandtl-Ishlinskii-operator by a gen-
eral Preisach-Operator with a weight function p: [0,00) x R — R see, e.g., [2], [10].
Therefore, it holds that the counterclockwise admissible potential should be of the
form U,,[-, -] with

Pr [)\o,u](t
(4.16) Uy [ Mo, u](t) == 2/ / p(r,v) dvdr

for all u € C([to, tss]; R), all Ao as in Definition 2.4, i.e., the Preisach-Operator with
the weight function (r,v) — vu(r,v).

In the following, it will no longer be assumed that the overall magnetic field H is
proportional to the current I but that there may exist a further constant magnetic
field Hy, maybe created by some permanent magnets, such that H — Hj is propor-
tional to the current I. Hence, some additional constant current Iy is considered
such that H is proportional to I + Iy and I + I is used as input function for the hys-
teresis operator in the following. (Such a modification would not have changed the
results derived for the considerations with the generalized Prandtl-Ishlinskii-operator
in Section 3 and 4.)

Starting from the equation for the deformation in [3], (64), and adapting the
considerations for dealing with the shift value in Section 4.2, one deduces that during
the performed measurements it holds that

(4.17) L(t) ~ U,[0,1 + Io](t) + shift

for an appropriate function p: [0, 00) xR — R and appropriate values for Iy, shift € R.
The Everett-function Fy ,: R? — R related to U,,[-,-] is defined by

(a=p)/2
(4.18)  Ey (o / / w(r,v)dvdr Va,p € R with a > 5,
B+
(4.19) EU,IL( ,6) = —Eu7u(,8, ) VO&,,@ € R with a < ,8

Considering an input function v and t,,%,t. as in Remark 2.6, one gets, analo-
gously to (2.6),
(4.20)

Ey p(u(t) + I, u(ty) + Iy) = %(UH[)\O, u+ Io](t) — Uuro, u+ Iol(ts)) Vi € [t te]-
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Using this and (4.17), one gets, analogously to (3.5) and (3.7), that one would like
to find an appropriate function u: [0,00) x R — R and an appropriate value Iy € R
such that

—_

(4.21) By (I(sky) + To, I(so) + To) = =(L(sx1) — L(s0,4)) =: ks
Vke{l,...,K;}, le{1,...,58}.

N}

On a first glance, is seems that one should follow the derivation of (4.1) and should
assume that there are samples 7 ; of independent random variables f‘k,l such that
(4.22)

By (I(st) + To, I(so) + Io) + 3y = ¥ps Yhe{l,...,K;}, le{l,...,58},

and that the random variables I'y; have the distribution N(0,0) for all k €
{1,...,K;} and for all I € {1,...,58} for an appropriate ¢ > 0 that must be
identified.

Considering now weight functions that are parameterized by parameters ¢,
Cay .oy Copy L€y o = Vé1,,....55» one could get the resulting likelihood for (Ip, 1,
Ca,...,Cyp,0) by considering the right-hand side of (4.2) with £ := {1,...,58}, K;
replaced by K, o¢ replaced by o, 1 replaced by ¢, and ¥pz i o co o (Vk1)
replaced by EM’”El,Zz,,.,,ZM (I(sg1) + Io, I(s0,1) + Io).

Considering a further equation/further equations for shift derived from (4.17) and
also a corresponding further factor for the likelihood, allows to generate a BIP and
a corresponding likelihood. Now, using Bayes’ theorem as in Theorem 3.4, one could
get a formula for the resulting posterior density.

The numerical treatment of this problem would be more time-consuming than the
one considered in Section 3 and 4, since further additional parameters with uncer-
tainty have to be considered and one needs to use numeric integration to evaluate
the Everett-function. For the same reasons, also the forward UQ would be costly.

But further investigations yield that one would have to modify the above consid-
erations, since this approach would generate an overfitting to the data sets derived
for increasing currents, i.e., the one for even [. It holds that

(4.23) ((8,0) + 1o, I(s0,1) + Lo) = (L(sk,58) + Lo, L(s0,58) + Do), {/;k,l ~ {/;k,BS
Vie{2,4,...,(58 — 2k)},

for all k € {1,...,28}. Hence, it follows that the equations in (4.22) should only be
considered for odd [ and that one needs replacements for the equations for even [ by
some new equations that allow avoid/reduce overfitting in an UQ-compatible way.
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To deal with general weight functions that would belong to some spaces with
infinitesimal dimension, one would have to use a formulation of Bayes’ Theorem
appropriate for this situation, see, e.g., [18], Section 6.22, and dealing with this
situations would be quite challenging.

If measurements M (sy,;) for the magnetization were given, one could adapt the
above considerations by using these values instead of L(sj;) and replacing in all
integrals vu(r,v) by u(r,v).

4.12. UQ if the values for the initial internal states functions are of
importance and also uncertain. The measurements used to generate FORC di-
agrams are usually performed in such a way that the involved differences are inde-
pendent of the initial internal state of the operator and that the dependence can be
reduced to dealing with a shift. In a general situation, the initial internal state A is
influencing the evolution of L, e.g., (4.17) would be replaced by

(4.24) L(t) &~ Uy[Xo, T + Ip)(t) + shifs.

If the values for the initial internal state function are uncertain, but in such a way
that the function can be parameterized by a finite number of parameters and one has
some probability density for the corresponding parameters and the parameters of the
hysteresis operators, one can perform forward UQ by Monte-Carlo computations.

Moreover, if there are also some measurements for L up to some time t* > tg, one
can formulate a BIP to use these measurements to update the considered probability
density describing the parameter values that would allow to improve the prediction
of the evolution of L after t*. The appropriate formulation of the problem and the
formulation of an appropriate numerical scheme would be a challenging task, where
one would also have to decide between accuracy and velocity.

If the initial internal state is uncertain and cannot be parameterized, it would
belong to some spaces with an infinitesimal dimension, and dealing with it would
require some effort, see also the corresponding considerations in Section 4.11.

5. CONCLUSION

> Output of hysteresis operators depends on parameters whose values may not be
exactly known when modeling real world processes.

> Inverse UQ to identify these parameters and their uncertainty has been performed.

> Forward UQ has been performed with the sample derived from inverse UQ; the
results have been compared to measurements.
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> The presented considerations have been performed for a magnetostrictive mate-
rial, and a generalization of the considered model and possible fields of further
research have been discussed. Of course, these considerations can also be adapted
to deal with other models for materials with memory involving similar hysteresis
operators.

6. APPENDIX

It holds, see, e.g., [17], Theorem 4.21 or [5], Exercise 4.9.3:

Lemma 6.1. Let (Q,F,P) be a probability space. Let X1,...,X,: © — R be in-
dependent continuous random variables such that there is some o € (0, c0) with X; ~
N(0,0?) for alli € {1,...,n}. Let a1,...,a, € R\ {0} be given. Then it holds that

(6.1) Z:X ~ (o ( Z>a)) —(o <Z ).
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