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Abstract. Modeling real world objects and processes one may have to deal with hysteresis
effects but also with uncertainties. Following D.Davino, P.Krejčí, and C.Visone (2013), a
model for a magnetostrictive material involving a generalized Prandtl-Ishlinskĭı-operator is
considered here.
Using results of measurements, some parameters in the model are determined and inverse

Uncertainty Quantification (UQ) is used to determine random densities to describe the
remaining parameters and their uncertainties. Afterwards, the results are used to perform
forward UQ and to compare the generated outputs with measured data. This extends some
of the results from O.Klein, D.Davino, and C.Visone (2020).

Keywords: hysteresis; uncertainty quantification (UQ); magnetostrictive material;
Bayesian inverse problems (BIP)
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1. Uncertainty quantification and hysteresis: motivation and topics

1.1. Uncertainties in models with hysteresis operators. Considering mag-

netization, piezo-electric effects, elasto-plastic behavior, or magnetostrictive materi-

als, one has to take into account hysteresis effects. Many models involve therefore

hysteresis operators and are also subject to uncertainties :

⊲ Parameters in the models are identified using results from measurements. Hence,

they can be influenced by measurement errors.

⊲ Parameters being identified for some sample specimens are also used for other

specimens.
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⊲ Material/device may change after performing the measurements, for example, due

to temperature changes or aging.

⊲ Moreover, if one is performing several measurements, there can be conditions not

considered in the model that change between the measurements, creating quite

different measurement results that correspond to different parameter values in the

used model.

The parameters in the hysteresis operators used to model hysteresis effects are there-

fore also subject to uncertainties. In the following, methods of Uncertainty Quan-

tification (UQ) will be applied to describe/determine the uncertainties and to inves-

tigate their influence.

1.2. Uncertainty quantification. In view of e.g., [17], [18], the following inter-

pretation of UQ is considered: Use of probability theory to deal with uncertainties,

i.e., parameters with uncertain values are represented by random variables model-

ing the information/assumptions/beliefs on the values and the uncertainties of the

parameter values. In the current paper, the following aspects of UQ will be discussed:

Forward UQ: Starting from representations of the uncertain parameter values by

random variables, one considers the model output as random variable

and computes properties like expected value, variation, probabilities

for outputs entering some interval, credible intervals, and other Quan-

tities of Interest (QoI).

Inverse UQ: Using data and measurements to determine values and the uncertainty

of the parameters, i.e., to determine a random variable taking into

account the information provided by the data and the measurements,

and use the random variable to represent the parameters afterwards.

Other subjects of/related to UQ, like sensitivity analysis, where one is investigating

which input parameters have the largest effect (in terms of uncertainty) on the output

quantity, will not be discussed here.

1.3. UQ for a model for magneto-mechanical components—topic of this

paper. A model with a hysteresis operator is used to describe a magnetostrictive

actuator. Using measurements for this actuator, parameters in the hysteresis oper-

ator and their uncertainty are identified by inverse UQ. Afterwards, forward UQ is

performed. This work extends results from Section 5 in [7].
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2. Hysteresis operators

2.1. Hysteresis operators—general definition. In this section, it is assumed

that some T > 0 is given. Following [2], [10], [19], it is defined:

Definition 2.1. Let nonempty sets X , Y , and H : D(H) → Map([0, T ], Y ) with

∅ 6= D(H) ⊆ Map([0, T ], X) be given.

(a) H is a hysteresis operator ⇔ H is rate-independent and causal.
(b) H is rate-independent ⇔ for all v ∈ D(H) for all α : [0, T ] → [0, T ] being

continuous and increasing (not necessary strictly increasing) with α(0) = 0,

α(T ) = T , and v ◦ α ∈ D(H) it holds: H[v ◦ α] = H[v] ◦ α.
(c) H is causal ⇔ for all v1, v2 ∈ D(H) for all t ∈ [0, T ]: If v1(τ) = v2(τ) for all

τ ∈ [0, t], then H[v1](t) = H[v2](t).

2.2. The play-operator—definition and properties. The play-operator de-

fined below is an important example of an hysteresis operator and is used to define

further hysteresis operators.

Definition 2.2. Considering a yield limit r > 0 and an initial state z ∈ R, the

play-operator Pr[z, ·] maps u ∈ C([0, T ];R) being piecewise monotone to Pr[z, u] ∈
C([0, T ];R) which is also piecewise monotone and it holds (see, e.g., [2], [9], [10], [19])

that

Pr[z, u](0) = max(u(0)− r,min(u(0) + r, z)),(2.1)

Pr[z, u](t) =

{
max(Pr[z, u](t∗), u(t)− r) if u is increasing on [t∗, t],

min(Pr[z, u](t∗), u(t) + r) if u is decreasing on [t∗, t],
(2.2)

for all t∗, t ∈ [0, T ] with t∗ < t such that u is monotone on [t∗, t].

As an example, the output of P2[0, u] for an input function u is considered. The

corresponding evolutions combined with plots for u + 2 and u − 2 are shown in

Figure 1. Moreover, the corresponding input-output diagram, showing the evolution

of (u,P2[0, u]), is presented in Figure 2.

R em a r k 2.3. Using e.g., [2], [9], [10], [19], one can show:

(a) It holds for all r > 0 and all z ∈ R: the play-operator defined above can be

continuously extended to the well known and well defined play-operator Pr[z, ·]
from C([0, T ];R) to C([0, T ];R), being also a hysteresis operator.

(b) Let λ0 : [0,∞) → R being Lipschitz-continuous with Lipschitz constant 1 be

given such that there exists some R > 0 with λ0(r) = 0 for all r > R. Then
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it holds for all u ∈ C([0, T ];R) and all t ∈ [0, T ]: the mapping P·[λ0(·), u](t) :
[0,∞) → R defined by [0,∞) ∋ r 7→ Pr[λ0(r), u](t) is continuous and there is

some Ru,t > 0 such that Pr[λ0(r), u](t) = 0 for all r > Ru,t.

4 8

−2

0

2

4

6

input function u

u+ r= u+ 2

u− r= u− 2

P2[0, u]

Figure 1. Evolution of the input u(t), of u(t) − 2, of u(t) + 2, and of the output of the
play-operator P2[0, u](t).

−2 2

4 6 input u

1

2

3

4

P2[0, u]

Figure 2. Input-output-diagram, derived using the data leading to Figure 1. Therein, the
evolution of (u(t),P2[0, u](t)) is shown. The size of the circles is decreasing while t
increases.

2.3. Prandtl-Ishlinskĭı-operator. Following [2], [9], [10], [19], it is defined:

Definition 2.4. Let ζ ∈ L1
loc([0,∞)) be given.

(a) Let λ0 : [0,∞) → R being Lipschitz-continuous with Lipschitz constant 1 be

given such that there exists some R > 0 with λ0(r) = 0 for all r > R. Let

PIζ [λ0, ·] : C([0, T ];R) → C([0, T ];R) be the Prandtl-Ishlinskĭı-operator for

the weight function ζ and the initial state function λ0 defined by mapping u ∈
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C([0, T ];R) to the function PIζ [λ0, u] ∈ C([0, T ];R) with

(2.3) PIζ [λ0, u](t) =

∫ ∞

0

ζ(r)Pr [λ0(r), u](t) dr ∀ t ∈ [0, T ].

(b) The Prandtl-Ishlinskĭı-operator PIζ [0, ·] for the weight function ζ and the trivial
initial state is defined as the operator in a) with λ0 ≡ 0 on [0,∞).

(c) The Prandtl-Ishlinskĭı-operator PIζ [·, ·] for the weight function ζ maps (λ0, u)
with λ0 as in (a) and u ∈ C([0, T ];R) to PIζ [λ0, u] as in (a).

(d) The initial loading curve ΨPI,ζ(s) for the Prandtl-Ishlinskĭı-operator PIζ [·, ·] is
defined by requesting that for all β ∈ R:

(2.4) ΨPI,ζ(β) := PIζ [0, uβ](T ) with uβ ∈ C([0, T ];R)

defined by uβ(t) = β
t

T
∀ t ∈ [0, T ].

R em a r k 2.5. Let ζ ∈ L1
loc([0,∞)) be given. For the initial loading curve ΨPI,ζ

for the Prandtl-Ishlinskĭı-operator PIζ [·, ·] it holds for all s ∈ R that

(2.5) ΨPI,ζ(s) =






∫ s

0

ζ(r)(s − r) dr if s > 0,

0 if s = 0,
∫ −s

0

ζ(r)(s + r) dr if s < 0,

= −ΨPI,ζ(−s).

2.4. Identification of initial loading curve from measurements.

R em a r k 2.6. Using [4], [11], [14], one can show: For u ∈ C([0, T ];R) and 0 6

ta < tb < tc 6 T with u being monotone on [ta, tb] and on [tb, tc] and u(ta) = u(tc)

it holds that

(2.6) ∀ t ∈ [tb, tc] : ΨPI,ζ
(u(t)− u(tb)

2

)
=

1

2
(PIζ [λ0, u](t)− PIζ [λ0, u](tb)).

R em a r k 2.7. If one is considering a process mapping time-dependent input

functions to a measurable time-dependent output quantity Q, then one may like to

model this by applying a Prandtl-Ishlinskĭı-operator. To identify a corresponding

weight function, one can use a function u with a cycle as in Remark 2.6 as an input

to this process and determine given/measured values for u and Q at times s0 < s1 <

. . . < sK with tb = s0 and sK = tc. Hence, one gets 0 = v0 < v1 < . . . < vK and

ψ0, ψ1, . . . , ψK ∈ R defined by

(2.7) vi :=
∣∣∣
u(si)− u(s0)

2

∣∣∣, ψi :=
1

2

{
Q(si)−Q(s0) if u(sK) > u(s0),

Q(s0)−Q(si) if u(sK) 6 u(s0).
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By recalling (2.6), it can be deduced that one is looking for a weight function ζ with

(2.8) ΨPI,ζ(vi) ≈ ψi ∀ i ∈ {0, . . . ,K}.

Since the definition yields that v0 = 0 and ψ0 = 0, it is deduced from (2.5) that

the equation in (2.8) is satisfied for k = 0 for all admissible weight functions ζ such

that for determining ζ one can ignore k = 0 in (2.8).

R em a r k 2.8. Starting from data as in Remark 2.7 one can derive an approxi-

mation for an initial loading curve on [0, vK ] by considering a function Ψ that is linear

on [v0, v1], [v1, v2], . . . , [vK−1, vK ] and satisfies Ψ(vk) = ψk for all k ∈ {0, . . . ,K}.

R em a r k 2.9. The considerations in Remark 2.7 can be extended to the follow-

ing situation: one is considering a function u ∈ C([0, T ];R) and tb, tc ∈ [0, T ] with

tb < tc such that u is monotone on [tb, tc] and one is able to show somehow that the

equation in (2.6) is at least approximately valid for all t ∈ [tb, tc].

3. Uncertainties in a model for magneto-mechanical components

3.1. General considerations. In [3], Section 5, a model for magneto-mechanical

devices has been derived. Therein, a generalized Prandtl-Ishlinskĭı-operator, see also

[8], [20],

(3.1) Gc1,c2,c3 [λ0, H ](t) := PIζc1,c2
[λ0, tanh(c3H)](t)

with ζc1,c2(r) := c1e
−r/c2 for all r > 0, parameters c1, c2, c3 > 0 and λ0 : [0,∞) → R

satisfying the conditions discussed above, is considered. In [3], it is shown that this

operator provides an approximation for the magnetization of Galfenol for an applied

magnetic field H ; with c3 depending on the applied stress.

In the following, it will be assumed that the applied magnetic field H is propor-

tional to the applied current I such that one can consider Gc1,c2,c3 [λ0, I] (with an

appropriate updated value for c3) instead of Gc1,c2,c3 [λ0, H ].

The initial loading curve ΨPI,ζc1,c2
for PIζc1,c2

satisfies

(3.2) Ψc1,c2(s) := ΨPI,ζc1,c2
(s) = sc1c2 + c1c

2
2(e

−s/c2 − 1) ∀ s > 0.

In [1], a magnetostrictive Terfenol-actuator is investigated and the hysteresis be-

tween the current generating the magnetic field and the resulting displacement is

considered. In this paper, data creating a First-Order-Reversal-Curves (FORC)—

diagram quite similar to the one in Figure 3 were used to determine the parameter

field/values in a Preisach-operator and a generalized Prandtl-Ishlinskĭı-operator.
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Figure 3. A FORC-diagram for a magnetostrictive Terfenol-actuator similar to the one
considered in [1], and one additional curve derived for increasing current.

3.2. Considerations and results in [7], Section 5. The data used to prepare

the FORC-diagram in Figure 3 and one additional data set with increasing current

measured directly afterward are shown in Figure 4. In [7], Section 5, these data

have been used to identify parameter values c1, c2, c3 > 0 such that the generalized

Prandtl-Ishlinskĭı-operator Gc1,c2,c3 [λ0, I](t) creates approximations for these data.

The resulting value for c3 = ctanh = 0.682138will be used in the following. Moreover,

the uncertainties for c1 and c2 were also investigated.

0 20 40 60 80 100 120

data used for parameter identification

0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

length change (norm)

current (norm)

Figure 4. Measured data used to generate the FORC-diagram in Figure 3, and one addi-
tional data set with increasing current measured directly afterwards.

In the following, let t0, t1, . . . , t58 denote the times of local extrema for the cur-

rent I. The symbol L will be the relative length change determined from measure-

ments of a corresponding sensor. Thanks to the measurements, there are values for I
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and L at times s0,j , s1,j, . . . sK∗
j
,j ∈ [tj−1, tj ] with tj−1=s0,j < s1,j < . . . < sK∗

j
,j = tj

for all j ∈ {1, . . . , 58} and

K∗
1 = 29, K∗

2 = K∗
3 = 28, K∗

4 = K∗
5 = 27, . . . ,K∗

54 = K∗
55 = 2,(3.3)

K56 = 1, K57 = 2, K58 = 29.

In the following, results from a reformulation of Section 2 will be used. In this

reformulation every “[0, T ]” is replaced with “[t0, t58]”, “α(0) = 0” and “α(T ) = T ”

in Definition 2.1 (b) are replaced with “α(t0) = t0” and “α(t58) = t58”, respectively,

“[0, t]” in Definition 2.1 (c) is replaced with “[t0, t]”, “0” in (2.1) is replaced with “t0”,

and “0 6 ta < tb < tc 6 T ” in Remark 2.6 is replaced with “t0 6 ta < tb < tc 6 t58”.

Considering any j ∈ {2, . . . , 57} and investigating the evolution of u := tanh(c3I)

on [tj−2, tj−1] and on [tj−1, tj ], it follows that one is dealing with the situation

discussed in Remark 2.6 with tj−2 =: ta, tj−1 =: tb and tj =: tc.

For any i ∈ {1, . . . , 28}, it holds that u is increasing on [t2i−1, t2i] = [s0,2i, sKi,2i]

with Ki := K∗
2i. Hence, by following Remark 2.7, one can compute v0,i, . . . , vKi,i

and ψ0,i, . . . , ψKi,i defined by

(3.4) vk,i :=
1

2
|tanh(c3I(sk,2i))− tanh(c3I(s0,2i))|

=
1

2
(tanh(c3I(sk,2i))− tanh(c3I(s0,2i))),

ψk,i :=
1

2
(L(sk,2i)− L(s0,2i)),

for k = 0, . . . ,Ki. Now, in view of (2.6) and (2.8), one would like to find density ζi
for the Prandtl-Ishlinskĭı-operator such that

(3.5) ΨPI,ζi(vk,i) ≈ ψk,i ∀ k ∈ {0, . . . ,Ki}.

Moreover, one can either combine the return point memory property of the

Prandtl-Ishlinskĭı operator with its continuity or investigate the graphs [0,∞) ∋ r 7→
Pr[λ0(r), u](t) and compute the resulting integrals to show for tb := t57 and tc := t58

that one is in a situation as in Remark 2.9. Hence, equations (3.4) and (3.5) can

also be derived for i = 29 with K29 := K∗
2·29 = K∗

58.

For any i ∈ {31, . . . , 58}, it holds that u is decreasing on [t2(i−30), t2(i−30)+1] =

[s0,2(i−30)+1, sKi,2(i−30)+1] with Ki := K∗
2(i−30)+1 and that one is in the situa-

tion discussed in Remark 2.6. Hence, by following this remark, one can compute
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v0,i, . . . , vKi,i and ψ0,i, . . . , ψKi,i by

(3.6) vk,i :=
1

2
|tanh(c3I(sk,2(i−30)+1))− tanh(c3I(s0,2(i−30)+1))|

=
1

2
(tanh(c3I(s0,2(i−30)+1))− tanh(c3I(sk,2(i−30)+1))),

ψk,i :=
1

2
(L(s0,2(i−30)+1)− L(sk,2(i−30)+1)),

for k = 0, . . . ,Ki. Now, again in view of (2.6) and (2.8), one would like to find

density ζi for the Prandtl-Ishlinskĭı-operator such that ΨPI,ζi(vk,i) ≈ ψk,i for all

k ∈ {0, . . . ,Ki}.
Moreover, since the experiment is supposed to generate measurements allowing

to generate a FORC-diagram, it can be assumed that the preparation phase of the

measurement has been done in such a way that (2.6) is valid with tb := t0 = t2(30−30)

and tc := t1 = t2(30−30)+1, such that the above considerations can also be performed

for i = 30.

Combining the above considerations, it holds for any j ∈ {1, . . . , 58} that Kj,

v0,j , . . . , vKj ,j, and ψ0,j , . . . , ψKj ,j have been determined such that one would like to

find density ζj for the Prandtl-Ishlinskĭı-operator satisfying

(3.7) ΨPI,ζj (vk,j) ≈ ψk,j ∀ k ∈ {0, . . . ,Kj}.

Following Remark 2.8, an approximation for an initial loading curve can also be

derived from this data set. In Figure 5, these approximations are shown.
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Figure 5. For every i ∈ {1, 2, . . . , 58} the approximation of an initial loading curve gener-
ated from points (v0,i, ψ0,i), (v1,i, ψ1,i), . . . , (vKi,i, ψKi,i) following Remark 2.8 is
shown.

803



As pointed out before (2.8), for determining ζj one can ignore k = 0 in the above

equation. If one is only interested in dealing with densities as in Section 3.1, one

has ζj = ζc1,j ,c2,j with appropriate values c1,j , c2,j ∈ (0,∞) so that it holds, thanks

to (3.2),

(3.8) Ψc1,j,c2,j (vk,j) ≈ ψk,j ∀ k ∈ {1, . . . ,Kj}.

R em a r k 3.1. In [7], Section 5, appropriate pairs

(c1,KDV,1, c2,KDV,1), (c1,KDV,2, c2,KDV,2), . . . , (c1,KDV,58, c2,KDV,58)

were computed such that (3.8) is satisfied for c1,j = c1,KDV,j and c2,j = c2,KDV,j for

all j ∈ {1, . . . , 58}. Afterwards, a simple inverse UQ calculation was performed: for
a subset

((c1,KDV,i, c2,KDV,i))
55
i=30

of nice parameter pairs the discrete mean and the standard deviation were calculated.

Afterwards, c1 and c2 were represented by independent random variables with the

corresponding normal distributions truncated to [0.0000001,∞) and some forward

UQ computations were performed.

Performing a further simple inverse UQ by also computing the discrete mean and

the discrete standard deviation using all pairs ((c1,KDV,i, c2,KDV,i))
58
i=1, it turned

out that the discrete mean for c2 was 4.71742 and the discrete standard deviation

for c2 was 7.94603, so that using a truncated normally distributed distribution does

not seem to be an appropriate description for c2. Moreover, it turned out that the

values in ((c1,KDV,i, c2,KDV,i))
58
i=1 show a significant correlation and considering their

distribution (see [7], Figure 14), it became obvious that these pairs do not represent

samples of two independent truncated normally distributed random variables.

Also, the values in the subset ((c1,KDV,i, c2,KDV,i))
55
i=30 of nice parameter pairs

show a significant correlation and investigating the distribution of these pairs, see [7],

Figure 15, it became obvious that these pairs also do not represent samples of two

independent truncated normally distributed random variables.

Because of these observations, it was tried in [7], Section 5 to find a random

variable on (0,∞)2 such that the above pairs could be typical samples for this random

variable, by applying a formulation of Bayes’ Theorem as in [6], Theorem 3.1, see

also Section 3.4.

3.3. Likelihood and Bayes’ Theorem. The following definition of the likeli-

hood (compare, e.g., [17], [16], [6]) is quite often applied in situations with Vq being

equal to the value of a model evaluated at q with additional noise that is normally

distributed with mean 0.
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Definition 3.2. Let m,n ∈ N be given. Let Q ⊂ R
m be a set of parameter

values. Assume that for every q ∈ Q a continuous Rn-valued random variable Vq
with probability density ̺(·; q) on R

n is given. For all q ∈ Q and all v ∈ R
n it holds

that the likelihood L(q | v) is defined by

(3.9) L(q | v) := ̺(v; q) = ̺(Vq = v; q).

The likelihood function L(· | v) for v is mapping q ∈ Q to L(q | v).

This combination of assumptions is used in the following:

Assumption 3.3. Assume that one is in the situation of Definition 3.2 and

that integrals on Q are well defined. Assume that a known probability density π0
on Q, denoted as prior density, is given. Assume that some vobs ∈ ⋃

q∈Q

Vq is given

such that
∫
Q L(q

′ | vobs)π0(q′) dq′ > 0.

Having a close look at the proof of [6], Theorem 3.1, one realizes that the first

equation on page 51 only holds if therein the density of the to be identified random

variable representing the parameters is replaced by the prior density. Adapting now

the corresponding formulation of Bayes’ Theorem of Inverse Problems such that

the proof is valid, one ends up with the following theorem allowing to compute the

solution of the corresponding Bayesian Inverse Problems (BIP) with (3.10). Similar

formulations can also be found e.g., in [17], Result 8.1 or [12], Section 2.1.2.

Theorem 3.4. Assume that Assumption 3.3 is satisfied and that a random vari-

able X0 with values in Q is given such that π0 is its probability density, that vobs

can be considered as a sample of VX0
and that there exists a joint probability density

for X0 and VX0
. A Baysian’s belief πnew combining the information in X0 and in the

observed datum vobs is the posterior probability density πnew(· | VX0
= vobs) of X0,

given the data vobs, and it holds that

(3.10) πnew(q | VX0
= vobs) =

L(q | vobs)π0(q)∫
Q
L(q′ | vobs)π0(q′) dq′

∀ q ∈ X0.

In [18], Section 6.22, the formulation of Bayes’ Theorem of Inverse Problems is

adjusted to the situation that Q is a subset of a general separable Banach space

and Vq is of the form described before Definition 3.2.

As one can see, the derived density does not depend on X0, so that the following

theorem is proved.

Theorem 3.5. Assume that Assumption 3.3 is satisfied and that a random vari-

ableX0 with values in Q exits such that the assumptions in Theorem 3.4 are satisfied.
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A Baysian’s belief combining the information in π0 and in the observed datum vobs

by using Bayes’ Theorem of Inverse Problems is the posterior probability density for

the prior density π0, given the data vobs which is defined as the posterior probability

density πnew(· | VX0
= vobs) of X0, given the data vobs as in Theorem 3.4.

R em a r k 3.6. Assume that Assumption 3.3 is satisfied and that one tries to

identify a fixed, true, and unknown value qtrue ∈ Q. Assume that the informa-

tions/beliefs on the value of qtrue in advance of an observation are summarized by

the prior probability density π0 on Q. Assume that vobs is a sample of Vqtrue that

has been observed. A Baysian’s belief combining the information in π0 and in the

observed datum vobs by using Bayes’ Theorem of Inverse Problems as in Theorem 3.5

is the posterior probability density for the prior density π0, given the data vobs. This

density is defined following Theorem 3.5 if it holds that there exists a random vari-

able X0 with values in Q such that the assumptions in Theorem 3.4 are satisfied.

(This implies that one needs to request that vobs is also a sample of VX0
.)

R em a r k 3.7. For the “identification of a true value“ formulation of Bayes’

Theorem as in Remark 3.6 one can subsequently apply the theorem for different

observations, using the last computed posterior density as new prior density. In this

situation one can show some kind of convergence of the computed densities to the

true value with the Bernstein-von Mises Theorem (see, e.g., [18], Theorem 6.17).

Hence, this yields that in most situations the posterior density computed by Bayes’

Theorem provides better approximation to the true value than the prior density.

R em a r k 3.8. In some references, e.g., [6], Theorem 3.1, a more general situ-

ation than in Remark 3.6 seems to be considered. Therein, the authors claim to

deal with the situation that there is a fixed, true random variable Utrue with values

in Q, such that the observations are samples of VUtrue
. If one has a prior probability

density π0 on Q representing the information on/beliefs about Utrue in advance of

the observation(s), it is pointed out that for any observed datum vobs of this kind one

can use Bayes’ Theorem of Inverse Problems as in Theorem 3.5 to get the posterior

probability density for the prior density π0, given the data vobs.

Warning: The posterior density one gets in this situation is the same as the

posterior density one would get if considering Bayes’ Theorem for the identification

of a true value as in Remark 3.6. There are some situations, in which the computed

posterior density can be a better approximation for Utrue than the prior density, but

contrary to the expectation, this does not hold typically. Instead, one can easily

produce situations with a given and known Utrue such that the posterior density

is the less accurate approximation of Utrue especially if Vq is of the form described

before Definition 3.2.
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3.4. Adapting the identification problem to Bayes’ Theorem. Adapting

the situation considered in Section 3.2 to the framework of Bayes’ Theorem, it

is assumed that there exist independent random variables Γ1,1, . . . ,ΓK1,1,Γ1,2, . . . ,

ΓK2,2, . . . ,Γ1,L, . . . ,ΓKL,L and samples γk,l of Γk,l such that (3.8) can be rewritten as

(3.11) ΨPI,c1,l,c2,l(vk,l) + γk,l = ψk,l ∀ k ∈ {1, . . . ,Kl}, l ∈ {1, . . . , L}.

In [7] it is assumed that Γ2,1, . . . ,ΓK1,1,Γ2,2, . . . ,ΓK2,2, . . . ,Γ2,L, . . . ,ΓKL,L have the

distribution N(0, σ2) and that Γ1,1,Γ1,2, . . . ,Γ1,L have the distribution N (0, (2σ)2)

for a given σ.

In view of the formulation of Bayes’ Theorem as in [6], Theorem 3.1, see also

Remark 3.8, it was believed that appropriate application of Bayes’ Theorem should

allow the determination of a posterior density such that ((c1,KDV,i, c2,KDV,i))
58
i=1 as

in Remark 3.1 could be considered as typical samples for a random variable with

this density. An idea to achieve this aim was to subsequently apply Bayes’ theo-

rem to (3.11) for the different values of l ∈ {1, 2, . . . , 58}, using the last computed
posterior density as new prior density in each step.

But an inspection of this procedure yielded that the resulting final posterior density

can also be derived by applying Bayes’ Theorem just with the likelihood being the

product of all involved likelihoods, leading to a density for (c1, c2).

Considering the likelihoods for σ = 0.01 and σ = 0.02, shown in [7], Figures 16,

and 17, one observes that these functions are very small except for a quite small

region, but the values for ((c1,KDV,i, c2,KDV,i))
58
i=1 are distributed over a much larger

region, see [7], Figure 14. The pairs in the considered subset ((c1,KDV,i, c2,KDV,i))
55
i=30

of nice parameter pairs are also distributed over a much larger region, see [7], Fig-

ure 15.

Hence, with a normal choice for the prior density considered during the application

of Bayes’ Theorem it will also hold that the posterior density is concentrated in

a small region and a random variable with this density will not produce one of these

sets of parameter values as typical samples.

In view of these results, further investigation of the application of Bayes’ Theorem

was performed. It turned out that the posterior density computed by using this

product of likelihoods is just the density that one would get for c1,all, c2,all ∈ (0,∞)

such that (3.11) holds with c1,l replaced by c1,all and c2,l replaced by c2,all for all

l ∈ {1, . . . , 58}, see also the Warning in Remark 3.8.
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4. Inverse and forward UQ computations performed

after completing [7]

4.1. Reformulation of problems to be considered for Bayes’ Theorem,

use of UQLab. In the following, Bayes’ Theorem will be applied for appropriate

parts of the BIP considered before and afterwards a convex combination of the re-

sulting posterior densities will be determined.

To be able to deal with the posterior density and integrals involving this density,

this density will be represented by samples resulting from dealing with BIPs using

Markov-Chain-Monte-Carlo (MCMC)-computations. This has been done by apply-

ing UQLab, the “The Framework for Uncertainty Quantification”, see [13], [21] and

https://www.uqlab.com/.

For subsets L of {1, 2, . . . , L} = {1, 2, . . . , 58}, it will be assumed that for all l ∈ L

it holds that the corresponding equations in (3.11) are evaluated with c1,l replaced

by c1,L and c2,l replaced by c2,L. Hence, it can be deduced that

(4.1) ΨPI,c1,L,c2,L(vk,l) + γk,l = ψk,l ∀ k ∈ {1, . . . ,Kl}, l ∈ L.

Moreover, it will be assumed that the independent random variables Γk,l have the

distribution N (0, σ2
L
) for all k ∈ {1, . . . ,Kl} and for all l ∈ L with some appropriate

σL > 0 that must be identified.

Hence, it follows that (ψk,l)k=1,...,Kl,l∈L can be considered as sample of

(ΨPI,c1,L,c2,L(vk,l) + Γk,l)k=1,...,Kl, l∈L.

Therefore, similarly to [21], (1.17), it holds for the likelihood that

(4.2) LL((c1,L, c2,L, σ
2
L) | (ψk,l)k=1,...,Kl, l∈L)

=
∏

l∈L

Kl∏

k=1

1√
2πσ2

L

exp
( −1

2σ2
L

(ψk,l −ΨPI,c1,L,c2,L(vk,l))
2
)
.

4.2. Approximation of length change and shift value. If one plans to use

the results of inverse UQ to perform forward UQ and to reconstruct the measured

length change, it is important to take into account the following considerations:

If one is considering a triple c1, c2, c3 and would like to construct an approximation

of the measured length change, it holds:

Variant 1: One could try to identify the initial internal state λ0 describing the in-

ternal state of the specimen before the measurement started that cor-

responds to the 0-length change situation such that Gc1,c2,c3 [λ0, I] with

a shift should reproduce the measurements.
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Variant 2: One could take advantage of the fact that in the situation considered in

the measurements (also after the identification period is finished) it holds

that there is a constant difference between Gc1,c2,c3 [λ0, I] and Gc1,c2,c3 [0, I],

with Gc1,c2,c3 [0, I] denoting the generalized Prandtl-Ishlinskĭı-operator in-

volving the Prandtl-Ishlinskĭı-operator with a trivial initial state as in Def-

inition 2.4 (b). Then, one just needs to determine a shift-value such that

Gc1,c2,c3 [0, I] + shift is an approximation for the measured length change.

In the following, Variant 2 will be used and the value for shift will be determined

by computing the output of the generalized Prandtl-Ishlinskĭı-operator with a trivial

initial state at a time t being a minimum, i.e., t ∈ {t1, t3, . . . , t57}, and comparing
the result with the measured length change L(t) at this time.

R em a r k 4.1. If one is investigating the properties of the play-operator with a

trivial initial state with the modification that t0 is the start of the considered time in-

terval, see the discussions of the reformulation of Section 2 in Section 3.2, it holds that

(4.3) Gc1,c2,c3 [0, I](t0) = PIζc1,c2
[0, tanh(c3I)](t0) = Ψc1,c2(tanh(c3I(t0))).

Moreover, following the discussion for the derivation of (3.7) for i = 30, it can be

deduced that (2.6) is valid with tb = t0, t = t1, and u = tanh(c3I). Using also (2.5)

and simplifying the notations by using that the value of c3 is fixed, it follows that

(4.4) Gc1,c2,c3 [0, I](t1) = gc1,c2(t1)

with

(4.5)

gc1,c2(t) := Ψc1,c2(tanh(c3I(t0)))

+ 2ΨPI,c1,L,c2,L

(1
2
(tanh(c3I(t))− tanh(c3I(t0)))

)
∀ t ∈ [t0, t58].

Taking advantage of the return-point memory of the generalized Prandtl-Ishlinskĭı-

operator and ignoring that there may be some differences, since the values of the

minima have some small variations, it follows that

(4.6) Gc1,c2,c3 [0, I](ti) ≈ gc1,c2(ti) ∀ i ∈ {1, 3, 5, . . . , 57}.

Now, considering the situation as in Section 4.1 for a subset L of {1, . . . , L}, one
equation or several equations involving shiftL and one or several measurements of

length changes needs/need to be formulated.

When doing forward UQ by considering samples representing the unknown pa-

rameters one also needs to somehow determine samples for shiftL.
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Variant 1: If only one equation involving shiftL is formulated, the following sim-

ple approach was used in previous computations: In the first step, one

can perform inverse UQ using the likelihood formulated in Section 4.1 to

generate a set of sample triples ((c1,L,n, c2,L,n, σ
2
L,n))

N
n=1 representing the

joint posterior density for c1,L, c2,L, and σ
2
L
. In the second step, one com-

putes for each pair (c1,L,n, c2,L,n) the corresponding sample value shiftL,n

by inverting the equation discussed above. Afterwards, one could consider

the quadruple of samples ((c1,L,n, c2,L,n, shiftL,n, σ
2
L,n))

N
n=1 as samples of

some joint density representing c1,L, c2,L, shiftL, and σ
2
L
.

Variant 2: The more complicated approach is to perform the inverse UQ already

with shiftL as a component and to use also the equation(s) for the shift

value in the formulation of the BIP. In the following, results for these

kind of computations are presented.

To derive a BIP combining (4.1) with an equation for shiftL, one needs to formu-

late one equation or several equations for this quantity such that the error can be

estimated. Moreover, to implement this within the framework of UQLab, one needs

to formulate equations such that the error should be a sample of a random variable

having the distribution N (0, σ2
L
).

To prepare this, one will consider the times for minima belonging to the data sets

used to create ((vk,l, ψk,l))k=1,...,Kl, l∈L. Hence,

(4.7) L∗ := {2i | i ∈ L, i 6 29} ∪ {2(i− 30) + 1 | i ∈ L, i > 30}

is considered. Now, it is assumed that

(4.8) η∗k,j,L := Gc1,c2,c3 [0, I](sk,j) + shiftL − L(sk,j)

for k ∈ {0, . . . ,K∗
j } and for j ∈ L∗ are samples for independent random variables

all having the distribution N (0, σ2
L,∗) for some appropriate σL,∗ > 0. (Here, it is

ignored that in view of (4.9) and other already requested independencies one may

not be able to satisfy all the requested independencies.) Considering any l ∈ L with

l < 29 and any k ∈ {1, . . . ,Kl} and recalling (4.1), (3.4), and (2.6) allows to deduce
that

(4.9)

γk,l =
1

2
(L(sk,2l)− L(s0,2l))−ΨPI,c1,L,c2,L

(1
2
(tanh(c3I(sk,2l))− tanh(c3I(s0,2l)))

)

=
1

2
(L(sk,2l)− Gc1,L,c2,L,c3 [0, I](sk,2l)− shiftL)

− 1

2
(L(s0,2l)− Gc1,L,c2,L,c3 [0, I](s0,2l)− shiftL)

= − 1

2
η∗k,2l,L +

1

2
η∗0,2l,L.
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Using further argumentation similar to the one that was used to derive equations (3.4)

and (3.5) also for i = 29, it can be shown that (4.9) is also valid for l = 29.

Recalling the assumption for η∗i,2l,L and Lemma 6.1, see Appendix, yields that

the difference on the right-hand side of (4.9) is a sample of a random variable with

distribution N
(
0,
(

1√
2
σL,∗

)2)
, and that this therefore also holds for γk,l.

Considering any l ∈ L with l > 29 and any k ∈ {1, . . . ,Kl} and recalling
(4.1), (3.6), and (2.6) allows to deduce with a similar computation that γk,l =

− 1
2η

∗
0,2(l−30)+1,L + 1

2η
∗
k,2(l−30)+1,L. Recalling the assumption for η

∗
i,2(l−30)+1,L and

Lemma 6.1, one deduces that this is a sample of a random variable with distribution

N
(
0,
(

1√
2
σL,∗

)2)
.

Since it holds for all l ∈ L and all k ∈ {1, . . . ,Kl} that γk,l is by assumption
a sample of a random variable with distribution N(0, σ2

L
), but also a sample of

a random variable with distribution N
(
0,
(

1√
2
σL,∗

)2)
, it follows that

(4.10)
1√
2
σL,∗ = σL.

4.3. Bayesian Inverse Problem for data sets with increasing current.

Considering the approximation for initial loading curves generated by following Re-

mark 2.8 for the data sets with increasing current, as shown in Figure 6, one observes

that they all seem to approximate the same function on different intervals.

0 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40

0.5 abs(tanh(ctanh input))diff)

generated init. load curves
for increasing current
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Figure 6. For the data sets involving increasing current, i.e., for every i ∈ {1, 2, . . . , 29}, the
approximation of an initial loading curve generated from the points (v0,i, ψ0,i),
(v1,i, ψ1,i), . . . , (vKi,i, ψKi,i) following Remark 2.8 is shown.

To get samples representing the approximation of this function, a BIP for all

data sets with increasing current is considered, i.e., one deals with L = {1, . . . , 29}.
Using (4.7), it follows that L∗ = {2, 4, . . . , 58}.
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Equation for shift: In a situation without any noise or any model errors, one

could compute the average over all values for Gc1,c2,c3 [0, I] evaluated in the 29 minima

of the current at t1, t3, . . . , t57 and afterwards add shift{1,...,29} to this average. The

result should be equal to the average over all values for L evaluated in the 29 minima

of the current.

In a situation with noise, one needs to consider the difference between these ex-

pressions and one has to check if it can be considered as a sample of a random

variable. Denoting the difference by δ{1,...,29}, it follows that

δ{1,...,29}=
1

29

29∑

i=1

Gc1,c2,c3 [0, I](t2i−1) + shift{1,...,29} −
1

29

29∑

i=1

L(t2i−1)

=
1

29

29∑

i=1

(Gc1,c2,c3 [0, I](s0,2i) + shift{1,...,29} − L(s0,2i))=

29∑

i=1

1

29
η∗0,2i,{1,2,...,29}.

Recalling Lemma 6.1, the assumption on η∗0,2i,{1,2,...,29}, and (4.10), it is shown that

the sum on the right-hand side is a sample for a random variable with distribu-

tion N
(
0,

29∑
i=1

( 1
29 )

2σ2
{1,2,...,29},∗

)
= N

(
0, 1

29σ
2
{1,2,...,29},∗

)
= N

(
0, 2

29σ
2
{1,2,...,29}

)
. In

view of Lemma 6.1, it can be deduced that
√

29
2 δ{1,...,29} would be a sample of

a random variable with distribution N
(
0, σ2

{1,2,...,29}
)
. Hence, using also (4.6), it

follows that
√

29
2

1
29

29∑
i=1

L(t2i−1) is a sample of a random variable with distribution

N
(√

29
2

(
1
29

( 29∑
i=1

gc1,c2(t2i−1)
)
+ shift{1,...,29}

)
, σ2

{1,2,...,29}

)
.

Attaching this random variable to (ΨPI,c1,L,c2,L(vk,l) + Γk,l)k=1,...,Kl, l=1,...,29, ig-

noring in the following computations that the involved random variables are not

independent, and considering (4.2) with L = {1, 2, . . . , 29}, it follows for the result-
ing likelihood that

(4.11)

Lfull
{1,2,...,29}((c1,{1,2,...,29}, c2,{1,2,...,29}, shift{1,2,...,29}, σ

2
{1,2,...,29}) |

((ψk,l)k=1,...,Kl, l=1,...,29,Υ))

= L{1,2,...,29}((c1,{1,2,...,29}, c2,{1,2,...,29}, σ
2
{1,2,...,29}) | (ψk,l)k=1,...,Kl, l=1,2,...,29)

× L∗
{1,2,...,29}((c1,{1,2,...,29}, c2,{1,2,...,29}, shift{1,2,...,29}, σ

2
{1,2,...,29}) |Υ),

where

Υ =

√
29

2

1

29

29∑

i=1

L(t2i−1)
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and

(4.12) L∗
{1,2,...,29}((c1,{1,2,...,29}, c2,{1,2,...,29}, shift{1,2,...,29}, σ

2
{1,2,...,29}) | Υ)

=
1√

2πσ2
{1,2,...,29}

exp

( −1

4 · 29σ2
{1,2,...,29}

( 29∑

i=1

L(t2i−1)

−
29∑

i=1

gc1,{1,2,...,29},c2,{1,2,...,29}(t2i−1)− 29 shift{1,2,...,29}

)2)
.

Now, the product of appropriate uniform probability densities for c1,{1,2,...,29},

c2,{1,2,...,29}, shift{1,2,...,29}, and σ
2
{1,2,...,29} is used as prior density. Ignoring that

the prior density should not involve any information derived by using the observa-

tions to be considered in Bayes’ Theorem, the data pairs ((c1,KDV,i, c2,KDV,k))
58
i=1

and the subset ((c1,KDV,i, c2,KDV,k))
55
i=30 of nice data pairs computed in [7], Sec-

tion 5 by using this observation, see Remark 3.1, have been used to define the prior

density. Moreover, the results of other inverse UQ computations for the considered

observation have also been used.

(1) The interval [0, 100] used for c1,{1,2,...,29} is chosen so that all values (c1,KDV,i)
55
i=30

and almost all values (c1,KDV,i)
58
i=31 are within this interval.

(2) The interval [0.00001, 4] used for c2,{1,2,...,29} satisfies that most of the values

(c2,KDV,i)
55
i=30 and many of the values for (c2,KDV,i)

58
i=1 are within this inter-

val. The used upper bound 4 for c2,{1,2,...,29} was derived by some heuris-

tic considerations to ensure that there is still some reasonable dependence of

L{1,2,...,29}((c1, c2, σ
2) | (ψk,l)k=1,2,...,Kl,l=1,2,...,29) on c2 on the complete inter-

val.

(3) Using data pairs for (c1, c2) derived by performing inverse UQ without the shift,

and computing the shift by inverting the considered equation, many samples for

shift had been computed. The interval [−3, 3] contains almost all of them.

(4) In view of other results for dealing with the considered problem, using the interval

[0, 10−3] to define the prior density for σ2
{1,2,...,29} seemed reasonable.

Following Remark 3.6, one is interested in the posterior density according to Bayes’

Theorem of Inverse Problems as in Theorem 3.5.

To approximate the resulting posterior density a set of samples is computed by us-

ing the affine invariant ensemble algorithm, see [21], Section 1.3.4, a special Markov-

Chain-Monte-Carlo scheme, implemented in UQLab. An ensemble of 200 chains,

denoted as walkers, was considered, and 6000 iteration steps were performed. Af-

terwards, some walkers with improper evolutions were removed and the initial 90 %

of the iterations steps in the remaining walkers were also removed. Hence, one got

samples ((c1,{1,2,...,29},n, c2,{1,2,...,29},n, shift{1,2,...,29},n, σ
2
{1,2,...,29},n))

115800
n=1 .
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Figure 7. Scatter plot showing the samples (c1,{1,2,...,29},n, c2,{1,2,...,29},n, shift{1,2,...,29},n,

σ2{1,2,...,29},n) representing the posterior density following from dealing with all
data sets for increasing current.

These samples, i.e., a sufficient number of samples randomly selected from these

samples, are presented in the scatter plot in Figure 7.

4.4. Result of forward UQ for data sets with increasing current. As

pointed out in [21], the posterior predictive density can be computed by “averaging”

the model output with additional noise over the posterior distribution. Thanks

to (3.3) and Gauss summation, it follows that this is a density with
29∑
l=1

Kl + 1 =
29∑
l=1

K∗
2l + 1 =

29∑
l=1

l + 1 = 29∗30
2 + 1 = 436 components.

Following [21], Section 1.2.6, one can generate samples for the posterior predic-

tive density: Starting with a sample (c1,{1,2,...,29},n, c2,{1,2,...,29},n, shift{1,2,...,29},n,

σ2
{1,2,...,29},n) reflecting the posterior density, one gets a sample ξn ∈ R

436 reflecting

the posterior predictive density by the following computation.

⊲ Considering an index k∗ ∈ {1, . . . , 435}, one defines

l := min

{
l∗ ∈ {1, . . . , 29}

∣∣∣
l∗∑

i=1

Ki > k∗
}

and afterwards one defines k = k∗ if l = 1, and k = k∗ −
l−1∑
i=1

Ki otherwise. Now,

ξn(k
∗) will be the sum of Ψc1,{1,...,29},n,c2,{1,...,29},n(vk,l) and a sample of a random

variable with distribution N (0, σ2
{1,...,29},n).
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⊲ Moreover, ξn(436) will be the sum of

√
29

2

(
1

29

( 29∑

i=1

gc1,{1,...,29},n,c2,{2,...,29},n(t2i−1)

)
+ shift{1,...,29}

)

and a sample of a random variable with distribution N
(
0, σ2

{1,...,29},n
)
.

The considered data vector is

(ψ1,1, . . . , ψK1,1, ψ1,2, . . . , ψK2,2, . . . , ψ1,29, . . . , ψK29,29,Υ).

posterior predictive
data

y1 y50 y98 y146 y195 y243 y291 y340 y388 y436

data index (–)

data group 1

−0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Figure 8. Violin-plots of samples reflecting the posterior predictive density, derived by using
some of the samples shown in Figure 7 and marks for data points.

posterior predictive
data

y146

data index (–)

data group 1

0.26

0.28

0.30

0.32

0.34

0.36

Figure 9. Blow-up of a part of Figure 8.
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To plot the posterior predictive density, one is randomly choosing 1000 samples

(ξni
)1000i=1 , and is showing a violin-plot for (ξni

(k))1000i=1 for each k ∈ {1, . . . , 436},
see [15], Section uq violinplot. In the plot, marks for the value of the components of

the data vector are also shown. In Figure 8 this is shown for all 436 components, in

the blow-up in Figure 9 one can see the result for the components 143, . . . , 149.

4.5. Bayesian Inverse Problems for data sets with decreasing current.

Considering the approximation for initial loading curves generated for data sets with

decreasing current, it can be observed that the curves look different, see Figure 10.
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Figure 10. For the data sets involving decreasing current, i.e., for every i ∈ {30, 31, . . . , 58}
the approximation of an initial loading curve generated from the points
(v0,i, ψ0,i), (v1,i, ψ1,i), . . . , (vKi,i, ψKi,i) following Remark 2.8 is shown.

To get samples representing the approximation of these different functions, 29

Bayesian Inverse Problems are considered, one per each data set with decreasing

current.

Let any i ∈ {30, . . . , 58} be given. Considering now L = {i}, it follows from (4.7)
that L∗ = {2(i− 30) + 1}.

Equation for shift{i}: The data set ((vk,i, ψk,i))
K
k=1 is derived from information

on the current and the length change on the interval [t2(i−30), t2(i−30)+1]. Since

the current is decreasing on this interval, it is minimal at the end t2(i−30)+1 =

sKi,2(i−30)+1 of the interval.

Since η∗Ki,2(i−30)+1,{i} is a sample of a random variable having the distribution

N (0, σ2
{i},∗), it follows by recalling Lemma 6.1 and (4.10) that

1√
2
η∗Ki,2(i−30)+1,{i} is

a sample of a random variable having the distribution N (0, σ2
{i}). Considering (4.8)

for k = Ki = K∗
2(i−30)+1 and (4.6), it can be deduced that

1√
2
L(t2(i−30)+1) is a sample
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of a random variable with distributionN
(

1√
2
(gc1,{i},c2,{i}(t2(i−30)+1)+shift{i}), σ

2
{i}

)
.

Attaching this random variable to (ΨPI,c1,{i},c2,{i}2 (vk,i) + Γk,i)
Ki

k=1, ignoring in the

following computations that the involved random variables are not independent, and

considering (4.2) with L = {i}, one gets for the resulting likelihood

(4.13) Lfull
{i}

(
(c1,{i}, c2,{i}, shift{i}, σ

2
{i})

∣∣∣
(
(ψk,i)

Ki

k=1,
1√
2
L(t2(i−30)+1)

))

= L{i}((c1,{i}, c2,{i}, σ
2
{i}) | (ψk,i)

Ki

k=1)

× L∗
{i}

(
(c1,{i}, c2,{i}, shift{i}, σ

2
{i})

∣∣∣
1√
2
L(t2(i−30)+1)

)

with

(4.14)

L∗
{i}

(
(c1,{i}, c2,{i}, shift{i}, σ

2
{i})

∣∣∣
1√
2
L(t2(i−30)+1)

)

=
1√

2πσ2
{i}

exp
( −1

4σ2
{i}

(L(t2(i−30)+1)− gc1,{i},c2,{i}(t2(i−30)+1)− shift{i})
2
)
.

As in Section 4.3, the product of appropriate uniform probability densities for

c1,{i}, c2,{i}, shift{i}, and σ
2
{i} is used as prior density. Moreover, similarly to Sec-

tion 4.3, the interval [0, 100] is used for c1,{i}, the interval [−3, 3] is used for shift{i},

and the interval [0, 10−3] is used for σ2
{i}.

The interval [0.00001, c2,up,{i}] is used for c2,{i} with an upper bound c2,up,{i}
derived by some heuristic considerations to ensure that there is still a reasonable

dependence of L{i}((c1, c2, σ
2) | (ψk,l)

Ki

k=1) on c2 on the complete interval. It holds

that c2,up,{30} = 4, c2,up,{40} = 3.29284, c2,up,{50} = 1.76305, c2,up,{58} = 0.200779.

As in Section 4.3, following Remark 3.6, one is interested in the posterior density

according to Bayes’ Theorem of Inverse Problems as in Theorem 3.5. Again, the

affine invariant ensemble algorithm implemented in UQLab is applied.

In the first series of computations it turned out that for some values of i there are

problems with the convergence of the algorithm; it seemed that the scheme was not

able to find the region wherein the corresponding likelihood is not very small, since

this region is much smaller than the overall considered domain.

Hence, to support the algorithm somehow, it was decided that the starting values

for the walkers should no longer be determined using samples of the random variable

having the prior density and is therefore uniform on [0, 100]× [0.00001, c2,up,{i}] ×
[−3, 3]× [0, 10−3].

Instead, these initial values for the walkers were defined as the values of the walkers

at the end of computations for an appropriate BIP performed as preparation. In this

BIP it is requested that (4.1) is valid for L = {30, . . . , 58}. Moreover, it is requested
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in this BIP that the result of an incorrect derivation of the equation for shift in

Section 4.3 applies, wherein it is assumed incorrectly that δ{1,...,29} is a sample for

a random variable with distributionN
(
0, σ2

{1,2,...,29},∗
)
. The resulting modification of

the likelihood in (4.12) multiplied by
58∏

l=30

L{l}
((
c1,{30,...,58}, c2,{30,...,58}, σ

2
{30,...,58}

)
|

(ψk,l)
Kl

k=1

)
results in the likelihood considered for dealing with this intermediate BIP.

This BIP is considered with the prior density as for i = 1, being the same as the

one considered in Section 4.3. This intermediate BIP is solved by applying the affine

invariant ensemble algorithm with 200 walkers and 6000 iteration steps.

After removing 5 walkers with improper evolutions, the final values of the remain-

ing 195 walkers were stored. These values were afterwards used as starting values for

the 195 walkers used when the algorithm was applied to deal with the BIP derived

above for L = {i}.

4.6. Results of inverse and of forward UQ for the first data set for

decreasing current. Results of inverse UQ for the first data set with decreasing

current, i.e., the data set No. 30, are samples (c1,{30},n, c2,{30},n, shift{30},n, σ
2
{30},n)

as shown in Figure 11.
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Figure 11. Resulting scatter plot of parameter samples (c1,{30},n, c2,{30},n, shift{30},n,

σ2{30},n) for the first data set with decreasing current, i.e., the data set No. 30.

Similarly to Section 4.4, samples for the posterior predictive density can be gen-

erated: Dealing with the first data set with decreasing current, i.e., with data set

No. 30, it holds that the posterior predictive density has K30 + 1 = 29 + 1 = 30

components.
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Starting from a sample (c1,{30},n, c2,{30},n, shift{30},n, σ
2
{30},n) reflecting the pos-

terior density, a sample ξn ∈ R
30 reflecting the posterior predictive density can be

obtained by the following computation:

⊲ For k ∈ {1, . . . , 29}, ξn(k) will be the sum of Ψc1,{30},n,c2,{30},n(vk,30) and a sample

of a random variable with distribution N
(
0, σ2

{30},n
)
.

⊲ Moreover, ξn(30) will be the sum of
1√
2

(
gc1,{30},n,c2,{30},n(t1)+shift{30}

)
and a sam-

ple of a random variable with distribution N
(
0, σ2

{30},n
)
.

The considered data vector is
(
ψ1,30, . . . , ψ29,30,

1√
2
L(t1)

)
. In Figure 12, the re-

sulting violin-plots and the data vector values are shown.

posterior predictive
data

y1 y5 y8 y11 y14 y18 y21 y24 y27 y30

data index (–)

data group 1
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Figure 12. Violin-plots for the first data set with decreasing current, i.e. for data set No. 30,
showing the posterior predictive density for the predicted values of the initial
loading curve (data index 1, . . . , 29) and for 1√

2
of the predicted length change

at t1 (data index 30).

4.7. Further results of Bayesian Inverse Problems for data sets with de-

creasing current. It was observed that for the data sets 22, . . . , 29 with decreasing

current, i.e., the data sets 51, . . . , 58 in the complete numbering, the MCMC-scheme

has not reached convergence or may not reach convergence. Hence, only the data

sets for the first 21 data sets with decreasing current will be considered, i.e., the data

sets 30, . . . , 50. A convex combination of the resulting posterior probability densities

is approximated by randomly choosing some samples from each data set (number

determined by some heuristic considerations involving the number of data points in

the data sets), and afterwards merging all these samples to derive the merged sample

set for decreasing current, see Figure 13.
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Figure 13. Scatter plot for a merged sample set for decreasing current.

4.8. Merging sample sets for data sets with increasing current and de-

creasing current. A number of samples are randomly chosen from the sample set

considered in the last subsection, and the same number of samples are randomly

chosen from the sample set for increasing currents, see Figure 7 and Figure 15. Af-

terwards, both these sample sets are merged, see Figure 14.

4.9. Result of forward UQ for merged data sets. In the following, one

considers for every sample (c1,n, c2,n, shiftn, σ
2
n) the function

[t0, t58] ∋ t 7→ Gc1,n,c2,n,c3 [0, I](t) + shiftn

for the given value for c3 and the trivial initial state. This generates a set of sample

functions.

Now, for each of the time steps t in the measurement, sample values are created

by performing the following computation for all considered n: the sample function

number n is evaluated at t and
√
2 times a sample for a random variable with

distribution N(0, σ2
n) is added.

Some quantile values are computed from the resulting samples for the posterior

predictive density:

⊲ the value of the 0.05—quantiles at a time t indicating that 5 % of all output sample

values at time t are below this value and 95% are above this value,

⊲ the value of the 0.95—quantiles at a time t indicating that 95 % of all output

sample values at time t are below this value and 5% are above this value.
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Figure 14. Samples derived by merging the samples for data sets with decreasing current,
see Figure 13, and those for data sets with increasing current, see Figure 7 and
also Figure 15. The means of theses sample sets are also shown.
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Figure 15. Scatter plot for the samples derived for 29 data sets with increasing currents
is shown, and therein also the mean of these samples is also marked. These
samples are also presented in Figure 7. In the current figure the intervals for
plotting c1, c2, shift and σ

2 are the ones also used in Figure 14. Moreover, the
mean of the samples shown in Figure 14, i.e., the merge of the samples for data
sets with decreasing current and those for data sets with increasing current, is
also marked.

In Figure 4, the measured data used for identification are shown. Now, the shown

evolution of the measured length change in the identification period and the results

of forward UQ can be compared, see Figure 16.
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Figure 16. Result of forward UQ for merged data sets and measured length change during
identification period.

Now, the evolution of the measured length change after the identification period

and the results of forward UQ are also compared, see Figure 17 and Figure 18.

⊲ For the period not used for identification with 210 data points it holds that for 61

data points, i.e., for 29%, the measured value is not in the interval [0.05—quantile

value, 0.95—quantile value]. The values for 27 points are smaller than the 5%—

quantile value and the values for 34 points are larger than the 95%—quantile value.

⊲ For the period used for identification with 872 data points it holds that for 398

data points, i.e., for 46%, the measured value is not in the interval [0.05—

quantile value, 0.95—quantile value]. The values for 182 points are smaller than

the 5% quantile values and the values for 216 data points are larger than the 95%

quantile values.

⊲ Further investigations indicate that modeling using the generalized Prandtl-

Ishlinskĭı-operator produces a systematic error, somehow reflecting the systematic

difference between the approximations for the initial loading curve for decreasing

current and the corresponding approximations for increasing current.

4.10. Consequences of the result of forward UQ: Using the potential

of the considered generalized Prandtl-Ishlinskĭı-operator. The consideration

in the previous subsection indicates that one may have to replace the generalized

Prandtl-Ishlinskĭı-operator in the model by another one.

FORC Diagrams are typically used to identify measures in so-called Preisach-

operators, special kinds of hysteresis operators. In view of the model derivation in [3],

Section 5, one should not use the generalized Prandtl-Ishlinskĭı-operator to model

the length change, but its counterclockwise admissible potential that is a Preisach-

Operator. Then it holds that the generalized Prandtl-Ishlinskĭı-operator Gc1,c2,c3 [·, ·]
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should be used to model the magnetization. Reformulating the generalized Prandtl-

Ishlinskĭı-operator as a Preisach-Operator as in [3], Section 5 or [8], it follows that this

corresponds to the situation of the next subsection with µ(r, v) = gc1,c2,c3(r, v) and

(4.15) gc1,c2,c3(r, v) :=
c1

2
exp

(−1

2c2
(tanh(c3(r + v)) + tanh(c3(r − v)))

)

× c23 tanh
′(c3(r + v)) tanh′(c3(r − v)),

for all r > 0 and all v ∈ R.
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Figure 17. Evolution of current (input) and length change after identification period.
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Figure 18. Result of forward UQ for merged data sets and measured length change, after
identification period.

Some tests yield that using this operator generates a better approximation for the

data generated for increasing current, but the approximation for the data generated

for decreasing current time intervals gets worse, since the overfitting problem to the

data sets for increasing current discussed in the next subsection takes place. Since
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the data generated for decreasing current are the more relevant in this data set,

it seems that one should consider some other operator instead and/or to derive an

UQ-compatible way to reduce the overfitting problem.

4.11. Modifying model by using a general Preisach operator to model

the magnetization and its potential to model the length change. In view of

the last subsection, one would like to replace the potential of Gc1,c2,c3 [·, ·] by another
operator. To achieve this, one can consider [3], Section 5.1 and replacing there in the

equation for the magnetization the generalized Prandtl-Ishlinskĭı-operator by a gen-

eral Preisach-Operator with a weight function µ : [0,∞)× R → R see, e.g., [2], [10].

Therefore, it holds that the counterclockwise admissible potential should be of the

form Uµ[·, ·] with

(4.16) Uµ[λ0, u](t) := 2

∫ ∞

0

∫ Pr [λ0,u](t)

0

vµ(r, v) dv dr

for all u ∈ C([t0, t58];R), all λ0 as in Definition 2.4, i.e., the Preisach-Operator with

the weight function (r, v) 7→ vµ(r, v).

In the following, it will no longer be assumed that the overall magnetic field H is

proportional to the current I but that there may exist a further constant magnetic

field H0, maybe created by some permanent magnets, such that H −H0 is propor-

tional to the current I. Hence, some additional constant current I0 is considered

such that H is proportional to I+ I0 and I+ I0 is used as input function for the hys-

teresis operator in the following. (Such a modification would not have changed the

results derived for the considerations with the generalized Prandtl-Ishlinskĭı-operator

in Section 3 and 4.)

Starting from the equation for the deformation in [3], (64), and adapting the

considerations for dealing with the shift value in Section 4.2, one deduces that during

the performed measurements it holds that

(4.17) L(t) ≈ Uµ[0, I + I0](t) + shift

for an appropriate function µ : [0,∞)×R → R and appropriate values for I0, shift∈R.

The Everett-function EU ,µ : R
2 → R related to Uµ[·, ·] is defined by

EU ,µ(α, β) :=

∫ (α−β)/2

0

∫ α−r

β+r

vµ(r, v) dv dr ∀α, β ∈ R with α > β,(4.18)

EU ,µ(α, β) := −EU ,µ(β, α) ∀α, β ∈ R with α < β.(4.19)

Considering an input function u and ta, tb, tc as in Remark 2.6, one gets, analo-

gously to (2.6),

(4.20)

EU ,µ(u(t) + I0, u(tb) + I0) =
1

2
(Uµ[λ0, u+ I0](t)− Uµ[λ0, u+ I0](tb)) ∀ t ∈ [tb, tc].
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Using this and (4.17), one gets, analogously to (3.5) and (3.7), that one would like

to find an appropriate function µ : [0,∞)×R → R and an appropriate value I0 ∈ R

such that

(4.21) EU ,µ(I(sk,l) + I0, I(s0,l) + I0) ≈
1

2
(L(sk,l)− L(s0,l)) =: ψ̃k,l

∀ k ∈ {1, . . . ,K∗
l }, l ∈ {1, . . . , 58}.

On a first glance, is seems that one should follow the derivation of (4.1) and should

assume that there are samples γ̃k,l of independent random variables Γ̃k,l such that

(4.22)

EU ,µ(I(sk,l) + I0, I(s0,l) + I0) + γ̃k,l = ψ̃k,l ∀ k ∈ {1, . . . ,K∗
l }, l ∈ {1, . . . , 58},

and that the random variables Γk,l have the distribution N (0, σ) for all k ∈
{1, . . . ,K∗

l } and for all l ∈ {1, . . . , 58} for an appropriate σ > 0 that must be

identified.

Considering now weight functions that are parameterized by parameters c̃1,

c̃2, . . . , c̃M̃ , i.e., µ = νc̃1,c̃2,...,c̃M̃ , one could get the resulting likelihood for (I0, c̃1,

c̃2, . . . , c̃M̃ , σ) by considering the right-hand side of (4.2) with L := {1, . . . , 58}, Kl

replaced by K∗
l , σL replaced by σ, ψk,l replaced by ψ̃k,l, and ΨPI,c1,L,c2,L(vk,l)

replaced by EU ,ν
c̃1,c̃2,...,c̃

M̃

(I(sk,l) + I0, I(s0,l) + I0).

Considering a further equation/further equations for shift derived from (4.17) and

also a corresponding further factor for the likelihood, allows to generate a BIP and

a corresponding likelihood. Now, using Bayes’ theorem as in Theorem 3.4, one could

get a formula for the resulting posterior density.

The numerical treatment of this problem would be more time-consuming than the

one considered in Section 3 and 4, since further additional parameters with uncer-

tainty have to be considered and one needs to use numeric integration to evaluate

the Everett-function. For the same reasons, also the forward UQ would be costly.

But further investigations yield that one would have to modify the above consid-

erations, since this approach would generate an overfitting to the data sets derived

for increasing currents, i.e., the one for even l. It holds that

(4.23) ((sk,l) + I0, I(s0,l) + I0) ≈ (I(sk,58) + I0, I(s0,58) + I0), ψ̃k,l ≈ ψ̃k,58

∀ l ∈ {2, 4, . . . , (58− 2k)},

for all k ∈ {1, . . . , 28}. Hence, it follows that the equations in (4.22) should only be
considered for odd l and that one needs replacements for the equations for even l by

some new equations that allow avoid/reduce overfitting in an UQ-compatible way.
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To deal with general weight functions that would belong to some spaces with

infinitesimal dimension, one would have to use a formulation of Bayes’ Theorem

appropriate for this situation, see, e.g., [18], Section 6.22, and dealing with this

situations would be quite challenging.

If measurements M(sk,l) for the magnetization were given, one could adapt the

above considerations by using these values instead of L(sk,l) and replacing in all

integrals vµ(r, v) by µ(r, v).

4.12. UQ if the values for the initial internal states functions are of

importance and also uncertain. The measurements used to generate FORC di-

agrams are usually performed in such a way that the involved differences are inde-

pendent of the initial internal state of the operator and that the dependence can be

reduced to dealing with a shift. In a general situation, the initial internal state λ0 is

influencing the evolution of L, e.g., (4.17) would be replaced by

(4.24) L(t) ≈ Uµ[λ0, I + I0](t) + shift.

If the values for the initial internal state function are uncertain, but in such a way

that the function can be parameterized by a finite number of parameters and one has

some probability density for the corresponding parameters and the parameters of the

hysteresis operators, one can perform forward UQ by Monte-Carlo computations.

Moreover, if there are also some measurements for L up to some time t∗ > t0, one

can formulate a BIP to use these measurements to update the considered probability

density describing the parameter values that would allow to improve the prediction

of the evolution of L after t∗. The appropriate formulation of the problem and the

formulation of an appropriate numerical scheme would be a challenging task, where

one would also have to decide between accuracy and velocity.

If the initial internal state is uncertain and cannot be parameterized, it would

belong to some spaces with an infinitesimal dimension, and dealing with it would

require some effort, see also the corresponding considerations in Section 4.11.

5. Conclusion

⊲ Output of hysteresis operators depends on parameters whose values may not be

exactly known when modeling real world processes.

⊲ Inverse UQ to identify these parameters and their uncertainty has been performed.

⊲ Forward UQ has been performed with the sample derived from inverse UQ; the

results have been compared to measurements.
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⊲ The presented considerations have been performed for a magnetostrictive mate-

rial, and a generalization of the considered model and possible fields of further

research have been discussed. Of course, these considerations can also be adapted

to deal with other models for materials with memory involving similar hysteresis

operators.

6. Appendix

It holds, see, e.g., [17], Theorem 4.21 or [5], Exercise 4.9.3:

Lemma 6.1. Let (Ω,F,P) be a probability space. Let X1, . . . , Xn : Ω → R be in-

dependent continuous random variables such that there is some σ ∈ (0,∞) with Xi ∼
N (0, σ2) for all i ∈ {1, . . . , n}. Let a1, . . . , an ∈ R \ {0} be given. Then it holds that

(6.1)

n∑

i=1

aiXi ∼ N
(
0,

((√√√√
n∑

i=1

a2i

)
σ

)2)
= N

(
0,

( n∑

i=1

a2i

)
σ2

)
.
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