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Abstract. A graph G is H-saturated if it contains no H as a subgraph, but does contain H
after the addition of any edge in the complement of G. The saturation number, sat(n, H),
is the minimum number of edges of a graph in the set of all H-saturated graphs of order n.
We determine the saturation number sat(n, Pg 4+ tPs) for n > %Ot + 10 and characterize the
extremal graphs for n > %Ot + 20.
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1. INTRODUCTION

In this paper we consider only simple graphs. For the terminology and no-
tations we follow the books, see [4], [18]. Let G be a graph with the ver-
tex set V(G) and edge set F(G). The order and size of a graph G, denoted
|G| and |E(G)|, are its number of vertices and edges, respectively. For a ver-
tex v € V(G), dg(v) is the degree of v and Ng(v) is the neighborhood of v,
Ng[v] = Ng(v) U {v}. If the graph G is clear from the context, we omit it as
the subscript. Further, G and §(G) denote the complement and minimum de-
gree of a graph G, respectively. Denote by G[A] the subgraph of G induced by
A C V(G). Furthermore, P,, K, and S,, stand for the path, complete graph and
star of order n, respectively.

Given graphs G and H, a copy of H in G is a subgraph of GG that is isomorphic
to H. The notation G + H means the disjoint union of G and H. Then tG denotes
the disjoint union of ¢ copies of GG. For graphs we use equality up to isomorphism,
so G = H means that G and H are isomorphic.
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A graph G is H-saturated if G contains no H as a subgraph but G + e con-
tains H for any edge e € E(G). The set of H-saturated graphs of order n is denoted
by SAT(n, H). Further, SAT(n, H) and SAT(n, H) stand for the set of H-saturated
graphs with the maximum number of edges and minimum number of edges, respec-
tively. The number of edges in a graph in SAT(n, H) is the Turdn number (see [16]),
denoted by ex(n, H). The number of edges in a graph in SAT(n, H) is saturation
number, denoted by sat(n, H).

The first result about the saturation number of a graph was introduced by Erdds,
Hajnal, and Moon in [9] in which the authors proved sat(n, K;) = (t;2) +(n—t+2)(t—
2) and SAT(n,K;) = {K; 2V K, 412}, where V denotes the join of K; 5 and
K p—t+2, which is obtained from K; 5+ K, 2 by adding edges joining every vertex
of K;_o to every vertex of K, sio. In addition to cliques, some of the graphs
for which the saturation number is known include unions of cliques (see [2], [13]),
complete bipartite graphs (see [3], [8], [15]), forests (see [5], [10]), books (see [6]),
small cycles (see [7], [17]) and trees, see [11], [14]. Readers interested in the article
can be referred to [12].

In fact, both sat(n,tPy) and SAT(n,tP,) are established by Készonyi and Tuza
n [14]. Chen et al. in [5] focused on the saturation numbers for Py, +tP, with k > 3.
Fan and Wang in [10] determined the saturation number sat(n, Ps+tP») for n > 3t+8
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and characterized the extremal graphs for n > £(18¢ + 76), such as the following

results.

Theorem 1 ([14]). For n > 3t — 3, sat(n,tP2) = 3t — 3 and SAT(n,tP,) =
{(f, - 1)K3 + Fn—3t+3} ort= 2, n = 4, SAT(4, 2P2) = {K3 + Kl, 54}

Theorem 2 ([5]). For n sufficiently large,
(1) sat(n, P; + tPQ) =3t and tK3 -I-Fn,gt € SAT(TL, P; + tPQ),
(2) sat(n, Py +tPs) =3t +7 and K5 + (t — 1) K3 + K,_3;—2 € SAT (n, Py + tP2).

Theorem 3 ([10]). Let n and t be two positive integers with n > 3t + 8. Then,
(1) sat(n, Ps + tP;) = min{[22=24] 3t + 12},
(2) SAT(n,Ps +tPy) = {K¢+ (t — 1)K3+ K313} forn > %(lgt +76) .

In this paper, we further consider saturation numbers of the linear forests Ps+tP;
with ¢ > 1. The integers ¢ mentioned below all satisfy that ¢ > 1. In addition, it is
difficult and complex to determine saturation numbers of the linear forests Py + t P
with & > 7 using the same method.

Theorem 4. Let n and t be two positive integers with n > %t + 10. Then,
(1) sat(n, Ps +tP) = min{n — [ {5], 3t + 18},
(2) SAT(n,Ps +tPy) ={K7+ (t - 1)K3 + K,,_3;_4} forn > 13—015 + 20.
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2. PRELIMINARIES

For an integer i > 0, let V;(G) = {v € V(G): d(v) = i}. In other words, |V5(G)|
represents the number of isolated vertices in G. In this section, we list several
lemmas and give the result for saturation numbers for the linear forests Ps + tP»
with [Vo(G)] = 2.

Lemma 5 (Berge-Tutte formula [1]). For a graph G,
1
d(G) = 3 min{|G| + S| —o(G — S): S CV(G)},

where o/ (G) is the matching number of G and o(G — S) is the number of odd
components of G — S.

Lemma 6 ([5]). Letky,...,ky >2 bem integers and G be a (Py, + Py, +. . .+ Py, )-
saturated graph. If d(z) = 2 and N(x) = {u,v}, then uv € E(G).

Lemma 7 ([10]). Let G be a (Ps + tP2)-saturated graph. If Vo(G) # (), then
V1(G) = 0. Moreover, for any xz € V(G) \ Vo(G), we have

Ng[z] U {w} € V(H),

where H is any copy of Ps + tP5 in G 4+ zw and w is a vertex in Vp(G).

Using the same method as in Lemma 7, we can get a more general result, which
is the content of Lemma 8.

Lemma 8. Let G be a (P, +tP,)-saturated graph with k > 2,t > 1. If Vo(G) # 0,
then V1(G) = (). Moreover, for any x € V(G) \ Vo(G), we have

Ng[z] U {w} € V(H),

where H is any copy of P, + tP, in G + zw and w is a vertex in Vo(G).

A book By consists of k triangles sharing one edge. A k-fan Fj consists of k
triangles sharing one vertex. Moreover, G is H-free means G does not contain H as
a subgraph.

Lemma 9. Let G be a connected graph of order n > 6 and 6(G) > 2. If G
satisfies
(1) G is Ps-free and G contains Py as a subgraph, and
(2) ifd(x) =2 and N(z) = {u,v}, then uwv € E(G),
we get G = B;, i >4, or G =F}, j > 3, withn odd.
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Proof. Select the longest path P in G, say P = z1,22,...,7;. As G satisfies
the condition (1), we have 4 < k < 6. It is easily verified that there exists « ¢ V(P)
such that N(z) NV (P) # 0, N(z) N{x1,zr} = 0. We distinguish two cases.

Case 1: k = 4. Observe that if |N(z) N {x2,23}| = 2, then G contains a path
x1, %9, T, X3, e, contradicting the fact that P is the longest path. We conclude that
|N(z) N{x2, 25} = 1. Because of the symmetry of x2 and x5, suppose z is adjacent
to x2. Since §(G) > 2, there is one vertex y € N(z) and y ¢ V(P). Thus, G contains
a path y, x, x2, r3, 4, contradicting k = 4.

Case 2: k = 5. If z is adjacent to x3 or x4, we assert that N(z)N(V(G)\V(P)) =0
and z3 ¢ N(z). Otherwise, G contains a path of order at least 6, contradicting
k = 5. Since 6(G) > 2, then d(z) = 2 and N(z) = {xo,z4}. If d(z3) > 2,
y € N(x3)\{z2, x4} (possibly y = 1 or y = x5), G contains a path y, 3, T2, x, x4, x5
or y,Ts,T4,T, T2, 21, contradicting the fact that P is the longest path. Thus,
d(zg) = 2 and N(z3) = {x2,24}. As G satisfies the condition (2), zo is adjacent
to x4. Clearly, N(x1),N(z5) C V(P). Since §(G) > 2, then N(z1) = {x2,24}
and N(zs5) = {x2,z4}. Hence, Glr1,x2,23,24,25,2] = By. For any vertex
y € V(G)\ (V(P)U{z}), y is adjacent to z2 or x4. Using the same method,
we have d(y) = 2 and N(y) = {x2,24}. Hence, G = B;, i > 4.

If x is adjacent to x3, it is easy to check that x is not adjacent to xs or x4. Thus,
there is a vertex y € N(z) and y ¢ V(P). Note that P is not the longest path
if N(y) # {z,z3}. If 1 is adjacent to x4, G contains a path x4, x1,x2,x3,2,vy,
contradicting k = 5. Thus, d(z1) = 2 and N(x1) = {z2,23}. Similarly, d(xs5) = 2
and N(x5) = {x3,24}. Now we consider the degrees of vertices x, zo and z4. If any
vertex of {z,zo, x4} has degree greater than two, G has a path of order at least 6.
Hence, G[z1, z2, x3, 24, x5, 2, y] = F3. For any vertex z € V(G)\ (V(P)U{z,y}), z is
adjacent to z3. Using the same method, we have G = Fj, j > 3, with n odd. This
completes the proof of Lemma 9. O

Theorem 10. Let G € SAT(n, Ps + tP;) and Q = Q1 + Q2 + ... + Q, where
Q1,...,Qx are all the nontrivial components of G. If |Q| > 2t+6,0(Q) > 2, |Qi| = 6
and Q; is not a book or fan, 1 < i < k, then

(1) G € SAT(n, Py + (t + 1) P2),
(2) if Vo(G) # 0, then |E(G)| > 3t + 18.

Proof. (1) Since G € SAT(n, Ps + tP2), G + e contains Ps + tP, for any edge
e € E(G). Tt follows that G + e contains Py + (t + 1) P for any edge e € E(G).

If G ¢ SAT(n, Py+ (t+1)P,), then G contains Py + (t+ 1) P,. Without loss of gen-
erality, suppose that @ contains Py as a subgraph. Since |Q1| > 6, §(Q) > 2 and Q1
is not a book or fan, by Lemmas 6 and 9, there exists P in @J;. Hence, G contains

a copy of Ps + tP», a contradiction.
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(2) Suppose that |[E(G)| < 3t + 18. By (1), we have Q € SAT(n, Py + (t + 1) P).
Then, /(Q) = t+ 2. If &/(Q) > ¢t + 3, G must contain a copy of (¢t + 3)P,. Since
Q) =2 2and |Q;] =6 (1 <i<k), itis clear that Q has a copy of Py + (t + 1) P,
which contradicts @ € SAT(n, Py + (¢t + 1)P2). So, we have o/(Q) = t + 2. By
Lemma 5, we have

1
t+2= 5min{|Q|+|X| —0o(Q@—-X): X CV(Q)}.
Choose a subset Y C V(Q) such that

t+2=(Q+[Y]-0(Q-Y)).

N =

Let Q —Y =Q) + Q5+ ...+ Q). We have two claims.

Claim 1: QY UV(Q})] is a complete graph for i € {1,2,...,p}. To the contrary,
suppose that there exist two vertices u,v € Y U V(Q;) such that uv ¢ E(Q). Let
Q' = Q + wv. Since Q is (Py + (t + 1) Py)-saturated, o/(Q') > t + 3. On the other

hand, observe that |Q’| = |Q| and o(Q' —Y) = o(Q — Y). By Lemma 5, we have

o(Q) <t +2=3(1Q Y]~ o(@ ~ )

a contradiction.
Claim 2: 'Y # (). Suppose that Y = . By Claim 1, Q,...,Q;, are all complete
graphs of order at least 6. Hence, §(Q) > 5 and

p
2AEQ)l = ) do(z) =Y _1Q5|(1Q; — 1) > 5|Q| +1@i|(1Q}| —6), 1<i<p.
z€V(Q) j=1

Since |Q| = 2t + 6 and |E(Q)| = |E(G)| < 3t + 18, we have |Q| =2t + 6, t = 1 and
|Qf = 6 for 1 < i < p. Thus, 8 = |Q| = 6p, a contradiction. This completes the
proof of Claim 2.

Let z € Y and w € Vj(G). By Lemma 8, we have Ng[z] U{w} C V(H), where H
is a copy of Ps + tP, in G + zw. Hence, |[Ng[z] U {w}| < |V(H)| = 2t + 6. On the
other hand, by Claim 1, [Ng[z]U{w}| = |Q|+1 > 2t+6+1 = 2¢+7, a contradiction.
This completes the proof of Theorem 10. (]

Theorem 11. Let G € SAT(n, Ps + tP,) with n > 3t + 6. If |[V(G)| > 2 and
|E(G)| < 3t +18, then |E(G)| = 3t + 18 and G = Ky + (t — 1)K3 + Kn_3t_4.
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Proof. Since |Vp(G)| = 2, V1(G) = 0 by Lemma 8. Note that all the components
of order 3, 4 or 5 in G are complete. Let

G =G +t3K3+t4Ky +ts5K5 + B+ F,

where tj, is the number of components of G with order k, k € {3,4,5}, B is the graph
consisting of all the components B;, i > 4, and F' is the graph consisting of all the
components Fj, j > 3. We denote B, and F, the number of B;, i > 4, and F}, j > 3,
respectively. Since |B;| > 6, we have |B| > 6B..

Clearly, |Vo(G")| = |Vo(G)| > 2. Note that joining two isolated vertices in V5 (G')
in G, we have a copy of Ps+tP,. Thus, G’ contains Ps. As G € SAT(n, Ps+tP,), we
have t3+2t4+2t5+2B.+ 1 (|F|-F.) < t—1. Let t' = t—t3—2t4—2t5—2B.—L(|F|-F.).
Then, ¢’ > 1. Since G € SAT(n, Ps + tP2), we have G’ € SAT(n/, Ps + t'Py), where
n' =n — 3tz — 4ty — 5t5 — |B| — | F.

Consider the graph Q' obtained from G’ by deleting all trivial components. Clearly,
every component of @’ has order at least 6 and is neither book nor fan. Note that
5(Q") =2 and G’ € SAT(n, Ps + t' P) with Vo(G’) # 0. Since

) 3(|F| - F,
|E(G")| = |B(G)| — 3ts — 6t4 — 10t5 — (2|B| — 3B.) — %

<3t +18 — 4ty — (2|B| — 9B.) < 3t' + 18,

by Theorem 10 we have |Q’| < 2t' + 5. Note that joining two non-adjacent vertices
in @', there is no copy of Ps + t'Py in G’. Then Q' is a complete graph. As
[Vo(G)| # 0, |Q'| = 2t' +5 and hence Q' = Kopi5. Moreover, |[E(Q)] = |E(G')| <
3t’ 4+ 18. It follows that ' = 1 and Q' = K.
Since G' = K7 + (n' — 7)K; with |E(G’)| = 3t' 4+ 18, we have t5 = 0 and |B| = 0.
Consequently,
G=K;+ (n' —NK1+t3Ks+ t4 K4 + F.

Note that G contains Pg. It is easy to verify that if ¢4 > 0, joining the vertices in K4
with the vertices in K7 does not increase the number of paths P, in G. Similarly,
if |F| > 0, joining two non-adjacent vertices in Fj, j > 3, also does not increase
the number of paths P, in G. Therefore, t4 = 0, |F| = 0 and t3 = t — 1. Hence,
G =Ky + (t —1)K3 + K,_3;_4. This completes the proof of Theorem 11. O

So far, we have proved that when n > 3t + 6 and |V5(G)| > 2, sat(n, Ps + tP2) =
3t + 18 and SAT(’I’L7 P@ + f,PQ) = {K7 + (t — 1)K3 +Fn—3t—4}-
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3. PROOF OF THEOREM 4

For a graph H, using the definition and notation in [10], SAT*(n,H) and
sat*(n, H) denote the set of H-saturated graphs G of order n with [Vp(G)| = 0
and the minimum number of edges in a graph in SAT*(n, H), respectively.

Let T be the tree of order 10 as shown in Figure 1. Let T* be the tree of order
n=104+7r 0 < r <9, obtained from S4+L§J by attaching two leaves to each of
the 2+ [ 5] leaves of Sy 7| and attaching n — (44 [5]) — 2(2 + [ 5]) leaves to the
remaining leaf of Sy |z ).

Figure 1. Tree T'.

Lemma 12. Let G be a (Ps + tP»)-saturated graph. If Ty and Ty are tree com-
ponents of G, then |T1| > 10, |T3| > 10 and at least one of Ty and T, contains T' as
a subgraph.

Proof. Let v; be aleaf of T; with N(v;) = {u;}, i € {1,2}. Since G is (Ps +tPs)-
saturated, G + ujus contains a copy of Ps 4+ tP». Let H be the copy. If ujus is not
in Py of H, then H — ujus + uivy is a copy of Ps + tP» in G, contrary to G is
(Ps + tPy)-saturated. Thus, ujus is in Ps of H. It follows that 77 + T contains Py
starting from u; for some ¢ = 1 or 2 or 77 + 15 contains P3 starting from u; for ¢ = 1
and ¢ = 2. Now we discuss these two cases separately.

Case 1: Ty 4+ T, contains P, starting from wu; for some ¢ = 1 or 2. Without
loss of generality, assume Py = wuy,x,y,z. Clearly, T1[{v1,u1,2,y, 2}] contains Ps.
Let M be the copy of tP» in H. Note that any vertex of {u1,v1,us2,ve,z,y,2} is
not in M. As T} is a tree, by Lemma 6, 77 has no vertex of degree 2. So, ui, x
and y all have neighbors not in {v1,u1,2,y,2}. Now we show that for any vertex
u}y € N(up) \ {v1,z}, it holds d(uj) = 1. If d(uj) > 1 and v} € V(M) then u}
has a neighbor u such that uju} belongs to M. Clearly, T}[{u/,u},u1,x,y,2}]
contains Ps. Observe that tP; is in M — uju! 4+ usvy. Hence, G contains Ps + tPs,
a contradiction. If d(u}) > 1 and u} ¢ V (M), we also have that G contains Ps + tP;.
Thus, d(u}) = 1. Using the same method, for any vertex y' € N(y) \ {z,z}, we
have d(y’) = 1. And the proof of d(z) = 1 is similar to the above, so we omit it.
Assume that x has no neighbor ' with d(z’) > 1, where 2’ is not equal to u; or y.
The additional edge e = u1y in G does not increase the number of paths P> and T
does not contain Fg, contradicting G € SAT(n, Ps + tP2). Hence, = has at least one
neighbor of degree greater than 1. So, T contains 7.
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Next we show that for any vertex 2’ € N(z) \ {u1,y} with d(z') > 1, N(2/) \ {z}
are leaves. We distinguish two cases.

Subcase 1.1: x' ¢ V(M). If there exists 2’ € N(z') \ {z} with d(z") > 1, we
have two cases. One is 2’/ € V(M). Let 2’ be the neighbor of 2 such that x”z"’
belongs to M. Then we have that T1[{z"’, 2", 2',x,y, z}] contains Ps and uses one
edge in M. By replacing 2" 2" with ujvi, we get a copy of Ps + tP, in G. Another
case is &’ ¢ V(M). Whether z'" belongs to V(M) or not, using the same method,
we always have that G contains Ps + tP», a contradiction.

Subcase 1.2.: ' € V(M). If there exists 2" € N(2') \ {z} with d(z) > 1,
we can use the method of Subcase 1.1 to check that 77 contains a copy of Ps
by using at most two edges of M. By replacing these two edges with ujv; (or
yz) and ugve, we get a copy of Ps 4+ tP in G, contrary to the claim that G is
a (Ps + tPy)-saturated graph.

Recall that vy is a vertex of To with N(vg) = {ug}. Since G is (Ps +tP»)-saturated,
there is P + tP, in G + zus containing the edge xus. Let H' be the copy and M’
be the copy of tP, in H'. If zus is not in P, by replacing zus with usve, we have
Ps +tP, in G, a contradiction. Thus, xus is in the copy of Ps. Since Ty does not
contain a path of length 3 with x as its endpoint, 7% contains a path P’ of length 2
with wug as its endpoint. Hence, T2[V(P’) U {v2}] contains a path P of length 3,
P = V2, U2, W1, W3.

Now we show that T contains T' or |T»| > 10. If d(ws) # 1, it is easy to prove
that there is one vertex in N(ws) \ {w;} which is not in M’. Hence, T5 contains Py
starting from wuy. Using the same proof of the claim that 77 contains P, starting
from u;, we have that Ty contains T as a subgraph. Next suppose that d(ws) = 1
and N(wg) = {w1}. As Ty is a tree, by Lemma 6, T5 has no vertex of degree 2. So, ug
and wy both have neighbors not in V(P). Let Uy = {u} € N(u2)\V(P): d(uy) > 1}
and W1 = {w] € N(wy) \ V(P): d(w}) > 1}. Since G is a (Fs + tP2)-saturated
graph, then Uy UW; # 0. If Uy # 0 and Wi # 0, by Lemma 6, we have |Tz| > 10.
Obviously, if |Uz| > 2 or |Wi| > 2, we have that T, contains T'. It remains the case
of Uz = () and |W;| = 1 (the proof of the case of |[Us| = 1 and W; = () is similar).
Let wj € Wi. Joining w} with uz does not increase the numbers of paths P, and P,
which contradicts that G € SAT(n, Ps + tP,).

Case 2: Ty + Ty contains Pj starting from u; for # = 1 and ¢ = 2. Denote by
P3; =wuy,z,yin T and P3 = us, w1, we in Ts. Next, we only prove that 77 contains T
and T, contains T is similar. Clearly, T} [{v1,u1,z,y}] contains Py. Let M" be the
copy of tP, in H. Note that any vertex of {uy, vy, us, v, z,y, w1, ws} is not in M".
Then T5 contains two copies of P, not in M”. For two cases d(y) # 1 and d(y) = 1,
we can use a proof similar to Claim 1 to prove. So we omit it. This completes the
proof of Lemma 12. O
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Theorem 13. Forn > 22t + 10, sat*(n, Ps + tP) = n — [ 5].

Proof. Suppose sat*(n,Ps + tP;) < n — |{%], then there is a graph G €

0
SAT"(n, Ps + tP,) with |[E(G)| < n— |{5]. Let G = R+ (T1 + ... + T}), where
Ti,...,Ty are all the tree components of G. Hence,

k k
|BE(G)| = |E(R)|+ Y |B(T)| > R+ Y (Il = 1) = |G| =k =n— k.
i=1 =1
Since |E(G)| < n — [{5], we have k > [{5]. As k > 2, by Lemma 12, |T;| > 10 for
1 <i < k. Hence, n > 10k, contrary to k& > [ {5|. It follows that sat*(n, Ps +tP) >
n—|{5]
On the other hand, set n = 10g+7, where ¢ = | {5], 0 <7 < 9. Since n > 10t—|—10
we have 10q + r > 22t + 10. Then

<3¢+ SSJ ~3<3¢+ 3| -3,
Consider the graph
G'=(q-1)T+T"
Obviously G* contains no copy of Ps and G*+e contains a copy of Ps+(3¢+[5|—3) P
for any e € E(G*). This implies that G* is (Ps +tPy)-saturated. Since |Vy(G*)| = 0,
G* € SAT*(n, Ps + tP,). Hence, sat*(n, Ps +tP) = E(G*) = n — [{5]. This
completes the proof of Theorem 13. O

Finally, we show the proof of Theorem 4.

Proof of Theorem 4. (1) Suppose G is (Ps 4 tPs)-saturated. If |Vo(G)| = 1, by
Lemma 8, V1(G) = (). By degree-sum formula,

20E(G)| = Y d(z)>2(G|-1).
zeV(Q)
For n > 8t 4+ 10, [E(G)| > |G| -1=n—1>n— %] > min{n — [&],3t + 18}.
If [Vo(G)| = 0 or |Vo(G)| = 2, by Theorems 11 and 13, we have sat(n, Ps + tPs) =
min{n — [],3t + 18} for n > 22¢ + 10. This completes the proof.

(2) By n > 22t 420, we have n— | 2| > 3t + 18. Consequently, sat(n, P +tP;) =
3t + 18. Let G € SAT(n, Ps + tP>) with |E(G)| = 3t + 18. By Theorem 13, we have
G ¢ SAT*(n, Ps + tP,) and hence |V(G)| # 0. If |[Vo(G)| = 1, we obtain that

10¢ 10t
EG)| 2 Gl =1> == +20—1= — +19> 3t +18
a contradiction. Thus, |Vo(G)| = 2. By Theorem 11, we have SAT(n, Ps + tP2) =
{K;+ (t —1)K3 + K,,_3;_4}. This completes the proof of Theorem 4. O
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