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Abstract. A graph G isH-saturated if it contains no H as a subgraph, but does contain H
after the addition of any edge in the complement of G. The saturation number, sat(n,H),
is the minimum number of edges of a graph in the set of all H-saturated graphs of order n.
We determine the saturation number sat(n, P6+ tP2) for n >

10

3
t+10 and characterize the

extremal graphs for n > 10

3
t+ 20.
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1. Introduction

In this paper we consider only simple graphs. For the terminology and no-

tations we follow the books, see [4], [18]. Let G be a graph with the ver-

tex set V (G) and edge set E(G). The order and size of a graph G, denoted

|G| and |E(G)|, are its number of vertices and edges, respectively. For a ver-

tex v ∈ V (G), dG(v) is the degree of v and NG(v) is the neighborhood of v,

NG[v] = NG(v) ∪ {v}. If the graph G is clear from the context, we omit it as

the subscript. Further, G and δ(G) denote the complement and minimum de-

gree of a graph G, respectively. Denote by G[A] the subgraph of G induced by

A ⊆ V (G). Furthermore, Pn, Kn and Sn stand for the path, complete graph and

star of order n, respectively.

Given graphs G and H , a copy of H in G is a subgraph of G that is isomorphic

to H . The notation G+H means the disjoint union of G and H . Then tG denotes

the disjoint union of t copies of G. For graphs we use equality up to isomorphism,

so G = H means that G and H are isomorphic.
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A graph G is H-saturated if G contains no H as a subgraph but G + e con-

tains H for any edge e ∈ E(G). The set of H-saturated graphs of order n is denoted

by SAT(n,H). Further, SAT(n,H) and SAT(n,H) stand for the set of H-saturated

graphs with the maximum number of edges and minimum number of edges, respec-

tively. The number of edges in a graph in SAT(n,H) is the Turán number (see [16]),

denoted by ex(n,H). The number of edges in a graph in SAT(n,H) is saturation

number, denoted by sat(n,H).

The first result about the saturation number of a graph was introduced by Erdős,

Hajnal, and Moon in [9] in which the authors proved sat(n,Kt) =
(

t−2
2

)

+(n−t+2)(t−

2) and SAT(n,Kt) = {Kt−2 ∨ Kn−t+2}, where ∨ denotes the join of Kt−2 and

Kn−t+2, which is obtained from Kt−2+Kn−t+2 by adding edges joining every vertex

of Kt−2 to every vertex of Kn−t+2. In addition to cliques, some of the graphs

for which the saturation number is known include unions of cliques (see [2], [13]),

complete bipartite graphs (see [3], [8], [15]), forests (see [5], [10]), books (see [6]),

small cycles (see [7], [17]) and trees, see [11], [14]. Readers interested in the article

can be referred to [12].

In fact, both sat(n, tP2) and SAT(n, tP2) are established by Kászonyi and Tuza

in [14]. Chen et al. in [5] focused on the saturation numbers for Pk + tP2 with k > 3.

Fan andWang in [10] determined the saturation number sat(n, P5+tP2) for n > 3t+8

and characterized the extremal graphs for n > 1
5 (18t + 76), such as the following

results.

Theorem 1 ([14]). For n > 3t − 3, sat(n, tP2) = 3t − 3 and SAT(n, tP2) =

{(t− 1)K3 +Kn−3t+3} or t = 2, n = 4, SAT(4, 2P2) = {K3 +K1, S4}.

Theorem 2 ([5]). For n sufficiently large,

(1) sat(n, P3 + tP2) = 3t and tK3 +Kn−3t ∈ SAT(n, P3 + tP2),

(2) sat(n, P4 + tP2) = 3t+ 7 and K5 + (t− 1)K3 +Kn−3t−2 ∈ SAT(n, P4 + tP2).

Theorem 3 ([10]). Let n and t be two positive integers with n > 3t+ 8. Then,

(1) sat(n, P5 + tP2) = min{⌈ 5n−4
6 ⌉, 3t+ 12},

(2) SAT(n, P5 + tP2) = {K6 + (t− 1)K3 +Kn−3t−3} for n > 1
5 (18t+ 76) .

In this paper, we further consider saturation numbers of the linear forests P6+ tP2

with t > 1. The integers t mentioned below all satisfy that t > 1. In addition, it is

difficult and complex to determine saturation numbers of the linear forests Pk + tP2

with k > 7 using the same method.

Theorem 4. Let n and t be two positive integers with n > 10
3 t+ 10. Then,

(1) sat(n, P6 + tP2) = min{n− ⌊ n
10⌋, 3t+ 18},

(2) SAT(n, P6 + tP2) = {K7 + (t− 1)K3 +Kn−3t−4} for n > 10
3 t+ 20.
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2. Preliminaries

For an integer i > 0, let Vi(G) = {v ∈ V (G) : d(v) = i}. In other words, |V0(G)|

represents the number of isolated vertices in G. In this section, we list several

lemmas and give the result for saturation numbers for the linear forests P6 + tP2

with |V0(G)| > 2.

Lemma 5 (Berge-Tutte formula [1]). For a graph G,

α′(G) =
1

2
min{|G|+ |S| − o(G− S) : S ⊆ V (G)},

where α′(G) is the matching number of G and o(G − S) is the number of odd

components of G− S.

Lemma 6 ([5]). Let k1, . . . , km> 2 bem integers andG be a (Pk1
+Pk2

+. . .+Pkm
)-

saturated graph. If d(x) = 2 and N(x) = {u, v}, then uv ∈ E(G).

Lemma 7 ([10]). Let G be a (P5 + tP2)-saturated graph. If V0(G) 6= ∅, then

V1(G) = ∅. Moreover, for any x ∈ V (G) \ V0(G), we have

NG[x] ∪ {w} ⊆ V (H),

where H is any copy of P5 + tP2 in G+ xw and w is a vertex in V0(G).

Using the same method as in Lemma 7, we can get a more general result, which

is the content of Lemma 8.

Lemma 8. Let G be a (Pk+tP2)-saturated graph with k > 2, t > 1. If V0(G) 6= ∅,

then V1(G) = ∅. Moreover, for any x ∈ V (G) \ V0(G), we have

NG[x] ∪ {w} ⊆ V (H),

where H is any copy of Pk + tP2 in G+ xw and w is a vertex in V0(G).

A book Bk consists of k triangles sharing one edge. A k-fan Fk consists of k

triangles sharing one vertex. Moreover, G is H-free means G does not contain H as

a subgraph.

Lemma 9. Let G be a connected graph of order n > 6 and δ(G) > 2. If G

satisfies

(1) G is P6-free and G contains P4 as a subgraph, and

(2) if d(x) = 2 and N(x) = {u, v}, then uv ∈ E(G),

we get G = Bi, i > 4, or G = Fj , j > 3, with n odd.
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P r o o f. Select the longest path P in G, say P = x1, x2, . . . , xk. As G satisfies

the condition (1), we have 4 6 k < 6. It is easily verified that there exists x /∈ V (P )

such that N(x) ∩ V (P ) 6= ∅, N(x) ∩ {x1, xk} = ∅. We distinguish two cases.

Case 1 : k = 4. Observe that if |N(x) ∩ {x2, x3}| = 2, then G contains a path

x1, x2, x, x3, x4, contradicting the fact that P is the longest path. We conclude that

|N(x) ∩ {x2, x3}| = 1. Because of the symmetry of x2 and x3, suppose x is adjacent

to x2. Since δ(G) > 2, there is one vertex y ∈ N(x) and y /∈ V (P ). Thus, G contains

a path y, x, x2, x3, x4, contradicting k = 4.

Case 2 : k = 5. If x is adjacent to x2 or x4, we assert thatN(x)∩(V (G)\V (P )) = ∅

and x3 /∈ N(x). Otherwise, G contains a path of order at least 6, contradicting

k = 5. Since δ(G) > 2, then d(x) = 2 and N(x) = {x2, x4}. If d(x3) > 2,

y ∈ N(x3)\{x2, x4} (possibly y = x1 or y = x5), G contains a path y, x3, x2, x, x4, x5

or y, x3, x4, x, x2, x1, contradicting the fact that P is the longest path. Thus,

d(x3) = 2 and N(x3) = {x2, x4}. As G satisfies the condition (2), x2 is adjacent

to x4. Clearly, N(x1), N(x5) ⊆ V (P ). Since δ(G) > 2, then N(x1) = {x2, x4}

and N(x5) = {x2, x4}. Hence, G[x1, x2, x3, x4, x5, x] = B4. For any vertex

y ∈ V (G) \ (V (P ) ∪ {x}), y is adjacent to x2 or x4. Using the same method,

we have d(y) = 2 and N(y) = {x2, x4}. Hence, G = Bi, i > 4.

If x is adjacent to x3, it is easy to check that x is not adjacent to x2 or x4. Thus,

there is a vertex y ∈ N(x) and y /∈ V (P ). Note that P is not the longest path

if N(y) 6= {x, x3}. If x1 is adjacent to x4, G contains a path x4, x1, x2, x3, x, y,

contradicting k = 5. Thus, d(x1) = 2 and N(x1) = {x2, x3}. Similarly, d(x5) = 2

and N(x5) = {x3, x4}. Now we consider the degrees of vertices x, x2 and x4. If any

vertex of {x, x2, x4} has degree greater than two, G has a path of order at least 6.

Hence, G[x1, x2, x3, x4, x5, x, y] = F3. For any vertex z ∈ V (G)\ (V (P )∪{x, y}), z is

adjacent to x3. Using the same method, we have G = Fj , j > 3, with n odd. This

completes the proof of Lemma 9. �

Theorem 10. Let G ∈ SAT(n, P6 + tP2) and Q = Q1 + Q2 + . . . + Qk, where

Q1, . . . , Qk are all the nontrivial components of G. If |Q| > 2t+6, δ(Q) > 2, |Qi| > 6

and Qi is not a book or fan, 1 6 i 6 k, then

(1) G ∈ SAT(n, P4 + (t+ 1)P2),

(2) if V0(G) 6= ∅, then |E(G)| > 3t+ 18.

P r o o f. (1) Since G ∈ SAT(n, P6 + tP2), G + e contains P6 + tP2 for any edge

e ∈ E(G). It follows that G+ e contains P4 + (t+ 1)P2 for any edge e ∈ E(G).

If G /∈ SAT(n, P4+(t+1)P2), then G contains P4+(t+1)P2. Without loss of gen-

erality, suppose that Q1 contains P4 as a subgraph. Since |Q1| > 6, δ(Q) > 2 and Q1

is not a book or fan, by Lemmas 6 and 9, there exists P6 in Q1. Hence, G contains

a copy of P6 + tP2, a contradiction.
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(2) Suppose that |E(G)| 6 3t+ 18. By (1), we have Q ∈ SAT(n, P4 + (t+ 1)P2).

Then, α′(Q) > t + 2. If α′(Q) > t + 3, G must contain a copy of (t + 3)P2. Since

δ(Q) > 2 and |Qi| > 6 (1 6 i 6 k), it is clear that Q has a copy of P4 + (t + 1)P2,

which contradicts Q ∈ SAT(n, P4 + (t + 1)P2). So, we have α′(Q) = t + 2. By

Lemma 5, we have

t+ 2 =
1

2
min{|Q|+ |X | − o(Q −X) : X ⊆ V (Q)}.

Choose a subset Y ⊆ V (Q) such that

t+ 2 =
1

2
(|Q|+ |Y | − o(Q− Y )).

Let Q− Y = Q′
1 +Q′

2 + . . .+Q′
p. We have two claims.

Claim 1 : Q[Y ∪ V (Q′
i)] is a complete graph for i ∈ {1, 2, . . . , p}. To the contrary,

suppose that there exist two vertices u, v ∈ Y ∪ V (Q′
i) such that uv /∈ E(Q). Let

Q′ = Q + uv. Since Q is (P4 + (t + 1)P2)-saturated, α
′(Q′) > t + 3. On the other

hand, observe that |Q′| = |Q| and o(Q′ − Y ) = o(Q− Y ). By Lemma 5, we have

α′(Q′) 6 t+ 2 =
1

2
(|Q′|+ |Y | − o(Q′ − Y )),

a contradiction.

Claim 2 : Y 6= ∅. Suppose that Y = ∅. By Claim 1, Q′
1, . . . , Q

′
p are all complete

graphs of order at least 6. Hence, δ(Q) > 5 and

2|E(Q)| =
∑

x∈V (Q)

dQ(x) =

p
∑

j=1

|Q′
j |(|Q

′
j | − 1) > 5|Q|+ |Q′

i|(|Q
′
i| − 6), 1 6 i 6 p.

Since |Q| > 2t+ 6 and |E(Q)| = |E(G)| 6 3t+ 18, we have |Q| = 2t+ 6, t = 1 and

|Q′
i| = 6 for 1 6 i 6 p. Thus, 8 = |Q| = 6p, a contradiction. This completes the

proof of Claim 2.

Let x ∈ Y and w ∈ V0(G). By Lemma 8, we have NQ[x] ∪ {w} ⊆ V (H), where H

is a copy of P6 + tP2 in G + xw. Hence, |NQ[x] ∪ {w}| 6 |V (H)| = 2t + 6. On the

other hand, by Claim 1, |NQ[x]∪{w}| = |Q|+1 > 2t+6+1 = 2t+7, a contradiction.

This completes the proof of Theorem 10. �

Theorem 11. Let G ∈ SAT(n, P6 + tP2) with n > 3t + 6. If |V0(G)| > 2 and

|E(G)| 6 3t+ 18, then |E(G)| = 3t+ 18 and G = K7 + (t− 1)K3 +Kn−3t−4.
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P r o o f. Since |V0(G)| > 2, V1(G) = ∅ by Lemma 8. Note that all the components

of order 3, 4 or 5 in G are complete. Let

G = G′ + t3K3 + t4K4 + t5K5 +B + F,

where tk is the number of components of G with order k, k ∈ {3, 4, 5}, B is the graph

consisting of all the components Bi, i > 4, and F is the graph consisting of all the

components Fj , j > 3. We denote Bc and Fc the number of Bi, i > 4, and Fj , j > 3,

respectively. Since |Bi| > 6, we have |B| > 6Bc.

Clearly, |V0(G
′)| = |V0(G)| > 2. Note that joining two isolated vertices in V0(G

′)

in G, we have a copy of P6+tP2. Thus, G
′ contains P6. As G ∈ SAT(n, P6+tP2), we

have t3+2t4+2t5+2Bc+
1
2 (|F |−Fc) 6 t−1. Let t′ = t−t3−2t4−2t5−2Bc−

1
2 (|F |−Fc).

Then, t′ > 1. Since G ∈ SAT(n, P6 + tP2), we have G
′ ∈ SAT(n′, P6 + t′P2), where

n′ = n− 3t3 − 4t4 − 5t5 − |B| − |F |.

Consider the graphQ′ obtained fromG′ by deleting all trivial components. Clearly,

every component of Q′ has order at least 6 and is neither book nor fan. Note that

δ(Q′) > 2 and G′ ∈ SAT(n, P6 + t′P2) with V0(G
′) 6= ∅. Since

|E(G′)| = |E(G)| − 3t3 − 6t4 − 10t5 − (2|B| − 3Bc)−
3(|F | − Fc)

2
6 3t′ + 18− 4t5 − (2|B| − 9Bc) 6 3t′ + 18,

by Theorem 10 we have |Q′| 6 2t′ + 5. Note that joining two non-adjacent vertices

in Q′, there is no copy of P6 + t′P2 in G′. Then Q′ is a complete graph. As

|V0(G
′)| 6= ∅, |Q′| > 2t′ + 5 and hence Q′ = K2t′+5. Moreover, |E(Q′)| = |E(G′)| 6

3t′ + 18. It follows that t′ = 1 and Q′ = K7.

Since G′ = K7 + (n′ − 7)K1 with |E(G′)| = 3t′ + 18, we have t5 = 0 and |B| = 0.

Consequently,

G = K7 + (n′ − 7)K1 + t3K3 + t4K4 + F.

Note that G contains P6. It is easy to verify that if t4 > 0, joining the vertices in K4

with the vertices in K7 does not increase the number of paths P2 in G. Similarly,

if |F | > 0, joining two non-adjacent vertices in Fj , j > 3, also does not increase

the number of paths P2 in G. Therefore, t4 = 0, |F | = 0 and t3 = t − 1. Hence,

G = K7 + (t− 1)K3 +Kn−3t−4. This completes the proof of Theorem 11. �

So far, we have proved that when n > 3t+ 6 and |V0(G)| > 2, sat(n, P6 + tP2) =

3t+ 18 and SAT(n, P6 + tP2) = {K7 + (t− 1)K3 +Kn−3t−4}.
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3. Proof of Theorem 4

For a graph H , using the definition and notation in [10], SAT∗(n,H) and

sat∗(n,H) denote the set of H-saturated graphs G of order n with |V0(G)| = 0

and the minimum number of edges in a graph in SAT∗(n,H), respectively.

Let T be the tree of order 10 as shown in Figure 1. Let T ∗ be the tree of order

n = 10 + r, 0 6 r 6 9, obtained from S4+⌊ r

3
⌋ by attaching two leaves to each of

the 2 + ⌊ r
3⌋ leaves of S4+⌊ r

3
⌋ and attaching n− (4 + ⌊ r

3⌋)− 2(2 + ⌊ r
3⌋) leaves to the

remaining leaf of S4+⌊ r

3
⌋.

Figure 1. Tree T .

Lemma 12. Let G be a (P6 + tP2)-saturated graph. If T1 and T2 are tree com-

ponents of G, then |T1| > 10, |T2| > 10 and at least one of T1 and T2 contains T as

a subgraph.

P r o o f. Let vi be a leaf of Ti with N(vi) = {ui}, i ∈ {1, 2}. Since G is (P6+tP2)-

saturated, G+ u1u2 contains a copy of P6 + tP2. Let H be the copy. If u1u2 is not

in P6 of H , then H − u1u2 + u1v1 is a copy of P6 + tP2 in G, contrary to G is

(P6 + tP2)-saturated. Thus, u1u2 is in P6 of H . It follows that T1 + T2 contains P4

starting from ui for some i = 1 or 2 or T1 +T2 contains P3 starting from ui for i = 1

and i = 2. Now we discuss these two cases separately.

Case 1 : T1 + T2 contains P4 starting from ui for some i = 1 or 2. Without

loss of generality, assume P4 = u1, x, y, z. Clearly, T1[{v1, u1, x, y, z}] contains P5.

Let M be the copy of tP2 in H . Note that any vertex of {u1, v1, u2, v2, x, y, z} is

not in M . As T1 is a tree, by Lemma 6, T1 has no vertex of degree 2. So, u1, x

and y all have neighbors not in {v1, u1, x, y, z}. Now we show that for any vertex

u′
1 ∈ N(u1) \ {v1, x}, it holds d(u′

1) = 1. If d(u′
1) > 1 and u′

1 ∈ V (M) then u′
1

has a neighbor u′′
1 such that u

′
1u

′′
1 belongs to M . Clearly, T1[{u′′

1 , u
′
1, u1, x, y, z}]

contains P6. Observe that tP2 is in M − u′
1u

′′
1 + u2v2. Hence, G contains P6 + tP2,

a contradiction. If d(u′
1) > 1 and u′

1 /∈ V (M), we also have that G contains P6+ tP2.

Thus, d(u′
1) = 1. Using the same method, for any vertex y′ ∈ N(y) \ {x, z}, we

have d(y′) = 1. And the proof of d(z) = 1 is similar to the above, so we omit it.

Assume that x has no neighbor x′ with d(x′) > 1, where x′ is not equal to u1 or y.

The additional edge e = u1y in G does not increase the number of paths P2 and T1

does not contain P6, contradicting G ∈ SAT(n, P6 + tP2). Hence, x has at least one

neighbor of degree greater than 1. So, T1 contains T .
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Next we show that for any vertex x′ ∈ N(x) \ {u1, y} with d(x′) > 1, N(x′) \ {x}

are leaves. We distinguish two cases.

Subcase 1.1 : x′ /∈ V (M). If there exists x′′ ∈ N(x′) \ {x} with d(x′′) > 1, we

have two cases. One is x′′ ∈ V (M). Let x′′′ be the neighbor of x′′ such that x′′x′′′

belongs to M . Then we have that T1[{x′′′, x′′, x′, x, y, z}] contains P6 and uses one

edge in M . By replacing x′′x′′′ with u1v1, we get a copy of P6 + tP2 in G. Another

case is x′′ /∈ V (M). Whether x′′′ belongs to V (M) or not, using the same method,

we always have that G contains P6 + tP2, a contradiction.

Subcase 1.2.: x′ ∈ V (M). If there exists x′′ ∈ N(x′) \ {x} with d(x′′) > 1,

we can use the method of Subcase 1.1 to check that T1 contains a copy of P6

by using at most two edges of M . By replacing these two edges with u1v1 (or

yz) and u2v2, we get a copy of P6 + tP2 in G, contrary to the claim that G is

a (P6 + tP2)-saturated graph.

Recall that v2 is a vertex of T2 with N(v2) = {u2}. Since G is (P6+tP2)-saturated,

there is P6 + tP2 in G + xu2 containing the edge xu2. Let H
′ be the copy and M ′

be the copy of tP2 in H ′. If xu2 is not in P6, by replacing xu2 with u2v2, we have

P6 + tP2 in G, a contradiction. Thus, xu2 is in the copy of P6. Since T1 does not

contain a path of length 3 with x as its endpoint, T2 contains a path P ′ of length 2

with u2 as its endpoint. Hence, T2[V (P ′) ∪ {v2}] contains a path P of length 3,

P = v2, u2, w1, w2.

Now we show that T2 contains T or |T2| > 10. If d(w2) 6= 1, it is easy to prove

that there is one vertex in N(w2) \ {w1} which is not in M ′. Hence, T2 contains P4

starting from u2. Using the same proof of the claim that T1 contains P4 starting

from u1, we have that T2 contains T as a subgraph. Next suppose that d(w2) = 1

and N(w2) = {w1}. As T2 is a tree, by Lemma 6, T2 has no vertex of degree 2. So, u2

and w1 both have neighbors not in V (P ). Let U2 = {u′
2 ∈ N(u2)\V (P ) : d(u′

2) > 1}

and W1 = {w′
1 ∈ N(w1) \ V (P ) : d(w′

1) > 1}. Since G is a (P6 + tP2)-saturated

graph, then U2 ∪W1 6= ∅. If U2 6= ∅ and W1 6= ∅, by Lemma 6, we have |T2| > 10.

Obviously, if |U2| > 2 or |W1| > 2, we have that T2 contains T . It remains the case

of U2 = ∅ and |W1| = 1 (the proof of the case of |U2| = 1 and W1 = ∅ is similar).

Let w′
1 ∈ W1. Joining w

′
1 with u2 does not increase the numbers of paths P2 and P6,

which contradicts that G ∈ SAT(n, P6 + tP2).

Case 2 : T1 + T2 contains P3 starting from ui for i = 1 and i = 2. Denote by

P3 = u1, x, y in T1 and P3 = u2, w1, w2 in T2. Next, we only prove that T1 contains T

and T2 contains T is similar. Clearly, T1[{v1, u1, x, y}] contains P4. Let M
′′ be the

copy of tP2 in H . Note that any vertex of {u1, v1, u2, v2, x, y, w1, w2} is not in M ′′.

Then T2 contains two copies of P2 not in M ′′. For two cases d(y) 6= 1 and d(y) = 1,

we can use a proof similar to Claim 1 to prove. So we omit it. This completes the

proof of Lemma 12. �
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Theorem 13. For n > 10
3 t+ 10, sat∗(n, P6 + tP2) = n− ⌊ n

10⌋.

P r o o f. Suppose sat∗(n, P6 + tP2) < n − ⌊ n
10⌋, then there is a graph G ∈

SAT∗(n, P6 + tP2) with |E(G)| < n − ⌊ n
10⌋. Let G = R + (T1 + . . . + Tk), where

T1, . . . , Tk are all the tree components of G. Hence,

|E(G)| = |E(R)|+
k

∑

i=1

|E(Ti)| > |R|+
k
∑

i=1

(|Ti| − 1) = |G| − k = n− k.

Since |E(G)| < n − ⌊ n
10⌋, we have k > ⌊ n

10⌋. As k > 2, by Lemma 12, |Ti| > 10 for

1 6 i 6 k. Hence, n > 10k, contrary to k > ⌊ n
10⌋. It follows that sat

∗(n, P6 + tP2) >

n− ⌊ n
10⌋.

On the other hand, set n = 10q+r, where q = ⌊ n
10⌋, 0 6 r 6 9. Since n > 10

3 t+10,

we have 10q + r > 10
3 t+ 10. Then

t 6 3q +
⌊3r

10

⌋

− 3 6 3q +
⌊ r

3

⌋

− 3.

Consider the graph

G∗ = (q − 1)T + T ∗.

ObviouslyG∗ contains no copy of P6 andG
∗+e contains a copy of P6+(3q+⌊ r

3⌋−3)P2

for any e ∈ E(G∗). This implies that G∗ is (P6+ tP2)-saturated. Since |V0(G
∗)| = 0,

G∗ ∈ SAT∗(n, P6 + tP2). Hence, sat
∗(n, P6 + tP2) = E(G∗) = n − ⌊ n

10⌋. This

completes the proof of Theorem 13. �

Finally, we show the proof of Theorem 4.

P r o o f of Theorem 4. (1) Suppose G is (P6 + tP2)-saturated. If |V0(G)| = 1, by

Lemma 8, V1(G) = ∅. By degree-sum formula,

2|E(G)| =
∑

x∈V (G)

d(x) > 2(|G| − 1).

For n > 10
3 t + 10, |E(G)| > |G| − 1 = n − 1 > n − ⌊ n

10⌋ > min{n − ⌊ n
10⌋, 3t+ 18}.

If |V0(G)| = 0 or |V0(G)| > 2, by Theorems 11 and 13, we have sat(n, P6 + tP2) =

min{n− ⌊ n
10⌋, 3t+ 18} for n > 10

3 t+ 10. This completes the proof.

(2) By n > 10
3 t+20, we have n−⌊ n

10⌋ > 3t+18. Consequently, sat(n, P6+ tP2) =

3t+ 18. Let G ∈ SAT(n, P6 + tP2) with |E(G)| = 3t+ 18. By Theorem 13, we have

G /∈ SAT∗(n, P6 + tP2) and hence |V0(G)| 6= 0. If |V0(G)| = 1, we obtain that

|E(G)| > |G| − 1 >
10t

3
+ 20− 1 =

10t

3
+ 19 > 3t+ 18,

a contradiction. Thus, |V0(G)| > 2. By Theorem 11, we have SAT(n, P6 + tP2) =

{K7 + (t− 1)K3 +Kn−3t−4}. This completes the proof of Theorem 4. �
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