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Abstract. We show time regularity of weak solutions for unsteady motion equations of
generalized Newtonian fluids described by p(x, t)-power law for p(x, t) > (3n+ 2)/(n+ 2),
n > 2, by using a higher integrability property and fractional difference method. Moreover,
as its application we prove that every weak solution to the problem becomes a local in time
strong solution and that it is unique.
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1. Introduction

In this paper, we consider the initial-boundary value problem

(1.1)





∂tu− divS(p(x, t),Du) + (u · ∇)u +∇π = −divF, in Ω× (0, T ),

div u = 0, in Ω× (0, T ),

u(0) = u0, on Ω,

u = 0, on ∂Ω× (0, T ),

where u is the velocity, π the pressure, F a prescribed symmetric n×n matrix-valued
function and u0 an initial data, Du := 1

2 (∇u + (∇u)⊤) and Ω a bounded domain

in R
n. We assume that the extra stress tensor S(p(x, t),Du) satisfies the followings

|∇AS(p(x, t), A)| 6 c∗(1 + |A|2)(p(x,t)−2)/2,(1.2)
n∑

k,l,i,j=1

∂Sij(p(x, t), A)

∂Akl
BijBkl > c−1

∗ (1 + |A|2)(p(x,t)−2)/2|B|2,(1.3)

|∂pS(p(x, t), A)| 6 c∗(1 + |A|2)(p(x,t)−1)/2 ln(1 + |A|2),(1.4)
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where c∗ > 1, (x, t) is a space-time point in Ω×(0, T ) ⊂ R
n+1, p(x, t) > 1 a prescribed

function and A, B are the real symmetric n× n matrices.

The prototype of S(p(x, t),Du) satisfying (1.2)–(1.4) is the following:

S(p(x, t),Du) = (1 + |Du|2)(p(x,t)−2)/2Du.

System (1.1) arises from electrorheological flow (see [29]), thermo-rheological flow

(see [4]), chemically reacting non-Newtonian flows (see [13]) and flows of generalized

Newtonian fluids with concentration dependent power-law, see [1], [12]. We refer

to [32], [33], [34], [35], [36] for recent results on the existence and regularity for

a steady version of system (1.1). Note that regularity problems connected with

the p(x)-Laplacian have been studied in the early 20th century by Acerbi-Mingione,

see e.g., [2], [3].

The existence of weak solutions to system (1.1) was proved in [18] for p = const. >

2n/(n+ 2) and in [15], [28], [29], [41] for p(x, t) 6= const. under various assumptions

on p(x, t) and boundary conditions.

Time regularity of weak solution to the parabolic and Navier-Stokes equations is

a well-known topic, see [19], [39], [40].

As mentioned in [10], for time regularity of weak solution to system (1.1), the

main difficulty is that when using formally ∂2ttu as a test function of the system, we

cannot estimate the term
∫ T

0

∫
Ω
|∇u‖∂tu|2 dxdt in terms of known a priori estimate,

at least without some additional information such as p > 1
2 (n+2). To overcome the

difficulty, the authors in [10] proposed an idea that it would be possible to get some

information about fractional derivatives in time of any weak solution using known

information about the solution. Thus, this method needs iteration for improving of

time regularity. Based on the idea, they proved in 3D that if for p = const. > 11
5 the

extra tensor S(p, ·) satisfies (1.3), (1.2) and in addition

(1.5) |S(x, t1, A)− S(x, t2, A)| 6 |t1 − t2|κ(1 + |A|)p−2|A|, ∃κ ∈ (0, 1],

and divF ∈ Nκ,2
loc (I;L

2(Ω)), then every local in time weak solution u satisfies

(1.6) u ∈ Nκ,∞
loc (I;L2(Ω)) ∩Nκ,2

loc (I;W
1,2(Ω)) ∩N2κ/p,p

loc (I;W 1,p(Ω)),

where the spaces Nκ,q
loc (I;X) are Nikolskii ones; for its definition see Subsection 2.2.

Using this method with slight difference, the authors in [11] also showed for p =

const. > 11
5 in 3D that if divF ∈ N1/p′,p′

(I,V ′
p(Ω)), then

(1.7) u ∈ N1/2,∞(0, T ;L2(Ω)) ∩N1/2,2(0, T ;V2(Ω)) ∩N1/p,p(0, T ;Vp(Ω))

provided that u0 ∈ Vp(Ω). For the definition of Vp, see Subsection 2.2.
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This method was applied by several researchers to other problems. The authors

in [14] used a similar iterative approach to get the interior regularity of time deriva-

tives of local weak solution for a symmetric parabolic system of p-Laplace type.

Novelty of the paper is to estimate mis-matching lower-order terms stemming from

using a cut-off function in space due to localization. The method of differences in

time was also used in [20] to get regularity for time derivatives of a weak solution

for a symmetric p-Laplace system or models for non-Newtonian fluids like (1.1) with

p ≡ const. without convective term. In [21], [22] a similar approach was used to es-

tablish time regularity and uniqueness for Cahn-Hilliard-Navier-Stokes system with

shear dependent viscosity, see also [27].

Time regularity of weak solution is not only independent of interest but used to

get other interesting results.

The first example is weak-strong regularity. By combining (1.6) and W 2,q-regu-

larity for steady problem corresponding to (1.1) with constant p, Beirão da Veiga,

Kaplický and Růžička in [5] proved that every local in time weak solution to (1.1)

with p = const. > (3n+ 2)/(n+ 2), n > 2 becomes a local in time strong solution.

The second example is uniqueness of weak solution. In [10] for p = const. > 11
5

and n = 3 there was proved uniqueness of local in time weak solution in the sense

of trajectories in the sense that if u, v are weak solutions and u = v on an interval

[t1, t2] ⊂ [0, T ), then u ≡ v on [t1, T ). In [11] this was generalized to global in time

one for p = const. > 11
5 provided that u(0) ∈ Vp(Ω).

Besides, this is used in [23] to obtain full regularity of systems similar to (1.1) with

2 6 p = const. < 4 in 2D and in [9] to compute bounds of dimension of attractor to

system (1.1) with p = const. > 12
5 in 3D.

To our knowledge, there seems to be no work on time regularity of weak solution

to problem (1.1) with nonconstant p(x, t). So we first show time regularity like (1.6)

and (1.7) of a weak solution to the problem in n-D, n > 2. This is achieved by com-

bining the method in [10], [11], which is based on iteration for gradually improving

time regularity of convective term, with a higher integrability condition.

Here it is worth noting that condition (1.5) from [10] is not sufficient in our

problem in which S(p(x, t), ·) depends on p(x, t). Due to p(x, t)-dependence of

S(p(x, t),Du), it seems to be impossible to show time regularity of any weak so-
lution to problem (1.1) with p 6= const. by means of time difference method without

further assumption. In fact, using time difference yields

S(p(x, t+ h),Du(x, t+ h))− S(p(x, t),Du(x, t))
= (S(p(x, t+ h),Du(x, t+ h))− S(p(x, t+ h),Du(x, t)))

+ (S(p(x, t+ h),Du(x, t)) − S(p(x, t),Du(x, t))).
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The first term on the right-hand side of the previous identity is controlled by (1.2)

or (1.3) as the case p = const. The main obstacle arises from the second term on the

right-hand side. By (1.4) the term is estimated as follows:

|S(p(x, t+ h),Du(x, t))− S(p(x, t),Du(x, t))|

=

∫ 1

0

d

dr
S(p(x, r(t + h) + (1− r)t),Du(x, t)) dr

6 ch

∫ 1

0

(1 + |Du(x, t)|2)(p(x,r(t+h)+(1−r)t)−1)/2 ln(1 + |Du(x, t)|2) dr.

However, this cannot be estimated by an a priori estimate (e.g., see (3.8) below) on

a weak solution due to the logarithmic term. So, in order to estimate the term, we

need higher integrability of weak solutions to problem (1.1). For more comprehen-

sion, see the estimate on the term J2 in Subsection 3.4.

The rest of the argument is similar to the ones in [10], [11]. The difference is that

we have to introduce localization argument such that the oscillation of p(x, t) is small

enough to use a higher integrability result and that we consider n(> 2)-D domain

instead of 3D. In particular, for n = 2 we have to use slightly different methods

from [10], [11] since in that papers the condition p > 2 was basically used, while the

lower bound on p(x, t) in this paper is p = (3n+ 2)/(n+ 2) = 2 for n = 2. For more

detail, see Lemma 3.9 and Subsection 4.2.

As an application of the time regularity results we show uniqueness of weak

solution similar to [10], [11] for p(x, t) > (3n+ 2)/(n+ 2). Also we show weak-

strong regularity in the sense that every weak solution to (1.1) becomes local in time

strong. This is achieved by combining the above and space-W 2,q-regularity results

from [35] for a steady problem corresponding to (1.1). Uniqueness of weak solution

to system (1.1) for p = const. > 1
2 (n + 2) and u0 ∈ L2(Ω), div u0 = 0 is well-

known, see [24], [25]. For regularity results of the problem with constant p we refer

to [7], [17], [25], [26]. Růžička in [29] proved the existence of unique global strong

solution for Dirichlet boundary condition when

9

4
6 p− 6 p(x, t) 6 p+ 6

3(3− p+)

2(5− 2p+)
and u0 ∈W 1,p(x,0)(Ω), divu0 = 0.

For a 3D-space periodic boundary condition, short time existence of unique strong

solution for large data to system (1.1) is proved in [30] under the restriction

3

2
< p− 6 p(x, t) 6 p+ 6 2,

and in [17] under the restriction

7

5
< p− 6 p(x, t) 6 p+ 6 2.
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The paper is organized as follows. In Section 2, we give the main result, notations

and some properties of Nikolskii spaces and outline the strategy of the proof of the

main result. Sections 3–6 are devoted to the proof of the main results. More precisely,

in Section 3 we show auxiliary results such as an a priori estimate, improvement of

regularity for time derivative of velocity, time regularity of the convective term and

time regularity of velocity. In Section 4 we give the proof of the first statement of The-

orem 2.1 with κ̂ < 1, in Section 5, the second one and finally in Section 6 the proof of

the first statement of Theorem 2.1 with κ̂ = 1. In particular, the argument is divided

into two categories: p > (3n+ 2)/(n+ 2) and p = (3n+ 2)/(n+ 2). Section 7 is de-

voted to the proof of uniqueness of weak solution and of the weak-strong regularity.

2. The main result and preliminaries

2.1. Notations. We denote the space-time points in Ω × (0, T ) ⊂ R
n+1 by

z = (x, t) and employ a shorthand notation dz = dxdt. From now on, let Ω

be a bounded domain in R
n, n > 2, and ΩT := Ω× (0, T ).

For n × n-matrices F , H , denote F : H =
n∑

i,j=1

FijHij , |F | ≡ (F : F )1/2. For

vectors a and b, we denote their tensor product by a ⊗ b := (aibj)n×n and their

symmetric tensor product by a⊙ b := 1
2 (a⊗ b+ (a⊗ b)⊤).

In this paper, A ⊂⊂ B means that A is bounded and A ⊂ B.

We use universal constants c and C, the dependence on certain parameters of

which is expressed, for example, by c = c(n, p).

For p ∈ L∞(ΩT ), p > 1, define

(2.1) p− := ess inf
ΩT

p(z), p+ := ess sup
ΩT

p(z),

p∗ :=





np

n− p
if p = const. < n,

∀ q ∈ (1,∞) if p = const. = n,

∞ if p = const. > n,

p′(z) :=





p(z)

p(z)− 1
if p(z) > 1,

∞, otherwise.

We do not use different notation for scalar, vector- and tensor-valued functions

(or spaces) as far as there will be no misunderstandings.

2.2. Function spaces. By Lq(0, T ;X) we denote the space of all Bochner mea-

surable functions f : (0, T ) 7→ X such that

‖f‖Lq(0,T ;X) :=

(∫ T

0

‖f(t)‖qX dt

)1/q

<∞ if 1 6 q <∞,

‖f‖L∞(0,T ;X) := ess sup
t∈(0,T )

‖f(t)‖X <∞ if q = ∞.
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Next we recall the definition of Nikolskii space. Let I ⊂ R be an arbitrary time

interval. For h > 0 we set

Ih := {t ∈ I : t+ h ∈ I}, dhf(t) := f(t+ h)− f(t), t ∈ Ih.

Then for q ∈ [1,∞], s ∈ (0, 1) we define Nikolskii space by

Ns,q(I;X) := {f ∈ Lq(I;X) : ‖f‖s,q <∞},
‖f‖s,q := ‖f‖Lq(I;X) + sup

h>0
h−s‖dhf‖Lq(Ih;X).

For general σ = k+s, where k ∈ N and s ∈ (0, 1), we define Nσ,q(I;X) as the space of

all functions with (d/dt)jf ∈ Lq(I;X) for j = 0, . . . , k−1 and (d/dt)kf ∈ Ns,q(I;X).

So the space with s = 1 is equivalent to Sobolev space W 1,q(I;X).

Let us recall some properties of the Nikolskii space to be used later.

Proposition 2.1 ([6], [31]). Let s ∈ (0, 1), q > 1. Then

Ns,q(I;X) →֒ Lr(I;X) if
1

r
>

1

q
− s > 0,(2.2)

Ns,q(I;X) →֒ C0,α(I;X) if α = s− 1

q
> 0.(2.3)

Proposition 2.2 ([10], Lemma 2.3). Let H be a Hilbert space and X a separable

Banach space continuously and densely embedded into H , and X∗ a dual space of X .

Then for s, r > 0

(2.4) Ns,q(I;X) ∩N r,q′(I;X∗) →֒ N (s+r)/2,2(I;H).

For p ∈ L∞(ΩT ), p > 1, the variable exponent Lebesgue space Lp(z)(ΩT ) is

defined by

Lp(z)(ΩT ) :=

{
f : Ω → R : ̺p(z)(f) :=

∫

ΩT

|f |p(z) dz <∞
}

endowed with the norm ‖f‖p(z),ΩT
:= inf{λ > 0: ̺p(z)(f/λ) 6 1}. We denote the

usual Lebesgue and Sobolev spaces by (Lp(Ω), ‖·‖p,Ω), (W k,p(Ω), ‖·‖k,p,Ω), respec-
tively, for constant p. We define W k,p

0 (Ω) as the closure of C∞
0 (Ω) in W k,p(Ω). Let

us define

Hp(Ω) := {f ∈ Lp(Ω): f · ν|∂Ω = 0, div f = 0},
Vp(Ω) := {f ∈ W 1,p

0 (Ω): div f = 0}.

Let V ′
p(Ω) be dual to Vp(Ω) and denote the dual product between Vp(Ω) and V ′

p(Ω)

by 〈·, ·〉1,p.
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2.3. The main results.

Definition 2.1. Assume that S(·, ·) satisfies (1.2) and (1.3) with 2n/(n+ 2) 6

p(z) < ∞. Let F ∈ L1(ΩT ) and u(0) ∈ H2(Ω). A vector-valued function

u ∈ L∞(0, T ;H2(Ω)) with u, ∇u ∈ Lp(z)(ΩT ) is called a weak solution to (1.1)

if the identity

(2.5) −
∫

ΩT

u · ∂tϕdz +

∫

ΩT

S(p(z),Du) : Dϕdz −
∫

ΩT

(u⊗ u) : Dϕdz

=

∫

ΩT

F : Dϕdz +

∫

Ω

u0 · ϕ(0) dx

holds for all ϕ ∈ C∞(ΩT ) with divϕ = 0 and suppϕ ⊂ Ω× [0, T ).

Before we state the main result, we give the assumptions on p(z) for concise

statement of the result: let function p : ΩT 7→ (1,∞) be such that

(2.6) |p(x1, t1)− p(x2, t2)| 6 L(|t1 − t2|+ |x1 − x2|)

and in addition

(2.7) p(z)





>
3n+ 2

n+ 2
if n = 2, 3, 4,

> p1,1 if n > 5,

where

p1,1 :=
n2 + 6n

3(2n+ 4)
+R+

T
R ,(2.8)

R :=
(
P − n

2
+
((

P − n

2
+Q

)2
− T 3

)1/2
+Q

)1/3
, P :=

(n2 + 6n)3

27(2n+ 4)3
,

Q :=
(−2n2 + 6n)(n2 + 6n)

6(2n+ 4)2
, T :=

−2n2 + 6n

3(2n+ 4)
+

(n2 + 6n)2

9(2n+ 4)2
.

Remark 2.1. In Subsection 4.1, we will show that for n > 5

(2.9)
3n+ 2

n+ 2
<
n

2
< p1,1 <

n+ 2

2
.

The main results are the followings.

Theorem 2.1. Assume that

(A1) Ω is a bounded domain in R
n, n > 2, with C0,1-boundary.

(A2) The extra tensor S(p(z),Du) satisfies (1.2)–(1.4).
(A3) A function u is a weak solution to system (1.1) such that for some δ > 0

(2.10) ∇u ∈ Lp(z)(1+δ)(ΩT ).
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(A4) A function p : ΩT 7→ (1,∞) satisfies (2.6), (2.7) and in addition, for all t ∈ [0, T )

and δ from (2.10)

(2.11)

max
x∈Ω

p(z)−min
x∈Ω

p(z) 6





1

2
δmin
x∈Ω

p(z)min
{
1,

minx∈Ω p(z)− 2

2

}
if min

x∈Ω
p(z) > 2,

1

2
δmin
x∈Ω

p(z) if min
x∈Ω

p(z) = 2,

max
x∈Ω

p′(z) 6 min
x∈Ω

p′(z)(1 + δ).

Then we have:

(1) If F ∈ N κ̂,2
loc (0, T ;L

2(Ω)) with some κ̂ ∈ (0, 1], then

(2.12) u ∈ N κ̂,∞
loc (0, T ;H2(Ω))∩N κ̂,2

loc (0, T ;V2(Ω)), Vp(z)(Du) ∈ N κ̂,2
loc (0, T ;L

2(Ω)),

where

Vp(z)(Du) := (1 + |Du|2)(p(z)−2)/4Du.

(2) If u0 ∈ Vp+(Ω) and F ∈ N κ̂,2(0, T ;L2(Ω)) with some κ̂ ∈ (0, 12 ] and in addition,

sup
h∈(0,T )

1

h

∫ h

0

‖F‖22 dt <∞ with κ̂ =
1

2
,

then

(2.13) u ∈ N τ̂ ,∞(0, T ;H2(Ω))∩N τ̂ ,2(0, T ;V2(Ω)), Vp(z)(Du) ∈ N τ̂ ,2(0, T ;L2(Ω)),

where τ̂ is arbitrarily close to κ̂ if κ̂ < 1
2 and equals to

1
2 if κ̂ = 1

2 .

Remark 2.2. The appearance of δ > 0 in Theorem 2.1, i.e., condition (2.10), is

needed only for p(z) 6= const. Hence, if n = 3, then Theorem 2.1 coincides with the

results from [10], [11].

Remark 2.3. It is not yet known how to get condition (2.10). In fact, in [37]

we showed that the condition holds under some assumptions, but there is a serious

mistake in the proof.

It is worth noting that in [16], [38], C1,α-continuity of solution to system (1.1)

in 2D with periodic or Dirichlet boundary condition is shown. We also note that

in [11], a higher integrability in time for system (1.1) with constant p is proved.

In particular, we would like to emphasise that recently the authors in [8] have

shown a fractional (time) differentiability of the p(x, t)-Laplacian system. However,

it is impossible to apply their method to our problem. The reason is that the nonlocal

characteristic of pressure for unsteady flow problem prevents us to use localization

argument for space used in the paper.
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For system (1.1) even with constant p it seems to be hard or even impossible to

get (2.10) by means of reverse Hölder’s inequality though it is well known for steady

versions, see e.g., [2], [35]. This is the reason why the nonlocal characteristic of pres-

sure for unsteady flow problem also prevents us to use localization argument for space,

which is essential in obtaining a reverse Hölder’s inequality, see [29], Chapter 4, [38].

Within our knowledge, if we consider suitable weak solution for system (1.1), then

it seems to be possible for us to get (2.10) via reverse Hölder’s inequality.

Remark 2.4. To simplify the calculation, we need condition (2.11) that the

oscillation of p(z) on Ω is not very large. In fact, if not, it is necessary to introduce

a localization argument on the space domain Ω such that the oscillation of p(z) on Ω

is small enough, for example, such as (3.9). However, the localization is impossible

due to the same reason as in Remark 2.3.

Remark 2.5. Theorem 2.1 also holds for F ∈ N2κ̂/p′

−
,p′

−(0, T ;Lp′

−(Ω)) with

κ̂ ∈ (0, 12 ]. Moreover, if p = const., u0 ∈ Vp(Ω) and F ∈ N1/p′,p′

(0, T ;Lp′

(Ω)),

sup
h∈(0,T )

h−1
∫ h

0
‖F‖p

′

p′ dt <∞, then

u ∈ N1/2,∞(0, T ;H2(Ω)) ∩N1/2,2(0, T ;V2(Ω)),(2.14)

Vp(z)(Du) ∈ N1/2,2(0, T ;L2(Ω)),

which is Corollary 3.2 from [11].

Corollary 2.1. Let n = 3. Assume that the assumptions (A2)–(A4) in Theo-

rem 2.1 hold and Ω is a bounded domain in R
3 with C2,1-boundary and κ̂ = 1. In

addition, let divF ∈ L∞(0, T ;L2(Ω)). Then for case (1) every weak solution u to

problem (1.1) becomes a strong one in a short time and moreover

u ∈W 1,2(t1, t2;W
2,2
loc (Ω)), Vp(z)(Du) ∈W 1,2((t1, t2)× Ω),(2.15)

u ∈W 1,2(t1, t2;W
1,p(x,·)(Ω) ∩W 2,r(x,·)(Ω))(2.16)

for every small enough interval (t1, t2) ⊂ (0, T ) and

p(x, ·) := 2(p(x, ·) + 1)− µ, r(x, ·) := 2p(x, ·)
p(x, ·) + p(x, ·) − 2

,

where µ is an arbitrary small positive real number if p(x, ·) is a function in x and
µ ≡ 0 if p(x, ·) is a constant in x.
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Corollary 2.2. Assume that all the assumptions of Theorem 2.1 except the ones

of F hold. Assume that F ∈ N τ,2(0, T ;L2(Ω)) with

τ > τuni := max
{
0,
n+ 2− 2p−

4

}
.

Let u1, u2 be two weak solutions to problem (1.1) with u1(0) = u2(0) ∈ Vp+(1+δ)(Ω).

Then u1 ≡ u2 on (0, T )× Ω.

If u1, u2 are two weak solutions to problem (1.1) that coincide on some [t1, t2]×Ω

with 0 < t1 < t2 < T , then u1 ≡ u2 on [t1, T )× Ω.

2.4. Strategy for the proof of Theorem 2.1. As mentioned in Section 1, our

method is based on the following idea: it would be possible for us to use iteration

for gradually improving regularity of fractional derivatives in time of the convective

term and so of any weak solution satisfying the higher integrability condition (2.10).

To begin with, we introduce the localization argument on a time interval on which

the oscillation of p(z) is small enough to use the higher integrability condition. This

enables us to show u ∈ N1/2,2(J ;L2(Ω)) (see (3.12)), which is a starting point.

Let us denote p1 = inf
Ω×J

p(z) for a small J = (t1, t2). Let I be such that I ⊂⊂ J

and vary from step to step.

Let us outline the strategy for the proof of the first statement of Theorem 2.1 with

p(z) > (3n+ 2)/(n+ 2).

We note that the weak solution u to system (1.1) satisfies condition (2.17) provided

that σ = 1
2 , γ = 0, see Remark 3.1 for more details. Starting with it, we show that

if for some σ ∈ [ 12 , 1), γ ∈ [0, 1),

(2.17) u ∈ Nσ,2(J ;H2(Ω)) ∩ Lp1/(1−γ)(J ;Vp1(Ω)),

then for τ(γ) = min{κ̂, κ(γ)} 6 1
2 with some κ(γ) > 0 (defined by (3.35)),

(2.18) u ∈ N τ(γ),∞(I;H2(Ω)) ∩N τ(γ),2(I;V2(Ω)) ∩N2τ(γ)/p1,p1(I;Vp1(Ω)),

see Lemma 3.5. To prove (2.18) we obtain an explicit formula about fractional

derivatives in time of any weak solution from the first equations of (1.1) and higher

integrability condition (2.10), see Subsection 3.4, while showing: time regularity of

the convective term under condition (2.17), see Subsection 3.5.

We next use the boot-strap argument. By the validity of (2.17) with σ = 1
2 , γ = 0,

(2.12) holds if κ(0) > κ̂. If κ(0) 6 κ̂, then by (2.18) and Nikolskii embedding (2.2),

the exponent γ from (2.17) is improved from 0 to 2κ(0) > 0. This enables us

to get (2.18) with γ = 2κ(0). Furthermore, we can iterate the process above. If

κ̂ 6 κ(γ0) for the limit bound, κ(γ0), of improving κ(γ) in the iterative process, then

we arrive at (2.12) after a finite number of iterations.
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Thus, it remains to prove (2.12) when κ̂ > κ(γ0). To this end, we first show that

under condition (2.7),

(2.19) u ∈ L2p1/(2p1−n)(I,Vp1(Ω)).

For every weak solution u to problem (1.1) this holds true for p1 > 1
2 (n + 2) since

2p1/(2p1 − n) 6 p1. Note that the condition p1 = 1
2 (n+ 2) is the critical bound for

uniqueness of the weak solution. But for p1 <
1
2 (n + 2), this is not trivial. So we

show (2.19) for p1 <
1
2 (n + 2) under condition (2.7) by iteratively applying (2.18)

and Nikolskii embedding (2.2).

Once we have got (2.19), we next prove that if for some σ ∈ (0, 1)

(2.20) u ∈ Nσ,2(I;H2(Ω)) ∩ L2p1/(2p1−n)(I;Vp1(Ω)),

then for τ := min{σ, κ̂}

(2.21) u ∈ N τ,∞(I;H2(Ω)) ∩N τ,2(I;V2(Ω)) ∩N2τ/p1,p1(I;Vp1(Ω)),

see Lemma 3.7. Since u ∈ N1/2,2(J ;L2(Ω)), we can see from (2.21) that if κ̂ < 1
2 ,

then there holds (2.12), while if κ̂ > 1
2 , then

(2.22) u ∈ N1/2,∞(I,H2(Ω))∩N1/p1,p1(I,Vp1(Ω)), Vp(z)(Du) ∈ N1/2,2(I, L2(Ω)).

To proceed the argument, in this point we show that if for some σ ∈ (0, 1)

(2.23) u ∈ Nσ,∞(I;H2(Ω)) ∩N2σ/p1,p1(I;Vp1(Ω)), Vp(z)(Du) ∈ Nσ,2(I;L2(Ω)),

then for some τ(σ) > 0

(2.24) ∂tu ∈ N τ(σ),p′

1(I;V ′
p1
(Ω)),

see Lemma 3.8. Since condition (2.23) with σ = 1
2 is satisfied by (2.22), we get

∂tu ∈ N τ(1/2),p′

1(I;V ′
p1
(Ω)), which together with u ∈ N1/p1,p1(I,Vp1(Ω)) (see (2.22))

and Proposition 2.2 implies

u ∈ N1/2(1+τ(1/2)+1/p1),2(I,H2(Ω)).

It is clear that 1
2 (1 + τ(12 ) + 1/p1) >

1
2 and hence, this gives the improved regularity

of u better than u ∈ N1/2,2(I;L2(Ω)). Thus, for σ = 1
2 (1 + τ(12 ) + p−1

1 ), condi-

tion (2.20) holds and in turn we can get (2.21) and (2.24) if 1
2 (1 + τ(12 ) + 1/p1) < κ̂.
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Furthermore, by (2.24), (2.21) and Proposition 2.2 we have that if u ∈ Nσ,2(I,H2(Ω))

with σ ∈ [ 12 , κ̂], then

u ∈ N1/2(1+τ(σ)+2σ/p1),2(I,H2(Ω)).

Based on this iterative argument, we can get (2.12) after a finite number of iterations

by showing that
1

2

(
1 + τ(σ) +

2σ

p1

)
− σ > c(p1, δ, n) > 0.

For the case p1 = (3n+ 2)/(n+ 2), the idea is the same as above but the proofs

of (2.18) and (2.19) are different from before, relying essentially on the condition

p1 = (3n+ 2)/(n+ 2). For more detail, see Lemmas 3.4, 3.6, 3.9 and Subsection 4.2.

The second statement in Theorem 2.1 is proved by the same method with the help

of Lemma 5.1.

3. Auxiliary results

In this section, we provide some auxiliary tools to be used for the proof of the

main result.

Since we are interested in time regularity, in the rest of the paper, we will omit the

notation of dependence on the space variable, such as p(t), u(t), S(p(t),Du(t)), F (t),
etc, if not differently specified or if something else is not clear from the context.

In this section, constants ε0 > 0 are small enough and vary from line to line.

For simplicity we omit similar parts as in [10], [11] and emphasize different ones.

3.1. Some inequalities. We denote f ∼= g if there exist two positive con-

stants c1, c2 such that c1f 6 g 6 c2f . We begin with introduction of the following

properties on S(p(t), A) which will be often used later.

Proposition 3.1 ([30]). Let A, B be the real symmetric n×n matrices. Assume

that S satisfies (1.2), (1.3). Then the following holds:

|S(p(t), A)| 6 c(|A|p(t)−1 + 1),(3.1)

S(p(t), A) : A > c(|A|p(t) − 1),(3.2)

(S(p(t), A) − S(p(t), B)) : (A−B) ∼= (1 + |A|2 + |B|2)(p(t)−2)/2|A−B|2,(3.3)

|S(p(t), A)− S(p(t), B)| ∼= (1 + |A|2 + |B|2)(p(t)−2)/2|A− B|,(3.4)

|Vp(t)(A)− Vp(t)(B)| ∼= (1 + |A|2 + |B|2)(p(t)−2)/4|A− B|,(3.5)

|Vp(t)(A)|2 ∼= |A|p(t) + |A|2, if p(t) > 2.(3.6)
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Proposition 3.2 ([25], Chapter 5, Lemma 4.35). Let u ∈ W 1,2
0 (Ω) and q ∈

[2, 2n/(n− 2)] for n > 3 and q ∈ (2,∞) for n = 2. Then there exists c > 0 such that

(3.7) ‖u‖q 6 c‖u‖α2 ‖∇u‖1−α
2

with α := (2n− q(n− 2))/(2q).

Indeed, this was proved for periodic boundary condition but is extended to our

case without any difficulty.

Let t ∈ [0, T ). Then by standard method we obtain a priori estimate

(3.8)
d

dt
‖u‖22+

∫

Ω

(|Vp(t)(Du(t))|2+|Du(t)|p(t)+|Du(t)|2) dx 6 c

∫

Ω

|F (t)|p′(t) dx+C.

3.2. Localization. Let p ≡ const. Then since u ∈ Lp(0, T ;Vp(Ω)) and ∂tu ∈
Lp′

(0, T ;V ′
p(Ω)) for every weak solution u to problem (1.1), it follows from Proposi-

tion 2.2 that u ∈ N1/2,2(0, T ;L2(Ω)).

But since u ∈ Lp−(0, T ;Vp−
(Ω)) and ∂tu ∈ Lp′

+(0, T ;V ′
p+
(Ω)) (see [37]) for a func-

tion p(t), it is not clear whether u ∈ N1/2,2(0, T ;L2(Ω)), which is a starting point

for the proof of Theorem 2.1. Thus, to proceed the argument we introduce a suitable

localization technique based on the higher integrability condition (2.10).

To begin with, we denote

p1 := inf
Ω×(t1,t2)

p(z), p2 := sup
Ω×(t1,t2)

p(z) for x ∈ Ω, 0 6 t1 < t2 < T

and fix an interval (t1, t2) such that for δ from (2.10)

(3.9) p′1 6 p′2(1 + δ), p2 − p1 6





1

2
δp1 min

{
1,
p1 − 2

2

}
if p1 > 2,

1

2
δp1 if p1 = 2.

Due to (2.11), this means that oscillation of p(z) on time interval (t1, t2) is not

very large. This localization is always possible due to (2.6). In particular, by (3.9)

and (2.10) we have

(3.10) ∇u ∈ Lp2(Ω× (t1, t2)).

The following lemma is used in the proof of time regularity for time derivative of

velocity.
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Lemma 3.1. Let 0 6 t1 < t2 < T . Let assumptions (A1)–(A3) in Theorem 2.1

hold and p(z) > (3n+ 2)/(n+ 2). Then for almost all t ∈ (t1, t2) there is a con-

stant Ct, depending only on n, p−, p+, c∗ and (essentially bounded) ‖u(t)‖2 such that

(3.11) ‖∂tu(t)‖V′

p1
(Ω) 6 Ct(1 + ‖|Du|p(t)−1‖p′

1
+ ‖u(t)‖p1−1

1,p1
+ ‖F (t)‖p′

1
).

Remark 3.1. In [37] we showed that ∂tu ∈ Lp′

2(0, T ;V ′
p2
(Ω)) and

‖∂tu(t)‖V′

p2
(Ω) 6 Ct(1 + ‖|Du|p(t)−1‖p′

2
+ ‖u(t)‖p1−1

1,p1
+ ‖F (t)‖p′

2
).

So Lemma 3.1 is its generalization in the sense of improvement of time regularity. In

particular, since u ∈ Lp1(t1, t2;Vp1(Ω)) by the definition and ∂tu ∈ Lp′

1(0, T ;V ′
p1
(Ω))

by Lemma 3.1, we obtain that by Proposition 2.2

(3.12) u ∈ N1/2,2(t1, t2;L
2(Ω)).

P r o o f. The proof is very similar to [37]. The difference lies only in using the

higher integrability condition (2.10) instead of a priori estimate (3.8). Multiplying

the first equation in (1.1) by ϕ ∈ Vp1(Ω) with ‖ϕ‖Vp1(Ω) 6 1 and integrating over Ω,

we obtain that for almost all t ∈ (t1, t2)

(3.13) 〈∂tu(t), ϕ〉1,p1 =−
∫

Ω

S(p(t),Du) :Dϕdx+

∫

Ω

(u⊗ u) :Dϕdx+

∫

Ω

F :Dϕdx

=: I1 + I2 + I3.

It is easy to see that for almost all t ∈ (t1, t2)

(3.14) |I3| 6
∫

Ω

|F ||Dϕ| dx 6 ‖F (t)‖p′

1
.

By (3.1), we have

(3.15) |I1| 6
∫

Ω

(1 + |Du|)p(t)−1|Dϕ| dx 6 ‖(1 + |Du|)p(t)−1‖p′

1
.

Here we note that by (2.10) and the first inequality of (3.9), the right-hand side (RHS)

of (3.15) is bounded for almost all t ∈ (t1, t2).

By the same argument as in [37], Lemma 3.1 the term I2 can be estimated as

follows:

(3.16) |I2| 6 c(1 + ‖u(t)‖p1−1
1,p1

).

Gathering estimates (3.13)–(3.16), we get (3.11). �

In the rest of the paper, we denote J := (t1, t2) and Jh := (t1, t2−h) for simplicity.
From now on, constants c, C depend on p−, p+, n, c∗ and in addition, C on u0 and F

via a priori estimate (3.8) as well as on ‖u‖Lp(z)(1+δ)(ΩT ) via (3.10).
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3.3. A fundamental estimate.

Lemma 3.2. Let the assumptions (A2), (A3) and (2.6) of Theorem 2.1 hold and

p(z) > (3n+ 2)/(n+ 2). Then for almost all t ∈ Jh and all h ∈ (0, t2 − t1) we have

(3.17)
d

dt
‖dhu(t)‖22 +

∫

Ω

(|dhVp(t)(Du(t))|2 + |dhDu(t)|p1 + |dhDu(t)|2) dx

6 ch2
∫

Ω

(|Du(t)|p(t)(1+δ) + 1) dx+ c

∫

Ω

(|dhF (t)|2 + |(dhu · ∇)u · dhu(t)|) dx.

P r o o f. Let t ∈ Jh be such that

(3.18) u(t) ∈W 1,p(t)(1+δ)(Ω), u(t+ h) ∈ W 1,p(t+h)(1+δ)(Ω).

Recalling that ∂tu ∈ Lp′

1(t1, t2;V ′
p1
(Ω)) by Lemma 3.1, testing (1.1) with

d−h(dhu(t)) at times t and t + h and subtracting from each other yield that for

all h ∈ (0, t2 − t1)

(3.19) 〈∂tdhu(t), dhu(t)〉1,p1 = −
∫

Ω

dhS(p(t),Du(t)) :dhDu(t) dx

−
∫

Ω

dhF (t) :dhDu(t) dx−
∫

Ω

dh[(u · ∇)u] · dhu(t) dx

=: I4 + I5 + I6.

Let us estimate all the terms on the RHS of (3.19).

To begin with, we introduce the following decomposition:

(3.20) −dhS(p(t),Du(t)) = S(p(t),Du(t)) − S(p(t),Du(t+ h))

+ S(p(t),Du(t+ h))− S(p(t+ h),Du(t+ h))

=: J1 + J2.

Then by (3.3) and (3.5)

(3.21) −
∫

Ω

J1 : dhDu(t) dx > c

∫

Ω

|Vp(t)(Du(t+ h))− Vp(t)(Du(t))|2 dx =: A(t).

Here we note that Vp(t)(Du(t+ h)) = (1 + |Du(t+ h)|2)(p(t)−2)/4Du(t+ h).

On the other hand, by (1.4),

(3.22) J2 =

∫ 1

0

d

dr
S(p(r(t + h) + (1 − r)t),Du(t+ h)) dr

6 ch

∫ 1

0

(1 + |Du(t+ h)|2)(p(r(t+h)+(1−r)t)−1)/2 ln(1 + |Du(t+ h)|2) dr.
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Now fix β > 0 such that 5β = δp1 and let L be a constant from (2.6). Then taking h

with h 6 β/L yields that by (2.6),

(3.23) p(r(t+ h) + (1− r)t) 6 p(t) + Lh 6 p(t) + β ∀ r ∈ [0, 1].

Using the known formula

(3.24) ln a 6 cβa
β/2, for a > 1,

we obtain

(3.25) J2
(3.22)

6 ch

∫ 1

0

(1 + |Du(t+ h)|2)(p(r(t+h)+(1−r)t)−1+β)/2 dr

(3.23)

6 ch[(1 + |Du(t+ h)|2)(p(t)−1+2β)/2]

6 ch[(1 + |Du(t+ h)|2 + |Du(t)|2)(p(t)−1+2β)/2].

Hence, the decomposition p(t)− 1 + 2β = 1
2 (p(t)− 2) + 1

2 (p(t) + 4β) and the choice

5β = δp1 lead us to

(3.26)

∫

Ω

J2 : dhDu(t) dx

(3.25)

6 ch

∫

Ω

(1 + |Du(t+ h)|2 + |Du(t)|2)(p(t)−1+2β)/2|dhDu| dx

6
A(t)

8
+ ch2

∫

Ω

(|Du(t+ h)|p(t)+4β + |Du(t)|p(t)+4β + 1) dx

(3.23)

6
A(t)

8
+ ch2

∫

Ω

(|Du(t+ h)|p(t+h)(1+δ) + |Du(t)|p(t)(1+δ) + 1) dx.

Connecting (3.21) and (3.26) via the definition of I4, we obtain

(3.27) A(t) 6 cI4 + ch2
∫

Ω

(|Du(t+ h)|p(t+h)(1+δ) + |Du(t)|p(t)(1+δ) + 1) dx

(3.9)

6 cI4 + ch2
∫

Ω

(|Du(t)|p(t)(1+δ) + 1) dx.

Here we note that the second term on the RHS of (3.27) has meaning by (3.18).

Now we want to explain how to derive the second term on the left-hand side (LHS)

of (3.17) from A(t). By (3.5) and the condition p1 > 2,

(3.28) |Vp(t)(Du(t+ h))− Vp(t)(Du(t))|2

> (1 + |Du(t+ h)|2 + |Du(t)|2)(p(t)−2)/2|Du(t+ h)−Du(t)|2

> (1 + |Du(t+ h)|2 + |Du(t)|2)(p1−2)/2|dhDu(t)|2
(3.6)

> |dhDu(t)|2 + |dhDu(t)|p1 .
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On the other hand, it is clear that

(3.29) |dhVp(t)(Du(t))|2 6 2|Vp(t)(Du(t+ h))− Vp(t)(Du(t))|2

+ 2|Vp(t+h)(Du(t+ h))− Vp(t)(Du(t+ h))|2
︸ ︷︷ ︸

=:J3

.

Since

J3=2|Du(t+ h)|2
∣∣∣∣
∫ 1

0

d

dr
(1 + |Du(t+ h)|2)(p(r(t+h)+(1−r)t)−2)/4 dr

∣∣∣∣
2

6ch2|Du(t+ h)|2
∫ 1

0

(1 + |Du(t+ h)|2)(p(r(t+h)+(1−r)t)−2)/2 ln2(1 + |Du(t+ h)|2) dr,

we follow the same argument as in the estimate of J2 to get

(3.30)

∫

Ω

J3 dx 6 ch2
∫

Ω

(|Du(t)|p(t)(1+δ) + 1) dx.

Thus, connecting (3.28), (3.29) and (3.30) with (3.27) yields that

(3.31)

∫

Ω

(|dhVp(t)(Du)|2 + |dhDu(t)|2 + |dhDu(t)|p1 ) dx

6 cI4 + ch2
∫

Ω

(|Du(t)|p(t)(1+δ) + 1) dx.

Next we use Young’s inequality to get

(3.32) I5 6 c

∫

Ω

|dhF (t)|2 dx+
1

4

∫

Ω

|dhDu(t)|2 dx.

By div dhu(t) = 0,

(3.33) I6 = −
∫

Ω

dh[(u · ∇)u] · dhu(t) dx = −
∫

Ω

(dhu · ∇)u · dhu(t) dx.

Inserting (3.31), (3.32) and (3.33) into (3.19), we conclude that the desired esti-

mate (3.17) holds. This completes the proof. �

3.4. Time regularity of convective term. For our further argument, we will

get a general information on time regularity of the convective term. Our argument

is divided into two cases p1 > (3n+ 2)/(n+ 2) and p1 = (3n+ 2)/(n+ 2) since

the methods in the cases are different. To begin with, we consider the case p1 >

(3n+ 2)/(n+ 2).
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Lemma 3.3. Let the assumptions (A1) of Theorem 2.1 hold and supposed that

p1 > (3n+ 2)/(n+ 2). Let u be a weak solution to (1.1) such that for some σ ∈ [0, 1),

γ ∈ [0, 1) we have

(3.34) u ∈ Nσ,2(J ;H2(Ω)) ∩ Lp1/(1−γ)(J ;Vp1(Ω))

and let

(3.35) κ(γ) :=





σ
p1[(n+ 2)p1 − 3n− 2] + γ[(n+ 2)p1 − 2n]

(n+ 2)p21 − (2n+ 2)p1 − 2n+ γ[(n+ 2)p1 − 2n]

if γ <
2p1

(n+ 2)p1 − 2n
,

σ
p1[(n+ 2)p1 − 3n]

(n+ 2)p21 − 2np1 − 2n
if γ >

2p1
(n+ 2)p1 − 2n

.

We set

(3.36) K :=

∫

Ω

|(dhu · ∇)u · dhu(t)| dx.

Then for a.e. t ∈ Jh we have

(3.37) h−2κ(γ)K 6 ε0h
−2κ(γ)‖dhu(t)‖p1

p∗

1
+ c(ε0)‖∇u(t)‖p1/(1−γ)

p1
h−2κ(γ)‖dhu(t)‖22

+ ch−2σ‖dhu(t)‖22 + c‖∇u(t)‖p1/(1−γ)
p1

.

Here p∗1 is the Sobolev embedding exponent defined in (2.1).

P r o o f. Following the argument on K1 from [10], Lemma 10 and noting that

n > 2, we obtain (3.37) and hence will omit the details. �

Remark 3.2. We note that κ(γ) for n = 3 coincides with one from [10],

Lemma 10. It is worth mentioning that κ(γ) defined in (3.35) is less than σ.

Next we consider the case p1 = (3n+ 2)/(n+ 2). In this case, since κ(0) = 0

for p1 = (3n+ 2)/(n+ 2), we can not use Lemma 3.3 for further purpose. So we

will use a different method using the higher integrability (2.10). This idea was first

introduced in [11] for constant p.

Lemma 3.4. Let the assumptions (A1) and (A3) of Theorem 2.1 hold and

p1 = (3n+ 2)/(n+ 2). Let u be a weak solution to (1.1) such that for some

τ̃ ∈ [0, 12 ] and σ̃ ∈ [0, p−1
1 ),

(3.38) u ∈ N1/2,2(J ;H2(Ω)) ∩N τ̃ ,∞(J ;H2(Ω)) ∩N σ̃,p1(J ;Vp1(Ω)).
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For µ > 0 arbitrarily close to 0 and δ from (2.10) we set

(3.39) κ̃ :=





2n

n+ 2
σ̃ +

2− 2σ̃n

n+ 2
τ̃ − µ if 0 < σ̃ <

1

n
, τ̃ > 0,

1

n+ 2
+

n

n+ 2
σ̃ if

1

n
6 σ̃ <

1

p1
, τ̃ > 0,

2nδ

(3n+ 2)(1 + δ)
if σ̃ = 0, τ̃ = 0.

Then

(3.40) (u · ∇)u ∈ N κ̃,p′

1(J ;V ′
p1
(Ω)).

P r o o f. Let h ∈ (0, t2 − t1) and ψ ∈ Lp1(J ;Vp1(Ω)) with ‖ψ‖Lp1(J;Vp1(Ω)) 6 1.

Case 1 : σ̃ > 0, τ̃ > 0. In this case, following the argument from [11], Lemma 5.2

and noting that n > 2 and p1 = (3n+ 2)/(n+ 2), we obtain (3.40) for κ̃ from the

first two lines of (3.39) and hence will omit the details.

Case 2 : σ̃ = 0, τ̃ = 0. In this case, we also follow the same frame as in [11],

Lemma 5.2 with a slight difference in using (2.10) due to p1 = (3n+ 2)/(n+ 2).

Condition (2.10) implies ∇u ∈ Lp1(1+δ)(J × Ω) for some δ > 0.

Let a = n/(n+ 2). Let us define

1

p̃(0)
:= 1− 1

p1
− 2a

p1(1 + δ)
.

Hence, noting that a = n/(n+ 2) and p1 = (3n+ 2)/(n+ 2) yields that

(3.41)
1

p̃(0)
=

2np1δ

(3n+ 2)p1(1 + δ)
=

2nδ

(3n+ 2)(1 + δ)
.

Now we are in a position to estimate the convective term. Using Hölder’s inequality

with a pair (p̃(0), p1(1 + δ)/a,∞, p1(1 + δ)/a, p1) and an interpolation yields that

(3.42)

∣∣∣∣
∫

Jh

∫

Ω

dh[(u · ∇)u] · ψ dxdt

∣∣∣∣ =
∣∣∣∣
∫

Jh

∫

Ω

dh(u⊗ u) : ∇ψ dxdt

∣∣∣∣

6 c

∫

Jh

‖dhu‖1−a
2 ‖dhu‖ap∗

1
‖u‖1−a

2 ‖u‖ap∗

1
‖∇ψ‖p1 dt

6 c

(∫

Jh

‖dhu‖(1−a)p̃(0)
2 dt

)1/p̃(0)(∫

Jh

‖dhu‖p1(1+δ)
p∗

1
dt

)a/(p1(1+δ))

× ‖u‖1−a
L∞(J;H2(Ω))

(∫

Jh

‖u‖p1(1+δ)
p∗

1
dt

)a/(p1(1+δ))

6 C

(∫

Jh

‖dhu‖(1−a)p̃(0)
2 dt

)1/p̃(0)

,
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where p∗1 is the Sobolev conjugate exponent to p1 from (2.1) and in the last line we

use that

‖u‖1−a
L∞(J;H2(Ω))

(3.8)

6 C,
∫

Jh

(‖u(t+ h)− u(t)‖p1(1+δ)
p∗

1
+ ‖u(t)‖p1(1+δ)

p∗

1
) dt 6 c

∫

J

‖u(t)‖p1(1+δ)
p∗

1
dt

(3.10)

6 C.

Now we claim that p̃(0)(1 − a) > 2. Indeed, by the definition of p̃(0) and

a = n/(n+ 2) we have

p̃(0)(1− a) =
(3n+ 2)(1 + δ)

n(n+ 2)δ
,

and direct calculation shows that a function f(δ) := (3n + 2)(1 + δ) − 2n(n + 2)δ

is decreasing in δ > 0 and hence f(δ) > 0 for δ ∈ (0, (3n+ 2)/(2n2 + n− 2)). This

proves the claim since the exponent δ > 0 can be taken small enough by (2.10).

Since p̃(0)(1 − a) > 2, we get

(3.43) RHS of (3.42) = C

(∫

Jh

‖dhu‖22‖dhu‖
(1−a)p̃(0)−2
2 dt

)1/p̃(0)

6 C

(∫

Jh

‖dhu‖22 dt
)1/p̃(0)

‖dhu‖((1−a)p̃(0)−2)/p̃(0)
L∞(Jh;H2)

(3.38)

6 Ch1/p̃(0) =: Chκ̃(0).

It is clear that

κ̃(0) =
2

p̃(0)

(3.41)
=

4nδ

(3n+ 2)(1 + δ)
.

This is just the third line of (3.39). Moreover, joining (3.42) and (3.43) yields (3.40).

Thus, Lemma 3.4 is completely proved. �

3.5. Time regularity of velocity. Hereafter, let I ⊂⊂ J , Ih ⊂⊂ Jh and

η ∈ C∞(Jh) be a cut-off function such that η ≡ 1 in Ih and supp η ⊂ Jh.

Lemma 3.5. Let the assumptions (A1)–(A3) and (2.6) of Theorem 2.1 hold and

p1 > (3n+ 2)/(n+ 2). Let (3.34) hold and κ(γ) be from (3.35). Then we have:

(1) If J ⊂⊂ (0, T ) and F ∈ N κ̂,2(J ;L2(Ω)) with some κ̂ ∈ (0, 1), then for τ(γ) :=

min{κ(γ), κ̂}

u ∈ N τ(γ),∞(I;H2(Ω)) ∩N τ(γ),2(I;V2(Ω)) ∩N2τ(γ)/p1,p1(I;Vp1(Ω)),(3.44)

Vp(t)(Du) ∈ N τ(γ),2(I;L2(Ω)).
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(2) If F ∈ N κ̂,2(0, T ;L2(Ω)) with some κ̂ ∈ (0, 1), and for sufficiently small

h ∈ (0, 1) and for some τ̂ ∈ (0, κ̂]

(3.45) ‖dhu(0)‖2,Ω 6 chτ̂ ,

then for τ(γ) := min{κ(γ), τ̂} relations (3.44) hold with J instead of I.

P r o o f. At first, we are concerned with the case J ⊂⊂ (0, T ). Multiplying (3.17)

by η and integrating over Jh, we obtain

(3.46) sup
t16t6t2−h

η‖dhu(t)‖22 +
∫

Ω×Jh

η(|dhVp(t)(Du)|2 + |dhDu|p1 + |dhDu|2) dz

6 ch2
∫

Ω×Jh

(|Du(t)|p(t)(1+δ) + 1) dz + c

∫

Jh

‖dhu(t)‖22 dt

+ c

∫

Ω×Jh

|dhF |2 dz + c

∫

Jh

K dt,

where K is from (3.36).

By the condition F ∈ N κ̂,2(J ;L2(Ω)) and Remark 3.2, we have

h−2τ(γ)

∫

Ω×Jh

|dhF (t)|2 dz 6 Ch−2τ(γ)h2κ̂ 6 C,(3.47)

h−2τ(γ)

∫

Jh

‖dhu(t)‖22 dt
(3.34)

6 ch−2τ(γ)h2σ 6 C.(3.48)

From the definition of τ(γ), (3.37) and Sobolev’s and Korn’s inequalities it follows

that

(3.49)

h−2τ(γ)

∫

Jh

K dt 6 ε0h
−2τ(γ)

∫

Jh

‖dhu(t)‖p1

p∗

1
dt

+ c(ε0)

∫

Jh

‖∇u(t)‖p1/(1−γ)
p1

(h−2τ(γ)‖dhu(t)‖22) dt

+ ch2(κ(γ)−τ(γ))

∫

Jh

(h−2σ‖dhu(t)‖22 + ‖∇u(t)‖p1/(1−γ)
p1

) dt

(3.34)

6 C + ε0h
−2τ(γ)

∫

Jh

‖dhDu(t)‖p1
p1

dt

+ c(ε0)

∫

Jh

‖∇u(t)‖p1/(1−γ)
p1

(h−2τ(γ)‖dhu(t)‖22) dt.
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Inserting (3.47), (3.48) and (3.49) into (3.46) multiplied by h−2τ(γ) yields that

sup
t∈Ih

h−2τ(γ)‖dhu(t)‖22 + h−2τ(γ)

∫

Ω×Ih

(|dhVp(t)(Du)|2 + |dhDu(t)|p1) dz

6 c

∫

Jh

‖∇u(t)‖p1/(1−γ)
p1

(h−2τ(γ)‖dhu(t)‖22) dt+ C,

which together with Gronwall’s inequality implies (3.44).

Next we consider the case t1 = 0. Integrating (3.17) over Jh yields that

(3.50) sup
06t6t2−h

‖dhu(t)‖22 +
∫

Ω×Jh

(|dhVp(t)(Du)|2 + |dhDu|p1 + |dhDu|2) dz

6 ch2
∫

Ω×Jh

(|Du(t)|p(t)(1+δ) + 1) dz + ‖dhu0‖22

+ c

∫

Ω×Jh

|dhF |2 dz + c

∫

Jh

K dt.

From (3.45) it follows that

(3.51) h−2τ(γ)‖dhu0‖22 6 Ch−2τ(γ)h2τ̂ 6 C.

From (3.50) together with (3.47), (3.49) and (3.51) we arrive at (3.44) with J in-

stead of I. �

Next we are concerned with the case p1 = (3n+ 2)/(n+ 2).

Lemma 3.6. Let the assumptions (A1)–(A3) and (2.6) of Theorem 2.1 hold and

p1 = (3n+ 2)/(n+ 2). Let (3.38) hold and κ̃ be from (3.39). Then we have:

(1) If J ⊂⊂ (0, T ) and F ∈ N κ̂,2(J ;L2(Ω)) with some κ̂ ∈ (0, 1), then for τ :=

min{κ̃p′1/2, κ̂}

u ∈ N τ,∞(I;H2(Ω)) ∩N τ,2(I;V2(Ω)) ∩N2τ/p1,p1(I;Vp1(Ω)),(3.52)

Vp(t)(Du) ∈ N τ,2(I;L2(Ω)).

(2) If t1 = 0, F ∈ N κ̂,2(J ;L2(Ω)) with some κ̂ ∈ (0, 1) and condition (3.45) for τ̂ ∈
(0, κ̂] holds, then for τ := min{κ̃p′1/2, τ̂} relations (3.52) hold with J instead of I.
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P r o o f. From Hölder’s and Korn’s inequalities and (3.40), it follows that

(3.53) h−2τ

∫

Ω×Jh

|dh((u · ∇)u) · dhu| dz

6 ε0h
−2τ

∫

Ω×Jh

|dhu|p1 dz + c(ε0)h
−2τ

∫

Jh

‖dh((u · ∇)u)‖p
′

1

V′

p1
(Ω) dt

6 ε0h
−2τ

∫

Ω×Jh

|dhDu|p1 dz + c(ε0)h
−2τhκ̃p

′

1

6 ε0h
−2τ

∫

Ω×Jh

|dhDu|p1 dz + C.

The estimates for the rest of the terms in (3.53) are similar to the ones in the

proof of Lemma 3.9 and so we will omit them.

Inserting (3.47), (3.48) with τ instead of τ(γ) and (3.53) into (3.46) multiplied

by h−2τ and taking into account the conditions of this lemma and (3.10) yield that

sup
t∈Ih

h−2τ‖dhu(t)‖22 + h−2τ

∫

Ω×Ih

(|dhVp(t)(Du)|2 + |dhDu(t)|p1) dz 6 C,

which implies (3.52).

Next we consider the case t1 = 0. Then we can get (3.52) with J instead of I

from (3.50) together with (3.47), (3.48) with τ instead of τ(γ), (3.53) and (3.51). �

The following lemma will be used later.

Lemma 3.7. Let the assumptions (A1)–(A3) and (2.6) of Theorem 2.1 hold and

σ ∈ [0, 1), p1 > (3n+ 2)/(n+ 2) and p1 >
1
2n. Assume that

(3.54) u ∈ Nσ,2(J ;H2(Ω)) ∩ L2p1/(2p1−n)(J ;Vp1(Ω)).

Then we have:

(1) If J ⊂⊂ (0, T ) and F ∈ N κ̂,2(J ;L2(Ω)) with some κ̂ ∈ (0, 1), then for τ :=

min{σ, κ̂}

u ∈ N τ,∞(I;H2(Ω)) ∩N τ,2(I;V2(Ω)) ∩N2τ/p1,p1(I;Vp1(Ω)),(3.55)

Vp(t)(Du) ∈ N τ,2(I;L2(Ω)).

(2) If t1 = 0, F ∈ N κ̂,2(J ;L2(Ω)) with some κ̂ ∈ (0, 1) and condition (3.45) for

τ̂ ∈ (0, κ̂] holds, then for τ := min{σ, τ̂} relation (3.55) hold with J instead of I.
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P r o o f. Let us again estimate the term K from (3.36). We use the interpo-

lation inequality (3.7) with q = 2p′1 (so α := (2p1 − n)/(2p1) ∈ (0, 1)) and Korn’s

inequality to get

K 6

∫

Ω

|∇u(t)||dhu(t)|2 dx 6 ‖∇u(t)‖p1‖dhu(t)‖22p′

1

6 c‖∇u(t)‖p1‖dhu(t)‖2α2 ‖dhDu(t)‖2(1−α)
2 ,

which implies that by Young’s inequality

(3.56) K 6 ε0‖dhDu(t)‖22 + c(ε0)‖∇u(t)‖2p1/(2p1−n)
p1

‖dhu(t)‖22.

Here we note that the condition α ∈ (0, 1) holds provided 2p1 > n.

Thus, inserting (3.47), (3.48) with τ(γ) = τ and (3.56) into (3.46) multiplied

by h−2τ , we conclude that

sup
t16t6t2−h

h−2τη‖dhu(t)‖22

+ h−2τ

∫

Ω×Jh

η(|dhVp(t)(Du)|2 dz + |dhDu(t)|2 + |dhDu(t)|p1) dz

6 c

∫

Jh

‖∇u(t)‖2p1/(2p1−n)
p1

(h−2τη‖dhu(t)‖22) dt+ C,

which together with (3.54) and Gronwall’s inequality implies (3.55).

In the case t1 = 0, the result follows from the same as above except that (3.51) is

used instead of (3.48). �

3.6. Improvement of time regularity of time derivative of velocity.

Lemma 3.8. Let the assumptions (A1)–(A3) and (2.6) of Theorem 2.1 hold. Let

σ ∈ (0, 1), p1 > (3n+ 2)/(n+ 2), p1 > 2 and F ∈ N κ̂,2(J ;L2(Ω)). Assume that

(3.57) u ∈ Nσ,∞(J ;H2(Ω)) ∩N2σ/p1,p1(J ;Vp1(Ω)), Vp(t)(Du) ∈ Nσ,2(J ;L2(Ω)).

Let τ1 := min{σ, κ̂} and τ2 := min{α̂σ, κ̂}, where

(3.58) α̂ :=
2[(n+ 2)p21 − (4n+ 2)p1 + 4n]

[(n+ 2)p1 − 2n]p1
.

Then we have

(3.59) ∂tu ∈





N τ1,p
′

1(J ;V ′
p1
(Ω)) if p1 >

4n

n+ 2
,

N τ2,p
′

1(J ;V ′
p1
(Ω)) if

3n+ 2

n+ 2
6 p1 <

4n

n+ 2
.
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P r o o f. Let ψ ∈ Lp1(J ;Vp1(Ω)) with ‖ψ‖Lp1(J;Vp1(Ω)) 6 1. Recalling that

∂tu ∈ Lp′

1(J ;V ′
p1
(Ω)) by Lemma 3.1 and testing (1.1) with dhψ(t), we obtain that

for all h ∈ (0, t2 − t1)

(3.60)

∫

Jh

〈∂tdhu(t), ψ(t)〉1,p1 dt

= −
∫

Jh

∫

Ω

dhS(p(t),Du) : Dψ dxdt−
∫

Jh

∫

Ω

dhF : Dψ dxdt

−
∫

Jh

∫

Ω

dh[(u · ∇)u] · ψ dxdt

=: I7 + I8 + I9.

At first, we estimate the term I7. Note that p1 > 2. By (3.4) and the same

arguments as in (3.25) we can get

(3.61) |dhS(p(t),Du(t))| 6 c(1 + |Du(t)|2 + |Du(t+ h)|2)(p(t)−2)/2|dhDu(t)|
+ ch[(1 + |Du(t+ h)|2 + |Du(t)|2)(p(t)−1+β)/2]

6 c (1 + |Du(t)|2 + |Du(t+ h)|2)(p(t)−2)/4

︸ ︷︷ ︸
=:K3

|dhVp(t)(Du(t))|

+ ch (1 + |Du(t)|p(t)−1+2β)︸ ︷︷ ︸
=:K4

,

where β > 0 is from (3.24). Now we choose β > 0 such that

(3.62) p(t)− p1 6 p1(δ(p(t)− 1)− 2β), 2(p(t)− p1) 6 p1(δ(p(t)− 2)− β),

which is possible due to (3.9). Indeed, taking β = min{ 1
4δ,

1
4δ(p1 − 2)} yields that

p1(δ(p(t)− 1)− 2β)
p(t)>2
> p1(δ − 2β)

(3.9)

> p2 − p1 > p(t)− p1,

p1(δ(p(t)− 2)− β) > p1
3

4
δ(p1 − 2) > 2(p2 − p1) > 2(p(t)− p1).

Then it follows that

(3.63) K
2p1/(p1−2)
3 6 c(1 + |Du(t)|(p(t)−2)/2 + |Du(t+ h)|(p(t+h)−2+β)/2)2p1/(p1−2)

6 c+ c|Du(t)|(p(t)−2+β)p1/(p1−2)
6 c+ c|Du(t)|p(t)(1+δ),

where for performing the last estimate we use the fact that by the second inequality

of (3.62)
p(t)− 2 + β

2

2p1
p1 − 2

< p(t)(1 + δ).

We also have

(3.64) K
p1/(p1−1)
4 6 c(1 + |Du(t)|)p(t)(1+δ),
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where we use that by the first inequality of (3.62)

(p(t)− 1 + 2β)
p1

p1 − 1
< p(t)(1 + δ).

Thus, combining (3.61) with (3.63) and (3.64) yields that

(3.65)

h−σI7 6 ch−σ

∫

Jh

‖dhVp(t)(Du(t))‖2‖K3‖2p1/(p1−2)‖Dψ(t)‖p1 dt

+ ch1−σ

∫

Jh

‖K4‖p′

1
‖Dψ(t)‖p1 dt

6 c‖h−σdhVp(t)(Du)‖L2(Jh;L2(Ω))

(
c+

∫

Ω×Jh

|Du(t)|p(t)(1+δ) dz

)(p1−2)/(2p1)

+ ch1−σ

(
c+

∫

Ω×Jh

|Du(t)|p(t)(1+δ) dz

)(p1−1)/p1

(2.10),(3.57)

6 C.

Next we estimate the term I8. By the condition F ∈ N κ̂,2(J ;L2(Ω)) we have

(3.66) h−κ̂I8 6 h−κ̂‖dhF‖L2(Jh;L2(Ω)) 6 C.

Now it remains to estimate the term I9. Following the argument from [10],

Lemma 11 and noting that n > 2 and p1 > (3n+ 2)/(n+ 2), we arrive at

(3.67) h−σI9 6 C if p1 >
4n

n+ 2
,

while, for α̂ from (3.58),

(3.68) h−α̂σI9 6 C if
3n+ 2

n+ 2
6 p1 <

4n

n+ 2
.

Thus, from (3.60) with (3.65)–(3.68) we arrive at the desired result (3.59). �

Next we consider the case p1 = 2. This case is possible only if n = 2 due to

p1 > (3n+ 2)/(n+ 2).

Lemma 3.9. Let the assumptions (A1)–(A3) and (2.6) of Theorem 2.1 hold. Let

σ ∈ (0, 1), p1 = n = 2 and F ∈ N κ̂,2(J ;L2(Ω)). Assume that (3.57) holds. Then we

have

(3.69) ∂tu ∈ N τ3,2(J ;V ′
2(Ω)) for τ3 := min{α̃σ, κ̂},

where

(3.70) α̃ :=
2(1 + δ)− p2

p2δ
.

1042



P r o o f. We will use the notations in Lemma 3.8. But we cannot estimate the

term K3 as above due to the condition p1 = 2. So we use a peculiar method using the

higher integrability: Without loss of generality we can assume that p2 > 2 because

otherwise p(t) ≡ 2. At first we observe that p2 < 2(1 + δ) by (3.9) and

(3.71) K
2p2/(p2−2)
3 6 c(1 + |Du(t)|2 + |Du(t+ h)|2)(p2−2)p2/(2(p2−2))

6 c(1 + |Du(t) + |Du(t+ h)|)p2

and that by (3.6) and (2.10)

(3.72) Vp(t)(Du) ∈ L2(1+δ)(ΩT ).

Hence, for an exponent α̃ from (3.70),

(3.73) ‖Vp(t)(Du(t))‖p2 6 ‖Vp(t)(Du(t))‖α̃2 ‖Vp(t)(Du(t))‖1−α̃
2(1+δ).

We use Hölder’s inequality with a triplet (2p2/(p2 − 2), p2, 2) and the interpolation

between L2 and L2(1+δ) to get

(3.74)

∫

Jh

∫

Ω

K3|dhVp(t)(Du(t))||Dψ(t)| dxdt

6 c

∫

Jh

‖dhVp(t)(Du(t))‖p2‖K3‖2p2/(p2−2)‖Dψ(t)‖2 dt

(3.73)

6 c

∫

Jh

‖dhVp(t)(Du(t))‖α̃2 ‖dhVp(t)(Du(t))‖1−α̃
2(1+δ)

× ‖K3‖2p2/(p2−2)‖Dψ(t)‖2 dt
(3.71),(3.10),(3.72)

6 Chσα̃‖h−σdhVp(t)(Du(t))‖α̃L2(Jh;L2(Ω))

(3.57)

6 Chσα̃.

On the other hand, from (3.64) with p1 = 2 it follows that

(3.75)

ch1−σα̃

∫

Jh

‖K4‖2‖Dψ(t)‖2 dt 6 ch1−σα̃

(∫

Ω×Jh

(1 + |Du(t)|)p(t)(1+δ) dz

)1/2 (2.10)

6 C.

Joining (3.74) and (3.75) yields that

(3.76) h−σα̃I7 6 C.
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Now let us estimate the term I9. Note that 4n/(n+ 2) = (3n+ 2)/(n+ 2) = p1 =

n = 2. Following the argument as in (3.74), we have

(3.77) h−σα̃I9 6 h−σα̃

∫

Jh

∫

Ω

|dhu‖u‖∇ψ| dxdt

6 h−σα̃

∫

Jh

‖dhu‖α̃2 ‖dhu‖1−α̃
2(1+δ)‖u‖2p2/(p2−2)‖∇ψ‖2 dt

(3.10),(2.10)

6 C‖h−σdhu‖α̃L∞(Jh;L2(Ω))

(3.57)

6 C,

where to control ‖dhu‖1−α̃
2(1+δ) we use (2.10), p1 > 2 and Poincare’s inequality.

Thus, equation (3.60) together with (3.76), (3.66), (3.77) yields that

∂tu ∈ N τ3,2(J ;V ′
2(Ω)) for τ3 = min{α̃σ, κ̂},

which is just (3.69). �

4. Proof of the first statement of Theorem 2.1: the case κ̂ < 1

Let I ⊂⊂ J , Ih ⊂⊂ Jh for interval J satisfying (3.9). We will use the same

notation I in the iterative use of Lemmas 3.7, 3.5 since the number of uses is finite.

It is worth noting that throughout this section we use assumptions (A1)–(A4) and

the condition F ∈ N κ̂,2
loc (0, T ;L

2(Ω)) with some κ̂ ∈ (0, 1).

Case 1 : p1 > (3n+ 2)/(n+ 2).

Step 1 : Iterative use of Lemma 3.5. We know that u ∈ N1/2,2(J, L2(Ω)) by (3.12).

When 0 6 γ 6 2p1/((n+ 2)p1 − 2n), we set σ = 1
2 in Lemma 3.5. Then κ(γ) is from

the first line of (3.35) since κ(γ) is continuous in γ = 2p1/((n+ 2)p1 − 2n). So by

Lemma 3.5 if

(4.1) u ∈ Lp1/(1−γ)(J ;Vp1(Ω)),

then for κ(γ) > κ̂ we have

u ∈ N κ̂,∞(I,H2(Ω)) ∩N κ̂,2(I,V2(Ω)) ∩N2κ̂/p1,p1(I,Vp1(Ω)),(4.2)

Vp(t)(Du) ∈ N κ̂,2(I, L2(Ω)),

which implies (2.12), while for κ(γ) < κ̂

u ∈ Nκ(γ),∞(I,H2(Ω)) ∩Nκ(γ),2(I,V2(Ω)) ∩N2κ(γ)/p1,p1(I,Vp1(Ω)),(4.3)

Vp(t)(Du) ∈ Nκ(γ),2(I, L2(Ω)).
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Let us start iteration argument. It is clear that all the assumptions of Lemma 3.5

are satisfied for every weak solution with γ = 0, σ = 1
2 . So if κ(0) > κ̂, then

we get (4.2), i.e., (2.12). If κ(0) < κ̂, then by (4.3) the exponent γ is improved

from 0 to 2κ(0) > 0. This allows us to use again Lemma 3.5. In order to

calculate the bound of this improvement, we set G(γ) := 2κ(γ) − γ. It is clear

that G(0) = 2κ(0) = (p1[(n+ 2)p1 − 3n− 2])/((n+ 2)p21 − (2n+ 2)p1 − 2n) > 0

and G(2p1/((n+ 2)p1 − 2n)) > 0 for p1 > (3n+ 2)/(n+ 2). In particular, G(γ)

is concave for γ > 0 provided p1 > 2. Thus, we can easily see that G(γ) >

min{G(0), G(2p1/((n+ 2)p1 − 2n))} for all γ ∈ [0, 2p1/((n+ 2)p1 − 2n)].

If κ̂ 6 κ(2p1/((n+ 2)p1 − 2n)), then this implies (4.2) after a finite number of

iterations and hence we get (2.12). If κ̂ > κ(2p1/((n+ 2)p1 − 2n)), then one can

get only (4.3) for all γ ∈ [0, 2p1/((n+ 2)p1 − 2n)] after a finite number of iter-

ations. Furthermore, (4.3) holds for all γ ∈ [0, 1) because from the second line

of (3.35) the values of κ(γ) for all γ > 2p1/((n+ 2)p1 − 2n) are fixed, that is,

κ(γ) = κ(2p1/((n+ 2)p1 − 2n)). In this case our aim is to show

(4.4) u ∈ L2p1/(2p1−n)(I,Vp1(Ω)).

This enables us to apply Lemma 3.7 to show (2.12). By Nikolskii embedding (2.2)

this suffices to prove that u ∈ N (2κ(γ))/p1,p1(I,Vp1(Ω)) for γ satisfying

(4.5) 2κ(γ) >
n+ 2− 2p1

2
.

It is easily checked that for p1 > (3n+ 2)/(n+ 2)

(4.6) 2κ
( 2p1
(n+ 2)p1 − 2n

)
=

p1[(n+ 2)p1 − 3n]

(n+ 2)p21 − 2np1 − 2n
>

2p1
(n+ 2)p1 − 2n

.

From (4.6) it follows that if

(4.7)
n+ 2− 2p1

2
6

2p1
(n+ 2)p1 − 2n

,

then inequality (4.5) holds for γ = 2p1/((n+ 2)p1 − 2n) and in turn by (4.3), (4.4)

holds.

Now let us calculate the range of p1 satisfying (4.7). It is clear that

n+ 2− 2p1
2

6
2p1

(n+ 2)p1 − 2n
⇆ 2(n+ 2)p21 − (n2 + 8n)p1 + 2n(n+ 2) > 0.

If n 6 3, then sinceD := (n2+8n)2−16n(n+2)2 = n(n3−64) < 0, the inequality (4.7)

always holds for all p1 > 1. If n = 4, then since D = 0, the inequality always holds
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provided p1 > 2. If n > 5, then the inequality holds provided

(4.8) p1 >
n2 + 8n+

√
n4 − 64n

4(n+ 2)
.

Remark 4.1. For n > 5, it is clear that

(4.9)
3n+ 2

n+ 2
<
n

2
<
n2 + 8n+

√
n4 − 64n

4(n+ 2)
<
n+ 2

2
.

Up to now, we followed the argument from [10]. From now on, we are going to

present our own calculations in order to improve the lower bound on p(z) for n > 5.

Hence, the inverse inequality of (4.7), that is,

(4.10)
n+ 2− 2p1

2
>

2p1
(n+ 2)p1 − 2n

holds only for n > 5 and p1 <
1
4 (n

2 + 8n+
√
n4 − 64n)/(n+ 2). In this case, we need

Lemma 3.5 for γ > 2p1/((n+ 2)p1 − 2n), that is, for κ(γ) = κ(2p1/((n+ 2)p1 − 2n)).

Thus, if

(4.11) 2κ
( 2p1
(n+ 2)p1 − 2n

)
=

p1[(n+ 2)p1 − 3n]

(n+ 2)p21 − 2np1 − 2n
>
n+ 2− 2p1

2
,

then the desired result (4.4) follows. So it remains to calculate the range of p1

satisfying (4.11) and (4.10).

Remark 4.2. A necessary condition for validity of (4.11) is p1 > n/2 since
1
2 (n+ 2− 2p1) > 1 for p1 6 1

2n.

By Remarks 4.1, 4.2 it suffices to consider p1 in an interval

(n
2
,
n2 + 8n+

√
n4 − 64n

4(n+ 2)

)
.

It is clear that (4.11) is equivalent to

2(n+ 2)p31 − (n2 + 6n)p21 + (2n2 − 6n)p1 + 2n(n+ 2) > 0.

The three solutions for the corresponding equation are

p1,1 :=
n2 + 6n

3(2n+ 4)
+R+

T
R ,

p1,2 :=
n2 + 6n

3(2n+ 4)
− R

2
− T

2R +
31/2

2

(
R− T

R
)
i,

p1,3 :=
n2 + 6n

3(2n+ 4)
− R

2
− T

2R − 31/2

2

(
R− T

R
)
i,
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where R, T are defined in (2.8), that is,

R :=
(
P − n

2
+
((

P − n

2
+Q

)2
− T 3

)1/2
+Q

)1/3
, P :=

(n2 + 6n)3

27(2n+ 4)3
,

Q :=
(−2n2 + 6n)(n2 + 6n)

6(2n+ 4)2
, T :=

−2n2 + 6n

3(2n+ 4)
+

(n2 + 6n)2

9(2n+ 4)2
.

These solutions can be calculated by symbolic operation from Matlab. Table 1 shows

its values according to the space dimension.

n p1,1 p1,2 p1,3

5 2.7437 −0.8818 2.0667

6 3.2260 −0.8682 2.1422

7 3.7068 −0.8564 2.2051

8 4.1894 −0.8462 2.2568

9 4.6742 −0.8373 2.2995

10 5.1609 −0.8297 2.3354

50 25.0384 −0.7562 2.6408

100 50.0196 −0.7444 2.6856

Table 1. The values of p1,1, p1,2, p1,3.

Thus, inequalities (4.11) and (4.10) hold for

p1 ∈
(
p1,1,

n2 + 8n+
√
n4 − 64n

4(n+ 2)

)

and furthermore, (4.4) holds for p(z) satisfying (2.7).

Remark 4.3. We note that here is the only point in the whole paper where we

need the assumption p− > p1,1 for n > 5.

Step 2 : Iterative use of Lemmas 3.7, 3.8. From the argument in Step 1 it suffices to

prove Theorem 2.1 for κ̂ > κ(2p1/((n+ 2)p1 − 2n)). We already proved the validity

of (4.4) in this case. So all the assumptions of Lemma 3.7 are satisfied with σ = 1
2

by (3.12). Thus, if κ̂ ∈ (0, 12 ), then

(4.12) u ∈ N κ̂,∞(I,H2(Ω)) ∩N2κ̂/p1,p1(I,Vp1(Ω)), Vp(t)(Du) ∈ N κ̂,2(I, L2(Ω)),

which implies (2.12), while if κ̂ > 1
2 , then

(4.13) u ∈ N1/2,∞(I,H2(Ω))∩N1/p1,p1(I,Vp1(Ω)), Vp(t)(Du) ∈ N1/2,2(I, L2(Ω)),

which are exactly the assumptions of Lemma 3.8 with σ = 1
2 . This enables us to use

Lemma 3.8.
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If p1 > 4n/(n+ 2), then by Lemma 3.8 ∂tu ∈ N1/2,p′

1(I,V ′
p1
(Ω)), so u ∈

N3/2,p′

1(I,V ′
p1
(Ω)) and in turn, by Proposition 2.2, u ∈ N1/2(3/2+1/p1),2(I,H2(Ω)).

Furthermore, one can see that if u ∈ Nσ,2(I,H2(Ω)) with σ ∈ [ 12 , κ̂], then

u ∈ N1/2(1+σ+2σ/p1),2(I,H2(Ω)) by Lemmas 3.8, 3.7 and Proposition 2.2. Since

for σ < 1 and p1 > 2

1

2

(
1 + σ +

2σ

p1

)
− σ =

1

2
− σ

(1
2
− 1

p1

)
>

1

p1
,

we obtain u ∈ N κ̂,2(I,H2(Ω)) after a finite number of iterations and again by

Lemma 3.7 get (2.12).

Although in this subsection we consider only p1 > (3n+ 2)/(n+ 2), we here deal

with the case (3n+ 2)/(n+ 2) 6 p1 6 4n/(n+ 2) in order to avoid overlap in next

subsection. We will follow the same argument as above but need slightly more deli-

cate attention. By Lemmas 3.7, 3.8 and Proposition 2.2 it follows that for σ ∈ [ 12 , κ̂]

u ∈ Nσ,2(I,H2(Ω)) ⇒ u ∈ Nσ
α̂
,2(I,H2(Ω)),

where

σα̂ :=
1

2
+ σ

( (n+ 2)p21 − (4n+ 2)p1 + 4n

[(n+ 2)p1 − 2n]p1
+

1

p1

)
=

1

2
+ σ

(n+ 2)p21 − 3np1 + 2n

[(n+ 2)p1 − 2n]p1
.

Direct calculation shows that for σ < 1

σα̂ − σ =
1

2
+ σ

−np1 + 2n

[(n+ 2)p1 − 2n]p1

σ<1,2−p160

>
1

2
+

−np1 + 2n

[(n+ 2)p1 − 2n]p1

>
(n+ 2)p21 − 4np1 + 4n

[(n+ 2)p1 − 2n]p1
=: f(p1).

If n 6 6, then f(p1) is decreasing in p1 on the interval [(3n+ 2)/(n+ 2), 4n/(n+ 2)].

Moreover, the case n > 6 is excluded from the case (3n+ 2)/(n+ 2) 6 p1 6

4n/(n+ 2) since

p1 >
n

2
>

4n

n+ 2
∀n > 6.

Thus, for p1 ∈ [(3n+ 2)/(n+ 2), 4n/(n+ 2)]

σα̂ − σ > f
( 4n

n+ 2

)
=
n+ 2

4n
.

Finally, after a finite number of iterations we get u ∈ N κ̂,2(I,H2(Ω)) and again by

Lemma 3.7 the first statement of Theorem 2.1 is proved.
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Case 2 : p1 = (3n+ 2)/(n+ 2). In this case, we cannot use Lemma 3.5 and finally

not follow Step 1 in Case 1 in Section 4 since

G(0) = G
( 2p1
(n+ 2)p1 − 2n

)
= 0 if p1 =

3n+ 2

n+ 2
.

So we use Lemma 3.6 and a slightly different method than before.

By Lemma 3.6 this is proved if κ̂ 6 1
2 κ̃p

′
1. So it remains to prove it for κ̂ >

1
2 κ̃p

′
1,

i.e., 2τ = κ̃p′1.

As in Case 1 our first aim is to show (4.4). By (2.2) it suffices to prove that

(4.14) u ∈ Nσuni,p1(I;Vp1(Ω))

for some

σuni >
n+ 2− 2p1

2p1
.

Since 2τ = κ̃p′1 and p1 − 1 = 2n/(n+ 2), we can easily see that by (3.39)

f(σ̃) :=
2τ

p1
=
κ̃p′1
p1

=
κ̃

p1 − 1
=





σ̃(1− τ̃ ) +
τ̃

n
− µ if 0 < σ̃ <

1

n
, τ̃ > 0,

1

2n
+

1

2
σ̃ if

1

n
6 σ̃ <

1

p1
, τ̃ > 0,

1

2n
if σ̃ = 0, τ̃ = 0.

Here µ > 0 is a real number arbitrarily close to 0. Then by Lemma 3.6 we get that

if u ∈ N σ̃,p1(I;Vp1(Ω)), then

u ∈ Nf(σ̃),p1(I;Vp1(Ω)).

We can easily see that the mapping σ̃ 7→ f(σ̃) is a contraction on (0, p−1
1 ). Moreover,

it is clear that if 0 < σ̃ < n−1, then

f(σ̃)− σ̃ = −σ̃τ̃ + τ̃

n
− µ = τ̃

( 1

n
− σ̃

)
− µ > 0,

while if n−1 6 σ̃ < p−1
1 , then

f(σ̃)− σ̃ =
1

2n
+

1

2
σ̃ − σ̃ =

1

2

( 1

n
− σ̃

)
6 0.

Hence, we can use Lemma 3.6 iteratively for 0 < σ̃ < n−1 and see that the fixed

point of the mapping σ̃ 7→ f(σ̃) is arbitrarily close to n−1.
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Finally, we can get the desired result (4.14) if (n+ 2− 2p1)/(2p1) < n−1, which

is possible since if n 6 4, then

n+ 2

2p1
− 1 <

1

n
⇆

(n+ 2)2

2(3n+ 2)
<

1 + n

n
⇆ n3 − 4n2 − 6n− 4 < 0

and if n > 5, then the case p1 = (3n+ 2)/(n+ 2) is excluded from consideration

by (2.7) and Remark 4.1. Thus, we get (4.4).

So if p1 = (3n+ 2)/(n+ 2) and p1 > 2, then we can prove the first statement

of Theorem 2.1 by following the same argument as in Step 2 above because Lem-

mas 3.7, 3.8 hold even for p1 = (3n+ 2)/(n+ 2).

If p1 = 2 and n = 2, then we will use Lemma 3.9 instead of Lemma 3.8. By

Lemmas 3.9, 3.7 and Proposition 2.2 it follows that for σ ∈ [ 12 , κ̂]

u ∈ Nσ,2(J,H2(Ω)) ⇒ u ∈ Nσ
α̃
,2(I,H2(Ω)),

where

σα̃ :=
1

2
+ σ

(2(1 + δ)− p2
p2δ

+
1

2

)
.

Direct calculation shows that for σ < 1

σα̃ − σ =
1

2
(1− σ) + σ

2(1 + δ)− p2
p2δ

σ<1
> σ

2(1 + δ)− p2
p2δ

σ>1/2

>
2(1 + δ)− p2

2p2δ
> 0.

Finally, after a finite number of iterations we get u ∈ N κ̂,2(I,H2(Ω)) and again by

Lemma 3.7 the first statement of Theorem 2.1 is proved. �

5. Proof of the second statement of Theorem 2.1

To begin with, we claim that the second statement of Theorem 2.1 follows if we

prove that for an interval (0, t2) satisfying (3.9)

(5.1) u ∈ N κ̂,∞(0, t2;H2(Ω)) ∩N κ̂,2(0, t2;V2(Ω)), Vp(z)(Du) ∈ N κ̂,2(0, t2;L
2(Ω)).

Indeed, if (5.1) holds, then we can choose t1 ∈ (0, t2 − h) such that

‖dhu(t1)‖2,Ω 6 chκ̂.

So we can consider t1 as an initial time and hence, get (5.1) by using Lem-

mas 3.5, 3.6, 3.7 over a new interval (t1, t3) satisfying (3.9) instead of (0, t2).

Thus, after a finite number of iterations we can get (2.13).
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Furthermore, if (3.45) holds with τ̂ arbitrary close to κ̂ for κ̂ < 1
2 and τ̂ = 1

2 for

κ̂ = 1
2 , then from the arguments in Sections 3, 4 we can prove (5.1) without any

difficulty. Thus, the rest of this section is devoted to proof of the validity of (3.45)

for such τ̂ .

Lemma 5.1. Let p(z) > (3n+ 2)/(n+ 2), t1 = 0 and F ∈ N κ̂,2(0, t2;L
2(Ω)) with

κ̂ < 1
2 . Let u be a weak solution to problem (1.1) with u0 ∈ Vp+ . Then we have for

sufficiently small h ∈ (0, t2) and for all τ̂ ∈ (0, κ̂)

(5.2) ‖u(h)− u0‖22 6 ch2τ̂ ,

where c = c(n, p−, p+, c∗, ‖F‖κ̂,2, ‖Du0‖p+(1+δ)).

Moreover, if F ∈ N1/2,2(0, t2;L
2(Ω)) and sup

h∈(0,T )

h−1
∫ h

0
‖F‖22 dt <∞, then

(5.3) ‖u(h)− u0‖22 6 ch.

P r o o f. We use basically the ideas in the proof of Lemma 4.1 of [11], with some

modifications.

Recalling that u can be considered representative continuous in [0, T ] with value

in L2(Ω) yields that for sufficiently small h ∈ (0, t2)

(5.4) ‖u(h)− u0‖22 = (u(h)− u0, u(h)− u0) = ‖u(h)‖22 − ‖u0‖22 − 2(u(h)− u0, u0)

=: I10 + I11.

It follows from (3.2) and Young’s inequality that

(5.5)

I10 =

∫ h

0

d

dt
‖u(t)‖22 dt = −

∫ h

0

∫

Ω

S(p(z),Du(t)) : Du(t) dz +
∫ h

0

∫

Ω

F : Du(t) dz

(3.2)

6 −c
∫ h

0

∫

Ω

|Du|p(t) dz + ch+ c

∫ h

0

∫

Ω

|F |p′(t) dz.

The term I11 can be rewritten as follows:

I11 = −2

∫ h

0

〈 d

dt
u(t), u0

〉
1,p+

dt 6 c

∫ h

0

‖∂tu(t)‖V′

p+
‖u0‖Vp+

dt.

On the other hand, proceeding as in the derivation of (3.11) with p+ instead of p1,

we arrive at

(5.6)

∫ h

0

‖∂tu(t)‖V′

p+
dt 6 C

∫ h

0

(1 + ‖|Du|p(t)−1‖p′

+
+ ‖u(t)‖p1−1

1,p1
+ ‖F (t)‖p′

+
) dt.

1051



Here we note that the constant C in (5.6) depends on sup
t∈(0,h)

‖u(t)‖2 by (3.11) and
hence on ‖F (t)‖p′

1
via (3.8). Hence

(5.7) I11 6 c‖u0‖Vp+

∫ h

0

(1 + ‖|Du|p(t)−1‖p′

+
+ ‖u(t)‖p1−1

1,p1
+ ‖F (t)‖p′

+
) dt

6 ch‖u0‖p+

Vp+
+ ε

∫ h

0

(1 + ‖|Du|p(t)−1‖p′

+
+ ‖u(t)‖p1−1

1,p1
+ ‖F (t)‖p′

+
)p

′

+ dt.

By Korn’s inequality and the trivial inequality (p1 − 1)p′+ < p1 it is clear that

(5.8)

∫ h

0

‖u(t)‖(p1−1)p′

+

1,p1
dt 6 c

∫ h

0

∫

Ω

|Du(t)|p1 dz.

By the trivial inequality (p(t)− 1)p+/(p+ − 1) 6 p(t) we have

(5.9)

∫ h

0

‖|Du|p(t)−1‖p
′

+

p′

+,Ω dt 6 c(p+)

∫ h

0

∫

Ω

(1 + |Du|)p(t) dz.

Joining (5.7) with (5.8) and (5.9) leads us to

(5.10) I11 6 ch‖u0‖p+

Vp+
+ ε

∫ h

0

∫

Ω

(1 + |Du|p(t) + |F (t)|p′

+) dz.

Substituting (5.5) and (5.10) into (5.4) and using p′(t) 6 2, we conclude that

(5.11) ‖u(h)− u0‖22 6 ch‖u0‖p1

Vp1
+ c

∫ h

0

∫

Ω

(1 + |F (t)|2) dz.

If F ∈ N κ̂,2(0, t2;L
2(Ω)), by embedding (2.2) and Hölder’s inequality we obtain

that F ∈ L2/(1−2τ̂)(0, t2;L
2(Ω)) for any τ̂ ∈ (0, κ̂] and

(5.12)

∫ h

0

∫

Ω

|F (t)|2 dz 6 c

(∫ h

0

‖F (t)‖2/(1−2τ̂)
2 dt

)1−2τ̂

h2τ̂ .

It is clear that by p1 6 p+(1 + δ) and the condition u0 ∈ Vp+(1+δ)

(5.13) h‖u0‖p1

Vp1
6 Ch.

Joining (5.11) with (5.12) and (5.13) we have the desired estimate (5.2).

Next let us prove estimate (5.3). We recall that by the assumption of Theorem 2.1

(5.14) sup
h∈(0,T )

1

h

∫ h

0

‖F‖22 dt <∞.

Joining (5.11) with (5.14) and (5.13) we have the desired estimate (5.3). �
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6. Proof of Theorem 2.1: the case κ̂ = 1

By (2.12) with κ̂ < 1 we have u ∈ N2κ/p1,p1(J,Vp1(Ω)) for any
1
2 < κ < 1 and so

by Nikolskii embedding (2.3) it follows that

(6.1) u ∈ L∞(J,Vp1(Ω)).

On the other hand, we have u ∈ Nκ,p′

1(J,V ′
p1
(Ω)) since u ∈ Nκ,∞(J,H2(Ω)) for

any κ ∈ (0, 1) by (2.12) with κ̂ < 1 and Nκ,∞(J,H2(Ω)) ⊂ Nκ,p′

1(J,V ′
p1
(Ω)),

while ∂tu ∈ Nκ,p′

1(J,V ′
p1
(Ω)) by Lemma 3.8 and (2.12) with κ̂ < 1. Hence, we

get u ∈ N1+κ,p′

1(J,V ′
p1
(Ω)), which together with Proposition 2.2 implies that u ∈

Nα,2(J,H2(Ω)) for all α ∈ (1, 1 + p−1
1 ). Hence, we have

(6.2) ∂tu ∈ Nα−1,2(I,H2(Ω)) ⊂ L2(J,H2(Ω)).

From (6.2) it follows that

(6.3)

∫

Jh

h−2‖dhu(t)‖22 dt 6 C.

Thus, from (3.17) it follows that

sup
t1∈Jh

h−2η‖dhu(t)‖22 + h−2

∫

Ω×Jh

η(|dhVp(z)(Du)|2 dz + |dhDu|2) dz

(3.56)

6 C + ch−2

∫

Jh

‖dhF‖22 dt+ c

∫

Jh

‖∇u(t)‖p1/(2p1−n)
p1

h−2‖dhu(t)‖22 dt.

This together with (6.1), (6.3) implies (2.12) with κ̂ = 1. �

7. Proof of Corollaries 2.1 and 2.2

Here the notations are the same as in the previous section.

P r o o f of Corollary 2.1. By Theorem 2.1 with κ̂=1 we have ∂tu∈L∞
loc(0, T ;L

2(Ω))

and u ∈ L∞
loc(0, T ;W

1,p(x,·)
0 (Ω)) because of (3.6) and the embedding

W 1,2
loc (0, T ;L

2(Ω)) ⊂ L∞
loc(0, T ;L

2(Ω)).

Let J = (t1, t2) be an interval as before. Thus, we can consider that for a.e. t ∈ J ,

u(t) is a weak solution to the steady problem




−divS(p(t),Du(t)) + (u(t) · ∇)u(t) +∇π(t) = divF (t)− ∂tu(t), in Ω,

div u(t) = 0, in Ω,

u = 0, on ∂Ω.

So we can apply the space-regularity result, Theorem 2.3 in [35] and hence get (2.16).
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In particular, from Case 1 in Section 4 we get that Vp(z)(Du) ∈ W 1,2
loc (Ω) for a.e.

t ∈ J and hence (2.15). �

P r o o f of Corollary 2.2. It is well known that if p− > 1
2 (n + 2), then prob-

lem (1.1) has a unique solution for u0 ∈ H2(Ω), see [24]. So it suffices to prove this

Corollary for p− < 1
2 (n+ 2). From Lemmas 3.5, 3.6 and Step 1 in Cases 1 and 2 in

Section 4, we can see that if F ∈ N τ,2(t1, t2;L
2(Ω)) with τ > 1

4 (n+ 2− 2p1), then

(7.1) u1, u2 ∈ L2p1/(2p1−n)(J,Vp1(Ω)) ⊂ L2p−/(2p−−n)(J,Vp−
(Ω)).

In particular, we note that this continues to hold for t1 = 0 if u1(0) = u2(0) ∈
Vp+(1+δ)(Ω).

Since the rest is similar to the argument in [10], [11] we will omit it. �

Remark 7.1. Corollary 2.2 continues to hold for F ∈ N τ,p′

−(0, T ;Lp′

−(Ω)) with

τ > τuni := max{0, (p− − 1)((n+ 2)/(2p−)− 1)}.
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