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Abstract. We show time regularity of weak solutions for unsteady motion equations of
generalized Newtonian fluids described by p(z,t)-power law for p(z,t) > (3n+2)/(n + 2),
n > 2, by using a higher integrability property and fractional difference method. Moreover,
as its application we prove that every weak solution to the problem becomes a local in time
strong solution and that it is unique.
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1. INTRODUCTION

In this paper, we consider the initial-boundary value problem

Ou —divS(p(z,t),Du) + (v - V)u+ Vr = =divF, inQx (0,7),

divu = 0, in Q x (0,7,
(1.1)

u(0) = uo, on

u =0, on 90 x (0,7T),

where u is the velocity, m the pressure, F' a prescribed symmetric n X n matrix-valued
function and ug an initial data, Du := £(Vu + (Vu)') and Q a bounded domain

in R™. We assume that the extra stress tensor S(p(z,t), Du) satisfies the followings

(1.2) IV aS(p(x,t), A)] < e (1 +|A]?)PD=2/2,
- 0S;; 1), A
1z Y BulEOAD g g s 10 a0 B
kel ij=1 ki
(1.4) 0pS(p(x,1), A)| < cul(L+ |AP)P@D=D2In(1 + |AP),
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where ¢, > 1, (z,1) is a space-time point in Qx (0,7) C R"*!, p(x,t) > 1 a prescribed
function and A, B are the real symmetric n X n matrices.
The prototype of S(p(x,t), Du) satisfying (1.2)—(1.4) is the following:

S(p(z,t),Du) = (1 + |Du|2)(p(“’7t)*2)/2pu.

System (1.1) arises from electrorheological flow (see [29]), thermo-rheological flow
(see [4]), chemically reacting non-Newtonian flows (see [13]) and flows of generalized
Newtonian fluids with concentration dependent power-law, see [1], [12]. We refer
to [32], [33], [34], [35], [36] for recent results on the existence and regularity for
a steady version of system (1.1). Note that regularity problems connected with
the p(z)-Laplacian have been studied in the early 20th century by Acerbi-Mingione,
see e.g., [2], [3]

The existence of weak solutions to system (1.1) was proved in [18] for p = const. >
2n/(n+ 2) and in [15], [28], [29], [41] for p(z,t) # const. under various assumptions
on p(z,t) and boundary conditions.

Time regularity of weak solution to the parabolic and Navier-Stokes equations is
a well-known topic, see [19], [39], [40].

As mentioned in [10], for time regularity of weak solution to system (1.1), the
main difficulty is that when using formally d3u as a test function of the system, we
cannot estimate the term fOT Jo IVul|dpu|? dz dt in terms of known a priori estimate,
at least without some additional information such as p > 3(n+2). To overcome the
difficulty, the authors in [10] proposed an idea that it would be possible to get some
information about fractional derivatives in time of any weak solution using known
information about the solution. Thus, this method needs iteration for improving of
time regularity. Based on the idea, they proved in 3D that if for p = const. > 1—51 the
extra tensor S(p, -) satisfies (1.3), (1.2) and in addition

(1.5) |S(x,t1, A) — S(x,t2, A)| < |t1 — to|(1 4+ |A])P2|A], Tk € (0,1],

and div F' € Nl';f(f : L2(Q)), then every local in time weak solution u satisfies

(1.6) we NES(I,LA(Q)) N NEAH L WH2(Q)) N N2P2 (1 whe(Q)),

loc loc loc

where the spaces N|"'7(I; X') are Nikolskii ones; for its definition see Subsection 2.2.

Using this method with slight difference, the authors in [11] also showed for p =
const. > & in 3D that if div F € NPT, V,(Q)), then
(1.7) ue NY22(0,T; L*(Q) N NY22(0,T; V() N NYPP(0,T;V,(Q))
provided that ug € V,(£2). For the definition of V,, see Subsection 2.2.
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This method was applied by several researchers to other problems. The authors
in [14] used a similar iterative approach to get the interior regularity of time deriva-
tives of local weak solution for a symmetric parabolic system of p-Laplace type.
Novelty of the paper is to estimate mis-matching lower-order terms stemming from
using a cut-off function in space due to localization. The method of differences in
time was also used in [20] to get regularity for time derivatives of a weak solution
for a symmetric p-Laplace system or models for non-Newtonian fluids like (1.1) with
p = const. without convective term. In [21], [22] a similar approach was used to es-
tablish time regularity and uniqueness for Cahn-Hilliard-Navier-Stokes system with
shear dependent viscosity, see also [27].

Time regularity of weak solution is not only independent of interest but used to
get other interesting results.

The first example is weak-strong regularity. By combining (1.6) and W?9-regu-
larity for steady problem corresponding to (1.1) with constant p, Beirdo da Veiga,
Kaplicky and Ruzicka in [5] proved that every local in time weak solution to (1.1)
with p = const. > (3n +2)/(n + 2), n > 2 becomes a local in time strong solution.

The second example is uniqueness of weak solution. In [10] for p = const. > %
and n = 3 there was proved uniqueness of local in time weak solution in the sense
of trajectories in the sense that if u,v are weak solutions and © = v on an interval
[t1,t2] C [0,T), then w = v on [t1,T). In [11] this was generalized to global in time
one for p = const. > & provided that u(0) € V,(92).

Besides, this is used in [23] to obtain full regularity of systems similar to (1.1) with
2 < p = const. < 4 in 2D and in [9] to compute bounds of dimension of attractor to
system (1.1) with p = const. > 12 in 3D.

To our knowledge, there seems to be no work on time regularity of weak solution
to problem (1.1) with nonconstant p(x,t). So we first show time regularity like (1.6)
and (1.7) of a weak solution to the problem in n-D, n > 2. This is achieved by com-
bining the method in [10], [11], which is based on iteration for gradually improving
time regularity of convective term, with a higher integrability condition.

Here it is worth noting that condition (1.5) from [10] is not sufficient in our
problem in which S(p(z,t), ) depends on p(z,t). Due to p(x,t)-dependence of
S(p(z,t),Du), it seems to be impossible to show time regularity of any weak so-
lution to problem (1.1) with p # const. by means of time difference method without
further assumption. In fact, using time difference yields

S(p(z,t+ h),Du(z,t + h)) — S(p(z,t), Du(z,t))
= (S(p(xa t+ h)v Du(x, i+ h)) - S(p(x, i+ h)a Du(x, t)))
+ (S(p(x,t + h),Du(x,t)) - S(p(x,t),Du(x,t))).
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The first term on the right-hand side of the previous identity is controlled by (1.2)
or (1.3) as the case p = const. The main obstacle arises from the second term on the
right-hand side. By (1.4) the term is estimated as follows:

[S(p(z,t+ h), Du(z,t)) — S(p(x,t), Du(z,t))]|

_ / S (ol r(t -+ h) + (1 = 1)), Dula, 1) dr

1
< ch/ (1 + |Du(z, t)|?)P@rt+MN+A=)=1/2 1y (1 4 |Du(x, t)|?) dr.
0

However, this cannot be estimated by an a priori estimate (e.g., see (3.8) below) on
a weak solution due to the logarithmic term. So, in order to estimate the term, we
need higher integrability of weak solutions to problem (1.1). For more comprehen-
sion, see the estimate on the term J; in Subsection 3.4.

The rest of the argument is similar to the ones in [10], [11]. The difference is that
we have to introduce localization argument such that the oscillation of p(x,t) is small
enough to use a higher integrability result and that we consider n(> 2)-D domain
instead of 3D. In particular, for n = 2 we have to use slightly different methods
from [10], [11] since in that papers the condition p > 2 was basically used, while the
lower bound on p(z,t) in this paper is p = (3n + 2)/(n + 2) = 2 for n = 2. For more
detail, see Lemma 3.9 and Subsection 4.2.

As an application of the time regularity results we show uniqueness of weak
solution similar to [10], [11] for p(z,t) > (3n+2)/(n+2). Also we show weak-
strong regularity in the sense that every weak solution to (1.1) becomes local in time
strong. This is achieved by combining the above and space-W?%-regularity results
from [35] for a steady problem corresponding to (1.1). Uniqueness of weak solution
to system (1.1) for p = const. > %(n + 2) and up € L?*(Q2), divug = 0 is well-
known, see [24], [25]. For regularity results of the problem with constant p we refer
to [7], [17], [25], [26]. Ruzicka in [29] proved the existence of unique global strong
solution for Dirichlet boundary condition when

9 3(3 —p4)
= <po < p(at) < pyp € et
p- < pla,t) < pst 305 2p,)

1 and wg € WHPEO(Q),  divug = 0.
For a 3D-space periodic boundary condition, short time existence of unique strong

solution for large data to system (1.1) is proved in [30] under the restriction

3
5 <p- Sp(x,t) <p+ <27

and in [17] under the restriction

7
= <p- <pl,t) <py < 2.
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The paper is organized as follows. In Section 2, we give the main result, notations
and some properties of Nikolskii spaces and outline the strategy of the proof of the
main result. Sections 3—6 are devoted to the proof of the main results. More precisely,
in Section 3 we show auxiliary results such as an a priori estimate, improvement of
regularity for time derivative of velocity, time regularity of the convective term and
time regularity of velocity. In Section 4 we give the proof of the first statement of The-
orem 2.1 with ¥ < 1, in Section 5, the second one and finally in Section 6 the proof of
the first statement of Theorem 2.1 with ¥ = 1. In particular, the argument is divided
into two categories: p > (3n+2)/(n+2) and p = (3n +2)/(n + 2). Section 7 is de-
voted to the proof of uniqueness of weak solution and of the weak-strong regularity.

2. THE MAIN RESULT AND PRELIMINARIES

2.1. Notations. We denote the space-time points in Q x (0,7) C R"*! by
z = (x,t) and employ a shorthand notation dz = dxdt. From now on, let
be a bounded domain in R, n > 2, and Qp :=Q x (0,7).
n
For n x n-matrices F, H, denote F' : H = Y F;;H;;, |F| = (F : F)Y/2. For

7,j=1
vectors a and b, we denote their tensor product by a ® b := (a;b;)nxn and their

symmetric tensor product by a ®b:= 2(a®b+ (a®b)").

In this paper, A CC B means that A is bounded and A C B.

We use universal constants ¢ and C, the dependence on certain parameters of
which is expressed, for example, by ¢ = ¢(n, p).

For p € L*>(Qr), p > 1, define

(2.1) p_:= esginfp(z), p+ = esssupp(z),
T

Qr
nnpp if p = const. < n, p(2) £ p(2) > 1
o — N 1 U p(z )
* Pyp— / py— R
P =3 Vqe(1,00) if p=const. = n, P(2) = q plz) — 1 )
0, otherwise.
00 if p = const. > n,

We do not use different notation for scalar, vector- and tensor-valued functions
(or spaces) as far as there will be no misunderstandings.

2.2. Function spaces. By L?(0,T; X) we denote the space of all Bochner mea-
surable functions f: (0,7) — X such that

T 1/q
oz = ([ 1@l ar) <o if1<q<oe,
0

£l (0,7:x) = esssup IF@x < oo if g = oo
te

)
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Next we recall the definition of Nikolskii space. Let I C R be an arbitrary time
interval. For h > 0 we set

In:={teI:t+hel}, d'f(t):=f(t+h)—f(t), tecl.
Then for ¢ € [1,00], s € (0,1) we define Nikolskii space by

N> X) = A{f € LU X): || flls,g < 00},
1 flls.q = IFllLacrsx) +sup h™*ld" fll Lo, x)-
h>0

For general o = k+s, where k € N and s € (0,1), we define N9(I; X) as the space of
all functions with (d/dt)? f € LI(I; X) forj =0,...,k—1and (d/dt)*f € N®4(I; X).
So the space with s = 1 is equivalent to Sobolev space W4(I; X).

Let us recall some properties of the Nikolskii space to be used later.

Proposition 2.1 ([6], [31]). Let s € (0,1), ¢ > 1. Then

11
(2.2) NS X) s L'(I; X)  if=>-—s>0,
T q

1
(2.3) N[ X) = C"(I;X) ifa=s— phe 0.

Proposition 2.2 ([10], Lemma 2.3). Let H be a Hilbert space and X a separable
Banach space continuously and densely embedded into H, and X* a dual space of X .
Then for s, > 0

(2.4) N*9([; X) N N™ (I; X*) = NET/22( f).

For p € L>®(Qr), p > 1, the variable exponent Lebesgue space LP(*)(Qr) is
defined by

L”(z)(QT) = {f: Q= R: o) (f) ;:/Q |f|p(z) dz < oo}

T
endowed with the norm || f[/,(.) 0, := inf{\A > 0: 0,0.)(f/A) < 1}. We denote the
usual Lebesgue and Sobolev spaces by (LP(Q),|[lp.0), (W5P(Q),[|"|lk.p.c), respec-
tively, for constant p. We define Wg’p(Q) as the closure of C5°(Q) in W*P?(Q). Let
us define

Hp(Q) :={f € LP(Q): f-v]oq =0, div f =0},
Vo(Q) == {f € Wy P(Q): div f = 0}.

Let V() be dual to V,(Q2) and denote the dual product between V,(€2) and V,(€2)
by <'a '>1,p‘
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2.3. The main results.

Definition 2.1. Assume that S(-,-) satisfies (1.2) and (1.3) with 2n/(n + 2) <
p(z) < oco. Let F € LYQr) and u(0) € Ha(2). A vector-valued function
u € L>®(0,T;Ho(Q)) with u, Vu € LPZ)(Qr) is called a weak solution to (1.1)
if the identity

(2.5) —/ u- Orpdz + S(p(z), Du) :Dgpdz—/ (u®u): Dpdz
Qr Qr Qr

= F:Dgpdz—l—/uo-ga(O)dx
Qr Q

holds for all ¢ € C*°(Qy) with dive = 0 and suppp C Q x [0,T).

Before we state the main result, we give the assumptions on p(z) for concise
statement of the result: let function p: Q7 + (1,00) be such that

(2.6) Ip(z1,t1) — p(22, t2)| < L([t1 — t2] + |21 — 22])

and in addition

S3MT2 93y
(2.7) p(2) n+2
> P11 if n > 5,
where
n? + 6n T
2.8 =——4+R+ =
28) P sy TR
o n n 2 3\1/2 1/3 _ (n®*+6n)?
Ri=(P-g+((P-3+9) -7) +Q)" Pi=gm i
0. (—2n2 + 6n)(n? + 6n)  —2n*46n  (n®+6n)?
o 6(2n +4)2 ’ T3(2n+4)  9(2n+4)2°

Remark 2.1. In Subsection 4.1, we will show that for n > 5

3n+2<n< <n—|—2
nt2 S SPhut 2

(2.9)
The main results are the followings.

Theorem 2.1. Assume that
(A1) Q is a bounded domain in R™, n > 2, with C%!'-boundary.
(A2) The extra tensor S(p(z), Du) satisfies (1.2)—(1.4).
(A3) A function u is a weak solution to system (1.1) such that for some § > 0

(2.10) Vu € PP+ Q).
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(A4) A function p: Qr + (1, 00) satisfies (2.6), (2.7) and in addition, for allt € [0,T)
and 0 from (2.10)

210 1 mingeo p(2) — 2
30 migp(e) min {1, TS i) > 2
maxp(z) —minp(z) <4
50 minp(z) if minp(z) =2,
maxp'(z) < minp'(z)(1 + ).

Then we have:
(1) If F € NJ2(0,T; L2(Q)) with some & € (0,1], then

loc

(2.12) w e NE22(0, T3 Hao(Q))NNEZ(0, T3 V2 (), Vi) (Du) € NE2(0,T; LA(9)),

loc loc loc

where

V(o) (Du) := (1 -+ [Duf?) P2 =2)/4Dy,

(2) Ifug € Vp, (Q) and F € N®2(0,T; L*(Q)) with some & € (0, 4] and in addition,

1
sup / |Fl|I2dt < oo with? = =
he(0,T) h 2’

then

(2.13) w € N0, T; Ha(Q))NNT2(0,T5 V2(R)),  Vi(oy(Du) € N72(0,T; L*(Q)),

1
2"

where T is arbitrarily close to k if k < % and equals to % ifk =
Remark 2.2. The appearance of 6 > 0 in Theorem 2.1, i.e., condition (2.10), is
needed only for p(z) # const. Hence, if n = 3, then Theorem 2.1 coincides with the

results from [10], [11].

Remark 2.3. It is not yet known how to get condition (2.10). In fact, in [37]
we showed that the condition holds under some assumptions, but there is a serious
mistake in the proof.

It is worth noting that in [16], [38], C1:*-continuity of solution to system (1.1)
in 2D with periodic or Dirichlet boundary condition is shown. We also note that
n [11], a higher integrability in time for system (1.1) with constant p is proved.

In particular, we would like to emphasise that recently the authors in [8] have
shown a fractional (time) differentiability of the p(x,t)-Laplacian system. However,
it is impossible to apply their method to our problem. The reason is that the nonlocal
characteristic of pressure for unsteady flow problem prevents us to use localization
argument for space used in the paper.
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For system (1.1) even with constant p it seems to be hard or even impossible to
get (2.10) by means of reverse Holder’s inequality though it is well known for steady
versions, see e.g., [2], [35]. This is the reason why the nonlocal characteristic of pres-
sure for unsteady flow problem also prevents us to use localization argument for space,
which is essential in obtaining a reverse Holder’s inequality, see [29], Chapter 4, [38].
Within our knowledge, if we consider suitable weak solution for system (1.1), then
it seems to be possible for us to get (2.10) via reverse Holder’s inequality.

Remark 2.4. To simplify the calculation, we need condition (2.11) that the
oscillation of p(z) on § is not very large. In fact, if not, it is necessary to introduce
a localization argument on the space domain 2 such that the oscillation of p(z) on
is small enough, for example, such as (3.9). However, the localization is impossible
due to the same reason as in Remark 2.3.

Remark 2.5. Theorem 2.1 also holds for F € NZ/P-P"(0,T;LP-()) with
& € (0,%]. Moreover, if p = const., ug € V,(Q2) and F € NP2 (0,T; LV (Q)),

sup h! foh ||FH£: dt < oo, then
he(0,T)

(2.14) we NY2%2(0,T; Ha () N NY22(0, T; Va(2)),
Vi) (Du) € NY22(0,T; L*(Q)),

which is Corollary 3.2 from [11].

Corollary 2.1. Let n = 3. Assume that the assumptions (A2)—(A4) in Theo-
rem 2.1 hold and ) is a bounded domain in R® with C*'-boundary and & = 1. In
addition, let divF € L>(0,T;L?()). Then for case (1) every weak solution u to
problem (1.1) becomes a strong one in a short time and moreover

(2.15) w € WhA(ty, ta; W22(Q), Vi) (Du) € WH((t1,12) x Q),
(2.16) u € WEh2(ty, to; WHPE)(Q) n T (Q))

for every small enough interval (t1,t2) C (0,T) and

z,) +p(z,-)—2’

ﬁ(xv ) = 2(}7(25, ) + 1) — M 7(%, ) = p(

where p is an arbitrary small positive real number if p(z,-) is a function in z and
w=0 if p(z,-) is a constant in x.
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Corollary 2.2. Assume that all the assumptions of Theorem 2.1 except the ones
of F hold. Assume that F € N™%(0,T; L?*()) with

n+2—2p,}

T > Tyni ;= Nax {0, 1

Let uy, uz be two weak solutions to problem (1.1) with u;(0) = u2(0) € V,, (146)(£2).
Then uy = ug on (0,7) x Q.

If uy, ug are two weak solutions to problem (1.1) that coincide on some [t1,t2] X
with 0 < t; < to < T, then uy = ug on [t1,T) x 2.

2.4. Strategy for the proof of Theorem 2.1. As mentioned in Section 1, our
method is based on the following idea: it would be possible for us to use iteration
for gradually improving regularity of fractional derivatives in time of the convective
term and so of any weak solution satisfying the higher integrability condition (2.10).

To begin with, we introduce the localization argument on a time interval on which
the oscillation of p(z) is small enough to use the higher integrability condition. This
enables us to show u € N'/22(J; L2(Q2)) (see (3.12)), which is a starting point.

Let us denote p; = érxlfjp(z) for a small J = (t1,¢2). Let I be such that I CcC J

and vary from step to step.

Let us outline the strategy for the proof of the first statement of Theorem 2.1 with
p(z) > Bn+2)/(n+2).

We note that the weak solution u to system (1.1) satisfies condition (2.17) provided
that o = %, v = 0, see Remark 3.1 for more details. Starting with it, we show that
if for some o € [1,1), v € [0,1),

(2.17) u e N72(J; Ha(Q)) N LPY A=V ( 0, (Q)),
then for 7(v) = min{&, x(7)} < 4 with some £(v) > 0 (defined by (3.35)),
(2.18)  we NTO(L;Ha(Q)) N NTOW2(1;),(Q)) N N2TOV/Pern (1, (Q)),

see Lemma 3.5. To prove (2.18) we obtain an explicit formula about fractional
derivatives in time of any weak solution from the first equations of (1.1) and higher
integrability condition (2.10), see Subsection 3.4, while showing: time regularity of
the convective term under condition (2.17), see Subsection 3.5.

We next use the boot-strap argument. By the validity of (2.17) with o = %, v =0,
(2.12) holds if k(0) > . If k(0) < &, then by (2.18) and Nikolskii embedding (2.2),
the exponent v from (2.17) is improved from 0 to 2+(0) > 0. This enables us
to get (2.18) with v = 2x(0). Furthermore, we can iterate the process above. If
K < £(70) for the limit bound, (7o), of improving x(7) in the iterative process, then
we arrive at (2.12) after a finite number of iterations.
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Thus, it remains to prove (2.12) when K > k(). To this end, we first show that
under condition (2.7),

(2.19) ue L/ =1y ().

For every weak solution u to problem (1.1) this holds true for p; > £(n -+ 2) since
2p1/(2p1 —n) < p1. Note that the condition p; = %(n + 2) is the critical bound for
uniqueness of the weak solution. But for p; < 3(n + 2), this is not trivial. So we
show (2.19) for p; < %(n + 2) under condition (2.7) by iteratively applying (2.18)
and Nikolskii embedding (2.2).

Once we have got (2.19), we next prove that if for some o € (0,1)

(2.20) u e N72(I; Ha(Q)) N L2P/Cr=nm)(1y, (Q)),
then for 7 := min{o, K}
(2.21) ue NT2(I; Ha(Q)) N NT2(I;Va(Q)) N N2/Prri([: ), (Q)),

see Lemma 3.7. Since u € N1/22(J; L?(12)), we can see from (2.21) that if & < 3,
then there holds (2.12), while if ¥ > %, then

(2.22) w e NV2S(1 Hy(@)ANYPP (L, (), Vi) (Du) € NY22(1, T2(9).
To proceed the argument, in this point we show that if for some o € (0,1)

(2.23) u € NT®(I;Ha(Q)) N N27/P1P1 (1), (), Vi) (Du) € N72(I; LA(Q)),
then for some 7(c) > 0

(2.24) du € NTOP(L VL (),

see Lemma 3.8. Since condition (2.23) with o = 1 is satisfied by (2.22), we get
dyu e NTA/2p (T, V,, (2)), which together with u € NYPrri(1V, () (see (2.22))
and Proposition 2.2 implies

u e N2+ (/241/p0.2(T 94,(Q)).

It is clear that £(1+ 7(3)+1/p1) > 1 and hence, this gives the improved regularity
of u better than u € N'/22(I;L?(Q)). Thus, for 0 = 3(1 + 7(3) + p;'), condi-

tion (2.20) holds and in turn we can get (2.21) and (2.24) if 1 (1+7(3) +1/p1) <&.
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Furthermore, by (2.24), (2.21) and Proposition 2.2 we have that if u € N%2(I,H2(f2))
with o € [1,&], then

= N1/2(1+T(a)+2a/p1)72([7 Ha(Q)).

Based on this iterative argument, we can get (2.12) after a finite number of iterations
by showing that
1 20
—(1+T(U)+—)—U c(p1,6,n) > 0.
2 b1
For the case p1 = (3n +2)/(n + 2), the idea is the same as above but the proofs
of (2.18) and (2.19) are different from before, relying essentially on the condition
= (3n+2)/(n + 2). For more detail, see Lemmas 3.4, 3.6, 3.9 and Subsection 4.2.
The second statement in Theorem 2.1 is proved by the same method with the help
of Lemma 5.1.

3. AUXILIARY RESULTS

In this section, we provide some auxiliary tools to be used for the proof of the
main result.

Since we are interested in time regularity, in the rest of the paper, we will omit the
notation of dependence on the space variable, such as p(t), u(t), S(p(t), Du(t)), F(t),
etc, if not differently specified or if something else is not clear from the context.

In this section, constants ¢9 > 0 are small enough and vary from line to line.

For simplicity we omit similar parts as in [10], [11] and emphasize different ones.

3.1. Some inequalities. We denote f = ¢ if there exist two positive con-
stants c1, co such that ¢1f < g < cof. We begin with introduction of the following
properties on S(p(t), A) which will be often used later.

Proposition 3.1 ([30]). Let A, B be the real symmetric n x n matrices. Assume
that S satisfies (1.2), (1.3). Then the following holds:

(3.1) S(p(t), A)] < (AP + 1),

(3.2) S(p(t), A): A= c(jAPY 1),

(3.3) (S(p(t),A) = S(p(t), B)) : (A= B) = (1+ AP + |B]*)*)"2/2|4 - B]?,
(3.4) [S(p(t), A) = S(p(t), B)| = (1 + |A]* + |B[)*O=2/2|4 - B,
(3-5) Vo) (A) = Vo (B)] = (1 + A +|B?)PO=2/%A - B,
(3.6) Vo (AP 2= [APD + AP, if p(t) > 2.
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Proposition 3.2 ([25], Chapter 5, Lemma 4.35). Let u € W, *(Q) and q €
[2,2n/(n —2)] for n > 3 and q € (2,00) for n = 2. Then there exists ¢ > 0 such that

(3.7) lully < cllulls |Vl

with « := (2n — q(n — 2))/(2q).

Indeed, this was proved for periodic boundary condition but is extended to our
case without any difficulty.
Let ¢t € [0,T). Then by standard method we obtain a priori estimate

d /
(3.8) 3 llulid+ / (Vyo(Du(®) P+ Du()PO+[Du(t)?) do < ¢ / [F(0)P® de+C.
Q Q

3.2. Localization. Let p = const. Then since u € LP(0,7;V,(Q)) and du €
LP(0,T; V,(§2)) for every weak solution u to problem (1.1), it follows from Proposi-
tion 2.2 that u € N'/2:2(0,T; L?(Q)).

But since v € LP~(0,7;V,_(2)) and dyu € LP+(0,T; V,, (Q)) (see [37]) for a func-
tion p(t), it is not clear whether u € N'/22(0,T; L*(Q)), which is a starting point
for the proof of Theorem 2.1. Thus, to proceed the argument we introduce a suitable
localization technique based on the higher integrability condition (2.10).

To begin with, we denote

pr:=_inf p(z), pa:= sup p(z) forzeQ, 0<t <t2<T
Qx(t1,t2) Qx(t1,t2)

and fix an interval (¢1,t2) such that for § from (2.10)

1 -2

55})1 min{l7 plT} if p1 > 2,
(39  A<p(l+d), p-p <y
) if p; = 2.
5 P1 1 p1
Due to (2.11), this means that oscillation of p(z) on time interval (¢1,t2) is not
very large. This localization is always possible due to (2.6). In particular, by (3.9)

and (2.10) we have
(310) Vu € LP2 (Q X (tl,f,g)).

The following lemma is used in the proof of time regularity for time derivative of
velocity.
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Lemma 3.1. Let 0 < t1 < t2 < T. Let assumptions (A1)—(A3) in Theorem 2.1
hold and p(z) > (3n+2)/(n+2). Then for almost all t € (t1,t2) there is a con-
stant Ct, depending only onn, p_, p., ¢, and (essentially bounded) ||u(t)||2 such that

(3.11) 10ru(®)llv,, @) < Co(l+ NIDulPO~ g + I, + 1F®)]lp)-

1,p1

Remark 3.1. In [37] we showed that du € LP2(0,T; V! (Q)) and

? U p2

10u(®)llvy, ) < Cr(L+ [IDuPO g + [fu(ONF,," + [F@)ly,).

1,p1

So Lemma 3.1 is its generalization in the sense of improvement of time regularity. In
particular, since u € LP(t1,1t2; Vp, (Q2)) by the definition and dyu € L 0,73V, ()
by Lemma 3.1, we obtain that by Proposition 2.2

(3.12) we NY22(t, to; L2()).

Proof. The proof is very similar to [37]. The difference lies only in using the
higher integrability condition (2.10) instead of a priori estimate (3.8). Multiplying
the first equation in (1.1) by ¢ € V;, (2) with [[¢]ly, () < 1 and integrating over Q,
we obtain that for almost all ¢ € (¢1,12)

(3.13) (Qwu(t), ¥)1,p, = /S , Du) Dapdx—l—/

(u®u): Dgpdx—i—/F Dy dx
Q

=1 + I + Is.
It is easy to see that for almost all ¢ € (¢1,t2)
(3.14) 11 < [ FIDeldo < [Pl
By (3.1), we have
(3.15) 1L < /Q(l + [Dul)PO Dyl da < [|(1+ [Dul)PO 7y,

Here we note that by (2.10) and the first inequality of (3.9), the right-hand side (RHS)
of (3.15) is bounded for almost all ¢ € (1, t2).
By the same argument as in [37], Lemma 3.1 the term I can be estimated as

follows:
(3.16) I < e+ [lu®)F],, ")
Gathering estimates (3.13)—(3.16), we get (3.11). O

In the rest of the paper, we denote J := (t1,t2) and Jj, := (t1,t2 — h) for simplicity.
From now on, constants ¢, C' depend on p_, p, n, ¢, and in addition, C on ug and F’
via a priori estimate (3.8) as well as on [[ul| L)+ () Via (3.10).

1030



3.3. A fundamental estimate.

Lemma 3.2. Let the assumptions (A2), (A3) and (2.6) of Theorem 2.1 hold and
p(z) = (3n+2)/(n+2). Then for almost all t € Jp, and all h € (0,t2 —t1) we have
(3.17)

d
Ellth(t)llg+/Q(|thp(t>(DU(t))|2+|thU(t)|p1 +[d"Du(t)[?) dw

< ch? / (IDu()P@CFD + 1) de + / ("FO)P +](d"u- V)u- d"u(®)]) de.
Q Q

Proof. Lett e J, be such that
(3.18) u(t) € WHPOUFD Q) y(t 4 h) € whpEDI+) (),

Recalling that dyu € LP: (t1,t2;V,,(€2)) by Lemma 3.1, testing (1.1) with
d="(d"u(t)) at times t and t + h and subtracting from each other yield that for
all h € (O,Ifg — f,l)

(3.19) (@d"u(t), d"u(t)) p, = /dh u(t)): d"Du(t) dz
/dh ):d"Du(t) dx—/dh w-V)u] - d"u(t) dz
=14+ I5 + Ig.

Let us estimate all the terms on the RHS of (3.19).
To begin with, we introduce the following decomposition:

(3.20) —d"S(p(t), Du(t)) = S(p(t), Du(t)) — S(p(t), Du(t + h))
+ S(p(t), Du(t + h)) — S(p(t + h), Du(t + h))
=:J1 + Jo.

Then by (3.3) and (3.5)
(3.21) / Jy o d"Du(t)dz > c/ Voo (Du(t + h)) — Vi) (Du(t)) > dz =: A(1).
Q

Here we note that V) (Du(t + h)) = (1 + |Du(t + h)|?)PO=2/4Du(t + h).
On the other hand, by (1.4),

1
(3.22) Jp = / %S(p(r(t FR) 4 (1= r)t), Dut + b)) dr
0
1
< ch/ (14 [Du(t + h)|?)PCEFFA=ID=1/21n(1 4 |Du(t + h)|?) dr.
0
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Now fix 8 > 0 such that 58 = dp; and let L be a constant from (2.6). Then taking h
with h < /L yields that by (2.6),

(3.23) p(r(t+h)+ (1 —7)t) <p(t)+Lh <pt)+ B Vrelo,1].

Using the known formula

(3.24) Ina < cga®?, fora>1,
we obtain
(3.22) 1
(3.25) Jo < ch/ (14 |Du(t + h)|?)PrEEN+A=I)=146)/2 4.
0
(3.23)

< ch[(1+ |Du(t + h)|2)(p(t)—1+25)/2]
< ch[(1+[Du(t + h)|* + [Du(t)|?) PO -1 H20072),

Hence, the decomposition p(t) — 1+ 28 = 1(p(t) — 2) + 3(p(t) + 453) and the choice
58 = dpy lead us to

(3.26) / Jo : d"Du(t) dx

(3.25)
< ch/(1+ Du(t + B2 + [Du(t)[2)PO-1+28)/2|gh Dy dz
Q

t
< Aé) + ch2/(|Du(t+ h)|p(t)+46 + |Du(t)|p(t)+46 +1)dz
Q
(3.23)
<A [ (ute+ WO £ D04 4 1) da
Q
Connecting (3.21) and (3.26) via the definition of I, we obtain

(327)  A(t) < cli+ch? / (Dult + B)PEHDOHD) | Dy PO+ 4 1) dg
Q

(3.9)
< eyt oh? / (Du(®)[PH O+ 4 1) da.
Q

Here we note that the second term on the RHS of (3.27) has meaning by (3.18).
Now we want to explain how to derive the second term on the left-hand side (LHS)
of (3.17) from A(t). By (3.5) and the condition p; > 2,

(3.28) Vo) (Dult + ) — Vi (Du(t))]?
> (L+|Du(t + h)|* + [Du(t)[)) PO =22 Du(t + h) — Du(t)|?
> (14 |Du(t + h)|? + [Du(t)>) P =221 d"Du(t) |?

(3.6)
> |d"Du(t)|? + |d"Du(t)|P.

(=]
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On the other hand, it is clear that

(3.29) |d" V(o) (Du(t))* < 2| V(o) (Dult + h)) = Vo (Du(t))[?
+ 2[Vp(ean) (Du(t + h)) — Vo) (Du(t + ))[? .

:ZJ3

Since

2

1
d
Js=2|Du(t + h)|? / 0+ |Du(t + h)|?) P+ =2)/4 q;.
0

<ch?|Dult + h)|2/01(1 + |Du(t 4 h)[2)PCEFNFA="D=2)/21n2(1 1 |Du(t + h)[?) dr,
we follow the same argument as in the estimate of Jo to get
(3.30) /Q Jsdz < ch? /Q (Du(t)PDO+ 4 1) da.
Thus, connecting (3.28), (3.29) and (3.30) with (3.27) yields that
(3.31) /Q(|dhv;,(t) (Du) > + |d"Du(t)|? + |d"Du(t)|P*) dx

< cly + ch? /Q (|1Du(t)[PO+) + 1) da,

Next we use Young’s inequality to get
(3.32) I < c/Q " ()2 da + i /Q " Du(t)? de.
By divd"u(t) = 0,
(3.33) Is = —/th[(u V)u) - d"u(t) de = —/Q(dhu V)u - d"u(t) dz.

Inserting (3.31), (3.32) and (3.33) into (3.19), we conclude that the desired esti-
mate (3.17) holds. This completes the proof. O

3.4. Time regularity of convective term. For our further argument, we will
get a general information on time regularity of the convective term. Our argument
is divided into two cases p1 > (3n+2)/(n+2) and p1 = (3n+2)/(n + 2) since
the methods in the cases are different. To begin with, we consider the case p; >
Bn+2)/(n+2).
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Lemma 3.3. Let the assumptions (Al) of Theorem 2.1 hold and supposed that
p1 > (3n+2)/(n+ 2). Let u be a weak solution to (1.1) such that for some o € [0, 1),
v € [0,1) we have

(3.34) u e NT2(J; Ha(Q)) N LPY/ = ( 13V, ()

and let

pil(n+2)p1 = 3n = 2] +7((n + 2)p1 — 2n]
(n+2)p? — (2n+ 2)p1 — 2n + v[(n + 2)p1 — 2n]

. 2p1
. = f - s
(335 x() i<
p1l(n —|2— 2)p1 — 3n] iy > 2p1 .
(n+2)pf — 2np1 — 2n (n+2)p1 — 2n
We set
(3.36) K= / \(d"u - V) - du(t)] da.
Q

Then for a.e. t € J, we have

(3.37) W 2K < eoh 250 ||d u(t)| Z% + c(e0)||Vu(t)| 51/(1_7%_2“(7)||dhu(t)||§

+ch ™2 | dMu(t) |3 + el Vu() |5/ 0.

Here p7 is the Sobolev embedding exponent defined in (2.1).

Proof. Following the argument on K; from [10], Lemma 10 and noting that
n > 2, we obtain (3.37) and hence will omit the details. O

Remark 3.2. We note that x(y) for n = 3 coincides with one from [10],
Lemma 10. It is worth mentioning that x(vy) defined in (3.35) is less than o.

Next we consider the case py = (3n+2)/(n+2). In this case, since k(0) = 0
for p1 = (3n+2)/(n+2), we can not use Lemma 3.3 for further purpose. So we
will use a different method using the higher integrability (2.10). This idea was first
introduced in [11] for constant p.

Lemma 3.4. Let the assumptions (Al) and (A3) of Theorem 2.1 hold and
p1 = (3n+2)/(n+2). Let u be a weak solution to (1.1) such that for some
T Lland 5 € [0,p; 1),

T€[0,§

(3.38) we NY22(J; Ha(Q) N NT2(J; Ha () N NPL(T; V,, (Q)).
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For p > 0 arbitrarily close to 0 and ¢ from (2.10) we set

2n _  2—20n_ . . 1
o+ T—p f0<o<—, 7>0,
n+2 n+2 n

(3.39) P S S L rles<t #s0,
n+2 n-+2 n p1
2né . ~
m ifo=0, 7=0.
Then
(3.40) (u- V)uEN"’pl(J,VI'JI( ).

Proof. Let he€ (0,t2 —t1) and ¢ € LP*(J,; Vp, (Q)) with ||wHLP1(J;Vp1 @) < 1.

Case 1: ¢ > 0, 7 > 0. In this case, following the argument from [11], Lemma 5.2
and noting that n > 2 and p; = (3n + 2)/(n + 2), we obtain (3.40) for % from the
first two lines of (3.39) and hence will omit the details.

Case 2: ¢ =0, 7 = 0. In this case, we also follow the same frame as in [11],
Lemma 5.2 with a slight difference in using (2.10) due to p1 = (3n+2)/(n + 2).
Condition (2.10) implies Vu € LP1(1+9)(J x Q) for some § > 0.

Let a =n/(n+ 2). Let us define

1 _, 1 20
50 m mto)
Hence, noting that a = n/(n+ 2) and p; = (3n + 2)/(n + 2) yields that

r 2np10 B 2nd
p(0)  (Bn+2)pi(1+6)  (Bn+2)(1+6)

(3.41)

Now we are in a position to estimate the convective term. Using Holder’s inequality
with a pair (p(0),p1(1 4 d)/a,00,p1(1 + 0)/a,p1) and an interpolation yields that

/Jh/ﬂdh[(u-V)u]-wdxdt‘ = /Jh/ﬂdh(uébu):vwdxdt‘
<e [ Iauly w

(1-a)5(0 1/p(0)
<e ( Hdh ” a)p( )dt> (
Jn
(146) a/(p1(1+9))
<l [ dt)
h

. =0 1/p(0)
<C( ||dhu||é“>p“dt) ,
Jn

(3.42)

(145) a/(p1(1+9))
1 + dt)
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where p7 is the Sobolev conjugate exponent to p; from (2.1) and in the last line we
use that

(3.8)
HuHLae(J Ha(@) S

u(®)lly,

C

)dt < ¢ JHu(t) e

[ Gt + 1)~ wio)i
JIn
Now we claim that p(0)(1 — a) > 2. Indeed, by the definition of p(0) and

a=mn/(n+2) we have

(B3n+2)(1+96)

PO —a) = I,

and direct calculation shows that a function f(d) := (3n + 2)(1 +6) — 2n(n + 2)¢

is decreasing in 6 > 0 and hence f(J) > 0 for § € (0, (3n + 2)/(2n? + n — 2)). This

proves the claim since the exponent § > 0 can be taken small enough by (2.10).
Since p(0)(1 —a) > 2, we get

~ 1/p(0)
(3.43) RHS of (3.42) = C(/ HdhuugHdhuuélfa)p(o)fz dt)
JIn

1/p(0)
1 0)—2 0
< o[ naragar)
h

O om0 —; opFo)

It is clear that

#(0) = 2 (3.41) 4nd .

p(0) (B3n+2)(1496)
This is just the third line of (3.39). Moreover, joining (3.42) and (3.43) yields (3.40).
Thus, Lemma 3.4 is completely proved. O

3.5. Time regularity of velocity. Hereafter, let I CcC J, I, CC Jy and
n € C*°(Jy) be a cut-off function such that n =1 in I}, and suppn C Jj,.

Lemma 3.5. Let the assumptions (A1)—(A3) and (2.6) of Theorem 2.1 hold and
p1 > (3n+2)/(n+ 2). Let (3.34) hold and k(v) be from (3.35). Then we have:
(1) If J cC (0,T) and F € N®2(J; L*(Q2)) with some & € (0,1), then for 7(v) :=
min{x(y), K}

(3.44) w e N™O2°(L: My (Q)) N NTOD2(I;Vy(Q)) N N2TOV/Prpi(1: ), (),
Vi) (Du) € NTOV2(1; L2(Q)).
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(2) If F € N%2(0,T;L?*Q)) with some & € (0,1), and for sufficiently small
h € (0,1) and for some 7 € (0, &]

(3.45) |d"u(0)||2.0 < chT,

then for 7(y) := min{k(y), 7} relations (3.44) hold with J instead of I.

Proof. At first, we are concerned with the case J CC (0,7'). Multiplying (3.17)
by 1 and integrating over J, we obtain

(3.46) sup n||dhu(t)||§ —l—/ n(|thp(t) (Du)|2 + |thu|p1 + |thu|2) dz

t1<t<ta—h QxJp

< ch? / (IDu®) PO 41y de ¢ [ [|du()|2dt
QxJp Jh

+c/ |d"FI?dz +c | Kdt,
QXJ},, Jh,

where K is from (3.36).
By the condition F' € N®2(J; L?(Q)) and Remark 3.2, we have

(3.47) h=27) / |d"F(t)?dz < Ch~rWIp%R L0,
QxJp

(3.34)
(3.48) R0 [ |jdhu)|2dt < chm T IR L C

From the definition of 7(v), (3.37) and Sobolev’s and Korn’s inequalities it follows
that

(3.49)
2O [ Kdt < egh W) / ld"u(t)||P dt
Jh Jh !
+ c(e0) g Va5 (2O d u(h)|3) dt
h
+ e 0)=TO) / (2 [ld"u()lI3 + [ Vu@)l5/ )
Jh
(3.34) 72 N
< CHeoh ™) [ ||d"Du(t)||2: dt
Jh
+ c(e0) ; Va5 O (2O d u(t)]3) dt.
h
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Inserting (3.47), (3.48) and (3.49) into (3.46) multiplied by A=27(") yields that

sup h=2 || dhu(t)||2 + B2 ) /Q (|d" Vi) (Du) > + |d"Du(t) ") d=
X I,

teln

h

< C/ [Vu(t)|[5:/ O (RO d u(t) |3) dt + C,
Jh

which together with Gronwall’s inequality implies (3.44).
Next we consider the case t; = 0. Integrating (3.17) over J, yields that

(3.50) O<tsgtp h|\dhu(t)||§+/ﬂ . (|d" Vi) (Du) | + |d"DulP* + |d"Dul?) dz
txtl2— XdJp

< ch2/Q (Pu(BPOT 4 1)dz 4 o
XJp

+C/ |d"F|?dz +c [ Kdt.
QXJ;L Jh

From (3.45) it follows that
(3.51) 27| d |2 < CR2TOIR?T L C.

From (3.50) together with (3.47), (3.49) and (3.51) we arrive at (3.44) with J in-
stead of I. O

Next we are concerned with the case p1 = (3n +2)/(n + 2).

Lemma 3.6. Let the assumptions (A1)—(A3) and (2.6) of Theorem 2.1 hold and
p1 = (3n+2)/(n+2). Let (3.38) hold and K be from (3.39). Then we have:

(1) If J cC (0,T) and F € N%%(J;L?(Q)) with some & € (0,1), then for 7 :=
min{rp} /2, R}

(3.52) we NT°(I; Ha () N NT2(I; Vo (Q)) N NZT/P1Py([ Y, (Q)),

Vo) (Du) € NT2(I; L*(2)).

(2) Ift; =0, F € N®2(J; L?(Q)) with some & € (0,1) and condition (3.45) for 7 €
(0, K] holds, then for 7 := min{kp} /2, 7} relations (3.52) hold with J instead of I.
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Proof. From Holder’s and Korn’s inequalities and (3.40), it follows that

(3.53) h% / (0" (- V)u) - dPul dz
QxJp

e [ jdtupds e [ (e D)l g d
QxJp Jh P1

<eoh™ 7 / |d"DulP* dz + c(eo)h~ 2T hP
QX]h

<eoh™ / |d"Du|P* dz + C.
QX]h

The estimates for the rest of the terms in (3.53) are similar to the ones in the
proof of Lemma 3.9 and so we will omit them.

Inserting (3.47), (3.48) with 7 instead of 7(y) and (3.53) into (3.46) multiplied
by h~27 and taking into account the conditions of this lemma and (3.10) yield that

sup =27 || d"u(t)[3 + h% / (|d"Vyey (Du)|? + |d" Du(t)) dz < C,
t XL

h Y

which implies (3.52).
Next we consider the case t; = 0. Then we can get (3.52) with J instead of I
from (3.50) together with (3.47), (3.48) with 7 instead of 7(7), (3.53) and (3.51). O

The following lemma will be used later.

Lemma 3.7. Let the assumptions (A1)—(A3) and (2.6) of Theorem 2.1 hold and
o€0,1), p1 = (3n+2)/(n+2) and p1 > in. Assume that

(3.54) w e N72(J; Ho(Q)) N L2/ Cr=m) ]y (Q)).

Then we have:
(1) If J cC (0,T) and F € N®2(J; L?*(Q)) with some & € (0,1), then for 7 :=
min{o, K}

(3.55) u € NT(I;Ha(Q) N NT2(1;V2(Q)) N N*T/P0PH (1, (Q)),
Vo) (Du) € NT2(I; L*(Q)).

(2) If t; = 0, F € N®2(J; L*(Q)) with some & € (0,1) and condition (3.45) for
7 € (0, %] holds, then for T := min{o, 7} relation (3.55) hold with J instead of I.

1039



Proof. Let us again estimate the term K from (3.36). We use the interpo-
lation inequality (3.7) with ¢ = 2p} (so a := (2p1 —n)/(2p1) € (0,1)) and Korn’s
inequality to get

K< /Q Vu(t)[|d"u()]* dz < [ Vu(t)llp, d"u()]3,,
2(1—«a
< el V() [y d"u(®) 3 [d" Du(t)||3 7,
which implies that by Young’s inequality
(3.56) K < eolld"Du(t)|3 + eleo) [ Vult) 32/ 7= | d"u(t) 3.

Here we note that the condition « € (0, 1) holds provided 2p; > n.
Thus, inserting (3.47), (3.48) with 7(vy) = 7 and (3.56) into (3.46) multiplied
by h~27, we conclude that

sup  h2pl|d"u(t)|3
t1<t<ta—h

+ h—QT/M N(|d" Vi) (Du) > dz + |d"Du(t)|* + |d"Du(t) ") dz
h
<c [ |[Vu(t)|Ze/Crmm) (2| d u(t)]|3) dt + C,

which together with (3.54) and Gronwall’s inequality implies (3.55).
In the case t; = 0, the result follows from the same as above except that (3.51) is
used instead of (3.48). O

3.6. Improvement of time regularity of time derivative of velocity.

Lemma 3.8. Let the assumptions (A1)—(A3) and (2.6) of Theorem 2.1 hold. Let
o€ (0,1),p1=Bn+2)/(n+2),p1 >2and F € N%2(J; L*(Q)). Assume that

(357) w e N (J; Ha(©) N N¥/P0 (I3, (Q)), Voo (Du) € N72(J; L3(Q)),
Let 71 := min{o,k} and 7 := min{ao, k}, where

_ 2[(n+2)pi — (4n +2)p1 + 41
(3.58) a = o+ 2pr — Znlps .

Then we have

N7V (Q))  ifpy > —
(3.59) Oy €

NPT,V () if

77 p1
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Proof. Let ¢ € LP1(J;Vp,(Q)) with [|¢|Lr1(sv,, (@) < 1. Recalling that
dyu € LP1(J;V, () by Lemma 3.1 and testing (1.1) with d"4(t), we obtain that

L 1

for all h € (0,t2 — t1)
(3.60) /J (O ut), (D)1 pn dt

//dh ), Du) : Dy dadt — /th:Dwdxdt
Jh Q

JIh
—/ /dh[(u-V)u]~wdxdt
J},, Q
=:I7 + Ig + Io.

At first, we estimate the term I7;. Note that p; > 2. By (3.4) and the same
arguments as in (3.25) we can get

(3.61) |d"S(p(t), Du(t))] < c(1+ |Du(t)|* + [Du(t + h)[*) PO =2/2|d" Du(t)|
+ eh[(1+ |Du(t + h)|? + [Du(t)|?)PO-1HA)/2]
c(1+ [Du(t)]” + [Du(t + b)) PO~/ d"V, ) (Dult))|
=:K3
+ch (14 |Du(t)PO7127),

=Ky

where 8 > 0 is from (3.24). Now we choose § > 0 such that

(3.62)  p(t) —p1 <pr(0(p(t) —1) = 28), 2(p(t) —p1) < p2(d(p(t) —2) — B),
which is possible due to (3.9). Indeed, taking 8 = min{14, 6(p1 — 2)} yields that

p(t)>2 (3.9)
p1(0(p(t) = 1) —=28) > p1(d—28) = p2—p1 = p(t) —p1,

3
pi(8(p(t) =2) = B) = pr70(p1 = 2) = 2(p2 = p1) = 2(p(t) = p1)-
Then it follows that
(3.63) K27/ P72 < (1 4 [Du(t)|PD-2/2 L Dyt 4 h)|PEHR=246)/2)2p1/ (01-2)
< ¢+ ¢|[Du(t)|PO=2H8P1/(P1=2) < ¢ 4 | Du(t) PO+

where for performing the last estimate we use the fact that by the second inequality
of (3.62)
p(t) —2+ 8 2p
2 P11 — 2

< p(t)(1+9).
We also have

(3.64) Kfl/(pl_l) < o1 + [Du(t)])POA+o),
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where we use that by the first inequality of (3.62)
p
(p(t) —1+28)——
p1—
Thus, combining (3.61) with (3.63) and (3.64) yields that
(3.65)

h=Ir < Ch_"/ 1" Vaoy (Du(O) 2]l Kl2p, /(91 —2) | DY (8) ], it

JIh

- < p(t)(1+9).

ekt /J | Kally, (D)),
h

< CHh_UthZD(t) (Du)l|L2(Jh;L2(Q)) (C =+ / |Du(t)|1>(t)(1+5) dz

QxJp

)(m —2)/(2p1)

(p1—1)/p1
+ch!™? <c + / |Du(t)|PH A+ dz)
QX]h

(2.10),(3.57)

<

Next we estimate the term Ig. By the condition F' € N®2(.J; L?(Q)) we have
(366) h_gfg < h_E”thHLz(Jh;Lz(Q)) < C

Now it remains to estimate the term Iy. Following the argument from [10],

Lemma 11 and noting that n > 2 and p1 > (3n +2)/(n + 2), we arrive at

4n

3.67 h=Iy < C ifp; > )
( ) ? e n+2

while, for & from (3.58),

= 3n+ 2 4n
3.68 h™ %Iy < C if <pr < .
( ) 9 ! n+2 P n+2

Thus, from (3.60) with (3.65)—(3.68) we arrive at the desired result (3.59). O

Next we consider the case p; = 2. This case is possible only if n = 2 due to
p1 = (3n+2)/(n+2).

Lemma 3.9. Let the assumptions (A1)—(A3) and (2.6) of Theorem 2.1 hold. Let
o€ (0,1),p1 =n=2and F € N%2(J; L?(Q2)). Assume that (3.57) holds. Then we
have

(3.69) O € N™2(J; V5(Q))  for 73 := min{ao, R},
where
~  2(140)—p2
3.70 a=""" =
(8.70) P20
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Proof. We will use the notations in Lemma 3.8. But we cannot estimate the
term K3 as above due to the condition p; = 2. So we use a peculiar method using the
higher integrability: Without loss of generality we can assume that ps > 2 because
otherwise p(t) = 2. At first we observe that ps < 2(1 + J) by (3.9) and

(3.71) K§p2/(p2_2) c(1 + [Du(t)]? 4 |Du(t + h)|?)P2=2p2/(2p2=2))

<

< (14 |Du(t) + |Du(t + h)|)P?
and that by (3.6) and (2.10)

(3.72) Vi) (Du) € L2349 (Qr).

Hence, for an exponent & from (3.70),

(3.73) Vi) (Du())llpa < Vi) Pu)IS Voo (Pu(t) 1515 5)-

We use Holder’s inequality with a triplet (2p2/(p2 — 2), p2, 2) and the interpolation
between L? and L2119 to get

(3.74) /J /Q K|d" Vo (Du()|[Deb (1) da e

. 1" Vit (Du(O) a1 551295 / (2 —2) | DY (£)|2 It
h

/ 1" Voo (Pu®) 110" Vo) Pu)l50% 5,

X || K3l 2py /(py—2) D (2) |2 dE

(3.71),(3.10),(3.72) ., (3.57)
< Cho%|[h=7d"V, V() (Duft ))||L2 TuL2(Q) S Choe.

(3. 73)

On the other hand, from (3.64) with p; = 2 it follows that

(3.75)
1/2 (2.10)

chl—ff&/ ||K4||2||D¢(t)||2dtgchl—afi(/ (1+|Du(t)|)p<t><1+6>dz) < c
[ Qx Jp

h

Joining (3.74) and (3.75) yields that

(3.76) h=o%; < C.
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Now let us estimate the term Ig. Note that 4n/(n+2) = 3n+2)/(n+2)=p; =
n = 2. Following the argument as in (3.74), we have

(3.77) h=%1y gh*f’a/ /|dhu|\u|\v¢|dxdt
Jh Q

Ll R e e |
h
(3.10),(2.10) o s (3.57)
< Chdulle g, 2 <G

where to control ||dhu||§(_§r§) we use (2.10), p; > 2 and Poincare’s inequality.
Thus, equation (3.60) together with (3.76), (3.66), (3.77) yields that

O € N™2(J;V5(Q))  for 73 = min{ao, &},

which is just (3.69). O

4. PROOF OF THE FIRST STATEMENT OF THEOREM 2.1: THE CASE & < 1

Let I ccC J, I;, CC J, for interval J satisfying (3.9). We will use the same
notation I in the iterative use of Lemmas 3.7, 3.5 since the number of uses is finite.

It is worth noting that throughout this section we use assumptions (Al)—(A4) and
the condition F' € N/2(0,T; L*()) with some % € (0,1).

loc

Case 1: p1 > (3n+2)/(n+2).

Step 1: Tterative use of Lemma 3.5. We know that u € N*/22(.J, L2(Q2)) by (3.12).
When 0 <y < 2p1/((n+ 2)p1 — 2n), we set o = 3 in Lemma 3.5. Then () is from
the first line of (3.35) since k() is continuous in v = 2p;/((n + 2)p1 — 2n). So by
Lemma 3.5 if

(4.1) ue LMD (0, (Q),
then for k(y) > K we have

(4.2) u e NB®(I,Ha(Q)) N NF2(I,V5(Q)) N NZF/Pre(1,p, (Q)),
Vp(t) (DU) € NEQ(I? L2 (Q))a

which implies (2.12), while for x(y) < ®

(4.3)  we N2 (I, Hy(Q)) N N OD2(1,V,(Q)) N N2D/Popi(r 1y, (Q)),
Vi) (Du) € N*OD2(1, L2(Q)).
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Let us start iteration argument. It is clear that all the assumptions of Lemma 3.5
are satisfied for every weak solution with v = 0, ¢ = % So if k(0) > R, then
we get (4.2), i.e., (2.12). If kK(0) < &, then by (4.3) the exponent +y is improved
from 0 to 2x(0) > 0. This allows us to use again Lemma 3.5. In order to
calculate the bound of this improvement, we set G(y) := 2k(y) — . It is clear
that G(0) = 2x(0) = (p1[(n+2)p1 —3n —2])/((n+2)p? — (2n+ 2)p1 —2n) > 0
and G(2p1/((n+2)p1 —2n)) > 0 for p; > (3n+2)/(n+2). In particular, G(y)
is concave for v > 0 provided p; > 2. Thus, we can easily see that G(y) >
min{G(0), G(2p1/((n + 2)p1 — 2n))} for all v € [0,2p1/((n + 2)p1 — 2n)].

If K < k(2p1/((n 4+ 2)p1 — 2n)), then this implies (4.2) after a finite number of
iterations and hence we get (2.12). If K > k(2p1/((n + 2)p1 — 2n)), then one can
get only (4.3) for all v € [0,2p1/((n + 2)p1 —2n)] after a finite number of iter-
ations. Furthermore, (4.3) holds for all v € [0,1) because from the second line
of (3.35) the values of k() for all v > 2p;/((n+ 2)p1 — 2n) are fixed, that is,
k(y) = &(2p1/((n 4+ 2)p1 — 2n)). In this case our aim is to show

(4.4) w e L2P/Cr=n(1 oy, ().

This enables us to apply Lemma 3.7 to show (2.12). By Nikolskii embedding (2.2)
this suffices to prove that « € NZ<)/P1ri(1V, (Q)) for ~ satisfying

n+2-2p

(4.5) 2k(7y) > 5

It is easily checked that for p; > (3n+2)/(n + 2)

2 2 -3 2
(4.6) ZK( P1 ) _ p1[(nw; o1 —3n] P1 .
(n+2)p1 —2n (n+2)pi —2np1 —2n =~ (n+2)p1 — 2n
From (4.6) it follows that if
2-2 2
(47) n+ D1 < P1 7
2 (n+2)p1 —2n

then inequality (4.5) holds for v = 2p1/((n + 2)p1 — 2n) and in turn by (4.3), (4.4)
holds.
Now let us calculate the range of p; satisfying (4.7). It is clear that

n+2—2p1< 2p1

B) S —n S 2(n+2)pF — (n® +8n)py + 2n(n +2) > 0.

If n < 3, then since D := (n?48n)?—16n(n+2)? = n(n3—64) < 0, the inequality (4.7)
always holds for all p; > 1. If n = 4, then since D = 0, the inequality always holds
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provided p; > 2. If n > 5, then the inequality holds provided

2 /n* — 64
(4.8) o> n+8n++vn*—6 i3
4(n+2)

Remark 4.1. For n > 5, it is clear that

3In+2 n nP+8n+vnt—64n n+2

< < <
n+2 2 A(n +2) 2

(4.9)

Up to now, we followed the argument from [10]. From now on, we are going to
present our own calculations in order to improve the lower bound on p(z) for n > 5.

Hence, the inverse inequality of (4.7), that is,

n -+ 2 — 2p1 2])1
2 (n+2)p1 —2n

(4.10)

holds only for n > 5 and p1 < 1(n? +8n + v/n? — 64n)/(n + 2). In this case, we need
Lemma 3.5 for v > 2p;1 /((n + 2)p1 — 2n), that is, for x(y) = &(2p1/((n + 2)p1 — 2n)).
Thus, if

(4.11) 2,.;(( 2p ) - pln+2)pi=3n)  n+2-2p

n+2)p; —2n n+2)p? — 2np; — 2n 2

then the desired result (4.4) follows. So it remains to calculate the range of p;
satisfying (4.11) and (4.10).

Remark 4.2. A necessary condition for validity of (4.11) is p; > n/2 since
%(n—I—Z —2p1) = 1for p; < %n
By Remarks 4.1, 4.2 it suffices to consider p; in an interval

(ﬁ n? 4+ 8n + vnt — 64n)
2’ 4(n + 2) '

It is clear that (4.11) is equivalent to
2(n + 2)p? — (n? + 6n)p? + (2n* — 6n)p1 + 2n(n +2) > 0.

The three solutions for the corresponding equation are

 n?+6n —|—R+Z
L= 500 1 a) R’
n2+6n R T 32 T
U — (R - =1
P2 =sonta) 2 2R T 2 ( R)Z’
n? + 6n R T 312 TN .
P13 = 3(2n+4)_5_ﬁ_7<7z_§)1’
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where R, T are defined in (2.8), that is,

R= (P24 ((P-2+e) -7 +0)" po= 200

2 C27(2n+4)3’
0 (—2n2 + 6n)(n? + 6n) =20 +6n  (n?+6n)?
o 6(2n +4)2 ’ T3(2n+4)  9(2n+4)2°

These solutions can be calculated by symbolic operation from Matlab. Table 1 shows
its values according to the space dimension.

n P11 P12 P13

) 2.7437 —0.8818 2.0667
6 3.2260 —0.8682 2.1422
7 3.7068 —0.8564 2.2051
8
9

4.1894 —0.8462 2.2568
4.6742 —0.8373 2.2995
10  5.1609 —0.8297 2.3354
50 25.0384 —0.7562 2.6408
100 50.0196 —0.7444 2.6856

Table 1. The values of p1,1, p1,2, P1,3-

Thus, inequalities (4.11) and (4.10) hold for

n? + 8n + vn* — 64n
p1 € (P1,17 )
4(n+2)

and furthermore, (4.4) holds for p(z) satisfying (2.7).

Remark 4.3. We note that here is the only point in the whole paper where we
need the assumption p_ > p; ; for n > 5.

Step 2: Tterative use of Lemmas 3.7, 3.8. From the argument in Step 1 it suffices to

prove Theorem 2.1 for & > k(2p1/((n + 2)p1 — 2n)). We already proved the validity

of (4.4) in this case. So all the assumptions of Lemma 3.7 are satisfied with o = 2

2
by (3.12). Thus, if & € (0, 3), then
(4.12) we NP¥(I,Ha(Q)) N N>F/PPH(LV, (), Vi (Du) € N®2(I,L*(Q)),
which implies (2.12), while if K > %, then
(4.13) w e N2 (L, Ha(Q)) NNYPPPHIL Y, (Q)), Vi (Du) € NY22(1,L7(9)),

which are exactly the assumptions of Lemma 3.8 with o = % This enables us to use
Lemma 3.8.
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If pp > 4n/(n+2), then by Lemma 3.8 dyu € N1/2’p/1(I,VI’)1(Q)), so u €
N3/2p (I,V,,(Q)) and in turn, by Proposition 2.2, u € N2G2HP02(T Ho (Q)).
Furthermore, one can see that if u € N%2(I,Hy(Q)) with ¢ € [3,K], then
u € NV2(+0+20/p1).2(T 4,(Q)) by Lemmas 3.8, 3.7 and Proposition 2.2. Since
foro <1andp; >2

1 20 1 1 1 1
Lo+ 2) ond oot 2ok
2 D1 2 2 m D1

we obtain u € N%2(I,H2(Q)) after a finite number of iterations and again by
Lemma 3.7 get (2.12).

Although in this subsection we consider only p; > (3n + 2)/(n + 2), we here deal
with the case (3n +2)/(n+2) < p1 < 4n/(n+ 2) in order to avoid overlap in next
subsection. We will follow the same argument as above but need slightly more deli-
cate attention. By Lemmas 3.7, 3.8 and Proposition 2.2 it follows that for o € [%, K]

u € N7?(I,H2(Q)) = u € Na2(1, Ha (1)),

where

27 7 [+ 2)p1 — 20,

1 ((n+2)p%—(4n+2)p1+4n+ 1)_1 (n+2)p? — 3np; + 2n

og:=—<-+0 —
2 [(n+2)p1 — 2n|p1 D1

Direct calculation shows that for o < 1

1 —np1 + 2n 0<1,2-p1<0 1 —np1 + 2n
og—0==-+0 = 9
2" " [(n+2)p1 — 2n]ps 2 [(n+2)p1 - 2njp
n+ 2)p? — 4npy + 4n
( i =: f(p1)-

[(n 4 2)p1 — 2n]p1

If n < 6, then f(p1) is decreasing in p; on the interval [(3n 4+ 2)/(n + 2),4n/(n + 2)].
Moreover, the case n > 6 is excluded from the case (3n+2)/(n+2) < p1 <
4n/(n + 2) since

n 4n
>—>—— Vn>6.
=950 "

Thus, for p1 € [(3n+2)/(n+2),4n/(n + 2)]

4n ) n+2

Ua_U)f(n—i—Z - 4n

Finally, after a finite number of iterations we get u € N®2(I,H2()) and again by
Lemma 3.7 the first statement of Theorem 2.1 is proved.
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Case 2: p1 = (3n+ 2)/(n+ 2). In this case, we cannot use Lemma 3.5 and finally
not follow Step 1 in Case 1 in Section 4 since

3n+2
n+2°

2p1 :
G(0) = G(—) =0 ifp =
( ) (n+ 2)p1 — 9 P1

So we use Lemma 3.6 and a slightly different method than before.

By Lemma, 3.6 this is proved if & < %Ep'l So it remains to prove it for & > %%p’l,
i.e., 2T = Rp}.

As in Case 1 our first aim is to show (4.4). By (2.2) it suffices to prove that

(4.14) u € NouiPL([:Y)), (Q))
for some
n + 2 — 2p1
Uuni - a4 -
2py

Since 27 = kp) and p; — 1 = 2n/(n + 2), we can easily see that by (3.39)

~ o T . -~ 1
0(1—T)+z—u if0<o<—=, 7>0,
n n
27 R % 1 1. 11
o)=—=—=—"—={ —+ -0 if—-<o<—, T>0,
1@ pr pr pi—1 2n 2 n D1
1
— ife=0, 7=0.
5 ifo=0, T

Here i1 > 0 is a real number arbitrarily close to 0. Then by Lemma 3.6 we get that
if u € NoP1(I;V,,(Q)), then

u € N'@Py (1), (Q)).

We can easily see that the mapping & — f() is a contraction on (0, p; ). Moreover,
it is clear that if 0 < & < n~!, then

o~ — T -1
f(U)—UZ—UT—l-I—M:T(——U)—/.L>0,
n n

while if n™' < & < p; ', then

Hence, we can use Lemma 3.6 iteratively for 0 < & < n~' and see that the fixed

point of the mapping & + f(&) is arbitrarily close to n~!.
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Finally, we can get the desired result (4.14) if (n+2 —2p;)/(2p1) < n~!, which
is possible since if n < 4, then
n+ 2 1 (n+2)? 1+n

<-5 < Snd—4n®—6n-4<0
21 n o 2Bn+2)  n TR

and if n > 5, then the case p; = (3n+2)/(n+ 2) is excluded from consideration
by (2.7) and Remark 4.1. Thus, we get (4.4).

Soif p1 = 3n+2)/(n+2) and p; > 2, then we can prove the first statement
of Theorem 2.1 by following the same argument as in Step 2 above because Lem-
mas 3.7, 3.8 hold even for p; = (3n+2)/(n + 2).

If p1 = 2 and n = 2, then we will use Lemma 3.9 instead of Lemma 3.8. By
Lemmas 3.9, 3.7 and Proposition 2.2 it follows that for o € [, 7]

u € N72(J, H2(R) = u € N7 (I, Ha (),

where ) 014§ )
. U(M £,

ga = 5 p26 2

Direct calculation shows that for o < 1

e o<1 _ oy o=1/2 _
2(1+(5) D2 ; U2(1+5) P2 ~ 2(1+(5) P2

= P > 0.
P20 P20 2p26

1
05—025(1—0)4—0

Finally, after a finite number of iterations we get u € N®2(I, H2(Q)) and again by
Lemma 3.7 the first statement of Theorem 2.1 is proved. O

5. PROOF OF THE SECOND STATEMENT OF THEOREM 2.1

To begin with, we claim that the second statement of Theorem 2.1 follows if we
prove that for an interval (0, t2) satisfying (3.9)

(5.1) u € N0, ta; Ha () N N®2(0,12;V2(Q)), Vo) (Du) € N¥2(0, 25 L*(2)).
Indeed, if (5.1) holds, then we can choose t; € (0,t2 — h) such that
[d"u(ty)[|2,0 < ch®.

So we can consider t; as an initial time and hence, get (5.1) by using Lem-
mas 3.5, 3.6, 3.7 over a new interval (¢1,t3) satisfying (3.9) instead of (0,¢2).
Thus, after a finite number of iterations we can get (2.13).
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Furthermore, if (3.45) holds with 7 arbitrary close to % for K < 1 and 7 = 1 for
Kk = %, then from the arguments in Sections 3, 4 we can prove (5.1) without any
difficulty. Thus, the rest of this section is devoted to proof of the validity of (3.45)
for such 7.

Lemma 5.1. Let p(z) > (3n+2)/(n+2),t; = 0 and F € N®2(0,to; L*(Q)) with
R < . Let u be a weak solution to problem (1.1) with ug € V,, . Then we have for
sufficiently small h € (0,t2) and for all 7 € (0,&)

(5.2) lu(h) = uo||3 < ch®",

where ¢ = ¢(n, p—, Py, Cx, IDuollp. (1+46))-
Moreover, if F € NY/22(0,t5; L?(Q)) and sup h~! foh | F|3dt < oo, then
he(0,T)

(5-3) lu(h) = uol3 < ch.

Proof. We use basically the ideas in the proof of Lemma 4.1 of [11], with some
modifications.

Recalling that u can be considered representative continuous in [0, 7] with value
in L2(Q) yields that for sufficiently small h € (0, t2)

(5.4) [lu(h) — uoll3 = (u(h) — uo,u(h) — ug) = lu(h)||3 = [luoll3 — 2(w(h) — uo,uo)
=: Iio + In1.

It follows from (3.2) and Young’s inequality that
(5.5)

h
d
Il():/ —Hu Hth / /S Du dZ+/ /F Du
@
(3.2) h /
< —c/ /|Du|p(t)dz+ch+c/ /|F|p ® dz.
0 Jo o Jo

The term I;; can be rewritten as follows:

b a
L= —2 / (Sut).u / Ju(®llv,_lluollv, , d.

On the other hand, proceeding as in the derivation of (3.11) with p, instead of py,

we arrive at

(5.6) / loru(®)lv, dt < C / (L4 IDuPO |+ @2 + PO, dt.
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Here we note that the constant C in (5.6) depends on sup |lu(t)||2 by (3.11) and
hence on ||F(t)ll,, via (3.8). Hence te(0,h)

h
(5.7) I < clluollv,, /0 L+ NDuPO 4+ a7, + IF @)y, ) de

h
< chlfuoly, +e [+ DAy + o)l

P F (), )P dt.

1,p1

By Korn’s inequality and the trivial inequality (p1 — 1)p/, < p it is clear that

h
( 1)
(58) / lu()l27 VP dr < / /Q |Du(t)[P dz.
By the trivial inequality (p(t) — 1)p4/(p+ — 1) < p(t) we have
h , h
(5.9) / IDuPOHE, o dt < c(p+>/ /(1+|Du|)p<t> da.
0 P 0o Ja

Joining (5.7) with (5.8) and (5.9) leads us to

h
(5.10) fn < chlually, +e [ [ 1+ Pup +F@OP) dz
0 Q

Substituting (5.5) and (5.10) into (5.4) and using p’(t) < 2, we conclude that

h
(5.11) (k) — uol3 < chlluolly +ec / / (1+ [F()?

If [ € N%2(0,t; L?(Q)), by embedding (2.2) and Holder’s inequality we obtain
that F € L?/(1=27)(0, ty; L?(Q)) for any 7 € (0,%] and

h h R 1-27 ~
(5.12) / /|F(t>|2dz<c</ |F(t)||§/<”T>dt) B2,
0 Q 0

It is clear that by p; < p4 (1 +6) and the condition ug € V,, (140)
(5.13) hlluolly; < Ch.

Joining (5.11) with (5.12) and (5.13) we have the desired estimate (5.2).
Next let us prove estimate (5.3). We recall that by the assumption of Theorem 2.1

1 h
(5.14) sup —/ |13 dt < oo.
ne,r) v Jo
Joining (5.11) with (5.14) and (5.13) we have the desired estimate (5.3). O
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6. PROOF OF THEOREM 2.1: THE CASE Kk =1

By (2.12) with & < 1 we have u € N2%/P1:P1(.J, V), () for any 3 < £ < 1 and so
by Nikolskii embedding (2.3) it follows that

(6.1) u € L=(J,V,, ().

On the other hand, we have u € N®7i(J, V,,(Q)) since u € N%>°(J, H2(Q2)) for
any £ € (0,1) by (2.12) with & < 1 and N®°(J, Ho(Q)) C N=Pi(J, V. (Q)),

7 U p1

while du € N%P(J, V,,(Q)) by Lemma 3.8 and (2.12) with & < 1. Hence, we
get u € NH"‘“”’&(J7 V,,(€)), which together with Proposition 2.2 implies that u €
N®2(J, Ha(Q)) for all @ € (1,1 + p; *). Hence, we have

(6.2) By € NO~L2(I 1o (Q)) C L2(J, Ha ().

From (6.2) it follows that

(6.3) / h=2|\dMu(t)||3 dt < C.
Jn

Thus, from (3.17) it follows that

sup h=n]ld"u(t)[3 + h~2 /Q n(1d"Vy(o) (D) dz + [d"Dul?) d=
X Jp

t1€Jp

(3.56)
< c+ch*2/ ||th||§dt+c/ IVu(t) 27 @ B2 d() 2 dt.
J},, Jh,

This together with (6.1), (6.3) implies (2.12) with & = 1. O

7. PROOF OF COROLLARIES 2.1 AND 2.2

Here the notations are the same as in the previous section.
Proof of Corollary 2.1. By Theorem 2.1 with k=1 we have d;u € L (0, T; L?(Q))

loc

and v € LY (0, T, W()l’p(x")(ﬂ)) because of (3.6) and the embedding

loc

W20, T; LA(Q)) € LiS.(0,T; L*(52)).

loc loc

Let J = (t1,t2) be an interval as before. Thus, we can consider that for a.e. ¢ € J,
u(t) is a weak solution to the steady problem

—divS(p(t), Du(t)) + (u(t) - V)u(t) + Vr(t) = div F(t) — dpu(t), in Q,
divu(t) =0, in €,
u =0, on 0f).

So we can apply the space-regularity result, Theorem 2.3 in [35] and hence get (2.16).
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In particular, from Case 1 in Section 4 we get that V,.)(Du) € W’lif(Q) for a.e.
t € J and hence (2.15). O

Proof of Corollary 2.2. It is well known that if p_ > %(n + 2), then prob-
lem (1.1) has a unique solution for ug € Ha(2), see [24]. So it suffices to prove this
Corollary for p_ < %(n + 2). From Lemmas 3.5, 3.6 and Step 1 in Cases 1 and 2 in
Section 4, we can see that if F' € N™2(t1,t5; L?(2)) with 7 > 2(n+ 2 — 2p;), then

(7.1) wy,ug € LYV () (Q)) € LP-/Cr-mm (g, (Q)).

In particular, we note that this continues to hold for ¢; = 0 if u1(0) = u2(0) €

Vo (148) ().
Since the rest is similar to the argument in [10], [11] we will omit it. O

Remark 7.1. Corollary 2.2 continues to hold for F € NP~ (0, T; LP- (Q)) with
T > Tyni := max{0, (p— — 1)((n+2)/(2p—) — 1)}.
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