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Abstract. Our aim is to establish Sobolev type inequalities for fractional maximal func-
tions My , f and Riesz potentials Iy . f in weighted Morrey spaces of variable exponent on

the half space H. We also obtain Sobolev type inequalities for a C! function on H. As an
application, we obtain Sobolev type inequality for double phase functionals with variable
exponents ®(z,t) = t?®) + (b(2)t)?®), where p(-) and q(-) satisfy log-Holder conditions,
p(z) < q(z) for x € H, and b(-) is nonnegative and Hélder continuous of order 6 € (0, 1].

Keywords: variable exponent; fractional maximal function; Riesz potential; Sobolev’s
inequality; weighted Morrey space; double phase functional
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1. INTRODUCTION

The well-known theorem by Hardy and Littlewood says that the maximal oper-
ator is bounded in LP(R™) when p > 1. The central Hardy-Littlewood maximal
function M f on R™ is defined by

1
Mf(z) = ili% B o) |f(y)] dy,

where B(z,r) is the ball in R™ centered at x of radius » > 0 and |B(x, )| denotes its
Lebesgue measure. When we consider the maximal function on an open set G C R”

defined by

1
Mg f(z) = sup — f(y)|dy,
( (r>0: Bzycay 1B@ )| Jpm )]
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the boundedness of the maximal operator f — Mg f is closely related to a class of
functions f on G and the size of the boundary; Mg is sometimes referred to as the
local maximal operator, see [16].

In this paper, we are concerned with weighted Lebesgue spaces consisting of func-
tions f on the half space H = {z = (2/,7,,) € R""! x R': x,, > 0} satisfying

T.O'
r>Sol,lfeH |B(x,7)]| [H]rTB(x,r)(|f(y)|y5)p dy < co
for constants ¢ > 0, f and p > 1; in what follows, p is extended to a variable exponent
of log-Holder continuity. Since the weight w(y) = |y, |°? is not the Muckenhoupt A,
weight when § is not in the interval (—1/p,1 —1/p), we need to modify the maximal
functions. In fact, it may occur that M f is identically equal to co in H; see [27],
Remarks 2.4 and 2.9 for details.
For this purpose, let us consider the fractional central Hardy-Littlewood maximal
function My, f defined by

7,,1/
My, f(z) = sup _
{r>0: B(z,r)CH} |B(£L‘,7“)| B(z,r)

[f(y)l dy

for a locally integrable function f on H with 0 < v < n. The mapping f — My, f
is called the fractional central mazimal operator. When v =0, My of = My f.

Variable exponent Lebesgue spaces and Sobolev spaces have been intensely stud-
ied to analyze nonlinear partial differential equations with a nonstandard growth
condition by many mathematicians. For the progress in this field, see [10], [12].
Capone, Cruz-Uribe and Fiorenza in [7] studied the boundedness of the usual frac-
tional maximal operator M, f in LP()(R™). Cruz-Uribe, Fiorenza and Neugebauer
in [11] proved the boundedness of the maximal operator M f in variable weighted
Lebesgue spaces when the weight is an A,,(.) weight. There are many related results;
see [3], [13], [17], [18], [20], [25], [28], [30], [32] and so on.

Recently, we studied the boundedness of My ,f in weighted Morrey spaces;
see [27], Theorem 2.1:

Theorem A. Let 1/p* = 1/p—v/oc > 0,0 < 0 < +(n+1). Suppose B <

(n+1)/(2p'), where 1/p+ 1/p’ = 1. Then there exists a constant C > 0 such that

r? .
sup 7/ (zBMy, f(2))P dz < C
{r>0: B(z,r)CH} |B($,7")| B(z,r) "

when
(o8

r
SUp o (1f()lyn)? dy < L.
r>0,z€H |B(£L‘,7“)| HNB(z,r)
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Our first aim in this paper is to extend Theorem A to weighted Morrey spaces
of variable exponent, see Theorem 3.1 below. Our result gives the Sobolev type
inequality for My, f.

In relation to My, f, we consider the Riesz potential of order o on H defined by
Iaf@) = [ o= yl" ) dy
B(z,xy)

for 0 < o <nand f € L. _(H). When studying a C! function u on H, we can apply

loc
the representation formula

1 () d ‘ < 1
TR N uly)dy| s
|B(£L‘,7“)| B(xz,r) n|B(Oa1)| B(z,r)

IH’1|VU|({E)

(1.1)  Jju(x) — |z — z|' 7" Vu(z)| dz

< .
n|B(0,1)|

for B(z,r) C H; for its proof we refer to [14], (26).
In Theorem 3.4 of [29] we proved a Sobolev type inequality for Iy o f in weighted
Morrey spaces:

Theorem B. Let 1/p* = 1/p — a/o > 0. Suppose < (n+ 1)/(2p') and
0<o< %(n +1). Then there exists a constant C > 0 such that
7,,0'

B p*
sup —_ (zhInaf(2)P dz < C
{r>0: B(z,r)CH} |B({E, 7’) B(z,r) ¢

when f > 0 is such that

,,..0'
SUp o (1f()lyn)? dy < L.
r>0,z€H |B(£L‘,7“)| HNB(z,r)

Applying the technique by Hedberg (see [2]) and the arguments expanded in the
proof of Theorem 3.1 below, we prove a Sobolev type inequality for Iy o f in weighted
Morrey spaces of variable exponent (see Theorem 4.3) as an extension of Theorem B,
see also [3], [21], [23], [25]. Thanks to (1.1), we show a Sobolev type inequality for
a C' function on H, see Corollary 4.4.

Regarding regularity theory of differential equations, Baroni, Colombo and Min-
gione in [4], [5], [8], [9] studied a double phase functional ®(z, ) = tP+a(z)t?. In [29],
we studied Sobolev type inequalities for My, f and Iy o f of functions in weighted
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Morrey spaces of the double phase functionals </I\>(x, t) in the constant exponent case.
In the present paper, relaxing the continuity of a(-), let us consider the double phase
functional

D(a,t) = 7 4 (b)),

where p(-) and ¢(-) satisfy log-Holder conditions, p(z) < ¢(x) for x € H and b(-) is
nonnegative and Holder continuous of order 6 € (0, 1] (see [19)); if we write ®(z,t) =
tP + a(x)t? with a(z) = b(x)? when p(-) = p, ¢(-) = g are constants, then a is
not always Holder continuous of order 8q when 6 > 1. As an application, we give
Sobolev type inequalities for My , f and Iy of of functions f in weighted Morrey
spaces of the double phase functionals ®(z,t) (see Theorems 5.1 and 5.2 given later)
as an extension of [29], Theorems 2.1 and 4.1; for related results, see [19], [23], [24].
As a corollary, we obtain Sobolev type inequalities for a C' function on H in the
framework of the double phase functionals, see Corollary 5.3. We also refer to [6],
[15], [22], [26], [31] for other double phase problems.

Throughout this paper, let C' denote various constants independent of the variables
in question. The symbol g ~ h means that C~'h < g < Ch for some constant C > 0.

2. PRELIMINARIES

In this section we recall all the definitions and preliminary results which will be
useful in the sequel.
We say that p(-) satisfies condition (P) if
(P1) 1 <p_:= inf p(x) < sup p(z) =: pt < o0;
zER™ zeR?

(P2) there exists a constant ¢, > 0 such that

Cp

) — < for z,y € R"™;
Ip(z) — p(y)| T Y Y
(P3) there exist p(co) > 1 and ¢ such that
c
< (o) f R™.
ple) = ploc)| < s forae

A typical example of p(+) is of the form

C1 + Co
e+ lz[7)  log(e +[z])

PP fog

for some constants ¢; and cs.
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Throughout this paper, we always assume that p(-) satisfies condition (P). Let
1/p(z) +1/p'(z) = 1 and H be the half space, that is,

H={z= (2 2,) € R xR": x, >0}

Let G be an open set in R™. For o with 0 < ¢ < n, the Morrey space LP():7 7(G)
of variable exponent is defined by

4 p(y)
PO (@) = {f c Lloc Q):  sup r |f(y)] dy < oo
©) loc() Bz,mca | B(x,7)] B(;c,r)( A )

for some \ > 0}.

It is a Banach space with respect to the norm

. |f(y P(y)
|f|Lp<.>,o<c>—mf{A>o wp s [ (L g <)

(z,r)CG

It is convenient to see that

(o}

(2.1) [fllzee)o(@ <1< sup (1P dy < 1.

Bmca |1B@, )| Jp@r

Let us recall some lemmas, which will be useful in the sequel.

Lemma 2.1 ([27], Lemma 2.3). For ¢ > %(n — 1), set

I(z) = / Yo " dy.
B(z,xn)

Then there exists a constant C' > 0 such that

I(z) < Cxs,.

Lemma 2.2 ([27], Lemma 2.5). Fore < 3(n — 1), set

J(y) = / xy " da.
{zeH: |z—y|<zn}

Then there exists a constant C' > 0 such that

J(y) < Cy,.
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We know the following result on the boundedness of the usual fractional maximal
operator M, in variable exponent Morrey spaces.

Lemma 2.3 ([3], Corollary 2, [13], Lemma 4). Let 1/p*(z) = 1/p(x) —v/o >
1/py —v/o >0 on R™. Then there exists a constant C > 0 such that

(og

r .
sup ———— M,g(z))P @ dz < C
ion e B Sy )
when o
r
sup  ——— lg(y)|P@ dy < 1.

r>0,zern |B(@,7)| /B2

Moreover, we need the following technical lemmas.

Lemma 2.4. Suppose —f8 —o/p_ +n > %(n —1). Then for 0 < z,, < 1,

/ y-Bo/PW) 4y < O B0 /p@)n,
B(z,xn)

Proof. Since |y —2'|? < 2z,yn < 2y, and y,, < 2z, < 2 for y € B(x, x,,) with
0 < x, < 1, we have by (P2)

Y P@H/p) o Oy =C/log(etly—2'IT) gyl losletun)
Hence, we obtain by Lemma 2.1

/ ygﬁ—a/z)(y) dy < C y;B—U/p(x/) dy
B(z,xy) B(z,xn)

< er—lﬁ—a/p(x/)wz < O f-o/pl@)tn
since =3 —o/p_ +n > +(n—1) and
21PN =1/p(@) ¢ =C/ logletle’—al 1) _ O/ log(ete, ") (&
by (P2), which completes the proof. O

Lemma 2.5. Suppose —f3 — o /p— +n > &(n —1). Then for z,, > 1,

/B ( )y;ﬂfv/p(y) dy < CaB-o/P04n < Cg=B=a/p(@)+n
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Proof. Since

y VP gt/ploo)te/logletlyl) oy =1/p(0)
for y, > 1 by (P3) and —3 — /p(c0) +n > 1(n — 1), we have

ygﬁ—a/p(y) dy < C/ ygﬁ—a/p(oo) dy
{yeB(z,xn): yn>1}
< Cm;ﬁ—a/p(oo)wz

/{yEB(x,xn) t yn>1}

by Lemma 2.1.
Moreover, taking v such that v < %(n +1)and =B —0/p_+v>0,itis

/ y;ﬁfo/p(y) dy < / v dy
{y€B(z,xn): yn<1} {yeB(z,xn): yn<1}
1

< ngln—l)/Q T—’y+(n—1)/2 dr
0
< C'xgbnfl)/2 < Cx;ﬁ*ﬂ/?(oo)ﬂz.

Consequently,

/B ( )ygﬂfa/p(y) dy < CarP=o/P(e)n < Cy—Bo/p(@)in

by (P3), which completes the proof. O

3. BOUNDEDNESS OF FRACTIONAL MAXIMAL OPERATORS ON THE HALF SPACE

In this section, we study the boundedness of the fractional central maximal oper-
ator in the weighted Morrey spaces of variable exponent.
Let us state our boundedness result in the following theorem.

Theorem 3.1. Suppose 1/p*(x) = 1/p(x) —v/o > 1/py —v/o > 0 on R™ and
B<o/(p=) < (n+1)/(2(p-)"). Then there exists a constant C > 0 such that

sup " (zﬁMH,l,f(z))p*(Z) dz<C
{r>0: B(z,r)CH} |B( )| B(z,r)

when
(o8

sup (If()]yS)P® dy < 1.

r>0,xeH |B(£L‘, T)| HNB(x,r)
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This implies that

lwMu fllLe=ero @y < Cllwfxull Loeo @ny,

where w(z) = |2,|? for * € R™ and x g denotes the characteristic function of E C R™.

Remark 3.2. One sees that w? is the Muckenhoupt A, weight if and only if
—1/p < 8 < 1-1/p. Even though (3 is not in the interval (—1/p,1—1/p), Theorem 3.1
is applicable for 8 such that Sp/(p—1) <o < %(n +1).

To prove Theorem 3.1, first note that

v

Ki(z) = sup |f(y)| dy
0<r<z,/2 |B(J,‘ T)| B(m r)
< sup Cux,P / < Oz, P M,g(z),
0<r<z,/2 CL‘ r | (z r)

where g(y) = | (1)l lynl® xu (y)-
Next note that

Ka(z) = sup / )l dy
T [2<r<xy J? r | zr)
J,},l/
< > |f(y)|dy = CK3(x).

|B(2,20)| JB(@,20)

Then
(3.1) My, f(z) < Ca " Myg(x) + CKs(x).
With the aid of Lemmas 2.4 and 2.5, we can obtain the following estimate for K.

Lemma 3.3. Suppose 1/p*(z) = 1/p(z) —v/o 2 1/py —v/o >0 on R", -3 —
o/p—+n>3(n—1) and = — o/p_ + o > 0. Then there exists a constant C > 0
such that

P Ky(z) < Ca,o/P" @

when
g

X
SUp = (1fW)|y)P¥ dy < 1.
zeH |B(x,xn)| B(z,x,)
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Proof. Set K(y) = y;ﬁ_a/p(y). Since —3 — o/p— +n > 4(n — 1), we have
by (P1), Lemma 2.4 and Lemma 2.5

xl/
32) K@) =t | @) dy
|B($7xn)| (WeB(mzn): fy)<K ()}

+ i |f(y)|dy
|B($ )l JyeBa,en): Fu)>Kw)}

Y
n
,il,'n)| / (z,zn)

x% f(y)| Pl
—— d

< Cal™ ﬂ U/p(x)
ml/
+C0—"n y;p(y)—l)(ﬁw/p(y)) |f(y)|p(y) dy.
|B(£L‘ LL'n)| B(z,xy)

If0 <z, <1andy € B(z,z,), then by (P2)

y;ﬁ+a(p(y)—1)/p(y) < Cx;6+a(p(y)—1)/p(y) < Cx;ﬁ+a(p(x)—1)/p(x)

when —3 +o(p(y) —1)/p(y) = 0.
If z, 21, y, > 1 and y € B(x,x,), then by (P3)

—B+o(p(y)—1)/p(y)

Yo ynﬂ (p(c0)=1)/p(o0) « Cx;ﬂJrU(p(OO)*l)/P(OO)

<C
< Oz Arop@-1)/p@)
when —8 + o(p(c0) — 1)/p(c0) = 0.

If0<y, <1< a, and y € B(x,x,), then

Yy PreeW=1/pW) 1 g Aroe@)—1)/p()

when —f + o(p(z) —1)/p(z) > 0.
Hence, it follows from (3.2) that

Ks(z) < Ca=P=o/P@) 4 Cp-hrop@—1)/p) (If ()]y2)P™ ay

|B(£L‘, x’ﬂ)| B(x,zn)
< Cx;,@JrV*U/p(I) ,

which gives the required result. O
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Now we are ready to prove Theorem 3.1.
Proof of Theorem 3.1. Let f be a measurable function on R™ such that

loa

sup (If )|y dy < 1.

r>0zek | B, 7)] Juas
In view of (3.1), we recall
2nMig, f(2) < OM,g(2) + CK3(2)z,

where g(y) = |f(v)|y®xu(y). By Lemmas 2.3, 3.3 and 2.1, we obtain for 7 > 0 such
that B(z,r) C H that

g

r w
(ZBM[H]J,f(Z))p =) dz
|B( )| B(z,r) "
T.O' 0' -
—_— (M, g(z))P"*) dz+ O K3(2)22)P" ) dz
B Jpn B o)l S0
xa
<C+C—=——"— z77dz < C
|B(3j $n)| B(z,xn)
when o < %(n + 1). Thus, the proof is completed. O

Corollary 3.4. Suppose 1/p*(z) = 1/p(x) —v/o = 1/py —v/o > 0 on R™,
—B—0/p—+n> 3(n—1) and —B—o/p_+0 > 0. Then forq > 1 witho/q < 1(n+1)
there exists a constant C > 0 such that

ro/q

B p*(2)/q
sup S (25 My, f(2)) dz < C
{r>0: B(z,r)CH} |B(£L' 7“)| B(z,r) "

when
(o8

sup (I (W)]yP® dy < 1.

r>0,2€H |B(‘1j T)' HNB(z,r)
For this, note from Holder’s inequality and Lemma 2.3 that

o’/q ro

|B({E T)| B(z,r) |B( )| B(z,r)

for r > 0 such that B(z,r) C H. Moreover, by Lemmas 3.3 and 2.1, we find

1/q
(M, g(2))7 /1 dz < ( (Mg(2)" dz) <c

xz/q

a/q
B (K3(2)z2)7 H1dz < 07/ 277094z < C
|B($,$n)| B(z,zn) |B L, Tn | (z,zn)

when o/q < &(n +1).

1210



Example 3.5. Let
I'={z=(r1,22): 1 <221 <2 <321}

and
min{z,1}\¢

Ppo + ( ) when z; > 0;
p(z) = p(z1,22) = log(e + 1)
Po when 21 <0

for pg >1and 0 <6 < 1.

Consider
ly|=2/Po when y € T;
fly) = {

0 otherwise.

(1) Since (logy|)/(log(e +41))” > C(log|y|)'~* for y € T,

/ F(y)P® dy—/|y| 2eXp ——(1 g|y|)(1121;1(1iﬁ7y11};) )dy<OO.

(2) For x = (z1,z2) with 1 <0, x2 > 2 and —2z; < x9,
Myf(z) > C 22/ f(y) dy = Cla| >/,
B(z,z2)

so that

/{MHf(x)}p(””) dz > c/ |z| 72 dz = oo.
H {(z1,22)ER?: 21<0,22>2,—2x1<x2}

This implies that (P3) is sharp in Theorem 3.1.

4. RIESZ POTENTIALS

In this section, we will establish Sobolev’s inequality for Riesz potentials Iy o f.
Write

T of(2) = / @ — y[* " f(y) dy
B(z,xn/2)

+ / |z —y|* " f(y)dy
B(I7In)\B(Ixmn/2)
= Tl({E) + TQ(iL‘)
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For 0 < a < n and a locally integrable function g on R™, we define the usual Riesz
potential I,g of order a by

Tngla) = [ o= 3l""g(u)dy.
Let us recall the following result due to [21], Theorem 4.1, cf. [1].

Lemma 4.1 (Sobolev inequality for Morrey spaces). Let 1/p*(z) = 1/p(x) —
afo > 1/py —v/o >0 on R™. Then there exists a constant C > 0 such that

7,,0'

Lag(z)""® dz < C
|B( )| B(z,r) “

for x € R™, r > 0 and measurable functions g on R™ with

7,,0'

sup l9(y) "™ dy < 1.

z€R™ r>0 |B( )| B(z,r)
Finally, in order to establish our main result, we need to prove the following lemma.

Lemma 4.2. Suppose

(o}

sup (If()]ySHP® dy < 1.

z€H,r>0 |B(£L‘, T)| HNB(x,r)

If 1/p*(x) = 1/p(z) —afo > 1/py —v/o > 0 on R™, then there exists a constant
C > 0 such that

log

sup EITi ()7 *) dz < .

zeH,r>0 |B(‘1j T)' HNB(z,r)

Proof. For x € H we have

2| Ti(z) < C |z —y|* "g(y) dy < Clag(z),
B(z,2n,/2)

where g(y) = | f(¥)||yn|®xu(y). By Lemma 4.1 for z € H and r > 0,

(og

T‘ * 7" *
(25T (2))P"F dz < Lg()P" @ dz < C,
|B( )l HNB(x,r) o |B( )l B(z,r)
as required. O
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For T5, note that

xn a—n
< -
< ()7 iwla
for x € H.

Now we are in position to prove a Sobolev type inequality for Iy o f.

Theorem 4.3. Let 1/p*(x) = 1/p(x) — a/o > 1/py — a/o > 0 on R™ and
B<o/(p=) < (n+1)/(2(p-)"). Then there exists a constant C > 0 such that

d .
ap (A f @) dz < 0
{r>0: B(z,r)CH} | ( )| B(z,r)

when
T.O'

sup (If()|ys)P® dy < 1.

zeH,r>0 |B(£L‘ T)| HNB(z,r)
Proof. Let f be a measurable function on H such that
7-,0'
Sup (1f @) ly)P™ dy < 1.
z€H,r>0 |B(‘1j T)' HNB(x,r) "

By Lemmas 4.2, 3.3 with v = «, and Lemma 2.1, we obtain for » > 0 such that
B(z,r) C H,

ro (s
W/B( )(zﬁIIH,af(z)l)” ) dz

a4 x? .
( B (2))P" P dz + C—n (zBTy(2))P" ) dz
B Joen " |B(z,20)| JB(@2n)
xo'
<C+C"— z,7dz < C
|B(£L‘ xn)| B(z,xy)
when o < %(n + 1), as required. O

In view of (1.1), we find the following statement

Corollary 4.4. Let 1/p*(z) = 1/p(z) — 1/o > 1/py —1/o > 0 on R"™ and
B<o/(p-) < (n+1)/(2(p-)"). Then there exists a constant C > 0 such that

1
|B(Z7 Zn)l B(z,zn)

(2)
u(z) — u(y) dy ) dz < C

I N C
{r>0: B(z,r)CH} |B($ T)' B(z,r)

when u is a C! function on H such that

TO’

sup

Vu(y)ly ) dy < 1.
z€H,r>0 |B(.23 7“)| HAB Ir)(| ( )| n)
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5. DOUBLE PHASE FUNCTIONALS WITH VARIABLE EXPONENTS

5.1. Boundedness of fractional maximal operators. In this section, we con-
sider the double phase functional

®(z,t) = 7 + (b(x)t)"™),

where p(z) < ¢(z) for x € R™, and b(-) is nonnegative and Holder continuous of
order 6 € (0, 1], see [19].
By Theorem 3.1, we can obtain the following result.

Theorem 5.1. Let p_ > 1, 1/q(x) = 1/p(x) — 0/0, 1/p*(z) = 1/p(z) —v/o >0
and 1/q¢*(z) =1/q(x) —v/o > 1/q+ —v/o >0 on R". Set

*

(1) = Bpe g (2, 1) = 17" @) 4 (b(a)t)T @),

Suppose 8 < o/(p-)' < (n+1)/(2(p-)"). Then there exists a constant C' > 0 such
that

g

(5.1) sup i d* (2,28 My, f(2))dz < C
{r>0: B(z,r)CH} |B( )l B(z,r)
when v
r
A By, 1 (y)ly) dy < 1.
z€H,r>0 |B(£L‘ T)| HNB(x,r) ( | ( )|

Proof. Let f be a measurable function on H such that

o}

T
Sup Oy, |f(y)lyn) dy < 1.
zeH,r>0 |B(£L‘ T)| HNB(x,r)

First we see from Theorem 3.1 that

g

T B p*(2)
sup —_ 2 My f(2 dz < C.
{r>0: B(z,r)CH} |B(£L‘ T)| B(=, 7“)( § ( ))
Note that
) dy
7,.1/
f dy+—/ b(w)|f ()] dy
|B“|/ o @ =By + e [ b))
1/+0 rv
Bl S TN+ iy [ bWl dy

< CMH’,,Jrgf( ) + Mﬂ-ﬂ,u[bf](x)
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when B(z,r) C H. Hence, by Theorem 3.1, we establish

r 5 a*(2)
sup —_ (2L b(2) My f(2)) dz<C
{r>0: B(z,r)CH} |B(.13 T)' B(z,r)

since 1/¢*(z) = 1/q(z) —v/o =1/p(z) — (v +0)/o and 1/q_ = 1/p_ — /0, which
completes the proof. O

5.2. Sobolev’s inequality. As in the proof of Theorem 5.1, we can obtain the
following theorem using Theorem 4.3. Its proof is omitted.

Theorem 5.2. Let 1/q(x) = 1/p(z) — 0/0, 1/p*(z) = 1/p(xz) — /o > 0 and
1/¢*(x) = 1/q(z) — a/o > 1/q+ — a/o > 0 on R™. Suppose f < o/(p-)
(n+1)/(2(p—)"). Then there exists a constant C' > 0 such that

sup |/ (2,280 f(2)dz < C
B(z,r)

{r>0: B(z,r)CH} |B

when

o}

sup (y, | f(y)lys) dy < 1.

z€H,r>0 |B(£L‘, T)| HNB(x,r)

Corollary 5.3. Let 1/q(x) = 1/p(x) — 0/0, 1/p*(x) = 1/p(x) — 1/ > 0 and

1/¢*(z) = 1/q(x) —1/o > 1/qx — 1/o > 0 on R™. Suppose § < o/(p_)
(n+1)/(2(p-)"). Then there exists a constant C' > 0 such that

1

u Z)— —/—————
() |B(Z7Zn)| B(z,2zn)

dy| |dz < C
{r>0: Sf’al%gr YCH} Ier|/ Bar) < u(y) yD z

when
g

sup

—_— O(y, [Vu(y)lyy) dy < 1.
zeH,r>0 |B(£L‘,7“)| HNB(x,r) ( | | )
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