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Abstract. Our aim is to establish Sobolev type inequalities for fractional maximal func-
tions MH,νf and Riesz potentials IH,αf in weighted Morrey spaces of variable exponent on

the half space H. We also obtain Sobolev type inequalities for a C1 function on H. As an
application, we obtain Sobolev type inequality for double phase functionals with variable

exponents Φ(x, t) = tp(x) + (b(x)t)q(x), where p(·) and q(·) satisfy log-Hölder conditions,
p(x) < q(x) for x ∈ H, and b(·) is nonnegative and Hölder continuous of order θ ∈ (0, 1].
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1. Introduction

The well-known theorem by Hardy and Littlewood says that the maximal oper-

ator is bounded in Lp(Rn) when p > 1. The central Hardy-Littlewood maximal

function Mf on R
n is defined by

Mf(x) = sup
r>0

1

|B(x, r)|

∫

B(x,r)

|f(y)| dy,

where B(x, r) is the ball in Rn centered at x of radius r > 0 and |B(x, r)| denotes its

Lebesgue measure. When we consider the maximal function on an open set G ⊂ R
n

defined by

MGf(x) = sup
{r>0 : B(x,r)⊂G}

1

|B(x, r)|

∫

B(x,r)

|f(y)| dy,
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the boundedness of the maximal operator f → MGf is closely related to a class of

functions f on G and the size of the boundary; MG is sometimes referred to as the

local maximal operator, see [16].

In this paper, we are concerned with weighted Lebesgue spaces consisting of func-

tions f on the half space H = {x = (x′, xn) ∈ R
n−1 × R

1 : xn > 0} satisfying

sup
r>0,x∈H

rσ

|B(x, r)|

∫

H∩B(x,r)

(|f(y)|yβn)
p dy < ∞

for constants σ > 0, β and p > 1; in what follows, p is extended to a variable exponent

of log-Hölder continuity. Since the weight ω(y) = |yn|
βp is not the Muckenhoupt Ap

weight when β is not in the interval (−1/p, 1− 1/p), we need to modify the maximal

functions. In fact, it may occur that Mf is identically equal to ∞ in H; see [27],

Remarks 2.4 and 2.9 for details.

For this purpose, let us consider the fractional central Hardy-Littlewood maximal

function MH,νf defined by

MH,νf(x) = sup
{r>0 : B(x,r)⊂H}

rν

|B(x, r)|

∫

B(x,r)

|f(y)| dy

for a locally integrable function f on H with 0 6 ν 6 n. The mapping f 7→ MH,νf

is called the fractional central maximal operator. When ν = 0, MH,0f = MHf .

Variable exponent Lebesgue spaces and Sobolev spaces have been intensely stud-

ied to analyze nonlinear partial differential equations with a nonstandard growth

condition by many mathematicians. For the progress in this field, see [10], [12].

Capone, Cruz-Uribe and Fiorenza in [7] studied the boundedness of the usual frac-

tional maximal operator Mνf in Lp(·)(Rn). Cruz-Uribe, Fiorenza and Neugebauer

in [11] proved the boundedness of the maximal operator Mf in variable weighted

Lebesgue spaces when the weight is an Ap(·) weight. There are many related results;

see [3], [13], [17], [18], [20], [25], [28], [30], [32] and so on.

Recently, we studied the boundedness of MH,νf in weighted Morrey spaces;

see [27], Theorem 2.1:

Theorem A. Let 1/p∗ = 1/p − ν/σ > 0, 0 < σ < 1
2 (n + 1). Suppose β <

(n+ 1)/(2p′), where 1/p+ 1/p′ = 1. Then there exists a constant C > 0 such that

sup
{r>0 : B(x,r)⊂H}

rσ

|B(x, r)|

∫

B(x,r)

(zβnMH,νf(z))
p∗

dz 6 C

when

sup
r>0,x∈H

rσ

|B(x, r)|

∫

H∩B(x,r)

(|f(y)|yβn)
p dy 6 1.
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Our first aim in this paper is to extend Theorem A to weighted Morrey spaces

of variable exponent, see Theorem 3.1 below. Our result gives the Sobolev type

inequality for MH,νf .

In relation to MH,νf , we consider the Riesz potential of order α on H defined by

IH,αf(x) =

∫

B(x,xn)

|x− y|α−nf(y) dy

for 0 < α < n and f ∈ L1
loc(H). When studying a C1 function u on H, we can apply

the representation formula

(1.1)

∣∣∣∣u(x)−
1

|B(x, r)|

∫

B(x,r)

u(y) dy

∣∣∣∣ 6
1

n|B(0, 1)|

∫

B(x,r)

|z − x|1−n|∇u(z)| dz

6
1

n|B(0, 1)|
IH,1|∇u|(x)

for B(x, r) ⊂ H; for its proof we refer to [14], (26).

In Theorem 3.4 of [29] we proved a Sobolev type inequality for IH,αf in weighted

Morrey spaces:

Theorem B. Let 1/p∗ = 1/p − α/σ > 0. Suppose β < (n + 1)/(2p′) and

0 < σ < 1
2 (n+ 1). Then there exists a constant C > 0 such that

sup
{r>0 : B(x,r)⊂H}

rσ

|B(x, r)|

∫

B(x,r)

(zβnIH,αf(z))
p∗

dz 6 C

when f > 0 is such that

sup
r>0,x∈H

rσ

|B(x, r)|

∫

H∩B(x,r)

(|f(y)|yβn)
p dy 6 1.

Applying the technique by Hedberg (see [2]) and the arguments expanded in the

proof of Theorem 3.1 below, we prove a Sobolev type inequality for IH,αf in weighted

Morrey spaces of variable exponent (see Theorem 4.3) as an extension of Theorem B,

see also [3], [21], [23], [25]. Thanks to (1.1), we show a Sobolev type inequality for

a C1 function on H, see Corollary 4.4.

Regarding regularity theory of differential equations, Baroni, Colombo and Min-

gione in [4], [5], [8], [9] studied a double phase functional Φ̂(x, t) = tp+a(x)tq . In [29],

we studied Sobolev type inequalities for MH,νf and IH,αf of functions in weighted
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Morrey spaces of the double phase functionals Φ̂(x, t) in the constant exponent case.

In the present paper, relaxing the continuity of a(·), let us consider the double phase

functional

Φ(x, t) = tp(x) + (b(x)t)q(x),

where p(·) and q(·) satisfy log-Hölder conditions, p(x) < q(x) for x ∈ H and b(·) is

nonnegative and Hölder continuous of order θ ∈ (0, 1] (see [19]); if we write Φ(x, t) =

tp + a(x)tq with a(x) = b(x)q when p(·) = p, q(·) = q are constants, then a is

not always Hölder continuous of order θq when θq > 1. As an application, we give

Sobolev type inequalities for MH,νf and IH,αf of functions f in weighted Morrey

spaces of the double phase functionals Φ(x, t) (see Theorems 5.1 and 5.2 given later)

as an extension of [29], Theorems 2.1 and 4.1; for related results, see [19], [23], [24].

As a corollary, we obtain Sobolev type inequalities for a C1 function on H in the

framework of the double phase functionals, see Corollary 5.3. We also refer to [6],

[15], [22], [26], [31] for other double phase problems.

Throughout this paper, let C denote various constants independent of the variables

in question. The symbol g ∼ h means that C−1h 6 g 6 Ch for some constant C > 0.

2. Preliminaries

In this section we recall all the definitions and preliminary results which will be

useful in the sequel.

We say that p(·) satisfies condition (P) if

(P1) 1 < p− := inf
x∈Rn

p(x) 6 sup
x∈Rn

p(x) =: p+ < ∞;

(P2) there exists a constant cp > 0 such that

|p(x)− p(y)| 6
cp

log(e + |x− y|−1)
for x, y ∈ R

n;

(P3) there exist p(∞) > 1 and cp(∞) such that

|p(x)− p(∞)| 6
cp(∞)

log(e + |x|)
for x ∈ R

n.

A typical example of p(·) is of the form

p(x) := p+
c1

log(e + |x|−1)
+

c2
log(e + |x|)

for some constants c1 and c2.
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Throughout this paper, we always assume that p(·) satisfies condition (P). Let

1/p(x) + 1/p′(x) = 1 and H be the half space, that is,

H = {x = (x′, xn) ∈ R
n−1 × R

1 : xn > 0}.

Let G be an open set in R
n. For σ with 0 < σ 6 n, the Morrey space Lp(·),σ(G)

of variable exponent is defined by

Lp(·),σ(G) =

{
f ∈ L1

loc(G) : sup
B(x,r)⊂G

rσ

|B(x, r)|

∫

B(x,r)

( |f(y)|
λ

)p(y)
dy < ∞

for some λ > 0

}
.

It is a Banach space with respect to the norm

‖f‖Lp(·),σ(G) = inf

{
λ > 0: sup

B(x,r)⊂G

rσ

|B(x, r)|

∫

B(x,r)

( |f(y)|
λ

)p(y)
dy 6 1

}
.

It is convenient to see that

(2.1) ‖f‖Lp(·),σ(G) 6 1 ⇔ sup
B(x,r)⊂G

rσ

|B(x, r)|

∫

B(x,r)

(|f(y)|)p(y) dy 6 1.

Let us recall some lemmas, which will be useful in the sequel.

Lemma 2.1 ([27], Lemma 2.3). For ε > 1
2 (n− 1), set

I(x) =

∫

B(x,xn)

yε−n
n dy.

Then there exists a constant C > 0 such that

I(x) 6 Cxε
n.

Lemma 2.2 ([27], Lemma 2.5). For ε < 1
2 (n− 1), set

J(y) =

∫

{x∈H : |x−y|<xn}

xε−n
n dx.

Then there exists a constant C > 0 such that

J(y) 6 Cyεn.
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We know the following result on the boundedness of the usual fractional maximal

operator Mν in variable exponent Morrey spaces.

Lemma 2.3 ([3], Corollary 2, [13], Lemma 4). Let 1/p∗(x) = 1/p(x) − ν/σ >

1/p+ − ν/σ > 0 on R
n. Then there exists a constant C > 0 such that

sup
r>0,x∈Rn

rσ

|B(x, r)|

∫

B(x,r)

(Mνg(x))
p∗(x) dx 6 C

when

sup
r>0,x∈Rn

rσ

|B(x, r)|

∫

B(x,r)

|g(y)|p(y) dy 6 1.

Moreover, we need the following technical lemmas.

Lemma 2.4. Suppose −β − σ/p− + n > 1
2 (n− 1). Then for 0 < xn < 1,

∫

B(x,xn)

y−β−σ/p(y)
n dy 6 Cx−β−σ/p(x)+n

n .

P r o o f. Since |y − x′|2 < 2xnyn < 2yn and yn < 2xn < 2 for y ∈ B(x, xn) with

0 < xn < 1, we have by (P2)

y−1/p(y)+1/p(x′)
n 6 Cy−C/ log(e+|y−x′|−1)

n 6 Cy
−C/ log(e+y−1

n
)

n 6 C.

Hence, we obtain by Lemma 2.1

∫

B(x,xn)

y−β−σ/p(y)
n dy 6 C

∫

B(x,xn)

y−β−σ/p(x′)
n dy

6 Cx−β−σ/p(x′)+n
n 6 Cx−β−σ/p(x)+n

n

since −β − σ/p− + n > 1
2 (n− 1) and

x−1/p(x′)−1/p(x)
n 6 x−C/ log(e+|x′−x|−1)

n = x
−C/ log(e+x−1

n
)

n 6 C

by (P2), which completes the proof. �

Lemma 2.5. Suppose −β − σ/p− + n > 1
2 (n− 1). Then for xn > 1,

∫

B(x,xn)

y−β−σ/p(y)
n dy 6 Cx−β−σ/p(∞)+n

n 6 Cx−β−σ/p(x)+n
n .
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P r o o f. Since

y−1/p(y)
n 6 y−1/p(∞)+c/ log(e+|y|)

n 6 Cy−1/p(∞)
n

for yn > 1 by (P3) and −β − σ/p(∞) + n > 1
2 (n− 1), we have

∫

{y∈B(x,xn) : yn>1}

y−β−σ/p(y)
n dy 6 C

∫

{y∈B(x,xn) : yn>1}

y−β−σ/p(∞)
n dy

6 Cx−β−σ/p(∞)+n
n

by Lemma 2.1.

Moreover, taking γ such that γ < 1
2 (n+ 1) and −β − σ/p− + γ > 0, it is

∫

{y∈B(x,xn) : yn<1}

y−β−σ/p(y)
n dy 6

∫

{y∈B(x,xn) : yn<1}

y−γ
n dy

6 Cx(n−1)/2
n

∫ 1

0

r−γ+(n−1)/2 dr

6 Cx(n−1)/2
n 6 Cx−β−σ/p(∞)+n

n .

Consequently,

∫

B(x,xn)

y−β−σ/p(y)
n dy 6 Cx−β−σ/p(∞)+n

n 6 Cx−β−σ/p(x)+n
n

by (P3), which completes the proof. �

3. Boundedness of fractional maximal operators on the half space

In this section, we study the boundedness of the fractional central maximal oper-

ator in the weighted Morrey spaces of variable exponent.

Let us state our boundedness result in the following theorem.

Theorem 3.1. Suppose 1/p∗(x) = 1/p(x) − ν/σ > 1/p+ − ν/σ > 0 on R
n and

β 6 σ/(p−)
′ < (n+ 1)/(2(p−)

′). Then there exists a constant C > 0 such that

sup
{r>0 : B(x,r)⊂H}

rσ

|B(x, r)|

∫

B(x,r)

(zβnMH,νf(z))
p∗(z) dz 6 C

when

sup
r>0,x∈H

rσ

|B(x, r)|

∫

H∩B(x,r)

(|f(y)|yβn)
p(y) dy 6 1.
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This implies that

‖ωMH,νf‖Lp∗(·),σ(H) 6 C‖ωfχH‖Lp(·),σ(Rn),

where ω(x) = |xn|
β for x ∈ R

n and χE denotes the characteristic function of E ⊂ R
n.

Remark 3.2. One sees that ωp is the Muckenhoupt Ap weight if and only if

−1/p < β < 1−1/p. Even though β is not in the interval (−1/p, 1−1/p), Theorem 3.1

is applicable for β such that βp/(p− 1) 6 σ < 1
2 (n+ 1).

To prove Theorem 3.1, first note that

K1(x) = sup
0<r<xn/2

rν

|B(x, r)|

∫

B(x,r)

|f(y)| dy

6 sup
0<r<xn/2

Cx−β
n

rν

|B(x, r)|

∫

B(x,r)

|f(y)|yβn dy 6 Cx−β
n Mνg(x),

where g(y) = |f(y)||yn|
βχH(y).

Next note that

K2(x) = sup
xn/26r<xn

rν

|B(x, r)|

∫

B(x,r)

|f(y)| dy

6 C
xν
n

|B(x, xn)|

∫

B(x,xn)

|f(y)| dy = CK3(x).

Then

(3.1) MH,νf(x) 6 Cx−β
n Mνg(x) + CK3(x).

With the aid of Lemmas 2.4 and 2.5, we can obtain the following estimate for K3.

Lemma 3.3. Suppose 1/p∗(x) = 1/p(x) − ν/σ > 1/p+ − ν/σ > 0 on R
n, −β −

σ/p− + n > 1
2 (n − 1) and −β − σ/p− + σ > 0. Then there exists a constant C > 0

such that

xβ
nK3(x) 6 Cx−σ/p∗(x)

n

when

sup
x∈H

xσ
n

|B(x, xn)|

∫

B(x,xn)

(|f(y)|yβn)
p(y) dy 6 1.
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P r o o f. Set K(y) = y
−β−σ/p(y)
n . Since −β − σ/p− + n > 1

2 (n − 1), we have

by (P1), Lemma 2.4 and Lemma 2.5

(3.2) K3(x) =
xν
n

|B(x, xn)|

∫

{y∈B(x,xn) : f(y)6K(y)}

|f(y)| dy

+
xν
n

|B(x, xn)|

∫

{y∈B(x,xn) : f(y)>K(y)}

|f(y)| dy

6
xν
n

|B(x, xn)|

∫

B(x,xn)

K(y) dy

+
xν
n

|B(x, xn)|

∫

B(x,xn)

|f(y)|
( |f(y)|
K(y)

)p(y)−1

dy

6 Cxν−β−σ/p(x)
n

+ C
xν
n

|B(x, xn)|

∫

B(x,xn)

y(p(y)−1)(β+σ/p(y))
n |f(y)|p(y) dy.

If 0 < xn < 1 and y ∈ B(x, xn), then by (P2)

y−β+σ(p(y)−1)/p(y)
n 6 Cx−β+σ(p(y)−1)/p(y)

n 6 Cx−β+σ(p(x)−1)/p(x)
n

when −β + σ(p(y)− 1)/p(y) > 0.

If xn > 1, yn > 1 and y ∈ B(x, xn), then by (P3)

y−β+σ(p(y)−1)/p(y)
n 6 Cy−β+σ(p(∞)−1)/p(∞)

n 6 Cx−β+σ(p(∞)−1)/p(∞)
n

6 Cx−β+σ(p(x)−1)/p(x)
n

when −β + σ(p(∞) − 1)/p(∞) > 0.

If 0 < yn < 1 6 xn and y ∈ B(x, xn), then

y−β+σ(p(y)−1)/p(y)
n 6 1 6 x−β+σ(p(x)−1)/p(x)

n

when −β + σ(p(x) − 1)/p(x) > 0.

Hence, it follows from (3.2) that

K3(x) 6 Cxν−β−σ/p(x)
n + Cx−β+σ(p(x)−1)/p(x)

n

xν
n

|B(x, xn)|

∫

B(x,xn)

(|f(y)|yβn)
p(y) dy

6 Cx−β+ν−σ/p(x)
n ,

which gives the required result. �
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Now we are ready to prove Theorem 3.1.

P r o o f of Theorem 3.1. Let f be a measurable function on R
n such that

sup
r>0,x∈H

rσ

|B(x, r)|

∫

H∩B(x,r)

(|f(y)|yβn)
p(y) dy 6 1.

In view of (3.1), we recall

zβnMH,νf(z) 6 CMνg(z) + CK3(z)z
β
n,

where g(y) = |f(y)|yβnχH(y). By Lemmas 2.3, 3.3 and 2.1, we obtain for r > 0 such

that B(x, r) ⊂ H that

rσ

|B(x, r)|

∫

B(x,r)

(zβnMH,νf(z))
p∗(z) dz

6 C
rσ

|B(x, r)|

∫

B(x,r)

(Mνg(z))
p∗(z) dz + C

xσ
n

|B(x, xn)|

∫

B(x,xn)

(K3(z)z
β
n)

p∗(z) dz

6 C + C
xσ
n

|B(x, xn)|

∫

B(x,xn)

z−σ
n dz 6 C

when σ < 1
2 (n+ 1). Thus, the proof is completed. �

Corollary 3.4. Suppose 1/p∗(x) = 1/p(x) − ν/σ > 1/p+ − ν/σ > 0 on R
n,

−β−σ/p−+n > 1
2 (n−1) and −β−σ/p−+σ > 0. Then for q > 1 with σ/q < 1

2 (n+1)

there exists a constant C > 0 such that

sup
{r>0 : B(x,r)⊂H}

rσ/q

|B(x, r)|

∫

B(x,r)

(zβnMH,νf(z))
p∗(z)/q dz 6 C

when

sup
r>0,x∈H

rσ

|B(x, r)|

∫

H∩B(x,r)

(|f(y)|yβn)
p(y) dy 6 1.

For this, note from Hölder’s inequality and Lemma 2.3 that

rσ/q

|B(x, r)|

∫

B(x,r)

(Mνg(z))
p∗(z)/q dz 6

(
rσ

|B(x, r)|

∫

B(x,r)

(Mνg(z))
p∗(z) dz

)1/q

6 C

for r > 0 such that B(x, r) ⊂ H. Moreover, by Lemmas 3.3 and 2.1, we find

x
σ/q
n

|B(x, xn)|

∫

B(x,xn)

(K3(z)z
β
n)

p∗(z)/q dz 6 C
x
σ/q
n

|B(x, xn)|

∫

B(x,xn)

z−σ/q
n dz 6 C

when σ/q < 1
2 (n+ 1).
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Example 3.5. Let

Γ = {x = (x1, x2) : 1 < 2x1 < x2 < 3x1}

and

p(x) = p(x1, x2) =





p0 +
(min{x1, 1}

log(e + x1)

)θ
when x1 > 0;

p0 when x1 6 0

for p0 > 1 and 0 < θ < 1.

Consider

f(y) =

{
|y|−2/p0 when y ∈ Γ;

0 otherwise.

(1) Since (log |y|)/(log(e + y1))
θ > C(log |y|)1−θ for y ∈ Γ,

∫

R2

f(y)p(y) dy =

∫

Γ

|y|−2 exp
(
−

2

p0
(log |y|)

(min{y1, 1}

log(e + y1)

)θ)
dy < ∞.

(2) For x = (x1, x2) with x1 < 0, x2 > 2 and −2x1 < x2,

MHf(x) > Cx−2
2

∫

B(x,x2)

f(y) dy > C|x|−2/p0 ,

so that

∫

H

{MHf(x)}
p(x) dx > C

∫

{(x1,x2)∈R2 : x1<0,x2>2,−2x1<x2}

|x|−2 dx = ∞.

This implies that (P3) is sharp in Theorem 3.1.

4. Riesz potentials

In this section, we will establish Sobolev’s inequality for Riesz potentials IH,αf .

Write

IH,αf(x) =

∫

B(x,xn/2)

|x− y|α−nf(y) dy

+

∫

B(x,xn)\B(x,xn/2)

|x− y|α−nf(y) dy

= T1(x) + T2(x).

1211



For 0 < α < n and a locally integrable function g on R
n, we define the usual Riesz

potential Iαg of order α by

Iαg(x) =

∫

Rn

|x− y|α−ng(y) dy.

Let us recall the following result due to [21], Theorem 4.1, cf. [1].

Lemma 4.1 (Sobolev inequality for Morrey spaces). Let 1/p∗(x) = 1/p(x) −

α/σ > 1/p+ − ν/σ > 0 on R
n. Then there exists a constant C > 0 such that

rσ

|B(x, r)|

∫

B(x,r)

|Iαg(z)|
p∗(z) dz 6 C

for x ∈ R
n, r > 0 and measurable functions g on R

n with

sup
x∈Rn,r>0

rσ

|B(x, r)|

∫

B(x,r)

|g(y)|p(y) dy 6 1.

Finally, in order to establish our main result, we need to prove the following lemma.

Lemma 4.2. Suppose

sup
x∈H,r>0

rσ

|B(x, r)|

∫

H∩B(x,r)

(|f(y)|yβn)
p(y) dy 6 1.

If 1/p∗(x) = 1/p(x) − α/σ > 1/p+ − ν/σ > 0 on R
n, then there exists a constant

C > 0 such that

sup
x∈H,r>0

rσ

|B(x, r)|

∫

H∩B(x,r)

(zβn |T1(z)|)
p∗(z) dz 6 C.

P r o o f. For x ∈ H we have

zβn |T1(z)| 6 C

∫

B(z,zn/2)

|z − y|α−ng(y) dy 6 CIαg(z),

where g(y) = |f(y)||yn|
βχH(y). By Lemma 4.1 for x ∈ H and r > 0,

rσ

|B(x, r)|

∫

H∩B(x,r)

(zβn |T1(z)|)
p∗(z) dz 6 C

rσ

|B(x, r)|

∫

B(x,r)

|Iαg(z)|
p∗(z) dz 6 C,

as required. �
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For T2, note that

|T2(x)| 6
(xn

2

)α−n
∫

B(x,xn)

|f(y)| dy

for x ∈ H.

Now we are in position to prove a Sobolev type inequality for IH,αf .

Theorem 4.3. Let 1/p∗(x) = 1/p(x) − α/σ > 1/p+ − α/σ > 0 on R
n and

β 6 σ/(p−)
′ < (n+ 1)/(2(p−)

′). Then there exists a constant C > 0 such that

sup
{r>0 : B(x,r)⊂H}

rσ

|B(x, r)|

∫

B(x,r)

(zβn |IH,αf(z)|)
p∗(z) dz 6 C

when

sup
x∈H,r>0

rσ

|B(x, r)|

∫

H∩B(x,r)

(|f(y)|yβn)
p(y) dy 6 1.

P r o o f. Let f be a measurable function on H such that

sup
x∈H,r>0

rσ

|B(x, r)|

∫

H∩B(x,r)

(|f(y)|yβn)
p(y) dy 6 1.

By Lemmas 4.2, 3.3 with ν = α, and Lemma 2.1, we obtain for r > 0 such that

B(x, r) ⊂ H,

rσ

|B(x, r)|

∫

B(x,r)

(zβn |IH,αf(z)|)
p∗(z) dz

6 C
rσ

|B(x, r)|

∫

B(x,r)

(zβnT1(z))
p∗(z) dz + C

xσ
n

|B(x, xn)|

∫

B(x,xn)

(zβnT2(z))
p∗(z) dz

6 C + C
xσ
n

|B(x, xn)|

∫

B(x,xn)

z−σ
n dz 6 C

when σ < 1
2 (n+ 1), as required. �

In view of (1.1), we find the following statement

Corollary 4.4. Let 1/p∗(x) = 1/p(x) − 1/σ > 1/p+ − 1/σ > 0 on R
n and

β 6 σ/(p−)
′ < (n+ 1)/(2(p−)

′). Then there exists a constant C > 0 such that

sup
{r>0 : B(x,r)⊂H}

rσ

|B(x, r)|

∫

B(x,r)

(
zβn

∣∣∣∣u(z)−
1

|B(z, zn)|

∫

B(z,zn)

u(y) dy

∣∣∣∣
)p∗(z)

dz 6 C

when u is a C1 function on H such that

sup
x∈H,r>0

rσ

|B(x, r)|

∫

H∩B(x,r)

(|∇u(y)|yβn)
p(y) dy 6 1.
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5. Double phase functionals with variable exponents

5.1. Boundedness of fractional maximal operators. In this section, we con-

sider the double phase functional

Φ(x, t) = tp(x) + (b(x)t)q(x),

where p(x) < q(x) for x ∈ R
n, and b(·) is nonnegative and Hölder continuous of

order θ ∈ (0, 1], see [19].

By Theorem 3.1, we can obtain the following result.

Theorem 5.1. Let p− > 1, 1/q(x) = 1/p(x)− θ/σ, 1/p∗(x) = 1/p(x)− ν/σ > 0

and 1/q∗(x) = 1/q(x)− ν/σ > 1/q+ − ν/σ > 0 on R
n. Set

Φ∗(x, t) = Φp∗,q∗(x, t) = tp
∗(x) + (b(x)t)q

∗(x).

Suppose β 6 σ/(p−)
′ < (n + 1)/(2(p−)

′). Then there exists a constant C > 0 such

that

(5.1) sup
{r>0 : B(x,r)⊂H}

rσ

|B(x, r)|

∫

B(x,r)

Φ∗(z, zβnMH,νf(z)) dz 6 C

when

sup
x∈H,r>0

rσ

|B(x, r)|

∫

H∩B(x,r)

Φ(y, |f(y)|yβn) dy 6 1.

P r o o f. Let f be a measurable function on H such that

sup
x∈H,r>0

rσ

|B(x, r)|

∫

H∩B(x,r)

Φ(y, |f(y)|yβn) dy 6 1.

First we see from Theorem 3.1 that

sup
{r>0 : B(x,r)⊂H}

rσ

|B(x, r)|

∫

B(x,r)

(zβnMH,νf(z))
p∗(z) dz 6 C.

Note that

b(x)
rν

|B(x, r)|

∫

B(x,r)

|f(y)| dy

=
rν

|B(x, r)|

∫

B(x,r)

{b(x)− b(y)}|f(y)| dy +
rν

|B(x, r)|

∫

B(x,r)

b(y)|f(y)| dy

6 C
rν+θ

|B(x, r)|

∫

B(x,r)

|f(y)| dy +
rν

|B(x, r)|

∫

B(x,r)

b(y)|f(y)| dy

6 CMH,ν+θf(x) +MH,ν [bf ](x)
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when B(x, r) ⊂ H. Hence, by Theorem 3.1, we establish

sup
{r>0 : B(x,r)⊂H}

rσ

|B(x, r)|

∫

B(x,r)

(zβnb(z)MH,νf(z))
q∗(z) dz 6 C

since 1/q∗(x) = 1/q(x)− ν/σ = 1/p(x) − (ν + θ)/σ and 1/q− = 1/p− − θ/σ, which

completes the proof. �

5.2. Sobolev’s inequality. As in the proof of Theorem 5.1, we can obtain the

following theorem using Theorem 4.3. Its proof is omitted.

Theorem 5.2. Let 1/q(x) = 1/p(x) − θ/σ, 1/p∗(x) = 1/p(x) − α/σ > 0 and

1/q∗(x) = 1/q(x) − α/σ > 1/q+ − α/σ > 0 on R
n. Suppose β 6 σ/(p−)

′ <

(n+ 1)/(2(p−)
′). Then there exists a constant C > 0 such that

sup
{r>0 : B(x,r)⊂H}

rσ

|B(x, r)|

∫

B(x,r)

Φ∗(z, zβnIH,αf(z)) dz 6 C

when

sup
x∈H,r>0

rσ

|B(x, r)|

∫

H∩B(x,r)

Φ(y, |f(y)|yβn) dy 6 1.

Corollary 5.3. Let 1/q(x) = 1/p(x) − θ/σ, 1/p∗(x) = 1/p(x) − 1/σ > 0 and

1/q∗(x) = 1/q(x) − 1/σ > 1/q+ − 1/σ > 0 on R
n. Suppose β 6 σ/(p−)

′ <

(n+ 1)/(2(p−)
′). Then there exists a constant C > 0 such that

sup
{r>0 : B(x,r)⊂H}

rσ

|B(x, r)|

∫

B(x,r)

Φ∗

(
z, zβn

∣∣∣∣u(z)−
1

|B(z, zn)|

∫

B(z,zn)

u(y) dy

∣∣∣∣
)
dz 6 C

when

sup
x∈H,r>0

rσ

|B(x, r)|

∫

H∩B(x,r)

Φ(y, |∇u(y)|yβn) dy 6 1.
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