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Abstract. The aim is to investigate the behaviour of (homomorphic images of) periodic
linear groups which are factorized by mutually permutable subgroups. Mutually permutable
subgroups have been extensively investigated in the finite case by several authors, among
which, for our purposes, we only cite J. C. Beidleman and H.Heineken (2005). In a previous
paper of ours (see M.Ferrara, M. Trombetti (2022)) we have been able to generalize the
first main result of J. C.Beidleman, H.Heineken (2005) to periodic linear groups (showing
that the commutator subgroups and the intersection of mutually permutable subgroups
are subnormal subgroups of the whole group), and, in this paper, we completely generalize
all other main results of J. C.Beidleman, H.Heineken (2005) to (homomorphic images of)
periodic linear groups.
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1. Introduction

Let G be a group. We say that the subgroups A and B of G are mutually per-

mutable if AY = Y A andXB = BX for all subgroupsX of A and Y of B. Of course,

any two normal subgroups are mutually permutable, while the example in [1] (see

page 454) shows that there are non-supersoluble groups which are factorized by two

mutually permutable proper (supersoluble) subgroups but not by two proper normal

subgroups. Groups which are products of two mutually permutable subgroups have

been recently investigated by several authors, and we refer to the monograph (see [4])
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for questions and results concerning this subject, see also [6], [12], [9] and their ref-

erence lists. In particular, Beidleman and Heineken in [6] proved that if G = AB is

a finite group which is factorized by two mutually permutable subgroups, then A∩B,

A′ and B′ are subnormal subgroups of G. This result has been partially extended

in [9] to Černikov groups, while in the recent paper [12] we have been able to prove

that not only the result of Beidleman and Heineken holds for Černikov groups to its

full extent, but that this is the case for every periodic linear group.

The aim of this paper is to continue the investigation of periodic linear groups that

are factorized by mutually permutable subgroups, generalizing all relevant results

of [6] and providing a new insight concerning infinite groups. The layout of the

paper is the following one. In Section 2 we study the behaviour of chief factors of

periodic linear groups with respect to the mutually permutable subgroups into which

the group is factorized; we summarize the results as follows:

Theorem 1.1. Let G = AB be a homomorphic image of a periodic linear group

which is factorized by two mutually permutable subgroups A and B, and let N be

a minimal normal subgroup of G. Then:

⊲ either N 6 A or N ∩A = {1};

⊲ if N is non-abelian, then N = (N ∩A)(N ∩B);

⊲ if N 6 A and N ∩ B = {1}, then either [N,A] = {1} or [N,B] = {1} (and the

latter certainly holds if N is not cyclic);

⊲ if N ∩ A = N ∩B = {1}, then N is cyclic of prime order and either [N,A] = {1}

or [N,B] = {1}.

In Section 3 we employ the results obtained in Section 2 to investigate how require-

ments on mutually permutable subgroups factorizing a group influence the structure

of the whole group. In particular, we consider the following classes of groups: soluble

groups, hyperabelian groups, supersoluble groups, hypercyclic groups, paranilpotent

groups, and their “localizations” to a prime p, see Section 3 for the definitions.

Our notation is standard and can be found for instance in [16] and [20]. If X

is any group theoretical property, we generally say that a normal section N/M of

a group G is X-ly embedded in G if “N/M satisfies the requirements of X with

respect to G/M”. For instance, if we say that N/M is hypercentrally embedded

in G, we mean that N/M lies in the hypercentre of G/M ; if we say that N/M is

hypercyclically embedded in G, we mean that N/M has an ascendant G/M -invariant

series with cyclic factors; and so on . . .
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2. Minimal normal subgroups

The aim of this section is to study the behaviour of minimal normal subgroups

of (homomorphic images of) periodic linear groups which are factorized by mutually

permutable subgroups. These results are employed in the proof of Theorem 3.19,

which is in turn used in Corollary 3.23 to give a bound for the p-length of the whole

group in terms of that of the factors. Before getting into the matter we need to recall

some known facts about linear groups. If G is any group, we denote by S = S(G)

the soluble radical of G, i.e., the product of all its normal soluble subgroups. It is

well known that if G is linear, then S is a soluble subgroup of G which is closed

in the Zariski topology and contains all soluble ascendant subgroups of G (see for

instance Lemma 2.11 of [11]); moreover, if G is periodic linear, then G/S contains

a normal subgroup B/S which is the direct product of finitely many simple non-

abelian groups, and the index |G : B| is finite, see 5.1.5 and Theorem 5.1.6 of [18],

or [11], Lemma 2.15. We denote by u(G) the unipotent radical of a linear group G,

i.e., its largest unipotent normal subgroup. If G is periodic linear of characteristic p,

then u(G) = {1} if p = 0, and u(G) = Op(G) if p > 0. It has been proved in [15]

that if G is a periodic group with trivial unipotent radical, then all its homomorphic

images are linear groups; observe that if G is linear, then also G/u(G) is linear, see

for instance Lemma 2.13 of [11].

Now, we start by generalizing Theorem B of [12] to homomorphic images of peri-

odic linear groups.

Theorem 2.1. Let G = AB be a homomorphic image of a periodic linear group

which is factorized by two mutually permutable subgroups A and B. Then A ∩ B,

A′ and B′ are subnormal subgroups of G.

P r o o f. Let N be a normal subgroup of a periodic linear group H such

that G = H/N . With a slight abuse of notation, we may assume that H/N =

(A/N) · (B/N) is factorized by the two mutually permutable subgroups A/N

andB/N . Then it is clear thatH = AB is factorized by the two mutually permutable

subgroups A and B, so Theorem B of [12] yields that A ∩B, A′ and B′ are subnor-

mal subgroups of H . Then (A/N)′ = A′N/N and (B/N)′ = B′N/N are subnormal

subgroups of G. Moreover, since N 6 A ∩B, it follows that also (A/N) ∩ (B/N) =

(A ∩B)/N is a subnormal subgroup of G. The statement is proved. �

The following lemmas are certainly well known and the first one of them should

be seen in comparison with Corollary 9.21 of [20], but we did not find them explicitly

stated anywhere and so we state (and prove) them here.
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Lemma 2.2. Let G be a homomorphic image of a periodic linear group. Then

every locally nilpotent subgroup is hypercentral.

P r o o f. Let N be a normal subgroup of a periodic linear group such that

G = H/N . Let X/N be a locally nilpotent subgroup of H/N . Then X/N is the

direct product of its primary components. Let P/N = Op(X/N) for a prime p.

By Theorem 9.20 of [20] there exists a p-subgroup L of H such that LN = P . Of

course, L is a locally nilpotent linear group, so it is hypercentral. The arbitrariness

of p yields that X/N is hypercentral. �

If G is a group, we denote by ̺∗
N
(G) the nilpotent residual of G. It has been

proved in [11], Corollary 3.9, that if G is a homomorphic image of a periodic linear

group, then there exists a positive integer c for which ̺∗
N
(G) = γc(G).

Lemma 2.3. Let G be a homomorphic image of a periodic linear group. If N 6

ζω(G), then γc(G) 6 CG(N) for some c. In particular, CG(N) is subnormal in G.

P r o o f. As we remarked above, γc(G) = γc+1(G) for a positive integer c.

Moreover, it is well known that [γm(G), ζm(G)] = {1} for any positive integer m,

so [γc(G), ζω(G)] = {1}. This completes the proof of the statement. �

Lemma 2.4. Let G = AB be a homomorphic image of a periodic linear

group which is factorized by two mutually permutable subgroups A and B. Then

(A ∩B)G/(A ∩B)G is hypercentral.

P r o o f. Let X = A ∩ B, so X is a permutable subgroup of both A and B, see

for instance Lemma 3.1 of [12]. Theorem 7 of [7] yields that both X/XA and X/XB

are hypercentral, so also X/XA ∩XB is hypercentral. On the other hand,

XA = (A ∩B)A = A ∩BA = A ∩BG and XB = (A ∩B)B = AB ∩B = AG ∩B,

so XA ∩XB = AG ∩BG = XG and hence, X/XG is hypercentral. By Theorem 2.1,

we also have that X is a subnormal subgroup of G, so XG/XG is locally nilpotent,

and even hypercentral by Lemma 2.2. �

It is proved in the recent paper in preparation1 that if X is a Zariski closed

permutable subgroup of the linear group G, then XG/XG is nilpotently embedded

in G, so if we require in the above lemma that A ∩ B is Zariski closed, then (using

similar arguments but replacing Theorem 7 of [7] by the result we just quoted) we see

that (A∩B)G/(A∩B)G is nilpotent. Of course, A∩B is Zariski closed in particular

in the following cases:

(1) both A and B are Zariski closed;

(2) A ∩B is finite.

1 F. de Giovanni, M. Trombetti, B. A. F.Wehrfritz: Permutability in linear groups
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Recall that two subgroups A and B of a group G are said to be totally permutable

ifHK = KH wheneverH 6 A andK 6 B. Of course, totally permutable subgroups

are mutually permutable. It has been proved in [3] that the product of two finite

totally permutable supersoluble subgroups is supersoluble, so any locally finite group

which is factorized by locally supersoluble subgroups is locally supersoluble.

Now, we are ready to study the behaviour of chief factors of periodic linear groups

with respect to mutually permutable subgroups factorizing the whole group.

Theorem 2.5. Let G = AB be a homomorphic image of a periodic linear group

which is factorized by two mutually permutable subgroups A and B. If N is a non-

abelian minimal normal subgroup ofG, then eitherN 6 A orN∩A = {1}. Moreover,

N = (N ∩ A)(N ∩B).

P r o o f. Lemma 2.1 of [12] yields that X = (N∩A)(N ∩B) is a normal subgroup

of G, so either X = N or X = {1}. Moreover, if N ∩ A = N ∩ B = {1}, then

〈A′, B′〉 6 CG(N) (recall that A′ and B′ are subnormal in G by Theorem 2.1), so

G/CG(N) is soluble (actually metabelian by Ito’s theorem) and hence N 6 CG(N),

a contradiction. Thus, the latter part of the theorem follows from the former one.

Assume {1} 6= N ∩ A 6= N , so X = N . Theorem 2.1 shows that A ∩ B is

subnormal in G, so if A∩B ∩N were not trivial, then A∩B ∩N would be a locally

nilpotent proper subnormal subgroup of N , see Lemma 2.4. The minimality of

N gives that N is locally nilpotent and so hypercentral (by Lemma 2.2) and even

abelian, a contradiction. Thus, A ∩B ∩N = {1}. Now, Lemmas 2.1 and 3.5 of [12]

yield that N is factorized by the two totally permutable subgroups N ∩A and N ∩B.

Now, RA = ̺∗
N
(N ∩A) centralizes N ∩B by Theorem 1 of [5], so RA is a normal

subgroup of N ; moreover, (N ∩A)/RA is nilpotent, see [11], Theorem 3.8. Similarly,

RB = ̺∗
N
(N ∩ B) is normal in N , and (N ∩ B)/RB is nilpotent. Then N/RARB is

a product of two nilpotent subgroups which are totally permutable, so it is locally

soluble by Corollary 2.4 of [12] and hence even soluble by Corollary 9.21 of [20]. The

minimality of N yields that N = RARB = RA ×RB = (N ∩ A)× (N ∩B).

Let C be any abelian subgroup of N ∩B. Then

AC ∩N = (A ∩N)× C and C = ζ1(AC ∩N),

so C is a normal subgroup of AC, and A induces in N ∩B power automorphisms by

conjugation, so N ∩B is normal in G and hence either N ∩B = {1} or N ∩B = N .

If N ∩B = {1}, then N ∩A = N , a contradiction, and, on the other hand, if N 6 B,

then {1} = A∩B ∩N = A∩N , again a contradiction. The statement is proved. �
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Corollary 2.6. Let G = AB be a homomorphic image of a periodic linear group

which is factorized by two mutually permutable subgroups A and B. If N is the

largest perfect normal subgroup of A, then N is normal in G.

P r o o f. Let L = NG. Since L is generated by conjugates of N , it follows that

L′ = L. Assume by contradiction that A′ ∩L is properly contained in L. Since A′ is

subnormal in G by Theorem 2.1, the structure of periodic linear groups implies the

existence of a (non-abelian) chief factor L/M of G such that (A′ ∩ L)L 6 M . Now,

NM/M is non-abelian, so Theorem 2.5 gives L 6 AM and hence even L 6 A′M

since L/L ∩ A′M is abelian. On the other hand,

L = A′M ∩ L = (A′ ∩ L)M = M

and we obtain a contradiction. Thus, L 6 A′ and so L = N , as we wanted. �

Theorem 2.7. Let G = AB be a homomorphic image of a periodic linear group

which is factorized by two mutually permutable subgroupsA andB. IfN is a minimal

normal subgroup of G, then either N 6 A or N ∩ A = {1}.

P r o o f. By Theorem 2.5, we may assume N is abelian of prime exponent p,

and {1} 6= N ∩ A 6= N , so (as in the proof of Theorem 2.5) N = (N ∩ A)(N ∩B) is

factorized by the two mutually permutable subgroups N ∩A and N ∩B. Of course,

if N ∩B = {1}, then N = N ∩ A, so N ∩B 6= {1}.

Put X = A ∩ B, so N 66 X and in particular, N ∩ XG = {1}. Lemma 2.4

yields that XG/XG is hypercentral. Thus, the minimality of N shows that either

NXG∩XG = XG or NXG/XG 6 ζ1(X
G/XG). In any case [N,X ] 6 N ∩XG = {1},

so X 6 C = CG(N).

Since X 6 C, it follows from Lemma 4 of [9] that G/C is factorized by the two

totally permutable subgroupsAC/C andBC/C. Theorem 1 of [5] yields that A∗C/C

centralizes B/C, where A∗ = ̺∗
N
(A); in particular, A∗C is normal in G. Now, N ∩A

is normalized by A and N (which is abelian), and

A/(N ∩ A)⋉N/(N ∩ A) = A/(N ∩ A)⋉ (N ∩B)(N ∩ A)/(N ∩A),

so

〈b〉(N ∩ A)/(N ∩ A) = (A〈b〉/(N ∩ A)) ∩ (N/(N ∩ A))

is normalized by A for any b ∈ N ∩ B. Therefore, A acts as a group of power

automorphisms on N/N ∩ A; in particular, [N,A′Ap−1] 6 N ∩ A. Symmetrically,

[N,B′Bp−1] 6 N ∩B.

It follows fromN∩A < N that any normal subgroup ofG contained in [N,A′Ap−1]

must be trivial; in particular, [A∗C,N ] = [A∗, N ] is trivial and so A∗ 6 C, which
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means that AC/C is nilpotent. In order to obtain the same conclusion for the normal

subgroups of G which are contained in [N,B′Bp−1], we must show that N ∩B < N .

Suppose N 6 B. As we know, X is permutable in B (see Lemma 3.1 of [12]), so

X/XB 6 ζω(B/XB) by Theorem 7 of [7]. Since XB = AG ∩B and N 6 B, we have

thatN∩X = N∩A is contained in ζω(B). In particular, ifQ is the subgroup ofB gen-

erated by all its p′-elements, then Q 6 CB(N∩A). Since (N ∩ A)G = (N ∩ A)B = N ,

it follows that Q 6 CB(N), so B/CB(N) is a p-group. Now, BC/C is locally nilpo-

tent, while AC/C is nilpotent, so G/C is locally supersoluble, see [3].

Let W/C be the subgroup generated by all q-elements of AC/C, where q > p.

Then W/C is normalized by BC/C since G/C is locally supersoluble, and so W is

a normal subgroup of G which is contained in AC/C. Now, [W,N ] 6 [Ap−1, N ] and

so W 6 C. Therefore, π(G/C) ⊆ {1, . . . , p}.

Let V/C be the largest p-subgroup of G/C. Then there is a p-subgroup P of V

such that V = PC, see Theorem 9.20 of [20]. But then PN is hypercentral and so

N 6 ζ1(PN) by minimality of N (note that PN is a normal subgroup of G), which

means P 6 C. Thus, actually, π(G/C) ⊆ {1, . . . , p− 1}, and in particular, B 6 C.

Then N ∩ A is a normal subgroup of G and this contradicts the minimality of N .

We have thus proved thatN∩B is properly contained inN , and so, as we remarked

above, every normal subgroup of G which is contained in [N,B′Bp−1] must be trivial;

in particular, the nilpotent residual of B is contained in C, which means that BC/C

is nilpotent. It follows that G/C is locally supersoluble, see [3].

Let K/C = Oπ(G/C), where π = {2, . . . , p}, and assumeK < G. Theorem 3 of [5]

yields that either AK/K or BK/K contains a nontrivial normal subgroup of G/K.

Without loss of generality we may assume that L/K is a nontrivial normal subgroup

of G/K which is contained in AK/K. Of course, we may assume π(L/K) ⊆ π′.

Then there is a π′-subgroup P/C of AC/C such that PK = L. Since G/C is locally

supersoluble, we have that L/C = P/C × K/C and so P/C is normal in G/C.

Moreover, P 6 Ap−1C, so [P,N ] is a G-invariant subgroup of [Ap−1, N ], and hence

P 6 C. It follows that K = G and consequently π(G/C) ⊆ π.

Finally, observe that N ∩A is not normal in G, so there is an element x ∈ B such

that (N ∩A)x 6= N ∩A. Since π(G/C) ⊆ π, we can choose x of prime power order qn

for a prime q < p. Clearly,

(N ∩ A)x 6 N ∩ (〈x〉A) = (N ∩ (〈x〉A))x.

Let Y be a Sylow p-subgroup of A. Then Y is a Sylow p-subgroup of 〈x〉A, and so

N ∩ A = N ∩ Y = N ∩ (〈x〉A).

Then (N ∩A)x 6 (N ∩A) and so even (since x has finite order) (N ∩A)x = (N ∩A),

the final contradiction. �
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Theorem 2.8. Let G = AB be a homomorphic image of a periodic linear group

which is factorized by two mutually permutable subgroups A and B. Let N be

a minimal normal subgroup of G which is contained in A and such that N ∩B = {1}.

Then either [N,A] = {1} or [N,B] = {1}. Moreover, if N is non-cyclic, then

[N,B] = {1}.

P r o o f. Let K be any subgroup of N . Then KB = BK and so N ∩ KB =

K(N∩B) = K is normalized byKB; in particular,K is normalized byB. Thus, B in-

duces power automorphisms by conjugation on N .

We immediately note that if A centralizes N , then every cyclic subgroup of N is

normal in G and so N must be cyclic. It follows that if N is not cyclic, then A does

not centralize N , so the second part of the statement follows from the first part.

Assume first that N is non-abelian. Then N is the direct product of locally finite

simple groups, see the introduction of this section. Since [N,B] 6 ζ1(N) = {1}

(see [17], Theorem 1.5.2), the statement is proved in this case.

Assume now N is an elementary abelian p-group for a prime number p and

A 66 C = CG(N). Then B/CB(N) is a nontrivial cyclic group of order dividing

p − 1, and we may therefore choose b ∈ B such that B = 〈b〉CB(N). Suppose that

AC/C is a p-group. Then G/C is locally supersoluble (being the product of two

totally permutable locally nilpotent subgroups) and so AC/C is a normal p-group.

Let P be any p-subgroup of A such that AC = PC, see [20], Theorem 9.20. It follows

that NP is hypercentral, so N ∩ ζ1(AC) is not trivial and hence N 6 ζ1(AC), which

means that A 6 C, a contradiction. Therefore, AC/C admits a nontrivial element

of prime order q 6= p. Let y be a q-element in A \ CA(N) such that yq ∈ CA(N).

Let x ∈ (NB∩〈y〉B)\B and take b1, b2 ∈ B, y1 ∈ 〈y〉, g ∈ N with x = y1b1 = gb2.

Put S = 〈x,B〉 = 〈y1〉B = 〈g〉B. Clearly,

|〈g〉B : B| = |〈g〉| and |〈y1〉B : B| = |〈y1〉 : B ∩ 〈y1〉|,

so |S : B| is at the same time a p-number and a q-number, which means x ∈ S = B.

In particular, NB ∩ 〈y〉B = B and so N ∩ 〈y〉B = {1}.

Since N ∩ B = {1}, we have N 66 X = A ∩ B and in particular, N ∩XG = {1}.

Lemma 2.4 yields that XG/XG is hypercentral. Thus, the minimality of N shows

that either NXG ∩ XG = XG or NXG/XG 6 ζ1(X
G/XG). In any case, [N,X ] 6

N ∩XG = {1}, so X 6 C, and consequently y does not belong to B.

Now, Lemma 2.1 of [12] yields that W = 〈y〉B is factorized by the mutually

permutable subgroups 〈y〉(A∩B) and B. The same lemma applied to CW (N) shows

that V = 〈yq〉CB(N) is a normal subgroup of W . Since V contains A∩B, it follows

that W/V is factorized by the totally permutable subgroups 〈y〉V/V and BV/V , see

for instance Lemma 4 of [9]. Moreover, (〈y〉CB(N)) ∩ (〈yq〉B) = V . Thus, W/V is

1236



locally supersoluble (see [3]) and 〈y〉V/V is normalized by all r-subgroups of BV/V ,

where r is a prime with r < q. Similarly, every r-subgroup of BV/V with r > q is

normalized by y. Moreover, if Q/V is the Sylow q-subgroup of BV/V , then Q/V

has index q in 〈y〉Q/V , so Q/V is normalized by y.

Direct computation shows that [b, y] centralizes N for any b ∈ B. Thus, 〈y〉V/V is

actually centralized by all r-subgroups of BV/V when r is a prime such that r < q;

and every r-subgroup of BV/V with r > q is centralized by y. It follows that W/V

is abelian, so [B, y] 6 V .

Choose u ∈ N such that [y, u] 6= 1, and b ∈ B. Replacing y by yu (recall that

N 6 A) we see that [b, yu] lies in V (note that (yu)q = yq). Clearly,

[b, yu] = [b, y[y, u]] = [b, [y, u]][b, y],

and 〈[b, yu], [b, y]〉 6 V . Therefore, [b, [y, u]] lies in V ∩ N = {1}. On the other

hand, B acts as a power automorphism on N and [y, u] is not trivial, so actually

[b,N ] = {1} and hence [B,N ] = {1}. �

Theorem 2.9. Let G = AB be a homomorphic image of a periodic linear group

which is factorized by two mutually permutable subgroups A and B. Let N be

a minimal normal subgroup of G such that N ∩A = N ∩B = {1}. Then |N | = p for

a prime p, and either [N,A] = {1} or [N,B] = {1}.

P r o o f. Let Ĝ be a periodic linear group of characteristic q and degree n, and Ĥ

a normal subgroup of Ĝ such that G = Ĝ/Ĥ. By Theorem 2.5, N is abelian and

consequently an elementary abelian p-group for a prime p.

Suppose first N is finite and the statement is false. In this case we may find

a finite subgroup F of G which is factorized by the mutually permutable subgroups

F ∩ A and F ∩ B, and is such that N is a minimal normal subgroup of F , see for

instance Lemma 2.1 of [12]. Then Lemma 2 of [6] shows that |N | = p, so there must

be elements a ∈ A and b ∈ B such that [a,N ] 6= {1} 6= [b,N ]. But then we can

choose F containing a and b, obtaining a contradiction again by Lemma 2 of [6].

Thus, the statement is true whenever N is finite.

The structure of periodic linear groups we have outlined above shows that N is

finite whenever q = 0 or q is a prime distinct from p, so in the following we may

assume that q = p is a prime and N is infinite.

Let F be a finite subgroup of G such that F = (F ∩A)(F ∩B) is factorized by the

two mutually permutable subgroups F ∩ A and F ∩ B, see for instance Lemma 2.1

of [12]. LetN1 be a minimal normal subgroup of F contained inN∩F . It follows from

Lemma 2 of [6] that |N1| = p. Repeating this argument we find an F -invariant series

{1} = N0 6 N1 6 N2 6 . . . 6 Nt = N ∩ F
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such that Ni+1/Ni is cyclic of order p. Let C =
⋂
i

CF (Ni+1/Ni), so F/C has

exponent p − 1. Now, C/CF (N) is nilpotent (stabilizing a finite series) and

hence is a p-group. A combination of 2.6 and Theorem 9.20 of [20] yields that

C/CF (N) has exponent at most pe, where e is such that pe−1 < n 6 pe. Therefore,

(F p−1)p
e

6 CF (N) and the arbitrariness of F gives that Gp−1CG(N)/CG(N) is

a p-group (of exponent at most pe).

Let P be a p-subgroup of G such that Gp−1CG(N) = PCG(N). Then NP is

a p-group, so hypercentral (see Lemma 2.2) and hence N ∩ ζ1(NP ) 6= {1}. Thus,

N ∩ ζ1(G
p−1) 6= {1}

and so N 6 ζ1(G
p−1), which means Gp−1 6 CG(N).

Now, G/Gp−1 is a locally finite group satisfying the minimal condition on abelian

subgroups, because otherwise if Q/Gp−1 is a q-subgroup of G/Gp−1, then Q1 is

Černikov (see [20], 2.6 and Theorem 9.20 of [20]) and so even finite. A well known

theorem of Šunkov shows that G/Gp−1 is Černikov and consequently finite. There-

fore, G/CG(N) is finite and so also N is finite, the final contradiction. �

3. Primary localizations

In this section we study groups which are factorized by mutually permutable sub-

groups satisfying certain “primary localizations” of some well known concepts.

Recall that if p is any prime, the upper p-series of G is the normal series {σp
α(G)}α

defined recursively as follows: σp
0(G) = {1}; if λ is a successor ordinal, write

λ = µ+ n for a limit ordinal µ and a positive integer n, and put σp
λ(G)/σp

λ−1
(G) =

Oπ(G/σp
λ−1

(G)), where π = {q ∈ P : q 6= p} if n is odd, and π = {p} other-

wise. We denote by σp(G) the last term of the upper p-series of G, and we say

that G is p-hyperabelian if G = σp(G). The group G is called p-soluble if it coin-

cides with a finite term of the upper p-series; in this case, the number of nontrivial

factors of {σp
α(G)}α that are p-groups is called the p-length of G, see [14]. Further-

more, G is p-supersoluble (p-hypercyclic) if it is p-soluble (p-hyperabelian) and the

nontrivial p-factors of its upper p-series admit a finite G-invariant series (an ascend-

ing G-invariant series) with cyclic factors, see [6]. Finally, recall that G is called

p-nilpotent if G = Op′p(G) = σp
2(G); of course, Op′p(G) is the largest p-nilpotent

normal subgroup of a locally finite group G.

A couple of terminology remarks:

⊲ We could have defined p-nilpotency by requiring that the factor group G/Op′(G)

were a nilpotent p-group, p-hypercentrality by requiring that G/Op′(G) were a hy-

percentral p-group, and p-(local nilpotency) by requiring that G/Op′(G) were a lo-
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cally finite p-group. With respect to these definitions, p-nilpotent (p-hypercentral)

means the group is p-soluble and the p-factors of its upper p-series are nilpo-

tently (hypercentrally) embedded in the group; this is proved using arguments

which are very similar to those employed in the proof of Lemma 3.4. Although

this would have been more consistent with the previous definitions and would

have certainly give some other piece of information (e.g., in the statement of

Lemma 3.4 we could have derived p-hypercentrality in general, and p-nilpotency

for p-supersoluble groups), we have decided not to complicate this more than neces-

sarily since our main results do not deal directly with these concepts, and the defi-

nition of p-nilpotency we gave is essentially established also for infinite groups. For

similar reasons we did not introduce the concept of p-(locally supersoluble) group.

⊲ As the reader certainly noted, the definition of p-soluble (p-hyperabelian) does not

require that the p-factors are soluble (hyperabelianly embedded in G), differently

from the other local definitions. This is because our main results deal with ho-

momorphic images of linear groups, and, for such groups, the properties of being

hyperabelian/locally soluble/soluble are equivalent.

Before studying groups which are factorized by mutually permutable subgroups,

we need some lemmas, which at the same time illustrate the relation between the

“p-local” and “non p-local” concepts in homomorphic images of periodic linear

groups, and, more generally, in locally finite groups.

Lemma 3.1. Let G be a locally finite group and let p be a prime.

(1) If G is p-hyperabelian, then G is locally p-soluble.

(2) If G is p-hypercyclic, then G is locally p-supersoluble.

(3) If H is an ascendant subgroup of G such that H = σp
α(H) for an ordinal num-

ber α, thenH 6 σp
α(G). In particular, the product of any collection of ascendant

subgroups of p-length at most n has p-length at most n.

(4) G is locally p-nilpotent if and only if G is p-nilpotent.

P r o o f. The proof of this result is standard and we omit it. �

It is easy to see that the wreath product

. . . ≀ C3 ≀ C2 ≀ . . . ≀ C2 ≀ C3 ≀ C2

is a locally finite group which is locally soluble but is not 2-hyperabelian: in fact

it does not contain any nontrivial normal locally nilpotent subgroup. On the other

hand, it is known that a locally soluble homomorphic image of a periodic linear

group is soluble (see [20], Corollary 9.21) and our next result extends this fact to

local p-solubility.
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Lemma 3.2. Let p be a prime and let G be a homomorphic image of a periodic

linear group. If G is locally p-soluble, then G is p-hyperabelian.

P r o o f. Suppose first that G is a non-abelian locally finite simple linear group.

If G does not contain elements of order p, then G is p-hyperabelian, and we are

done. If g is a nontrivial element of G having order a power of p, it follows that g is

contained in a finite simple subgroup H of G having order strictly larger than p, see

for instance Corollary 9.32 of [20]. On the other hand, H is p-soluble, so it must be

a p-group and its order must be p, a contradiction.

Assume now that G is a homomorphic image of a periodic linear group. The

structure of a periodic linear group (we outlined at the beginning of Section 2) and the

previous paragraph show that G is soluble-by-finite and hence p-hyperabelian. �

It is clear that soluble (or even hyperabelian) locally finite groups are p-hyper-

abelian for any prime p. On the other hand, the consideration of any locally finite

p-group which is not hyperabelian shows that the converse of the statement does

not hold in general. The situation is much better within the universe of periodic

linear groups.

Lemma 3.3. Let G be a homomorphic image of a periodic linear group which is

p-hyperabelian for any prime p. Then G is soluble.

P r o o f. It is easily seen that every finite subgroup of G is soluble, so G is locally

soluble and hence soluble, see Corollary 9.21 of [20]. �

Lemma 3.4. Let p be a prime and let G be a locally finite p-hypercyclic group.

Then G′ is p-nilpotent.

P r o o f. It is clear that G′ centralizes every chief factor of G whose order is p.

Let N = Op′(G′) and assume N < G′. Then there are G-invariant subgroupsM 6 L

of G′ such thatM/N is a nontrivial p-group which is hypercyclically embedded in G,

while L/M is a p′-group; in particular,M/N lies in the hypercentre of G′/N and so in

the hypercentre of L/N . Let F/M be any finite subgroup of L/M . The main theorem

of [8] shows that there is a finite normal subgroup U/N of F/N such that F/U is

hypercentral. Now, there exists n such that P/N = Op(U/N) 6 ζn(U/N) and U/P is

a p′-group, so γn+1(U)N/N is a finite p′-group by Baer’s theorem, see Corollary 2 to

Theorem 4.21 of [16]. If we put V/N = Op′(U/N), then (U/N)/(V/N) is a p-group,

and hence is contained in the hypercentre of (F/N)/(V/N). Therefore, F/V is

hypercentral and the p′-elements of F/N form a subgroup. It follows that the set

of all p′-elements of L/N is a subgroup, so L/N is a p-group and hence L = M .

Thus, G′/N must be a p-group and the statement is proved. �
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Corollary 3.5. Let p be a prime and let G be a locally finite p-hypercyclic group.

Then G is p-soluble of p-length at most 1.

Clearly, any supersoluble (hypercyclic) locally finite group is p-supersoluble

(p-hypercyclic) for any prime p. On the other hand, the consideration of any peri-

odic group of rank one with infinitely many finite nontrivial Sylow subgroups is an

example of a group which is not supersoluble but it is p-supersoluble for any prime p.

Lemma 3.6. Let G be a locally finite group. If G is p-hypercyclic for any prime p,

then G is hypercyclic.

P r o o f. It follows from Lemma 3.4 that G′ is p-nilpotent for any prime p.

Since G′ is periodic, it embeds in the direct product Drp(G
′/Op′(G′)), so G admits

an ascending normal series with primary factors. But any of the factors of this series

is hypercyclically embedded in G, and hence G is hypercyclic. �

Lemma 3.7. Let p be a prime and let G be a homomorphic image of a periodic

linear group. If N is any normal p-nilpotent subgroup of G, then N centralizes every

p-chief factor of G.

P r o o f. Let L/M be a p-chief factor of G. Of course we may assume M = {1},

so L is a minimal normal subgroup of G. Let K = Op′ (N), then K ∩ L = {1}, so

K 6 CG(L) and we may also assume K = {1}. Now, N is a p-group, so LN is

a hypercentral normal subgroup of G by Lemma 2.2. It follows that L 6 ζ1(LN)

and hence N 6 CG(L). The statement is proved. �

Lemma 3.8. Let p be a prime and let G be a locally finite group. If X is any

subgroup of G centralizing every p-chief factor of G, then X is p-nilpotent.

P r o o f. Let F be any finite subgroup of X and let {Gi}i∈I be any chief series

of G. Then {F ∩Gi}i∈I is a finite series of F (once we have removed all duplicates)

in which the p-factors are central. An argument similar to the one employed in

Lemma 3.4 shows that F is p-nilpotent, so its p′-elements form a subgroup. The

arbitrariness of F in X yields that the p′-elements of X form a subgroup and conse-

quently that X is p-nilpotent. �

A combination of Lemmas 3.7 and 3.8 gives the following result, which is analogous

to the finite case.

Corollary 3.9. Let p be a prime and let G be a homomorphic image of a periodic

linear group. Then Op′p(G) coincides with the intersection of the centralizers of the

p-chief factors of G.
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The consideration of any locally finite p-group which is not hypercyclic shows that

there exist locally p-supersoluble groups which are not p-hypercyclic. On the other

hand, it is known that a linear group which is locally supersoluble is also hypercyclic

(see for instance Theorem 11.21 of [20]), and our next result generalizes this fact to

homomorphic images of periodic linear groups.

Theorem 3.10. Let p be a prime and let G be a homomorphic image of a periodic

linear group. If G is locally p-supersoluble, then G is p-hypercyclic.

P r o o f. Let Ĝ be a periodic linear group of characteristic q such that G = Ĝ/N̂

for a normal subgroup N̂ of Ĝ.

Of course, we may assume Op′(G) = {1}. Let P = Op(G). Lemma 3.4 shows

that G′ is locally p-nilpotent, so Lemma 3.1 yields that G′ is p-nilpotent, and hence

that G′ is a p-group; in particular, G′ 6 P and G/P is a p′-group. In order to

complete the proof it is enough to prove that P contains a nontrivial G-invariant

cyclic subgroup.

By Lemma 2.2, P is hypercentral. Let Z be the socle of ζ1(P ) and choose any

finite subgroup F of G such that F ∩Z 6= {1}. Since G is locally p-supersoluble, we

may find an F -invariant series

{1} = A0 6 A1 6 . . . 6 As = Z ∩ F

with cyclic factors of order p. Let

C =
⋂

06i6s−1

CF (Ai+1/Ai).

Then C/CF (Z ∩ F ) is nilpotent (stabilizing a finite series) and so a p-group. On

the other hand, every p-element of G centralizes Z, so actually C = CF (Z ∩ F ). Of

course, F p−1 6 C, so the arbitrariness of F in G yields that Gp−1 6 CG(Z).

If q = p, then G/CG(Z) is a locally a finite group satisfying the minimal condition

on abelian subgroups (see [20], 2.6 and Theorem 9.20), so it is Černikov by a well

known theorem of Šunkov (see [16], Part I, page 98) and hence even finite, being

of finite exponent. Let E be a finite subgroup of G such that G = ECG(Z) and

E ∩ Z 6= {1}. Then E normalizes a nontrivial cyclic subgroup W of E ∩ Z, which is

thus the required nontrivial G-invariant cyclic subgroup.

If q 6= p, then P is Černikov (see [20], 2.6 and Theorem 9.20) and Z is finite. Let X

be the set of all nontrivial cyclic subgroups of Z, and let F be the set of all finite

subgroups of G. For any X ∈ X , let FX = {F ∈ F : F 6 NG(X)}. Since the set X

is finite, there is Y ∈ X such that FY is a local system of G. Thus, X is normal in G

and we are done. �
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Combining Theorem 3.10 and Lemma 3.6 we have the following result.

Corollary 3.11. Let G be a homomorphic image of a periodic linear group. If G

is locally supersoluble, then G is hypercyclic.

It is impossible to generalize the last two results to periodic homomorphic images

of non-periodic linear groups. In fact, every free group of countable rank is linear

but there exist countable locally finite p-groups which are not hypercyclic.

It is time to study groups which are factorized by mutually permutable subgroups

which satisfy some “p-local” conditions. Clearly, Sym(3), the symmetric group of

degree 3, is factorized by two totally permutable subgroups which are 3-nilpotent,

but it is not 3-nilpotent. On the other hand, in Corollary 3.20 we show that the

product of two mutually permutable 2-nilpotent subgroups is 2-nilpotent. More-

over, observe that if p is a prime, a group (even finite) which is factorized by two

mutually permutable p-hypercyclic groups need not be p-hypercyclic. In fact, if

this were the case, then a finite group G which is factorized by two mutually per-

mutable supersoluble subgroups would be q-supersoluble for any prime q, and so

even supersoluble by Lemma 3.6; but this is not true as shown by an example

in [1], page 454.

Lemma 3.12. Let p be a prime and let G = AB be a locally finite group which is

factorized by two mutually permutable subgroups A and B. If A and B are locally

p-soluble, then G is locally p-soluble.

P r o o f. By Lemma 2.1 of [12], the set of all finite subgroups F which are

factorized by the two subgroups F ∩ A and F ∩ B is a local system of G, so G is

locally p-soluble by Corollary 2 of [6]. �

Corollary 3.13. Let p be a prime and let G = AB be a homomorphic im-

age of a periodic linear group which is factorized by two mutually permutable sub-

groups A and B. If A and B are p-hyperabelian (p-soluble), then G is p-hyperabelian

(p-soluble).

P r o o f. By Lemma 3.12, G is locally p-soluble, so G is p-hyperabelian by

Lemma 3.2. If both subgroups A and B are p-soluble, it follows from Theorem 2.1

and Lemma 3.1 that A′ and B′ lie in a finite term N = σp
n(G) of the upper p-series

of G. Furthermore, G/N is the product of two abelian groups, so it is metabelian

by Ito’s theorem, and hence G = σp
n+4(G) is p-soluble. �
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Corollary 3.14. Let p be a prime and let G = AB be a homomorphic image of

a periodic linear group which is factorized by two mutually permutable subgroups A

and B. If A and B are soluble, then G is soluble.

P r o o f. This follows from Corollary 3.13 and Lemma 3.3. �

Our main aim is now to give a bound on the p-length of a group which is factorized

by two mutually permutable subgroups: in order to do this we start by discussing

products of mutually permutable p-hypercyclic subgroups.

Lemma 3.15. Let p be a prime and let G = AB be a p-hypercyclic locally finite

group which is factorized by two mutually permutable subgroups A and B. If A

and B are p-supersoluble, then G is p-supersoluble.

P r o o f. By Lemma 3.4, G′ is p-nilpotent, so we need to prove thatOp(G/Op′(G))

is finite. Of course, it is possible to assume Op′(G) = {1}, and we put N = Op(G);

clearly, N is hypercyclically embedded in G.

Let F be a finite subgroup of G such that F = (F ∩ A)(F ∩ B), and let pn be

the product of the orders of the p-factors of the upper p-series’s of A and B. Since

|F | = |F ∩A||F ∩B|/|F ∩A∩B|, it follows that |N ∩F | divides pn. The arbitrariness

of F yields that N is finite and the statement is proved. �

Lemma 3.16. Let p be a prime and let G = AB be a locally finite group which is

factorized by two mutually permutable subgroups A and B. If A and B are locally

p-supersoluble, then G is locally p-supersoluble provided that at least one among the

subgroups A, B, G′ is p-nilpotent.

P r o o f. This follows from a combination of Corollary 5 of [6] and the local

argument we employed in Theorem 2.9. �

As a consequence of Lemmas 3.16 and 3.6, we have the following result.

Lemma 3.17. Let G = AB be a locally finite group which is factorized by two

mutually permutable locally supersoluble subgroups A and B. If G′ is locally nilpo-

tent, then G is locally supersoluble.

Theorem 3.18. Let p be a prime and let G = AB be a homomorphic image of

a periodic linear group which is factorized by two mutually permutable subgroups A

and B. If A and B are p-hypercyclic (p-supersoluble), then G is p-hypercyclic

(p-supersoluble) provided that at least one among the subgroups A, B, G′ is

p-nilpotent.
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P r o o f. By Lemma 3.1, A and B are locally p-supersoluble subgroups, so

Lemma 3.16 yields that G is locally p-supersoluble. Thus, G is p-hypercyclic by

Theorem 3.10. In the case that A and B are p-supersoluble, the statement follows

from Lemma 3.15. �

Although the product G = AB of two mutually permutable p-hypercyclic locally

finite subgroups A and B need not be p-hypercyclic, the following result shows that

we can at least bound the p-length of G.

Theorem 3.19. Let p be a prime and let G = AB be a homomorphic image of

a periodic linear group which is factorized by two mutually permutable subgroups A

and B. If A and B are p-hypercyclic, then G/Op′p(G) is metabelian of exponent

dividing (p− 1)3.

P r o o f. Let L/M be a p-chief factor of G, and put C = CG(L/M). In order to

prove that G/C is abelian of exponent dividing (p − 1)3, we may assume M = {1},

so L is a minimal normal subgroup of G and it is a p-group.

If L is cyclic, it has order p, so G/C is abelian of order dividing p − 1, and we

are done. Thus, we may assume that L is not cyclic. In particular, we cannot have

L 6 A and B 6 C, or, similarly, L 6 B and A 6 C. In fact, if for instance L 6 A

and B 6 C, then since G = AB, the subgroup L is a minimal normal subgroup of A,

and so is cyclic since A is p-hypercyclic.

Now, Theorem 2.7 shows that {L ∩ A,L ∩ B} ⊆ {L, {1}}, while Theorem 2.9

shows that we cannot have A ∩ L = B ∩ L = {1}. If L 6 A and L ∩ B = {1},

then Theorem 2.8 shows that B 6 C, and we have already dealt with this case;

the case L 6 B and L ∩ A = {1} is similar. Assume L 6 A ∩ B. The argument

employed in the last part of the proof of Theorem 2.9 yields that Ap−1CA(L)/CA(L)

and Bp−1CB(L)/CB(L) are p-groups, so a local application of Theorem 2 of [6]

gives that G/C admits a normal Sylow p-subgroup P/C. But then P centralizes L

(see Lemma 2.2 of this paper and Theorem 9.20 of [20]) and so P = C. More-

over, A′ and B′ are p-nilpotent subnormal subgroups of G (see Theorem 2.1 and

Lemma 3.4), so they are contained in C by Lemma 3.7. Since G/C is factorized

by the two mutually permutable abelian subgroups AC/C and BC/C, both of the

exponent dividing p − 1, it follows that G/C is metabelian (by Ito’s theorem) and

has the exponent dividing (p − 1)3: in fact, G/(AC ∩ BC) is factorized by two

totally permutable abelian subgroups of exponent p − 1 and so has the exponent

dividing (p− 1)2.

In order to complete the proof it is enough to apply Corollary 3.9. �
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It should be noted that in the proof of Theorem 4 (i) of [6] (which is analogous

to our Theorem 3.19), the case L 6 A and L ∩ B = {1} seems to be missing. It

is not possible to replace “metabelian” by “abelian” in the above statement: if this

were possible, Theorem 3.18 would show that any group which is the product of

two mutually permutable finite supersoluble subgroups is supersoluble, but we have

already observed that this is not true.

Corollary 3.20. Let G = AB be a homomorphic image of a periodic linear group

which is factorized by two mutually permutable subgroups A and B. If A and B are

2-nilpotent, then G is 2-nilpotent.

P r o o f. This follows at once from Lemma 2.2 and Theorem 3.19. �

Corollary 3.21. Let G = AB be a homomorphic image of a periodic linear group

which is factorized by two mutually permutable subgroups A and B. If A and B are

2-hypercyclic, then G is 2-hypercyclic.

P r o o f. This follows at once from Theorem 3.19 and Lemma 2.2. �

Corollary 3.22. Let p be a prime and let G = AB be a homomorphic image of

a periodic linear group which is factorized by two mutually permutable subgroups A

and B.

(1) If A and B are of p-length n, then G/σp
2n+1(G) is hypercyclic and metabelian.

(2) If A/σp
2n+1(A) and B/σp

2n+1(B) are p-hypercyclic, then G = σp
2n+3(G).

P r o o f. The implication (1) is just a combination of Theorem 2.1, Lemma 3.1,

Ito’s theorem, Lemma 3.17, and Corollary 3.11.

In order to prove the implication (2), note that A/A′ is hypercyclic (being abelian)

andA′/σp
2n+1(A

′) is p-hypercyclically embedded in A/σp
2n+1(A

′). Thus, A/σp
2n+1(A

′)

is p-hypercyclic and symmetrically B/σp
2n+1(B

′) is p-hypercyclic. Now, it follows

from Theorem 2.1 and Lemma 3.1 that

σp
2n+1(G) > 〈σp

2n+1(A
′), σp

2n+1(B
′)〉,

so G/σp
2n+1(G) is factorized by two mutually permutable p-hypercyclic subgroups,

and hence it is of p-length 1 by Theorem 3.19. Therefore, G = σp
2n+3(G) and the

statement is proved. �

Corollary 3.23. Let p be a prime and let G = AB be a homomorphic image of

a periodic linear group which is factorized by two mutually permutable subgroups A

and B. If A and B are p-soluble of p-length n, then G is p-soluble of p-length n+ 1.
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In the final part of the paper, we deal with some generalizations of further results

of Beidleman and Heineken (see [6]).

Lemma 3.24. Let p be a prime and let G = AB be a locally finite group which is

factorized by two mutually permutable subgroups A and B. If A and B are locally

p-supersoluble, then G/(A ∩B)G is locally p-supersoluble.

P r o o f. We may assume (A∩B)G = {1}. Let F be the set of all finite subgroups

of G such that F = (F ∩ A)(F ∩ B) is factorized by the two mutually permutable

subgroups F ∩A and F ∩B. As we have already mentioned several times, F is a local

system of G.

Let E ∈ F . It follows from Theorem 6 of [6] that E/(E∩A∩B)E is p-supersoluble.

Thus, the set P(E) made by all E-invariant subgroups L of E∩A∩B such that E/L

is p-supersoluble is nonempty. Now, a standard inverse limit argument shows that G

admits a normal subgroupN such that N 6 A∩B and G/N is locally p-supersoluble.

The statement is proved. �

Theorem 3.25. Let p be a prime and let G = AB be a homomorphic image

of a periodic linear group which is factorized by two mutually permutable sub-

groups A and B. If A and B are p-hypercyclic (p-supersoluble), then G/(A∩B)G is

p-hypercyclic (p-supersoluble).

P r o o f. By Lemma 3.24, G/(A ∩ B)G is locally p-supersoluble, so even

p-hypercyclic by Theorem 3.10. Finally, if A and B are p-supersoluble, it fol-

lows from Lemma 3.15 that G/(A ∩B)G is p-supersoluble. �

Recall that a group is a T -group if normality is a transitive relation.

Corollary 3.26. Let p be a prime and let G = AB be a homomorphic image of

a periodic linear group which is factorized by two mutually permutable subgroups A

and B. If A and B are p-hypercyclic (p-supersoluble) and B is a T -group, then G is

p-hypercyclic (p-supersoluble).

P r o o f. Theorem 3.25 yields that G/N is p-hypercyclic, where N = (A ∩ B)G.

Since B is a T -group, the ascending A-invariant series {N ∩ σp
α(A)}α of N is even

G-invariant, and its p-factors are hypercyclically embedded in G. Hence, G is

p-hypercyclic. Finally, if A and B are p-supersoluble, it follows from Lemma 3.15

that G/(A ∩B)G is p-supersoluble. �
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Recall that a group G is paranilpotent if there exists a finite series

{1} = G0 6 G1 6 . . . 6 Gt = G

of normal subgroups of G such that for i = 0, . . . , t − 1, the factor group Gi+1/Gi

is abelian and each of its subgroups is normal in G/Gi (the smallest possible length

of a paranilpotent series is called the paraheight of G). These groups were usually

referred to in literature as parasoluble groups (see [19], where these groups were

introduced), but here, we prefer to follow [10] and speak of paranilpotent groups.

Clearly, paranilpotent groups are hypercyclic and so locally supersoluble. Now, if p is

a prime, we introduce the concept of p-paranilpotency as follows: we say that a locally

finite groupG is p-paranilpotent if it is p-soluble and the p-factors of its upper p-series

are paranilpotenly embedded in G. Of course, a p-nilpotent group is p-hypercyclic.

On the other hand, the standard wreath product C3∞ ≀ C3 is 3-hypercyclic but is

not 3-paranilpotent, and, actually, since any p-paranilpotent group is nilpotent (see

for instance Lemma 2.3 of [13]), any non-nilpotent Černikov p-group is p-hypercyclic

but not p-paranilpotent.

There exist locally finite groups which are p-paranilpotent for any prime p but

are not paranilpotent. To see this, it is enough to consider the direct product

G = Drp∈PGp, where for any prime p, Gp is a finite paranilpotent p-group of para-

height at least p. The situation is much better for homomorphic images of periodic

linear groups.

Lemma 3.27. Let G be a homomorphic image of a periodic linear group. If G is

p-paranilpotent for any prime p, then G is paranilpotent.

P r o o f. Let Ĝ be a periodic linear group of characteristic q such that G = Ĝ/N̂

for a normal subgroup N̂ of Ĝ.

By Lemma 3.3, the group G is soluble, so the structure of periodic linear groups

yields that G admits a normal subgroupM such that G/M is finite andM/Oq(G) is

an abelian q′-group of finite rank. Since G is q-paranilpotent, it follows that Oq(G)

is paranilpotently embedded in G, so we may assume Oq(G) = {1}. Similarly, we

may assume Oπ(M) = {1}, where π = π(G/M). By Lemma 3.6, G is hypercyclic,

and hence Lemma 11.7 of [20] yields that M is paranilpotently embedded in G.

Therefore, G is paranilpotent and the statement is proved. �

The behaviour of p-paranilpotent groups is different from that of p-supersoluble

groups. It turns out for instance that there is no analogue of Lemma 3.15. To see

this let G = H ⋉ (A × B), where H = 〈x〉 ⋉ (〈y〉 × 〈z〉) ≃ Dih(8), A ≃ B ≃ C2∞ ,

z acts as the inversion on A × B, y acts as the inversion on A and centralizes B,
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x switches A and B. It is easy to see that G is hypercentral but not paranilpotent,

and it is factorized by the two normal paranilpotent subgroups U = 〈x, z, A,B〉 and

V = 〈y, z, A,B〉; of course, G is linear, being Černikov. This example is a 2-group

and the intersection of U and V is infinite: it could not be otherwise, as shown by

the following results.

Lemma 3.28. Let G be a homomorphic image of a periodic linear group. If G is

a 2-group and it is factorized by two mutually permutable paranilpotent subgroups A

and B, then G is paranilpotent provided that one of the following conditions holds:

(1) (A ∩B)G has finite exponent,

(2) A and B are totally permutable.

P r o o f. Let Ĝ be a periodic linear group of characteristic q such that G = Ĝ/N̂

for a normal subgroup N̂ of Ĝ.

If q = 2, then G is nilpotent by 2.6 and Theorem 9.20 of [20]. Thus, we may

assume q 6= 2, so by the same results, G is Černikov. Let A∗, B∗ and G∗ be the

finite residuals of A, B and G, respectively. Then A∗B∗ has finite index in G = AB

and A∗B∗ is divisible abelian, so G∗ = A∗B∗.

Suppose now that (A ∩ B)G has finite exponent, so it is finite, and let D be the

finite residual of X = A ∩ B. Then X is a permutable subgroup of both A and B

(see for instance Lemma 3.1 of [12]), so, if y is any element of A ∪ B, we have that

Y = X〈y〉 = 〈y〉X ; on the other hand, D has a finite index in X , and hence D has

a finite index in Y , which means that D is the finite residual of Y (being divisible)

and, in particular, D is normalized by y. Thus, D is normal in G = AB, so D = {1}

(being finite and divisible) and consequently, X is finite. Let E and F be finite

subgroups of G containing X and such that A = EA∗ and B = FB∗. Now, if P is

any divisible subgroup of A∗, it follows from Lemma 3.5 of [12] that PF = FP , so P

is normalized by F (and consequently by B) since P is the finite residual of FP .

Similarly, A normalizes every divisible subgroup of B∗. Therefore, A∗ and B∗ are

paranilpotently embedded in G, which means that G∗ is paranilpotently embedded

in G. Since G/G∗ is a finite 2-group, it follows that G is paranilpotent.

Finally, if A and B are totally permutable subgroups, then the argument we

employed in the previous paragraph shows that every divisible subgroup ofA∗ andB∗

is normal in G, so actually G∗ is paranilpotently embedded in G and (since G/G∗ is

a finite 2-group) G is paranilpotent. �

Lemma 3.29. Let G = AB be a homomorphic image of a periodic linear group

which is factorized by the two mutually permutable subgroups A and B. If A and B

are 2-paranilpotent and (A ∩B)G has finite exponent, then G is 2-paranilpotent.
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P r o o f. Let Ĝ be a periodic linear group of characteristic q such that G = Ĝ/N̂

for a normal subgroup N̂ of Ĝ. If q = 2, then G is nilpotent by 2.6 and Theorem 9.20

of [20]. Thus, we may assume q 6= 2.

It follows from Theorem 3.19 that G = O2′2(G), so if we put L = O2′(G), then

G/L is a 2-group. By Theorem 9.20 of [20], it is possible to find 2-subgroups U

and V of A and B, respectively, such that

U ⋉ (L ∩ A) = A and V ⋉ (L ∩B) = B.

By Corollary 9.14 of [20] the Sylow 2-subgroups of G are conjugate, so we may find

an element x ∈ G such that 〈U, V x〉 is a 2-group. Write x = ba for some a ∈ A

and b ∈ B. Then Bx = Ba, so A and Bx are still mutually permutable subgroups

and A ∩ Bx = A ∩ Ba = (A ∩ B)a has a finite exponent. Thus, we may replace

B by Bx, assuming consequently that U and V are contained in the same Sylow

2-subgroup W of G.

Now, Lemma 9.13 of [20] yields that G = WL. Moreover,

A ∩B = (W ∩ A ∩B)⋉ (L ∩ A ∩B).

Let H = (A ∩B)G and K = (A ∩B)G. By Lemma 2.4, K/H is locally nilpotent, so

[W ∩A∩B,L] 6 H , and hence everyW -invariant subgroup ofW ∩A∩B is contained

in H . It follows that W satisfies the hypotheses of the statement and therefore the

result follows from Lemma 3.28. �

Lemma 3.30. Let p be an odd prime number and let G be a homomorphic image

of a periodic linear group. If G is p-hypercyclic and it is factorized by two mutually

permutable p-paranilpotent subgroups A and B, then G is p-paranilpotent.

P r o o f. Let Ĝ be a periodic linear group of characteristic q such that G = Ĝ/N̂

for a normal subgroup N̂ of Ĝ.

It is certainly possible to assume Op′(G) = {1}. If M = Op(G), then G/M is

metabelian of exponent dividing (p− 1)3 by Theorem 3.19, so G is soluble.

The structure of periodic linear groups shows that G/M is finite regardless of the

fact that p = q or p 6= q. Now, if p = q, then M is nilpotent and so an application of

Lemma 11.7 of [20] yields thatM is paranilpotently embedded in G, thus completing

the proof.

Assume p 6= q, so G is Černikov. Let A∗ and B∗ be the finite residuals of A

and B, respectively. Then the finite residual G∗ of G is abelian and contains A∗

and B∗. On the other hand, |A : A∗| and |B : B∗| are finite, so |G : A∗B∗|

is finite (see for instance Lemma 1.2.5 of [2]) and hence A∗B∗ = G∗. Let P
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be any infinite locally cyclic subgroup of B∗. Then AP = PA and A∗P is

normal in AP , being its finite residual. It easily follows that AB∗ = AG∗

is paranilpotent. Similarly, BG∗ is paranilpotent and we may consequently as-

sume G∗ 6 A ∩B.

Let U = Op(A) and V = Op(B). By Lemma 2.3 of [13], U and V are nilpotent,

so G∗ 6 ζ1(U) ∩ ζ1(V ). It follows that G∗ 6 ζ1(X), where X = 〈UG, V G〉. On the

other hand, G/X is a finite group which is factorized by two mutually permutable

p′-subgroups, so actually X = M and G∗ 6 ζ1(M), which means thatM is nilpotent.

Now, an application of Lemma 11.7 of [20] yields thatM is paranilpotently embedded

in G, thus completing the proof also in this case. �

Theorem 3.31. Let p be a prime and let G = AB be a homomorphic image of

a periodic linear group which is factorized by two mutually permutable subgroups A

and B. If A and B are p-paranilpotent, then G/(A ∩B)G is p-paranilpotent.

P r o o f. This is a combination of Lemmas 3.29, 3.30 and Theorem 3.25. �

As a consequence of the above theorem and Lemma 3.27, we have the next result.

Corollary 3.32. Let G = AB be a homomorphic image of a periodic linear group

which is factorized by two mutually permutable subgroups A and B. If A and B are

paranilpotent, then G/(A ∩B)G is paranilpotent.

In the final result of the paper we describe what a counterexample to Lemma 3.30

for p = 2 should look like: it turns out that it resembles the example discussed before

Lemma 3.28.

Theorem 3.33. Let G = AB be a homomorphic image of a periodic linear group

which is factorized by two mutually permutable subgroups A and B. Assume further

that G is not 2-paranilpotent and Op′(G) = {1}. Then G is a Černikov 2-group and

there are normal subgroups N 6 D of G such that:

(1) N and G/D are finite, while D/N is divisible;

(2) AD/D and BD/D are elementary abelian normal subgroups of G/D, which

intersect nontrivially;

(3) if X/D is a cyclic subgroup of (AD ∩ BD)/D, then X/N acts as the inversion

on its nilpotent residual, which coincides with (X/N)′ and is not trivial;

(4) D/N = CG/N (D/N).

Furthermore, if the finite residual of G has the smallest possible rank, then we

may even require that (AD ∩BD)/D = (G/D)′ is cyclic of order 2.
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P r o o f. Let Ĝ be a periodic linear group of characteristic q such that G = Ĝ/N̂

for a normal subgroup N̂ of Ĝ.

By Theorem 3.19, G is a 2-group. Moreover, as usual, we may assume q 6= 2,

so G is Černikov, see [20], 2.6 and Theorem 9.20. Let A∗ and B∗ be the finite

residuals of A and B, respectively. Since G is Černikov, its finite residual G∗ is

abelian and contains A∗ and B∗. On the other hand, |A : A∗| and |B : B∗| are finite,

so |G : A∗B∗| is finite (see for instance Lemma 1.2.5 of [2]) and hence A∗B∗ = G∗.

Let C = CG(G
∗) and choose a finite subgroup F of C such that C = FG∗. It is

clear that F is contained in the set of all elements of order at most |F | of C, so we may

factor it out and assume consequently that C = G∗, see also Theorem 3.14 of [16].

Let P be any infinite locally cyclic subgroup of B∗. Then AP = PA and A∗P

is normal in AP , being its finite residual. It easily follows that H = AB∗ = AG∗

is paranilpotent. Now, H2 is nilpotent because periodic automorphisms of infinite

locally cyclic 2-groups have order at most 2, so G∗ 6 ζ1(H
2) (see Theorem 3.14

of [16]) and hence G∗ = ζ1(H
2); in particular, AG∗/G∗ is an elementary abelian

2-group. Similarly, BG∗/G∗ is an elementary abelian 2-group. Furthermore, it is

possible to assume that G∗ 6 A ∩B.

If Y/G∗ is a cyclic subgroup of B/G∗, then AY = Y A, so A has the index at

most 2 in AY and hence A/G∗ is normalized by Y/G∗. Thus, A is normal in G;

similarly B is normal in G.

If A ∩ B 6 G∗, then G′ is abelian, so G is paranilpotent by Lemma 2.5 of [10],

a contradiction. It follows that A ∩ B > G∗. Let X/G∗ be a cyclic subgroup

of (A ∩B)/G∗.

Now, we need to discuss the nilpotent residual R of X . Let P , Q be subgroups

of G∗ such that P ≃ Q/P ≃ C2∞ , [P,X ] = {1}, [Q,X ]P = Q (which means that X

acts as the inversion on Q/P ). Since P is divisible, we may find a subgroup U such

that Q = P × U . Choose x ∈ X \ CX(Q/P ), write

U = 〈u0, u1, . . . , un, . . . : u2
0 = 1, u2

n+1 = un, n ∈ N0〉

and put, for any i, ux
i = viu

−1

i for some vi ∈ P ; it is clear that v2j+1 = vj for any j.

Define

V = 〈v−1

i+1ui : i ∈ N0〉 ≃ C2∞

and note that

(v−1

i+1ui)
x = v−1

i+1viu
−1

i = vi+1v
−1

i viu
−1

i = (v−1

i+1ui)
−1,

so X acts as the inversion on V . It follows that R admits a finite X-invariant series

whose (nontrivial) factors are groups of type 2∞ on which X acts as the inversion.

Since [G∗, X ] 6 R, we have [G∗, X ] = R.
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Suppose P , Q are divisible subgroups of G∗ such that x acts as the inversion

on P and on Q/P . As in the previous paragraph we may write Q = P × U for

a subgroup U . Let k ∈ U . Then kx = k−1w for some w ∈ P , and hence

k = kx
2

= (k−1w)x = kw−2,

so w2 = 1. On the other hand, if w 6= 1 and k1 ∈ U is such that k21 = k, then

kx1 = k−1

1 v, where v2 = w 6= 1, a contradiction. Thus, x acts as the inversion on R.

Note also that R 6= {1} since G∗ coincides with its own centralizer.

Finally, suppose G∗ has the smallest possible rank. Let EA and EB be finite

subgroups such that A = EAG
∗ and B = EBG

∗. If R < G∗, then G/R is paranilpo-

tent by the minimality assumption; moreover, L = 〈EA, EB , R〉 is factorized by the

mutually permutable subgroups L ∩ A and L ∩ B (see Lemma 2.1 of [12]), so again

the minimality assumption yields that R is paranilpotently embedded in G. Thus,

G∗ is paranilpotently embedded in G and we obtain a contradiction. It follows

that R = G∗.

If y ∈ A ∩B \X , then y acts as the inversion on G∗, but then xy centralizes G∗,

a contradiction. Thus, A ∩B/G∗ has order 2 and the statement is proved. �
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