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Abstract. The aim is to investigate the behaviour of (homomorphic images of) periodic
linear groups which are factorized by mutually permutable subgroups. Mutually permutable
subgroups have been extensively investigated in the finite case by several authors, among
which, for our purposes, we only cite J. C. Beidleman and H. Heineken (2005). In a previous
paper of ours (see M. Ferrara, M. Trombetti (2022)) we have been able to generalize the
first main result of J. C. Beidleman, H. Heineken (2005) to periodic linear groups (showing
that the commutator subgroups and the intersection of mutually permutable subgroups
are subnormal subgroups of the whole group), and, in this paper, we completely generalize
all other main results of J. C. Beidleman, H. Heineken (2005) to (homomorphic images of)
periodic linear groups.
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1. INTRODUCTION

Let G be a group. We say that the subgroups A and B of G are mutually per-
mutable if AY = YA and X B = BX for all subgroups X of A and Y of B. Of course,
any two normal subgroups are mutually permutable, while the example in [1] (see
page 454) shows that there are non-supersoluble groups which are factorized by two
mutually permutable proper (supersoluble) subgroups but not by two proper normal
subgroups. Groups which are products of two mutually permutable subgroups have
been recently investigated by several authors, and we refer to the monograph (see [4])
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for questions and results concerning this subject, see also [6], [12], [9] and their ref-
erence lists. In particular, Beidleman and Heineken in [6] proved that if G = AB is
a finite group which is factorized by two mutually permutable subgroups, then AN B,
A’ and B’ are subnormal subgroups of G. This result has been partially extended
in [9] to Cernikov groups, while in the recent paper [12] we have been able to prove
that not only the result of Beidleman and Heineken holds for Cernikov groups to its
full extent, but that this is the case for every periodic linear group.

The aim of this paper is to continue the investigation of periodic linear groups that
are factorized by mutually permutable subgroups, generalizing all relevant results
of [6] and providing a new insight concerning infinite groups. The layout of the
paper is the following one. In Section 2 we study the behaviour of chief factors of
periodic linear groups with respect to the mutually permutable subgroups into which
the group is factorized; we summarize the results as follows:

Theorem 1.1. Let G = AB be a homomorphic image of a periodic linear group
which is factorized by two mutually permutable subgroups A and B, and let N be
a minimal normal subgroup of G. Then:

> either N < Aor NNA={1};

> if N is non-abelian, then N = (N N A)(N N B);

> if N < A and NN B = {1}, then either [N, A] = {1} or [N, B] = {1} (and the
latter certainly holds if N is not cyclic);

> if NNA=NnNB={1}, then N is cyclic of prime order and either [N, A] = {1}
or [N, B] = {1}.

In Section 3 we employ the results obtained in Section 2 to investigate how require-
ments on mutually permutable subgroups factorizing a group influence the structure
of the whole group. In particular, we consider the following classes of groups: soluble
groups, hyperabelian groups, supersoluble groups, hypercyclic groups, paranilpotent
groups, and their “localizations” to a prime p, see Section 3 for the definitions.

Our notation is standard and can be found for instance in [16] and [20]. If X
is any group theoretical property, we generally say that a normal section N/M of
a group G is X-ly embedded in G if “N/M satisfies the requirements of X with
respect to G/M”. For instance, if we say that N/M is hypercentrally embedded
in G, we mean that N/M lies in the hypercentre of G/M; if we say that N/M is
hypercyclically embedded in G, we mean that N/M has an ascendant G/M-invariant
series with cyclic factors; and so on ...
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2. MINIMAL NORMAL SUBGROUPS

The aim of this section is to study the behaviour of minimal normal subgroups
of (homomorphic images of) periodic linear groups which are factorized by mutually
permutable subgroups. These results are employed in the proof of Theorem 3.19,
which is in turn used in Corollary 3.23 to give a bound for the p-length of the whole
group in terms of that of the factors. Before getting into the matter we need to recall
some known facts about linear groups. If G is any group, we denote by S = S(G)
the soluble radical of G, i.e., the product of all its normal soluble subgroups. It is
well known that if G is linear, then S is a soluble subgroup of G which is closed
in the Zariski topology and contains all soluble ascendant subgroups of G (see for
instance Lemma 2.11 of [11]); moreover, if G is periodic linear, then G/S contains
a normal subgroup B/S which is the direct product of finitely many simple non-
abelian groups, and the index |G : B is finite, see 5.1.5 and Theorem 5.1.6 of [18],

r [11], Lemma 2.15. We denote by «(G) the unipotent radical of a linear group G,
i.e., its largest unipotent normal subgroup. If GG is periodic linear of characteristic p,
then u(G) = {1} if p = 0, and u(G) = O,(G) if p > 0. It has been proved in [15]
that if G is a periodic group with trivial unipotent radical, then all its homomorphic
images are linear groups; observe that if G is linear, then also G/u(G) is linear, see
for instance Lemma 2.13 of [11].

Now, we start by generalizing Theorem B of [12] to homomorphic images of peri-
odic linear groups.

Theorem 2.1. Let G = AB be a homomorphic image of a periodic linear group
which is factorized by two mutually permutable subgroups A and B. Then AN B,
A’ and B’ are subnormal subgroups of G.

Proof. ©Let N be a normal subgroup of a periodic linear group H such
that G = H/N. With a slight abuse of notation, we may assume that H/N =
(A/N) - (B/N) is factorized by the two mutually permutable subgroups A/N
and B/N. Then it is clear that H = AB is factorized by the two mutually permutable
subgroups A and B, so Theorem B of [12] yields that AN B, A’ and B’ are subnor-
mal subgroups of H. Then (A/N) = A’N/N and (B/N)" = B'N/N are subnormal
subgroups of G. Moreover, since N < AN B, it follows that also (A/N)N (B/N) =
(AN B)/N is a subnormal subgroup of G. The statement is proved. O

The following lemmas are certainly well known and the first one of them should
be seen in comparison with Corollary 9.21 of [20], but we did not find them explicitly
stated anywhere and so we state (and prove) them here.
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Lemma 2.2. Let G be a homomorphic image of a periodic linear group. Then
every locally nilpotent subgroup is hypercentral.

Proof. Let N be a normal subgroup of a periodic linear group such that
G = H/N. Let X/N be a locally nilpotent subgroup of H/N. Then X/N is the
direct product of its primary components. Let P/N = O,(X/N) for a prime p.
By Theorem 9.20 of [20] there exists a p-subgroup L of H such that LN = P. Of
course, L is a locally nilpotent linear group, so it is hypercentral. The arbitrariness
of p yields that X /N is hypercentral. O

If G is a group, we denote by g} (G) the nilpotent residual of G. It has been
proved in [11], Corollary 3.9, that if G is a homomorphic image of a periodic linear
group, then there exists a positive integer ¢ for which 0f;(G) = 7.(G).

Lemma 2.3. Let G be a homomorphic image of a periodic linear group. If N <
Cw(G), then v.(G) < Cg(N) for some c. In particular, Cq(N) is subnormal in G.

Proof. As we remarked above, 7.(G) = 7.+1(G) for a positive integer c.
Moreover, it is well known that [y, (G), (n(G)] = {1} for any positive integer m,
50 [7.(G), (w(G)] = {1}. This completes the proof of the statement. O

Lemma 2.4. Let G = AB be a homomorphic image of a periodic linear
group which is factorized by two mutually permutable subgroups A and B. Then
(AN B)Y/(AN B)g is hypercentral.

Proof. Let X = AN B, so X is a permutable subgroup of both A and B, see
for instance Lemma 3.1 of [12]. Theorem 7 of [7] yields that both X/X 4 and X/Xp
are hypercentral, so also X/X4 N Xp is hypercentral. On the other hand,

XA:(AQB)A:AQBA:AQBG and XB:(AQB)B:ABQB:AgﬂB,

so XaNXp = Ag N Bg = X¢ and hence, X/X¢ is hypercentral. By Theorem 2.1,
we also have that X is a subnormal subgroup of G, so X¢/X¢ is locally nilpotent,
and even hypercentral by Lemma 2.2. (I

It is proved in the recent paper in preparation' that if X is a Zariski closed
permutable subgroup of the linear group G, then X/X¢ is nilpotently embedded
in G, so if we require in the above lemma that A N B is Zariski closed, then (using
similar arguments but replacing Theorem 7 of [7] by the result we just quoted) we see
that (AN B)% /(AN B)g is nilpotent. Of course, AN B is Zariski closed in particular
in the following cases:

(1) both A and B are Zariski closed;
(2) AN B is finite.

! F.de Giovanni, M. Trombetti, B. A. F. Wehrfritz: Permutability in linear groups
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Recall that two subgroups A and B of a group G are said to be totally permutable
if HK = K H whenever H < A and K < B. Of course, totally permutable subgroups
are mutually permutable. It has been proved in [3] that the product of two finite
totally permutable supersoluble subgroups is supersoluble, so any locally finite group
which is factorized by locally supersoluble subgroups is locally supersoluble.

Now, we are ready to study the behaviour of chief factors of periodic linear groups
with respect to mutually permutable subgroups factorizing the whole group.

Theorem 2.5. Let G = AB be a homomorphic image of a periodic linear group
which is factorized by two mutually permutable subgroups A and B. If N is a non-
abelian minimal normal subgroup of G, then either N < A or NNA = {1}. Moreover,
N =(NNnA)(NnNB).

Proof. Lemma 2.1 of [12] yields that X = (NNA)(NNB) is a normal subgroup
of G, so either X = N or X = {1}. Moreover, if NN A = NNB = {1}, then
(A", B"Y < Cg(N) (recall that A’ and B’ are subnormal in G by Theorem 2.1), so
G/Cg(N) is soluble (actually metabelian by Ito’s theorem) and hence N < Cg(N),
a contradiction. Thus, the latter part of the theorem follows from the former one.

Assume {1} # NN A # N, so X = N. Theorem 2.1 shows that AN B is
subnormal in G, so if AN BN N were not trivial, then AN BN N would be a locally
nilpotent proper subnormal subgroup of N, see Lemma 2.4. The minimality of
N gives that N is locally nilpotent and so hypercentral (by Lemma 2.2) and even
abelian, a contradiction. Thus, AN BN N = {1}. Now, Lemmas 2.1 and 3.5 of [12]
yield that N is factorized by the two totally permutable subgroups NN A and NN B.

Now, Ra = 0 (N N A) centralizes N N B by Theorem 1 of [5], so R4 is a normal
subgroup of N; moreover, (NN A)/R4 is nilpotent, see [11], Theorem 3.8. Similarly,
Rp = 0% (N N B) is normal in N, and (N N B)/Rp is nilpotent. Then N/RaRp is
a product of two nilpotent subgroups which are totally permutable, so it is locally
soluble by Corollary 2.4 of [12] and hence even soluble by Corollary 9.21 of [20]. The
minimality of N yields that N = R4Rp = Ra x Rg = (NN A) x (NN B).

Let C be any abelian subgroup of N N B. Then

ACAN =(ANN)xC and C =((ACNN),

so C is a normal subgroup of AC, and A induces in N N B power automorphisms by
conjugation, so N N B is normal in G and hence either NN B = {1} or NN B = N.
If NnB = {1}, then NN A = N, a contradiction, and, on the other hand, if N < B,
then {1} = ANBNN = AN N, again a contradiction. The statement is proved. O
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Corollary 2.6. Let G = AB be a homomorphic image of a periodic linear group
which is factorized by two mutually permutable subgroups A and B. If N is the
largest perfect normal subgroup of A, then N is normal in G.

Proof. Let L = N¢. Since L is generated by conjugates of N, it follows that
L' = L. Assume by contradiction that A’ N L is properly contained in L. Since A’ is
subnormal in G by Theorem 2.1, the structure of periodic linear groups implies the
existence of a (non-abelian) chief factor L/M of G such that (A’ N L)Y < M. Now,
NM/M is non-abelian, so Theorem 2.5 gives L. < AM and hence even L < A’M
since L/L N A’M is abelian. On the other hand,

L=AMNL=(ANL)M=M
and we obtain a contradiction. Thus, L < A’ and so L = N, as we wanted. O

Theorem 2.7. Let G = AB be a homomorphic image of a periodic linear group
which is factorized by two mutually permutable subgroups A and B. If N is a minimal
normal subgroup of G, then either N < A or NN A= {1}.

Proof. By Theorem 2.5, we may assume N is abelian of prime exponent p,
and {1} # NN A # N, so (as in the proof of Theorem 2.5) N = (N N A)(N N B) is
factorized by the two mutually permutable subgroups N N A and N N B. Of course,
it NnB={1},then N=NnNA,so NNB # {1}.

Put X = AN B, so N £ X and in particular, N N X¢ = {1}. Lemma 24
yields that X¢/Xg is hypercentral. Thus, the minimality of N shows that either
NXeNX%=Xgor NXg/Xa < G(X9/Xg). In any case [N, X] < NNXg = {1},
so X <C=Cg(N).

Since X < C, it follows from Lemma 4 of [9] that G/C' is factorized by the two
totally permutable subgroups AC/C and BC/C. Theorem 1 of [5] yields that A*C/C
centralizes B/C, where A* = o7 (A); in particular, A*C' is normal in G. Now, N N A
is normalized by A and N (which is abelian), and

A/(NNA)x N/(NNA) = A/(NNA) x (NNB)(N N A)/(NNA),

) (NNA)/(NNA) = (Ap)/(N N A)N(N/(NNA)

is normalized by A for any b € N N B. Therefore, A acts as a group of power
automorphisms on N/N N A; in particular, [N, A’AP~!] < N N A. Symmetrically,
[N, B'B>~'] < N N B.

It follows from NNA < N that any normal subgroup of G contained in [N, A’ AP~1]
must be trivial; in particular, [A*C, N] = [A*, N] is trivial and so A* < C, which
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means that AC'/C is nilpotent. In order to obtain the same conclusion for the normal
subgroups of G' which are contained in [V, B’ BP~!], we must show that NN B < N.

Suppose N < B. As we know, X is permutable in B (see Lemma 3.1 of [12]), so
X/Xp < (w(B/Xp) by Theorem 7 of [7]. Since Xp = A¢ N B and N < B, we have
that NNX = NNA is contained in {, (B). In particular, if @ is the subgroup of B gen-
erated by all its p’-elements, then Q < Cg(NNA). Since (N N A)¢ = (NN A)E = N,
it follows that @ < Cp(NN), so B/Cp(N) is a p-group. Now, BC/C is locally nilpo-
tent, while AC/C is nilpotent, so G/C is locally supersoluble, see [3].

Let W/C be the subgroup generated by all g-elements of AC/C, where ¢ > p.
Then W/C' is normalized by BC/C since G/C' is locally supersoluble, and so W is
a normal subgroup of G which is contained in AC/C. Now, [W, N] < [AP~! N] and
so W < C. Therefore, 7(G/C) C {1,...,p}.

Let V/C be the largest p-subgroup of G/C. Then there is a p-subgroup P of V
such that V' = PC, see Theorem 9.20 of [20]. But then PN is hypercentral and so
N < (1(PN) by minimality of N (note that PN is a normal subgroup of G), which
means P < C. Thus, actually, 7(G/C) C {1,...,p — 1}, and in particular, B < C.
Then N N A is a normal subgroup of G and this contradicts the minimality of N.

We have thus proved that NN B is properly contained in N, and so, as we remarked
above, every normal subgroup of G which is contained in [N, B’ BP~!] must be trivial;
in particular, the nilpotent residual of B is contained in C, which means that BC/C
is nilpotent. It follows that G/C is locally supersoluble, see [3].

Let K/C = 0,(G/C), where m = {2,...,p}, and assume K < G. Theorem 3 of [5]
yields that either AK/K or BK/K contains a nontrivial normal subgroup of G/K.
Without loss of generality we may assume that L/K is a nontrivial normal subgroup
of G/K which is contained in AK/K. Of course, we may assume 7(L/K) C «'.
Then there is a ©’-subgroup P/C of AC/C such that PK = L. Since G/C is locally
supersoluble, we have that L/C = P/C x K/C and so P/C is normal in G/C.
Moreover, P < AP~1C, so [P, N] is a G-invariant subgroup of [AP~!, N], and hence
P < C. Tt follows that K = G and consequently 7(G/C) C 7.

Finally, observe that NV N A is not normal in G, so there is an element x € B such
that (NNA)* # NNA. Since 7(G/C) C 7, we can choose z of prime power order ¢"
for a prime ¢ < p. Clearly,

(N AAY < N A (@A) = (V A (@) A))°.
Let Y be a Sylow p-subgroup of A. Then Y is a Sylow p-subgroup of (z)A, and so
NNA=NNY =Nn({z)A).

Then (NN A)* < (NN A) and so even (since z has finite order) (NN A)* = (NN A),
the final contradiction. O
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Theorem 2.8. Let G = AB be a homomorphic image of a periodic linear group
which is factorized by two mutually permutable subgroups A and B. Let N be
a minimal normal subgroup of G which is contained in A and such that NNB = {1}.
Then either [N, A] = {1} or [N,B] = {1}. Moreover, if N is non-cyclic, then
[N, B = {1}.

Proof. Let K be any subgroup of N. Then KB = BK and so NN KB =
K(NNB) = K is normalized by K B; in particular, K is normalized by B. Thus, B in-
duces power automorphisms by conjugation on V.

We immediately note that if A centralizes IV, then every cyclic subgroup of N is
normal in G and so N must be cyclic. It follows that if IV is not cyclic, then A does
not centralize NV, so the second part of the statement follows from the first part.

Assume first that N is non-abelian. Then N is the direct product of locally finite
simple groups, see the introduction of this section. Since [N,B] < ¢1(N) = {1}
(see [17], Theorem 1.5.2), the statement is proved in this case.

Assume now N is an elementary abelian p-group for a prime number p and
A € C = Cg(N). Then B/Cp(N) is a nontrivial cyclic group of order dividing
p — 1, and we may therefore choose b € B such that B = (b)Cp(N). Suppose that
AC/C is a p-group. Then G/C is locally supersoluble (being the product of two
totally permutable locally nilpotent subgroups) and so AC/C' is a normal p-group.
Let P be any p-subgroup of A such that AC = PC, see [20], Theorem 9.20. It follows
that NP is hypercentral, so N N¢; (AC) is not trivial and hence N < (3 (AC), which
means that A < C, a contradiction. Therefore, AC/C admits a nontrivial element
of prime order ¢ # p. Let y be a g-element in A\ C4(N) such that y? € C4(N).

Let x € (NBN(y)B)\ B and take by,b3 € B, y1 € (y), g € N with x = y1b; = gb.
Put S = (z,B) = (y1)B = (g9)B. Clearly,

(9)B: Bl =(g)| and [(y1)B: Bl = [{y1) : BN (y1)l,

so |S : B| is at the same time a p-number and a g-number, which means z € S = B.
In particular, NBN (y)B = B and so N N (y)B = {1}.

Since NN B = {1}, we have N £ X = AN B and in particular, N N Xg = {1}.
Lemma 2.4 yields that X¢/X¢ is hypercentral. Thus, the minimality of N shows
that either NXg N X% = Xg or NXg/Xe < (1(X%/Xg). In any case, [N, X] <
NN Xg={1},s0 X < C, and consequently y does not belong to B.

Now, Lemma 2.1 of [12] yields that W = (y)B is factorized by the mutually
permutable subgroups (y)(ANB) and B. The same lemma applied to Cy (V) shows
that V' = (y?)Cp(N) is a normal subgroup of W. Since V contains AN B, it follows
that W/V is factorized by the totally permutable subgroups (y)V/V and BV/V, see
for instance Lemma 4 of [9]. Moreover, ((y)Cg(N)) N ((y?)B) = V. Thus, W/V is
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locally supersoluble (see [3]) and (y)V/V is normalized by all r-subgroups of BV/V,
where 7 is a prime with r < ¢. Similarly, every r-subgroup of BV/V with r > ¢ is
normalized by y. Moreover, if Q/V is the Sylow g-subgroup of BV/V, then Q/V
has index ¢ in (y)Q/V, so Q/V is normalized by y.

Direct computation shows that [b, y] centralizes N for any b € B. Thus, (y)V/V is
actually centralized by all r-subgroups of BV/V when r is a prime such that r < g;
and every r-subgroup of BV/V with r > ¢ is centralized by y. It follows that W/V
is abelian, so [B,y] < V.

Choose u € N such that [y,u] # 1, and b € B. Replacing y by y* (recall that
N < A) we see that [b, y"] lies in V' (note that (y*)? = y?). Clearly,

[b,y"] = [b, yly, u]] = [b, [y, u]][b, y],

and ([b,y"], [b,y]) < V. Therefore, [b,[y,u]] lies in VN N = {1}. On the other
hand, B acts as a power automorphism on N and [y,u] is not trivial, so actually
[b, N] = {1} and hence [B,N] = {1}. O

Theorem 2.9. Let G = AB be a homomorphic image of a periodic linear group
which is factorized by two mutually permutable subgroups A and B. Let N be
a minimal normal subgroup of G such that NN A= NNB = {1}. Then |N| = p for
a prime p, and either [N, A] = {1} or [N, B] = {1}.

Proof. LetGbea periodic linear group of characteristic ¢ and degree n, and H
a normal subgroup of G such that G = G / H. By Theorem 2.5, N is abelian and
consequently an elementary abelian p-group for a prime p.

Suppose first NV is finite and the statement is false. In this case we may find
a finite subgroup F' of G which is factorized by the mutually permutable subgroups
FNAand FN B, and is such that N is a minimal normal subgroup of F, see for
instance Lemma 2.1 of [12]. Then Lemma 2 of [6] shows that |[N| = p, so there must
be elements a € A and b € B such that [a, N] # {1} # [b, N]. But then we can
choose F' containing a and b, obtaining a contradiction again by Lemma 2 of [6].
Thus, the statement is true whenever N is finite.

The structure of periodic linear groups we have outlined above shows that IV is
finite whenever ¢ = 0 or ¢ is a prime distinct from p, so in the following we may
assume that ¢ = p is a prime and N is infinite.

Let F be a finite subgroup of G such that F' = (F'N A)(F N B) is factorized by the
two mutually permutable subgroups F'N A and F N B, see for instance Lemma 2.1
of [12]. Let N; be a minimal normal subgroup of F' contained in NNF'. It follows from
Lemma 2 of [6] that |N1| = p. Repeating this argument we find an F-invariant series

{I}=No< N <N <...<Ny=NnNF
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such that N;y1/N; is cyclic of order p. Let C = (\Cg(Niy1/N;), so F/C has

exponent p — 1. Now, C/Cpr(N) is nilpotent (stafbilizing a finite series) and
hence is a p-group. A combination of 2.6 and Theorem 9.20 of [20] yields that
C/Cr(N) has exponent at most p®, where e is such that p°~! < n < p°. Therefore,
(FP=1P" < Cp(N) and the arbitrariness of F gives that GP~'Cg(N)/Cq(N) is
a p-group (of exponent at most p¢).

Let P be a p-subgroup of G such that GP"'Cg(N) = PCg(N). Then NP is
a p-group, so hypercentral (see Lemma 2.2) and hence N N ¢ (NP) # {1}. Thus,

NnG(G"h) # {1}

and so N < (;(GP™1), which means GP~! < Cg(N).

Now, G/GP~1 is a locally finite group satisfying the minimal condition on abelian
subgroups, because otherwise if Q/GP~! is a g-subgroup of G/GP~!, then Q; is
Cernikov (see [20], 2.6 and Theorem 9.20 of [20]) and so even finite. A well known
theorem of Sunkov shows that G/GP~! is Cernikov and consequently finite. There-
fore, G/Cz(N) is finite and so also N is finite, the final contradiction. O

3. PRIMARY LOCALIZATIONS

In this section we study groups which are factorized by mutually permutable sub-
groups satisfying certain “primary localizations” of some well known concepts.

Recall that if p is any prime, the upper p-series of G is the normal series {0 (G)}
defined recursively as follows: of(G) = {1}; if X is a successor ordinal, write
A = g1+ n for a limit ordinal 1 and a positive integer n, and put % (G)/0}_|(G) =
Ox(G/oy_|(G)), where 7 = {q € P: ¢ # p} if n is odd, and 7 = {p} other-
wise. We denote by oP(G) the last term of the upper p-series of G, and we say
that G is p-hyperabelian if G = oP(G). The group G is called p-soluble if it coin-
cides with a finite term of the upper p-series; in this case, the number of nontrivial
factors of {o?(G)}, that are p-groups is called the p-length of G, see [14]. Further-
more, G is p-supersoluble (p-hypercyclic) if it is p-soluble (p-hyperabelian) and the
nontrivial p-factors of its upper p-series admit a finite G-invariant series (an ascend-
ing G-invariant series) with cyclic factors, see [6]. Finally, recall that G is called
p-nilpotent if G = Op,(G) = 05(Q); of course, O p(G) is the largest p-nilpotent
normal subgroup of a locally finite group G.

A couple of terminology remarks:

> We could have defined p-nilpotency by requiring that the factor group G/O, (G)
were a nilpotent p-group, p-hypercentrality by requiring that G/O,, (G) were a hy-
percentral p-group, and p-(local nilpotency) by requiring that G/O, (G) were a lo-
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cally finite p-group. With respect to these definitions, p-nilpotent (p-hypercentral)
means the group is p-soluble and the p-factors of its upper p-series are nilpo-
tently (hypercentrally) embedded in the group; this is proved using arguments
which are very similar to those employed in the proof of Lemma 3.4. Although
this would have been more consistent with the previous definitions and would
have certainly give some other piece of information (e.g., in the statement of
Lemma 3.4 we could have derived p-hypercentrality in general, and p-nilpotency
for p-supersoluble groups), we have decided not to complicate this more than neces-
sarily since our main results do not deal directly with these concepts, and the defi-
nition of p-nilpotency we gave is essentially established also for infinite groups. For
similar reasons we did not introduce the concept of p-(locally supersoluble) group.

> As the reader certainly noted, the definition of p-soluble (p-hyperabelian) does not
require that the p-factors are soluble (hyperabelianly embedded in G), differently
from the other local definitions. This is because our main results deal with ho-
momorphic images of linear groups, and, for such groups, the properties of being
hyperabelian/locally soluble/soluble are equivalent.

Before studying groups which are factorized by mutually permutable subgroups,
we need some lemmas, which at the same time illustrate the relation between the
“p-local” and “non p-local” concepts in homomorphic images of periodic linear
groups, and, more generally, in locally finite groups.

Lemma 3.1. Let G be a locally finite group and let p be a prime.

(1) If G is p-hyperabelian, then G is locally p-soluble.

(2) If G is p-hypercyclic, then G is locally p-supersoluble.

(3) If H is an ascendant subgroup of G such that H = o%(H) for an ordinal num-
ber «, then H < of(G). In particular, the product of any collection of ascendant
subgroups of p-length at most n has p-length at most n.

(4) G is locally p-nilpotent if and only if G is p-nilpotent.

Proof. The proof of this result is standard and we omit it. O

It is easy to see that the wreath product
1030050005103 00,

is a locally finite group which is locally soluble but is not 2-hyperabelian: in fact
it does not contain any nontrivial normal locally nilpotent subgroup. On the other
hand, it is known that a locally soluble homomorphic image of a periodic linear
group is soluble (see [20], Corollary 9.21) and our next result extends this fact to
local p-solubility.
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Lemma 3.2. Let p be a prime and let G be a homomorphic image of a periodic
linear group. If G is locally p-soluble, then G is p-hyperabelian.

Proof. Suppose first that G is a non-abelian locally finite simple linear group.
If G does not contain elements of order p, then G is p-hyperabelian, and we are
done. If g is a nontrivial element of G having order a power of p, it follows that g is
contained in a finite simple subgroup H of G having order strictly larger than p, see
for instance Corollary 9.32 of [20]. On the other hand, H is p-soluble, so it must be
a p-group and its order must be p, a contradiction.

Assume now that G is a homomorphic image of a periodic linear group. The
structure of a periodic linear group (we outlined at the beginning of Section 2) and the
previous paragraph show that G is soluble-by-finite and hence p-hyperabelian. [J

It is clear that soluble (or even hyperabelian) locally finite groups are p-hyper-
abelian for any prime p. On the other hand, the consideration of any locally finite
p-group which is not hyperabelian shows that the converse of the statement does
not hold in general. The situation is much better within the universe of periodic
linear groups.

Lemma 3.3. Let G be a homomorphic image of a periodic linear group which is
p-hyperabelian for any prime p. Then G is soluble.

Proof. It is easily seen that every finite subgroup of G is soluble, so G is locally
soluble and hence soluble, see Corollary 9.21 of [20]. O

Lemma 3.4. Let p be a prime and let G be a locally finite p-hypercyclic group.
Then G’ is p-nilpotent.

Proof. Tt is clear that G’ centralizes every chief factor of G whose order is p.
Let N = Oy (G') and assume N < G’. Then there are G-invariant subgroups M < L
of G’ such that M /N is a nontrivial p-group which is hypercyclically embedded in G,
while L/M is a p’-group; in particular, M /N lies in the hypercentre of G'/N and so in
the hypercentre of L/N. Let F'/M be any finite subgroup of L/M. The main theorem
of [8] shows that there is a finite normal subgroup U/N of F'/N such that F/U is
hypercentral. Now, there exists n such that P/N = O,(U/N) < (,(U/N)and U/P is
a p’-group, so v,+1(U)N/N is a finite p’-group by Baer’s theorem, see Corollary 2 to
Theorem 4.21 of [16]. If we put V/N = O, (U/N), then (U/N)/(V/N) is a p-group,
and hence is contained in the hypercentre of (F'/N)/(V/N). Therefore, F/V is
hypercentral and the p’-elements of F'//N form a subgroup. It follows that the set
of all p’-elements of L/N is a subgroup, so L/N is a p-group and hence L = M.
Thus, G’ /N must be a p-group and the statement is proved. (Il
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Corollary 3.5. Let p be a prime and let G be a locally finite p-hypercyclic group.
Then G is p-soluble of p-length at most 1.

Clearly, any supersoluble (hypercyclic) locally finite group is p-supersoluble
(p-hypercyclic) for any prime p. On the other hand, the consideration of any peri-
odic group of rank one with infinitely many finite nontrivial Sylow subgroups is an
example of a group which is not supersoluble but it is p-supersoluble for any prime p.

Lemma 3.6. Let G be a locally finite group. If G is p-hypercyclic for any prime p,
then G is hypercyclic.

Proof. It follows from Lemma 3.4 that G’ is p-nilpotent for any prime p.
Since G’ is periodic, it embeds in the direct product Dr,(G’'/O, (G")), so G admits
an ascending normal series with primary factors. But any of the factors of this series
is hypercyclically embedded in G, and hence G is hypercyclic. O

Lemma 3.7. Let p be a prime and let G be a homomorphic image of a periodic
linear group. If N is any normal p-nilpotent subgroup of GG, then N centralizes every
p-chief factor of G.

Proof. Let L/M be a p-chief factor of G. Of course we may assume M = {1},
so L is a minimal normal subgroup of G. Let K = O, (N), then K N L = {1}, so
K < Cg(L) and we may also assume K = {1}. Now, N is a p-group, so LN is
a hypercentral normal subgroup of G by Lemma 2.2. It follows that L < (1(LN)
and hence N < Cg(L). The statement is proved. O

Lemma 3.8. Let p be a prime and let G be a locally finite group. If X is any
subgroup of G centralizing every p-chief factor of G, then X is p-nilpotent.

Proof. Let F be any finite subgroup of X and let {G;};c; be any chief series
of G. Then {F NG, }icr is a finite series of I (once we have removed all duplicates)
in which the p-factors are central. An argument similar to the one employed in
Lemma 3.4 shows that F' is p-nilpotent, so its p’-elements form a subgroup. The
arbitrariness of F' in X yields that the p’-elements of X form a subgroup and conse-
quently that X is p-nilpotent. O

A combination of Lemmas 3.7 and 3.8 gives the following result, which is analogous

to the finite case.

Corollary 3.9. Let p be a prime and let G be a homomorphic image of a periodic
linear group. Then O, ,(G) coincides with the intersection of the centralizers of the
p-chief factors of G.
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The consideration of any locally finite p-group which is not hypercyclic shows that
there exist locally p-supersoluble groups which are not p-hypercyclic. On the other
hand, it is known that a linear group which is locally supersoluble is also hypercyclic
(see for instance Theorem 11.21 of [20]), and our next result generalizes this fact to
homomorphic images of periodic linear groups.

Theorem 3.10. Let p be a prime and let G be a homomorphic image of a periodic
linear group. If G is locally p-supersoluble, then G is p-hypercyclic.

Proof. LetGbea periodic linear group of characteristic ¢ such that G = CA?/ZV
for a normal subgroup N of G.

Of course, we may assume O, (G) = {1}. Let P = O,(G). Lemma 3.4 shows
that G’ is locally p-nilpotent, so Lemma 3.1 yields that G’ is p-nilpotent, and hence
that G’ is a p-group; in particular, G’ < P and G/P is a p’-group. In order to
complete the proof it is enough to prove that P contains a nontrivial G-invariant
cyclic subgroup.

By Lemma 2.2, P is hypercentral. Let Z be the socle of (;(P) and choose any
finite subgroup F' of G such that FNZ # {1}. Since G is locally p-supersoluble, we
may find an F-invariant series

{1}=4<A1<...<As=ZNF
with cyclic factors of order p. Let

C= () Cr(Ai/4).

0<i<s—1

Then C/Cp(Z N F) is nilpotent (stabilizing a finite series) and so a p-group. On
the other hand, every p-element of G centralizes Z, so actually C = Cr(Z N F). Of
course, FP~! < C, so the arbitrariness of F' in G yields that GP~! < Cg(2).

If ¢ = p, then G/Cq(Z) is alocally a finite group satisfying the minimal condition
on abelian subgroups (see [20], 2.6 and Theorem 9.20), so it is Cernikov by a well
known theorem of Sunkov (see [16], Part I, page 98) and hence even finite, being
of finite exponent. Let E be a finite subgroup of G such that G = ECg(Z) and
ENZ #{1}. Then E normalizes a nontrivial cyclic subgroup W of EN Z, which is
thus the required nontrivial G-invariant cyclic subgroup.

If ¢ # p, then P is Cernikov (see [20], 2.6 and Theorem 9.20) and Z is finite. Let X
be the set of all nontrivial cyclic subgroups of Z, and let F be the set of all finite
subgroups of G. For any X € X, let Fx = {F € F: F < Ng(X)}. Since the set X
is finite, there is Y € X such that Fy is a local system of G. Thus, X is normal in G
and we are done. ]
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Combining Theorem 3.10 and Lemma 3.6 we have the following result.

Corollary 3.11. Let G be a homomorphic image of a periodic linear group. If G
is locally supersoluble, then G is hypercyclic.

It is impossible to generalize the last two results to periodic homomorphic images
of non-periodic linear groups. In fact, every free group of countable rank is linear
but there exist countable locally finite p-groups which are not hypercyclic.

It is time to study groups which are factorized by mutually permutable subgroups
which satisfy some “p-local” conditions. Clearly, Sym(3), the symmetric group of
degree 3, is factorized by two totally permutable subgroups which are 3-nilpotent,
but it is not 3-nilpotent. On the other hand, in Corollary 3.20 we show that the
product of two mutually permutable 2-nilpotent subgroups is 2-nilpotent. More-
over, observe that if p is a prime, a group (even finite) which is factorized by two
mutually permutable p-hypercyclic groups need not be p-hypercyclic. In fact, if
this were the case, then a finite group G which is factorized by two mutually per-
mutable supersoluble subgroups would be g-supersoluble for any prime ¢, and so
even supersoluble by Lemma 3.6; but this is not true as shown by an example
in [1], page 454.

Lemma 3.12. Let p be a prime and let G = AB be a locally finite group which is
factorized by two mutually permutable subgroups A and B. If A and B are locally
p-soluble, then G is locally p-soluble.

Proof. By Lemma 2.1 of [12], the set of all finite subgroups F' which are
factorized by the two subgroups F N A and F'N B is a local system of G, so G is
locally p-soluble by Corollary 2 of [6]. O

Corollary 3.13. Let p be a prime and let G = AB be a homomorphic im-
age of a periodic linear group which is factorized by two mutually permutable sub-
groups A and B. If A and B are p-hyperabelian (p-soluble), then G is p-hyperabelian
(p-soluble).

Proof. By Lemma 3.12, G is locally p-soluble, so G is p-hyperabelian by
Lemma 3.2. If both subgroups A and B are p-soluble, it follows from Theorem 2.1
and Lemma 3.1 that A’ and B’ lie in a finite term N = o2 (G) of the upper p-series
of G. Furthermore, G/N is the product of two abelian groups, so it is metabelian
by Ito’s theorem, and hence G = o,  ,(G) is p-soluble. O
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Corollary 3.14. Let p be a prime and let G = AB be a homomorphic image of
a periodic linear group which is factorized by two mutually permutable subgroups A
and B. If A and B are soluble, then GG is soluble.

Proof. This follows from Corollary 3.13 and Lemma 3.3. (]

Our main aim is now to give a bound on the p-length of a group which is factorized
by two mutually permutable subgroups: in order to do this we start by discussing
products of mutually permutable p-hypercyclic subgroups.

Lemma 3.15. Let p be a prime and let G = AB be a p-hypercyclic locally finite
group which is factorized by two mutually permutable subgroups A and B. If A
and B are p-supersoluble, then G is p-supersoluble.

Proof. ByLemma 3.4, G'is p-nilpotent, so we need to prove that O,(G/O, (G))
is finite. Of course, it is possible to assume O, (G) = {1}, and we put N = O,(G);
clearly, N is hypercyclically embedded in G.

Let F' be a finite subgroup of G such that F' = (F'N A)(F N B), and let p™ be
the product of the orders of the p-factors of the upper p-series’s of A and B. Since
|F| = |FNA||FNB|/|FNANBJ, it follows that |[NNF| divides p™. The arbitrariness
of F yields that N is finite and the statement is proved. O

Lemma 3.16. Let p be a prime and let G = AB be a locally finite group which is
factorized by two mutually permutable subgroups A and B. If A and B are locally
p-supersoluble, then G is locally p-supersoluble provided that at least one among the
subgroups A, B, G’ is p-nilpotent.

Proof. This follows from a combination of Corollary 5 of [6] and the local
argument we employed in Theorem 2.9. (]

As a consequence of Lemmas 3.16 and 3.6, we have the following result.

Lemma 3.17. Let G = AB be a locally finite group which is factorized by two
mutually permutable locally supersoluble subgroups A and B. If G’ is locally nilpo-
tent, then G is locally supersoluble.

Theorem 3.18. Let p be a prime and let G = AB be a homomorphic image of
a periodic linear group which is factorized by two mutually permutable subgroups A
and B. If A and B are p-hypercyclic (p-supersoluble), then G is p-hypercyclic
(p-supersoluble) provided that at least one among the subgroups A, B, G’ is
p-nilpotent.
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Proof. By Lemma 3.1, A and B are locally p-supersoluble subgroups, so
Lemma 3.16 yields that G is locally p-supersoluble. Thus, G is p-hypercyclic by
Theorem 3.10. In the case that A and B are p-supersoluble, the statement follows
from Lemma 3.15. O

Although the product G = AB of two mutually permutable p-hypercyclic locally
finite subgroups A and B need not be p-hypercyclic, the following result shows that
we can at least bound the p-length of G.

Theorem 3.19. Let p be a prime and let G = AB be a homomorphic image of
a periodic linear group which is factorized by two mutually permutable subgroups A
and B. If A and B are p-hypercyclic, then G/O,,(G) is metabelian of exponent
dividing (p — 1)3.

Proof. Let L/M be a p-chief factor of G, and put C = Cg(L/M). In order to

3 we may assume M = {1},

prove that G/C is abelian of exponent dividing (p — 1)
so L is a minimal normal subgroup of G and it is a p-group.

If L is cyclic, it has order p, so G/C' is abelian of order dividing p — 1, and we
are done. Thus, we may assume that L is not cyclic. In particular, we cannot have
L < Aand B <, or, similarly, L < B and A < C. In fact, if for instance L < A
and B < C, then since G = AB, the subgroup L is a minimal normal subgroup of A,
and so is cyclic since A is p-hypercyclic.

Now, Theorem 2.7 shows that {L N A,L N B} C {L,{1}}, while Theorem 2.9
shows that we cannot have ANL = BNL = {1}. If L < Aand LN B = {1},
then Theorem 2.8 shows that B < C, and we have already dealt with this case;
the case L < B and L N A = {1} is similar. Assume L < AN B. The argument
employed in the last part of the proof of Theorem 2.9 yields that AP~1C4(L)/C4(L)
and BP~'Cp(L)/Cp(L) are p-groups, so a local application of Theorem 2 of [6]
gives that G/C admits a normal Sylow p-subgroup P/C. But then P centralizes L
(see Lemma 2.2 of this paper and Theorem 9.20 of [20]) and so P = C. More-
over, A’ and B’ are p-nilpotent subnormal subgroups of G (see Theorem 2.1 and
Lemma 3.4), so they are contained in C' by Lemma 3.7. Since G/C is factorized
by the two mutually permutable abelian subgroups AC/C and BC/C, both of the
exponent dividing p — 1, it follows that G/C is metabelian (by Ito’s theorem) and
has the exponent dividing (p — 1)%: in fact, G/(AC N BC) is factorized by two
totally permutable abelian subgroups of exponent p — 1 and so has the exponent
dividing (p — 1)2.

In order to complete the proof it is enough to apply Corollary 3.9. O
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It should be noted that in the proof of Theorem 4 (i) of [6] (which is analogous
to our Theorem 3.19), the case L < A and LN B = {1} seems to be missing. It
is not possible to replace “metabelian” by “abelian” in the above statement: if this
were possible, Theorem 3.18 would show that any group which is the product of
two mutually permutable finite supersoluble subgroups is supersoluble, but we have
already observed that this is not true.

Corollary 3.20. Let G = AB be a homomorphic image of a periodic linear group
which is factorized by two mutually permutable subgroups A and B. If A and B are
2-nilpotent, then G is 2-nilpotent.

Proof. This follows at once from Lemma 2.2 and Theorem 3.19. O

Corollary 3.21. Let G = AB be a homomorphic image of a periodic linear group
which is factorized by two mutually permutable subgroups A and B. If A and B are
2-hypercyclic, then G is 2-hypercyclic.

Proof. This follows at once from Theorem 3.19 and Lemma 2.2. O

Corollary 3.22. Let p be a prime and let G = AB be a homomorphic image of
a periodic linear group which is factorized by two mutually permutable subgroups A
and B.

(1) If A and B are of p-length n, then G /o5, . ,(G) is hypercyclic and metabelian.
(2) If AJo%, 1 (A) and B/o¥, | (B) are p-hypercyclic, then G = 0%, , 5(G).

Proof. The implication (1) is just a combination of Theorem 2.1, Lemma 3.1,
Ito’s theorem, Lemma 3.17, and Corollary 3.11.

In order to prove the implication (2), note that A/A’ is hypercyclic (being abelian)
and A'/oh, . (A) is p-hypercyclically embedded in A/o%, ,(A’). Thus, A/cb, , (A")
is p-hypercyclic and symmetrically B/ob, ,(B’) is p-hypercyclic. Now, it follows
from Theorem 2.1 and Lemma 3.1 that

U§n+1(G) 2 <Ugn+1(A/)ao-gn+1(Bl)>7

so G/ob, +1(G) is factorized by two mutually permutable p-hypercyclic subgroups,
and hence it is of p-length 1 by Theorem 3.19. Therefore, G = 0%, 4(G) and the
statement is proved. O

Corollary 3.23. Let p be a prime and let G = AB be a homomorphic image of
a periodic linear group which is factorized by two mutually permutable subgroups A
and B. If A and B are p-soluble of p-length n, then G is p-soluble of p-length n + 1.
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In the final part of the paper, we deal with some generalizations of further results
of Beidleman and Heineken (see [6]).

Lemma 3.24. Let p be a prime and let G = AB be a locally finite group which is
factorized by two mutually permutable subgroups A and B. If A and B are locally
p-supersoluble, then G /(AN B)¢ is locally p-supersoluble.

Proof. We may assume (ANB)g = {1}. Let F be the set of all finite subgroups
of G such that F = (F'n A)(F N B) is factorized by the two mutually permutable
subgroups FFN A and FNB. As we have already mentioned several times, F is a local
system of G.

Let E € F. It follows from Theorem 6 of [6] that E/(ENANB)g is p-supersoluble.
Thus, the set P(E) made by all E-invariant subgroups L of ENAN B such that E/L
is p-supersoluble is nonempty. Now, a standard inverse limit argument shows that G
admits a normal subgroup N such that N < ANB and G/N is locally p-supersoluble.
The statement is proved. (I

Theorem 3.25. Let p be a prime and let G = AB be a homomorphic image
of a periodic linear group which is factorized by two mutually permutable sub-
groups A and B. If A and B are p-hypercyclic (p-supersoluble), then G/(AN B)¢ is
p-hypercyclic (p-supersoluble).

Proof. By Lemma 3.24, G/(A N B)g is locally p-supersoluble, so even
p-hypercyclic by Theorem 3.10. Finally, if A and B are p-supersoluble, it fol-
lows from Lemma 3.15 that G/(A N B)g is p-supersoluble. O

Recall that a group is a T-group if normality is a transitive relation.

Corollary 3.26. Let p be a prime and let G = AB be a homomorphic image of
a periodic linear group which is factorized by two mutually permutable subgroups A
and B. If A and B are p-hypercyclic (p-supersoluble) and B is a T-group, then G is
p-hypercyclic (p-supersoluble).

Proof. Theorem 3.25 yields that G/N is p-hypercyclic, where N = (AN B)g.
Since B is a T-group, the ascending A-invariant series {N N o2 (A)}, of N is even
G-invariant, and its p-factors are hypercyclically embedded in G. Hence, G is
p-hypercyclic. Finally, if A and B are p-supersoluble, it follows from Lemma 3.15
that G/(A N B)g is p-supersoluble. O
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Recall that a group G is paranilpotent if there exists a finite series

of normal subgroups of G such that for ¢ = 0,...,¢ — 1, the factor group G;+1/G;
is abelian and each of its subgroups is normal in G/G; (the smallest possible length
of a paranilpotent series is called the paraheight of G). These groups were usually
referred to in literature as parasoluble groups (see [19], where these groups were
introduced), but here, we prefer to follow [10] and speak of paranilpotent groups.
Clearly, paranilpotent groups are hypercyclic and so locally supersoluble. Now, if p is
a prime, we introduce the concept of p-paranilpotency as follows: we say that a locally
finite group G is p-paranilpotent if it is p-soluble and the p-factors of its upper p-series
are paranilpotenly embedded in G. Of course, a p-nilpotent group is p-hypercyclic.
On the other hand, the standard wreath product Cs« ! C3 is 3-hypercyclic but is
not 3-paranilpotent, and, actually, since any p-paranilpotent group is nilpotent (see
for instance Lemma 2.3 of [13]), any non-nilpotent Cernikov p-group is p-hypercyclic
but not p-paranilpotent.

There exist locally finite groups which are p-paranilpotent for any prime p but
are not paranilpotent. To see this, it is enough to consider the direct product
G = DrpepG,, where for any prime p, G, is a finite paranilpotent p-group of para-
height at least p. The situation is much better for homomorphic images of periodic
linear groups.

Lemma 3.27. Let G be a homomorphic image of a periodic linear group. If G is
p-paranilpotent for any prime p, then G is paranilpotent.

Proof. LetGbea periodic linear group of characteristic ¢ such that G = CA?/ZV
for a normal subgroup N of G.

By Lemma 3.3, the group G is soluble, so the structure of periodic linear groups
yields that G admits a normal subgroup M such that G/M is finite and M/O,(G) is
an abelian ¢’-group of finite rank. Since G is ¢g-paranilpotent, it follows that O,(G)
is paranilpotently embedded in G, so we may assume O4(G) = {1}. Similarly, we
may assume O, (M) = {1}, where 7 = #(G/M). By Lemma 3.6, G is hypercyclic,
and hence Lemma 11.7 of [20] yields that M is paranilpotently embedded in G.
Therefore, G is paranilpotent and the statement is proved. O

The behaviour of p-paranilpotent groups is different from that of p-supersoluble
groups. It turns out for instance that there is no analogue of Lemma 3.15. To see
this let G = H x (A x B), where H = (x) x ((y) x (z)) ~ Dih(8), A ~ B ~ Cae,
z acts as the inversion on A x B, y acts as the inversion on A and centralizes B,
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x switches A and B. It is easy to see that G is hypercentral but not paranilpotent,
and it is factorized by the two normal paranilpotent subgroups U = (x, z, A, B) and
V = {(y, 2, A, B); of course, G is linear, being Cernikov. This example is a 2-group
and the intersection of U and V is infinite: it could not be otherwise, as shown by
the following results.

Lemma 3.28. Let G be a homomorphic image of a periodic linear group. If G is
a 2-group and it is factorized by two mutually permutable paranilpotent subgroups A
and B, then G is paranilpotent provided that one of the following conditions holds:
(1) (AN B)¢ has finite exponent,
(2) A and B are totally permutable.

Proof. LetGbea periodic linear group of characteristic ¢ such that G = CA?/ZV
for a normal subgroup N of G.

If ¢ = 2, then G is nilpotent by 2.6 and Theorem 9.20 of [20]. Thus, we may
assume ¢ # 2, so by the same results, G is Cernikov. Let A*, B* and G* be the
finite residuals of A, B and G, respectively. Then A*B* has finite index in G = AB
and A*B* is divisible abelian, so G* = A* B*.

Suppose now that (A N B)g has finite exponent, so it is finite, and let D be the
finite residual of X = AN B. Then X is a permutable subgroup of both A and B
(see for instance Lemma 3.1 of [12]), so, if y is any element of AU B, we have that
Y = X (y) = (y)X; on the other hand, D has a finite index in X, and hence D has
a finite index in Y, which means that D is the finite residual of Y (being divisible)
and, in particular, D is normalized by y. Thus, D is normal in G = AB, so D = {1}
(being finite and divisible) and consequently, X is finite. Let F and F' be finite
subgroups of G containing X and such that A = FA* and B = F'B*. Now, if P is
any divisible subgroup of A*, it follows from Lemma 3.5 of [12] that PF = F'P, so P
is normalized by F' (and consequently by B) since P is the finite residual of F'P.
Similarly, A normalizes every divisible subgroup of B*. Therefore, A* and B* are
paranilpotently embedded in GG, which means that G* is paranilpotently embedded
in G. Since G/G* is a finite 2-group, it follows that G is paranilpotent.

Finally, if A and B are totally permutable subgroups, then the argument we
employed in the previous paragraph shows that every divisible subgroup of A* and B*
is normal in G, so actually G* is paranilpotently embedded in G and (since G/G* is
a finite 2-group) G is paranilpotent. O

Lemma 3.29. Let G = AB be a homomorphic image of a periodic linear group
which is factorized by the two mutually permutable subgroups A and B. If A and B
are 2-paranilpotent and (A N B)¢ has finite exponent, then G is 2-paranilpotent.
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Proof. LetG bea periodic linear group of characteristic ¢ such that G = @/ﬁ
for a normal subgroup NofG. 1f q = 2, then G is nilpotent by 2.6 and Theorem 9.20
of [20]. Thus, we may assume g # 2.

It follows from Theorem 3.19 that G = Oq2(G), so if we put L = Oz(G), then
G/L is a 2-group. By Theorem 9.20 of [20], it is possible to find 2-subgroups U
and V of A and B, respectively, such that

Ux(LNA)=A and Vx(LNB)=B8.

By Corollary 9.14 of [20] the Sylow 2-subgroups of G are conjugate, so we may find
an element x € G such that (U,V?®) is a 2-group. Write © = ba for some a € A
and b € B. Then B* = B%, so A and B?® are still mutually permutable subgroups
and ANB* = AN B* = (AN B)® has a finite exponent. Thus, we may replace
B by B?, assuming consequently that U and V are contained in the same Sylow
2-subgroup W of G.

Now, Lemma 9.13 of [20] yields that G = W L. Moreover,

ANB=(WnANB)x (LNANB).

Let H = (AN B)g and K = (AN B)¢. By Lemma 2.4, K/H is locally nilpotent, so
[WNANB, L] < H, and hence every W-invariant subgroup of WNAN B is contained
in H. It follows that W satisfies the hypotheses of the statement and therefore the
result follows from Lemma 3.28. O

Lemma 3.30. Let p be an odd prime number and let G be a homomorphic image
of a periodic linear group. If G is p-hypercyclic and it is factorized by two mutually
permutable p-paranilpotent subgroups A and B, then G is p-paranilpotent.

Proof. LetG bea periodic linear group of characteristic ¢ such that G = @/ﬁ
for a normal subgroup N of G.

It is certainly possible to assume O, (G) = {1}. If M = O,(G), then G/M is
metabelian of exponent dividing (p — 1)® by Theorem 3.19, so G is soluble.

The structure of periodic linear groups shows that G/M is finite regardless of the
fact that p = q or p # q. Now, if p = ¢, then M is nilpotent and so an application of
Lemma 11.7 of [20] yields that M is paranilpotently embedded in G, thus completing
the proof.

Assume p # ¢, so G is Cernikov. Let A* and B* be the finite residuals of A
and B, respectively. Then the finite residual G* of G is abelian and contains A*
and B*. On the other hand, |A : A*| and |B : B*| are finite, so |G : A*B*|
is finite (see for instance Lemma 1.2.5 of [2]) and hence A*B* = G*. Let P
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be any infinite locally cyclic subgroup of B*. Then AP = PA and A*P is
normal in AP, being its finite residual. It easily follows that AB* = AG*
is paranilpotent. Similarly, BG* is paranilpotent and we may consequently as-
sume G* < AN B.

Let U = Op(A) and V = O,(B). By Lemma 2.3 of [13], U and V are nilpotent,
so G* < (1 (U) N ¢ (V). Tt follows that G* < ¢(1(X), where X = (U, V). On the
other hand, G/X is a finite group which is factorized by two mutually permutable
p’-subgroups, so actually X = M and G* < (;(M), which means that M is nilpotent.
Now, an application of Lemma 11.7 of [20] yields that M is paranilpotently embedded
in G, thus completing the proof also in this case. O

Theorem 3.31. Let p be a prime and let G = AB be a homomorphic image of
a periodic linear group which is factorized by two mutually permutable subgroups A
and B. If A and B are p-paranilpotent, then G/(A N B)q is p-paranilpotent.

Proof. Thisis a combination of Lemmas 3.29, 3.30 and Theorem 3.25. (I

As a consequence of the above theorem and Lemma 3.27, we have the next result.

Corollary 3.32. Let G = AB be a homomorphic image of a periodic linear group
which is factorized by two mutually permutable subgroups A and B. If A and B are
paranilpotent, then G/(A N B)q is paranilpotent.

In the final result of the paper we describe what a counterexample to Lemma 3.30
for p = 2 should look like: it turns out that it resembles the example discussed before
Lemma 3.28.

Theorem 3.33. Let G = AB be a homomorphic image of a periodic linear group
which is factorized by two mutually permutable subgroups A and B. Assume further
that G is not 2-paranilpotent and O, (G) = {1}. Then G is a Cernikov 2-group and
there are normal subgroups N < D of G such that:

(1) N and G/D are finite, while D/N is divisible;

(2) AD/D and BD/D are elementary abelian normal subgroups of G/D, which
intersect nontrivially;

(3) if X/D is a cyclic subgroup of (AD N BD)/D, then X/N acts as the inversion
on its nilpotent residual, which coincides with (X/N)" and is not trivial;

(4) D/N = Can(D/N).

Furthermore, if the finite residual of G has the smallest possible rank, then we
may even require that (AD N BD)/D = (G/D)’ is cyclic of order 2.
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Proof. LetG bea periodic linear group of characteristic ¢ such that G = @/ﬁ
for a normal subgroup N of G.

By Theorem 3.19, G is a 2-group. Moreover, as usual, we may assume ¢ # 2,
so G is Cernikov, see [20], 2.6 and Theorem 9.20. Let A* and B* be the finite
residuals of A and B, respectively. Since G is Cernikov, its finite residual G* is
abelian and contains A* and B*. On the other hand, |[A : A*| and |B : B*| are finite,
so |G : A*B*| is finite (see for instance Lemma 1.2.5 of [2]) and hence A*B* = G*.

Let C = C¢(G*) and choose a finite subgroup F' of C such that C' = FG*. It is
clear that F'is contained in the set of all elements of order at most |F'| of C, so we may
factor it out and assume consequently that C' = G*, see also Theorem 3.14 of [16].

Let P be any infinite locally cyclic subgroup of B*. Then AP = PA and A*P
is normal in AP, being its finite residual. It easily follows that H = AB* = AG*
is paranilpotent. Now, H? is nilpotent because periodic automorphisms of infinite
locally cyclic 2-groups have order at most 2, so G* < (1(H?) (see Theorem 3.14
of [16]) and hence G* = (;(H?); in particular, AG*/G* is an elementary abelian
2-group. Similarly, BG*/G* is an elementary abelian 2-group. Furthermore, it is
possible to assume that G* < AN B.

If Y/G* is a cyclic subgroup of B/G*, then AY = Y A, so A has the index at
most 2 in AY and hence A/G* is normalized by Y/G*. Thus, A is normal in G;
similarly B is normal in G.

If AN B < G*, then & is abelian, so G is paranilpotent by Lemma 2.5 of [10],
a contradiction. It follows that AN B > G*. Let X/G* be a cyclic subgroup
of (AN B)/G*.

Now, we need to discuss the nilpotent residual R of X. Let P, @ be subgroups
of G* such that P ~ Q/P ~ Cs, [P, X] = {1}, [Q, X]P = Q (which means that X
acts as the inversion on Q/P). Since P is divisible, we may find a subgroup U such
that Q@ = P x U. Choose z € X \ Cx(Q/P), write

L2 2 _
U= (uo,u1,...,Un,...: ug=1,u, 1 =un, n€Np)

and put, for any ¢, uf = vm;l for some v; € P; it is clear that UJQ-_H = v; for any j.
Define

V= <vi_+11ui: 1€ N0> >~ 0200
and note that

1, Ne _ o —1_, -1 _ 1 1 __ , —1 -1
(Ui-l—lui) = Vi1 Uity = Vi1V Uiy *(”i+1uz) )

so X acts as the inversion on V. It follows that R admits a finite X-invariant series
whose (nontrivial) factors are groups of type 2°° on which X acts as the inversion.
Since [G*, X] < R, we have [G*, X] = R.
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Suppose P, @) are divisible subgroups of G* such that z acts as the inversion
on P and on Q/P. As in the previous paragraph we may write Q = P x U for
a subgroup U. Let k € U. Then k% = k~'w for some w € P, and hence

k=k" = (k" 'w)® = kw2,

so w? = 1. On the other hand, if w # 1 and k; € U is such that k? = k, then

¢ = kv, where v?

= w # 1, a contradiction. Thus, = acts as the inversion on R.
Note also that R # {1} since G* coincides with its own centralizer.

Finally, suppose G* has the smallest possible rank. Let EF4 and Ep be finite
subgroups such that A = F4G* and B = EgG*. If R < G*, then G/R is paranilpo-
tent by the minimality assumption; moreover, L = (E 4, Ep, R) is factorized by the
mutually permutable subgroups L N A and L N B (see Lemma 2.1 of [12]), so again
the minimality assumption yields that R is paranilpotently embedded in GG. Thus,
G* is paranilpotently embedded in G and we obtain a contradiction. It follows
that R = G*.

If ye An B\ X, then y acts as the inversion on G*, but then zy centralizes G*,
a contradiction. Thus, AN B/G* has order 2 and the statement is proved. O
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