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Abstract. We focus on connected graded algebras and their PBW-deformations endowed
with additional symmetric structures. Many well-known algebras such as negative parts
of Drinfeld-Jimbo’s quantum groups, cubic Artin-Schelter algebras and three-dimensional
Sklyanin algebras appear in our research framework. As an application, we investigate
a Kz algebra A which was introduced to compute the cohomology ring of the Fomin-Kirillov
algebra FK3, and explicitly construct all the (self-)symmetric and sign-(self-)symmetric
PBW-deformations of A.

Keywords: connected graded algebra; PBW-deformation; self-symmetry; sign-symmetry;
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1. INTRODUCTION

A filtered algebra U over a field K is called a Poincaré-Birkhoff- Witt-deformation
(for short PBW-deformation) of a graded K-algebra A if its associated graded al-
gebra gr(U) is isomorphic to A. The PBW-deformation theory of connected graded
algebras including Koszul algebras and d-Koszul algebras is extensively investigated.

Koszul algebras are a class of connected graded algebras with good homologi-
cal properties. The polynomial algebra K[z, zs,...,2,] may be the most impor-
tant example of Koszul algebra. For an n-dimensional Lie algbra g, the symmetric
algebra S(g) is isomorphic to the polynomial algebra Klzi,xa,...,x,]. The the-
ory of Lie algebras shows that the universal enveloping algebra U(g) of g is just

The research has been supported by the National Natural Science Foundation of
China (Nos. 11501317, 12271292), the China Postdoctoral Science Foundation (No.
2016M600530), and the Project of Qufu Normal University (No. BSQD20130142).

DOI: 10.21136/CMJ.2023.0511-22 1255

© Institute of Mathematics, Czech Academy of Sciences 2023.


http://dx.doi.org/10.21136/CMJ.2023.0511-22

a PBW-deformation of the algebra S(g), which plays an important role in estab-
lishing the PBW theorem of U(g), see [12]. For an arbitrary Koszul algebra A4,
in [4] Braverman and Gaitsgory gave a Jacobi condition which decides when a de-
formation U of A is a PBW-deformation, see also [20]. For an arbitrary d-Koszul
algebra A, a generalized Jacobi type condition was given for the determination of
PBW-deformations, see [2], [8].

For an arbitrary connected graded algebra A over a field K, using the notion
of regular central extension of algebras, Cassidy and Shelton in [5] established the
most general Jacobi condition for deciding when certain deformations of .4 obtained
by altering its defining relations are PBW-ones. The Jacobi condition transforms
the determination of PBW-deformations into a finite linear algebra problem, where
a homological constant called complexity (see Definition 2.2) controls the degree of
difficulty in a sense.

For a finite dimensional complex semisimple Lie algebra g, the negative part U, (g)
of Drinfeld-Jimbo’s quantum group Uy (g) is a connected graded algebra with defin-
ing relations of mixed degrees except the cases U, (slz) and U, (sl3). Some concrete
PBW-deformations of U, (g), which we call PBW-deformations of quantum group,
have appeared in many researches about coideal subalgebras of U,(g) (cf. [15], [16],
[17], [18], [19]) and nonstandard quantum deformations of U(g) (cf.[10],[13],[14]).
In [25] Yang and the first author focused on a class of PBW-deformations B,(g)
of quantum groups, see also [23], [24]. They proved a PBW theorem for 9B,(g),
where the role of B,(g) as a PBW-deformation is also very crucial. Using the
Jacobi condition given in [5], they also proposed an algorithm for the judgement of
PBW-deformations of U, (g) and applied it to compute the PBW-deformations of
quantum groups for g of Dynkin type Ag, Bo, see Theorem 3.5 in [25]. The above
practical computations show that constructing all the PBW-deformations via direct
calculations is not easy in general, even though the Jacobi condition comes down to
a linear algebra problem.

Motivated by the above researches, we aim to construct some special PBW-
deformations of connected graded algebras instead of all. For this purpose, in this
paper we introduce the notions such as 7-(self-)symmetric connected graded algebra,
sign-(self-)symmetric PBW-deformation and (self-)symmetric PBW-deformation, see
Definition 3.5. In fact, the 7-commutative homogenous algebras defined by Berger
in [1] are a special class of 7-symmetric connected graded algebras. Another rea-
son why we pay close attention to connected graded algebras and their PBW-
deformations with certain symmetries arises from a wealth of existed examples, see
Section 3. As it is stated above, the connected graded algebras with some good ho-
mological properties such as Koszul algebras and d-Koszul algebras often emerge in
the PBW-deformation theory. As a generalization of a (d-)Koszul algebra, Cassidy
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and Shelton introduced the notion of a Ky algebra in [5], [6]. To compute the coho-
mology of the 12-dimensional Fomin-Kirillov algebra FK3, Stefan and Vay defined
a Ky algebra A in [21]. In virtue of the Jacobi condition in [5], we construct all the
(self-)symmetric and sign-(self-)symmetric PBW-deformations of the Ko algebra A,
see Theorem 4.2.

This paper is organized as follows. In Section 2, we fix some notations and collect
some background materials that will be necessary in the sequel. In Section 3, we state
the definitions and some properties of connected graded algebras and their PBW-
deformations with certain symmetries, then present some examples. In Section 4,
using Cassidy-Shelton’s PBW-deformation theory, we compute the complexity of
a ICo algebra A and explicitly describe its four kinds of PBW-deformations.

Throughout, we, respectively, denote by K and Z an algebraically closed field with
suitable characteristic and the set of integers. All linear spaces, algebras and modules
are over the field K unless otherwise stated.

2. PRELIMINARIES

In this section, we recall some necessary preliminaries about PBW-deformation
theory of connected graded algebras formed by Cassidy and Shelton in [5].

Fix X = {x1,22,...,2,} and V = Spang X. Let 7 be the free algebra K(X) =
K{x1,x2,...,2,) with a standard grading, that is, Deg(z;) = 1 for 1 < i < n.

Denote by

A=K(X)/{r1,r2, .., "mg)
the quotient algebra of 7" with m( homogeneous relations r1, 79, . .., 7p,. Throughout
this paper, we assume that R = {r1,72,...,7m,} i a minimal set of relations for A

and none of the relations is linear. By a deformation of A we mean a [K-algebra
U= K<X>/<7“1 + 11,70 + 1o, .. < Tmg +lm0>

with the set of relations P = {ry + 11,72 +1l2, ..., "my +lmo }, Where l1,la, ..., I, are
(not necessarily homogeneous) elements of 7 such that Deg(l;) < Deg(r;) for all 1.
The algebra A is graded and the algebra i is filtered. We denote by F*(U) (k € Z)
the filtration of U and define gr(id) = @ F*U)/F*1(U) to be the graded algebra
associated with U. kel

Definition 2.1 ([5]). The nongraded deformation ¢ of the graded K-algebra A
is said to be a PBW-deformation if its associated graded algebra gr(i/) is isomor-
phic to A.
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Let A-Mod be the category of Z-graded A-modules. For d € Z let A{d} denote
the graded left A-module 4.4 with grading shifted by d, that is, A{d}r = Ag4x for

keZ For d = (dy,dy,...,d; ) € 2™ we denote

A{d Y = Ald} & A{dy} .. @ A{d, ).

Similarly, for each object M in A-Mod, symbol M{d} denotes the graded left .4-
module M with grading shifted by d, i.e., M{d}r = My for k € Z. For M, N in
A-Mod, we define

Hom’, (M, N) := {¢ € Hom (M, N): ¢(M;) C N;_;},
Hom (M, N) := @HomQ(M,N).

jez

Obviously, Hom 4(M, N) is a Z-graded vector space. Fix a minimal projective

resolution

for the trivial A-module K in A-Mod. Each module C; is graded-free and can be
expressed in the form C; = A{EZ}, where EZ = (d1,4,d2,...,ds, ;) and t; may be
infinite for ¢ > 2. If we apply the functor Hom (-, K) to the truncated complex P,
of the above resolution (2.1), then the cohomology of the resulting cochain com-
plex Hom 4(P,, K) of abelian groups equals E(A) = ®Ext’;’(K,K), which is the
associated bigraded Yoneda algebra of A with r the cohomology degree and —s the
internal degree inherited from the grading on A.

Definition 2.2 ([5]). The complexity of the graded K-algebra A is defined by
c(A) = sup{s: Ext’*(K,K) # 0} — 1

if the global dimension of A is at least 3. For global dimension less than 3 we set

c(A)=0.
Take F*(T) = @V®. Let

i<k
(2.2) Py = Spany (P N F'(T)),
(2.3) Pp=VPr_1+Pr1V + Spang (PN FH(T)) for k> 1.

In [5], a Jacobi type condition was given for determining PBW-deformations of A.
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Theorem 2.3 ([5]). Let A be a graded K-algebra of finite complexity ¢(A) and
let U be a deformation of A. Then U is a PBW-deformation of A if and only if
P1 = 0 and the following Jacobi condition is satisfied:

(2.4) Pert NFHT) CPr V1<k<c(A).

For more details about unexplained concepts, we refer the readers to [5], [6].

3. CONNECTED GRADED ALGEBRAS AND PBW-DEFORMATIONS
WITH SYMMETRIES

In this section, we introduce some notions around connected graded algebras and
their PBW-deformations with certain symmetries, list some basic properties about
them and present some concrete examples.

For convenience, we firstly fix some notations and conventions. Let Sx be the set
consisting of all permutations of X and X~ = {—x1, —22,...,—x,}. Set X=XUX".
For any integer m > 2, denote by I'"* the Cartesian product I' x I' x ... x I" with
r={1,-1}. m

Definition 3.1. Assume that ox € Sx and ¢ = (e1,€9,...,6,) € I'". For
a given pair (ox,e) define a map 7: X — X by 7(z;) = giox(x;) for x; € X.
We call 7 a sign-permutation of X and denote by SPx the set of all sign-

permutations of X.

Remark 3.2. We can naturally identify Sx with the symmetric group S,,. Fur-
thermore, there exists a bijection p: SPx — S, x I'" defined as ¢(7) = (0x,¢). So
we will identify 7 with its image (7).

Each element f in IK(X) can be uniquely expressed as

f=fo+fit+tfot...+ fg

where ¢ € 72% and £, = > Giyiy..is iy Tiy - - - Ti, 18 the s-homogeneous part
1<in,i2,..,is <N

of f with 0 < s < ¢q and a;,4,..5, € K. For 7 € SPx and f € K(X) we define

To(fs) = Yoo i (@) T(@,) T,

1<i1,i2,.0ris <N

m1(fs) = Z Qirig.i T( T )T (@i, ) o T(24,),

1<i1i2,.0ris <N

70(f) = fo+10(f1) + 10(f2) + ...+ 10(fg),
T1(f) = fo+mi(f1) + 1i(f2) + ...+ 711(fo)-
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Definition 3.3. Assume that A = K(X)/(R) with R not necessarily homoge-
nous and 7 € SPx.

(1) If there exist a permutation or of R and 6 = (d1,02,...,0m,) € I'™° such
that 79(r;) = dior(ri) (or m1(r;) = dior(r;)) for all 1 < i < mg, then we
call 7 a sign-permutation (or an anti-sign-permutation) of A. In particular,
when 7 € Sx, we call a sign-permutation (or an anti-sign-permutation) 7 of .4
just a permutation (or an anti-permutation) of A. Respectively, denote by
SPy(A), SP1(A), So(A) and S;(A) the set of all sign-permutations, all anti-
sign-permutations, all permutations and all anti-permutations of A.

(2) Let 7 be an automorphism of A. If the restriction of 7 on X belongs to SP((.A)
(or Sp(A)), then we call T a sign-permutation (or permutation) automorphism
of A. Denote by Auts,(A) (or Aut,(A)) the set of all sign-permutation (or per-
mutation) automorphisms of A.

(3) Let 7 be an anti-automorphism of A. If the restriction of 7 on X belongs
to SP1(A) (or S1(A)), then we call T a sign-permutation (or permutation)
anti-automorphism of A. Denote by Autch(A) (or AutP(A)) the set of all
sign-permutation (or permutation) anti-automorphisms of A.

Remark 3.4. In this paper, almost all concepts and results depend on the choice
of presentation of an algebra. For example, take A; = K(z,y)/(x3,9%) and Ay =
K(x,y) /(x> + 293, 23 + 3y3). It is easy to see that A; =2 Ay but Sg(A1) # Sk(Asz),
SPk(.Al) #* SPk»(.AQ) for0<k <1,

Now we introduce some concepts concerning connected graded algebras and their
PBW-deformations with certain symmetries.

Definition 3.5. Retain the notations A = K(X)/(R) and U = K(X)/(P) in
Section 3.
(1) For a given 7 € SPx, we call A a 7-self-symmetric (or 7-symmetric) connected
graded algebra if 7 € SPy(A) (or 7 € SP1(A)).
(2) When SPx = SPy(A) (or SPx = SP;(A)), we call A a completely sign-self-
symmetric (or sign-symmetric) connected graded algebra.
(3) When Sx = So(A) (or Sx = S1(A)), we call A a completely self-symmetric
(or symmetric) connected graded algebra.
(4) Assume that ¢/ is a PBW-deformation of A.
(i) For a given 7 € SP x, we call U a 7-self-symmetric (or 7-symmetric) PBW-
deformation of A if 7 € SPy(A) N SPy(U) (or 7 € SP1(A) NSP(U)).
(if) If SPo(A) = SPo(U) (or SP1(A) = SP1(U), So(A) = So(f), S1(A) =
S1(U)), then U is said to be a sign-self-symmetric (or sign-symmetric, self-
symmetric, symmetric) PBW-deformation of A.
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Remark 3.6. Suppose that A = K(X)/(R) is a homogeneous algebra. If we
choose 7 to be a sign-permutation corresponding to the pair (ox,e) with ox = id,
then A is a 7-symmetric connected graded algebra if and only if A is a 7-commutative
algebra in the sense of Berger, cf. [1].

Around the notions in Definitions 3.3 and 3.5, we have the following statements.

Proposition 3.7.
(1) The algebra A is a T-self-symmetric (or T-symmetric) connected graded al-
gebra if and only if there exists a sign-permutation automorphism (or anti-
automorphism) 7: A — A such that 7|x = 7.

(2) For ,7" € SPy(A), define X X by

Tl (25)) if ' (z;) € X,
(77" )(wi) = { . _
—7[=7"(x;)] if7'(x;) € X
Then SP((A) is a group under the above multiplication.
(3) As groups SP((A) = Autsp(A) and So(A) = Auty(A).
(4) A completely sign-self-symmetric (or sign-symmetric) connected graded algebra
is completely self-symmetric (or symmetric).
(5) For 0 < k <1, one has SPy(A) D SP(U) and Si(A) D Si(U).
(6) A sign-self-symmetric (or sign-symmetric) PBW-deformation U of the connected
graded algebra A is a self-symmetric (or symmetric) PBW-deformation.

Proof. We can easily obtain (1), (2) and (3) if we note that there exists a natural
bijection from SPq(A) (or SP1(A), So(A)) to Autg,(A) (or Auth(A), Aut,(A)). Tt
follows from Definition 3.5 (2) and (3) that the statement in (4) holds. For a given
T € SPx (or 7 € Sx), it follows from Definition 3.3 that 7 € SP(U) (or 7 € S(U))
if and only if there exist a permutation op of P and § = (01,d2,...,0m,) € I'™0
such that 7, (r; + 1;) = d;0p(r; +1;) for all 1 < ¢ < mg, where the latter condition is
equivalent to saying that 74 (r;) = d;0p(r;) and 74 (l;) = d;0p(l;). Hence, (5) holds.
Since Si(A) C SPx(A) = SP(U) implies S;(A) C Si(U), by (5) we can obtain (6).

0

Remark 3.8. It follows from Definition 3.5 (4) (ii) and Proposition 3.7 (3) that
self-symmetric (or sign-self-symmetric) PBW-deformations of A are just the PBW-
deformations of A in the representation category of the group So(A) (SPo(A)).

Next we present some examples about 7-symmetric connected graded algebras and
their PBW-deformations with certain symmetries.
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Example 3.9. Let A= K(X)/(R), where

R= { S (=1 i, 1< <dp < ... <ig < n}
0ESy

Then A is not only completely sign-self-symmetric but also completely sign-
symmetric. In fact, A is a d-Koszul algebra and A = Klz1,29,...,2,] when
d = 2. The PBW-deformations of A were explicitly described in Theorems 4.1
and 4.2 in [8] for n > d + 2.

Example 3.10. Let A= K(X)/(R), where

R= { E xid(l)xiﬂm ...:L'ia(d)I 1<i1 < i2 <... < id < TL}
oc€Sy

Then A is completely sign-self-symmetric and completely sign-symmetric. It is
a d-Koszul algebra and its PBW-deformation is characterized in Theorem 4.6 in [8].
Especially when d = 2, the above algebra A is generated by zi1,xo,...,z, with
relations

=0 (I1<i<n), zzjt+zz;,=0 (1<i#j<n).

The Clifford algebra CL(V') can be presented by generators z1,z2,...,z, and rela-
tions

2?2 =Q(z;) (1<i<n), mrj+amr=0 (1<i#j<n),

where V = Spang X and @: V — K is a quadratic form on V. It is easy to see
that CL(V) is a sign-self-symmetric, sign-symmetric, self-symmetric or symmetric
PBW-deformation of A if and only if Q(z;) = Q(z;) for all 1 <4, j < n.

Example 3.11. Assume that g is a complex simple Lie algebra of rank n (> 2)
and A = (aij)nxn is the Cartan matrix of g. Denote by U, (g) the negative part of
Drinfeld-Jimbo quantum group Uy(g). For g of different Dynkin type, SPo(U, (g))
and SP(U, (g)) can be described in the following table:

Type Ofg An, Dn(n 2 5), [EG |D4 [Bn(n 2 2), Cn(n 2 3), [E7, [Eg, [F4, GQ
SPo(U, (9)) 2 S3 {id
SP1(U; (9)) Zy x T Sg x It re

In fact, the group SPo(U, (g)) is just the group of all automorphisms of Dynkin
diagram corresponding to g, cf. [9].
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The deformation B,(g) of U, (g) is the K-algebra with generators B; (1 <i < n)
and relations:

1—a;j

1—ay —a;;—k
(3.1) S 0 (1) B BBt = s B)
k=0 ?

for all ¢ # j, where

0 if Qi = 0,
_qlej if a;; = —1,
h(B;, Bj) = _q71[2]2(BiBj — B;B,) if a;; = —2,

—q~'([8]> +1)(B; B; + B;B})
+q ' 12)([2][4] + ¢* + ¢ ?)B;B;B; — ¢"*[3]>B; if a;; = —3.

The algebra B,(g) is a class of coideal subalgebras of U, (g) and Letzter’s work in [18]
showed that %B,(g) is a PBW-deformation of U, (g), cf. [15], [24], [25]. It is routine
to check that B,(g) is a sign-self-symmetric and sign-symmetric PBW-deformation
of U, (g) for each g.

Example 3.12.
(1) The cubic Artin-Schelter algebra Cas(A) of type A is presented by generators
x, y and relations

ay’x + byzy + axy® + 23 = 0,
v + ayz? + bayx + az’y = 0,

where a,b € K. Then Cas(A) is completely sign-self-symmetric and com-
pletely sign-symmetric. It follows from [8] that all the sign-(self-)symmetric
PBW-deformations of Cag(A) are the algebras Dag(A) with generators x, y and
relations

ay’x + byzy + azy® + 23 = cx,

y® + aya® + bryz + ax’y = ey,
where ¢ € K.

(2) The cubic Artin-Schelter algebra Cas(S3) of type S) is generated by w, y and

subject to relations
vie+axy: + 22 =0,
ya? — 2’y =0,

where a,b € K. In this case,

SP((Cas(Sy)) = SP1(Cas(Sy)) = {7: 7(x) = +=,7(y) = +y},
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while So(Cas(S5)) = S1(Cas(Sy)) = {id}. It follows from [8] that all the PBW-
deformations of Cag(S5) are the following algebras Das(S)) with generators z, y
and relations

(3.2) v’z +zy® + 2° = anz® + a14y” + anw + as,

(3.3) ya® — 2’y = — apazy + anyz,

which are exactly all the (self-)symmetric PBW-deformations. Moreover, it is
easy to check that Dag(Sh) is a sign-(self-)symmetric PBW-deformation if and
only if a;1 = a14 = a3 = 0.

Example 3.13. Denote by P2 the projective plane. For every i = 1,2,3, let
a,b,c,d;, e; € K with

[a:b:c]ePi\{[a:b:c]: abc=0ora®=0b>=c>=1)}.

The three-dimensional Sklyanin algebra S(a, b, ¢) is generated by z, y, z and subject

to relations
ayz + bzy + ca® = 0,

azx + brz + cy? = 0,
azxy + byz + cz® = 0.

Then up to isomorphism or bijection one has

So(S(a,b,¢)) SPy(S(a,b,c))  Si(S(a,b,c)) SP;(S(a,b,c))
a=1"b S3 S3 @ 72 S3 S3 X 74
atb 1 Lo, {(12),(13),(28)} {(12),(13),(23)} x 7

Hence, the algebra S(a,b,c) is completely (self-)symmetric but not completely
sign-(self)-symmetric.
Let Sq4(a, b, ¢) be the deformation of S(a, b, ¢) given by generators x,y, z and three
relations
ayz + bzy + ca® + dix + e; =0,
azx + brz + cy? + day + e3 = 0,

azy + byx + cz® + dsz + e3 = 0.
It can be seen from [3], [7], [22] that Sq4(a,b,c) is a PBW-deformation of S(a, b, c).
In our terms, S4q(a,b,c) is a (self-)symmetric PBW-deformation of S(a, b, ¢), while
Sa(a, b, c) is a sign-(self-)symmetric PBW-deformation of S(a, b, ¢) only if d; = dp =
d3 =0 and e; = ey = e3.
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Example 3.14. The Fomin-Kirillov algebra FK3 is defined by generators a, b, ¢

and relations 5 ) )
a*=b"=c" =0,

ab+ bc+ ca =ba+ cb+ac=0.
One has SQ(.FIC?)) = Sl(ng) = 83 and SP()(]:K::;) = SPl(.F’Cg) = 83 X ZQ. It
is easy to check that FK3 is completely (self-)symmetric but not completely sign-

(self-)symmetric. For aq,as € K, let Ds(aq, as) be the deformation of FK3 given
by generators a, b, ¢ and relations

aQ:bQ:CQ:al,

ab + bc + ca = ba + ¢b + ac = as.

Then D3(a1,as) is a (self-)symmetric and sign-(self-)symmetric PBW-deformation
of FKs, cf. [11].

4. PBW-DEFORMATIONS OF A Ko ALGEBRA

In this section, we focus on a Ko algebra A which is a subalgebra of the Fomin-
Kirillov algebra FK3, and aim to explicitly constructing its four kinds of PBW-
deformations in Definition 3.5 (4) (ii).

Let

(4.1) A = K(a,b)/(a?b*, aba — bab),
R = K{c)/{c?).

The Fomin-Kirillov algebra F/X3 can be realized by a twisted tensor product A®, R,

where 0: R® A - A® R is a twisting map, cf. [21]. The identification of FKj

and A®, R plays a fundamental role in computing the cohomology of FK3, see [21].
Now we can obtain the accurate value of the complexity c¢(A) of A as follows.

Proposition 4.1.
(1) The complexity ¢(A) of the Ko algebra A is 3.
(2) So(.A) = Sl(.A) = {O’i €Sx:1<1< 2} and SP()(.A) = SPl(A) = {O’i €SPyx:
1 <4 <4}, where X = {a,b} and o; (1 < i < 4) are, respectively, determined by

(4.3) { o1(a) = a, { oa(a) = b, { o3(a) = —a, { o4(a) = —b,
01 (b) = b, .
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Proof. (1) In [21], a first quadrant double complex of left .4-modules is obtained
as follows:

(4.4)

Qv O@—a Ob O—a Oba

'A Qba 'A Qab 'A Qba 'A Qb 'A Qb
©b O—a Qb Qab Qab

A Oba A Qab A O—a A Q—a A O—a
Qv O@—a Oba Oba Oba

'A Oba 'A Qv 'A Qv 'A Ob 'A Qv
Qv Qab Qab Qab Qab

'A O@—a 'A O—a 'A O@—a ‘A O@—a 'A O0—a

where g, denotes the right multiplication by z € A. Then a minimal projective
resolution for the trivial A-module K in A-Mod can be obtained as the following
total complex associated to the double complex (4.4)

o A{=3, -4, -4, -3 B A{—2,-3,-2} B A{-1, -1} BB AS K —0.

Hence, by Definition 2.2 one knows that ¢(A) = 3.
(2) We can directly check (2) according to Definition 3.3 (1). O
Every deformation U of A can be presented with generators a, b and relations
(45)  a®+ A1a+ Aizb+ Az =0,
(4.6)  b* + Ag1a + Aagb + Aoz = 0,
(4.7) aba — bab + )\310,2 + Azoab + Aszba + )\341)2 4+ Ags5a + Asgb + As7 =0,

where A;; € K are called the structure coefficients of U. For convenience, we set

(4.8) r=a?, ry=0% r3=aba— bab,
(4.9) i =Aa+ Ai2b+ Az, I = Aora + Aaab + Aas,
(4.10) I3 = )\31&2 + A32ab + Aszba + )\34[)2 + A35a + A36b + As37.

We are ready to determine all the self-symmetric, sign-self-symmetric, symmetric
and sign-symmetric PBW-deformations of the Ky algebra A, where the main tool is
the Jacobi condition (2.4) in Theorem 2.3.
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Theorem 4.2.
(1) A deformation U is a PBW-deformation of A if and only if its structure coeffi-
cients \;; satisfy the conditions

A2 = A1 =0,

A1 — A=A + A,

(A11 = M)A = A1z — Aas,

(4.11) A11A31 + A1t 4+ A22Azq — A — Ags — Az =0,

A11A31A — A13A31 — A2t — A2z Aza — Adss + Az7r = 0,
A22AA34 + A13A31 + A1z + A23A34 — Az — Az7 = 0,
A13A31A — A23AA34 + A11A37 — A1z Ass — AazAze — Adgr = 0,

where ()\, /.L) = ()\32, )\33) and ()\33, /\32).
(2) U is a (self-)symmetric PBW-deformation of A if and only if U satisfies the
relations
a2 + Aa+ X =0,
(4.12) b2+ b+ Ay =0,
aba — bab + A3(a® — b?) + A\s(a — b) = 0.
(3) U is a sign-(self-)symmetric PBW-deformation of A if and only if U satisfies the
relations
Cl2 + )\1 - 0)
(4.13) b2+ X\ =0,
aba — bab + Az(a —b) = 0.

Proof. In the following, we will firstly prove (1) for determining all the PBW-
deformations of A, then, respectively, choose from them all the self-symmetric, sign-
self-symmetric, symmetric and sign-symmetric PBW-deformations. We will omit the
proof of (3) because it is similar as (2).

(1) For the case A, P, =0 in (2.2) and for 2 < k < 4, in (2.3) one has

(4.14) P, = SpanK{aﬁle R (’I“,L' + li)$s+1$s+2 R
1<i<3,t+Deg(r;) <k,z; =a,b, 1 <j <t}
Denote

P, = Spang {z12a ... 25(1; + 1;)Ts41Ts42 . .. T4 :
1<i<3,t+Deg(r;) =k+1,2; =a,b, 1 <j <t}
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Note that P11 = P, U P/, so the Jacobi condition (2.4) in Theorem 2.3 is equiva-
lent to

(4.15) PLNF™T) C Py

for all 1 < k < ¢(A) = 3. Since

(4.16) Py, = Spany{r1 + 1,72 + l2}

for any element ay(r1 + 1) + az(r2 +1l2) € P/ N FYT) (a1, a2 € K), one has
(4.17) a1ry + agrg = 0.

It can be obtained from (4.8) and (4.17) that a; = as = 0. Hence, P{ N F(T) =
0 C P; always holds. Because

(4.18) P3 = Spany {r; +l;, x(r; +1;), (rj +1j)z: 1<
(4.19) Py = Spany{rs + I3, z(r; +1;), (r; + [j)z: 1 <

any element in P N F2(T) can be expressed as

(4.20) as(rs +13) + Z agjx(r; +1;) + Z oz (r; + 1)z
z=a,b, 1<7<2,
152 r=a,b

with as, agj, o, € K and

(4.21) asrs + E QT + E gz = 0.
z=a,b, 1<7<2,
152 r=a,b

Putting (4.8) into (4.21), one can obtain
az(aba —bab) + (a1 +14)a® + ageab® + ap1ba® + ageb?a -+ a1pab + (g 4 )b = 0.

By linear independence, the coefficients in (4.20) should satisfy the following linear
equations:

03 = Qg2 = Qp1 = Qg = 01p = 0,
(4.22) Qa1 + 1a =0,

ap2 + agp = 0.
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Now the condition P;NF2(T) C P, holds if and only if there exist 3; € K (1 <1 < 4)
such that

(4.23)

—aly + lia = Bi(r + L) + Bars + 12),
—bly + lob = B3(r1 + 11) + Pa(ra + 12),

which is equivalent to A2 = A21 = 0 after substituting (4.8), (4.9) into (4.23) and
using linear independence. Because

(4.24) Py = Spany {r; + Ui, x(r; + 1), (ri + 1)z, xy(rj +1;),

z(rj + 1)y, (rj +)zy: 1<i<3, 1< <2, 2,y =a,b},
(4.25) Py = Spany {x(rs + 13), (rs + l3)z, zy(rj + 1),

x(r; + 1)y, (rj +1j)zy: 1<j <2, z,y=a,b},

any element in P, N F3(T) can be expressed as

(4.26) Y [owsa(rs + 1) + ase(rs + Is)]

x=a,b

Y [ayay(rs + 1) + gy (ry + L)y + oy (1 + 1) zy]
1<5<2,
z,y=a,b

with oz, O3, Qyj, Ozjy, Ojzy € K and

(4.27) Z (azp3rs + Qger3) + Z (g TYT + gy XT3y + Ajayrjxy) = 0.
r=a,b 1<5<2,
z,y=a,b
Put (4.8) into (4.27), then the linear independence implies that the coefficients
in (4.26) should satisfy the set of linear equations:

Ogal + Qala + Qtaa = 0, Qa3+ a1pa =0, ez + ap2p + ey = 0,
Qlqa2 + a1pp = 0, aq3—az, =0, app =0,
(4.28) Qap1 + azq = 0, Opa1 + Qp1a = 0, 24 + 2 = 0,
' Qab2 + Qa2p = 0, Qpa2 — a3p =0,  ap3 — agqap = 0,
Qq1p + a1ap = 0, app1 + @200 = 0, ap3 — azq =0,
Qg2a = 07

where a’s are arranged in the lexicographic order of a, b, 1, 2, 3 with

(4.29) a<b<l<2<3.
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The condition PN F3(T) C P3 exactly means that to each basic solution of (4.28)
we assign the linear combination

(4.30) E (agsxls + agzlsx) + E (Qayjzyly + agjyxliy + ajaylijzy) € P,
o=a,b 1<5<2,
x,y=a,b

that is to say,

(4.31) a’ly —alia, baly —blia, a’ly —lia®,  alib—liab € P,
(4.32) ably — alab,  b%ly — blob,  blaa — laba, b3ly — lob® € Py
(4.33) a’ly — 11b%, b2l — lya® € Ps,

( ) ably — blg — laab — lza, als + bals — l1ba + I3b € Ps.

The linear combinations in (4.31) and (4.32) are zero since A2 = A2; = 0, while the
ones in (4.33) can be expressed as follows:

(4.35)

{ a?ly — 1b? = Xag(r1 + 1) — Mis(r2 + l2) — Adna(ra + 12) + Aaa(r1 + )b € P,

b211 — lga2 = —)\23(7’1 + l1) + )\13(7“2 + 12) + )\11(7’2 + lg)a - )\ng(rl -+ ll) € Ps.

By substituting (4.8)—(4.10) into (4.34) and using linear independence, we can check
that (4.34) is equivalent to the equalities in (4.11).

(2) By Definition 3.5 (4) (i), a PBW-deformation U/ is a self-symmetric (or sym-
metric) PBW-deformation of A if So(A) = So(U) (or S1(A) = S1(U)). Moreover,
So(A) = So(U) if and only if the structure coefficients of U satisfy

)\11 = A22; )\12 = )\21; )\13 = )\23;
(4.36)

A31+A34 =0, A32+A33=0, A35+A36=0, A37=0,

while S1(A) = S1 () if and only if the structure coefficients of U satisfy

A1 = Ag2, Az = Ao1, A1z = Ao,
(4.37)
Azt + A3 =0, A2 =A33 =0, Ags+A36=0, A3r=0.
Now we can obtain (2) by combining (4.11), (4.36) and (4.37). O
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