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Abstract. We focus on connected graded algebras and their PBW-deformations endowed
with additional symmetric structures. Many well-known algebras such as negative parts
of Drinfeld-Jimbo’s quantum groups, cubic Artin-Schelter algebras and three-dimensional
Sklyanin algebras appear in our research framework. As an application, we investigate
a K2 algebra A which was introduced to compute the cohomology ring of the Fomin-Kirillov
algebra FK3, and explicitly construct all the (self-)symmetric and sign-(self-)symmetric
PBW-deformations of A.
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1. Introduction

A filtered algebra U over a field K is called a Poincaré-Birkhoff-Witt-deformation

(for short PBW-deformation) of a graded K-algebra A if its associated graded al-

gebra gr(U) is isomorphic to A. The PBW-deformation theory of connected graded

algebras including Koszul algebras and d-Koszul algebras is extensively investigated.

Koszul algebras are a class of connected graded algebras with good homologi-

cal properties. The polynomial algebra K[x1, x2, . . . , xn] may be the most impor-

tant example of Koszul algebra. For an n-dimensional Lie algbra g, the symmetric

algebra S(g) is isomorphic to the polynomial algebra K[x1, x2, . . . , xn]. The the-

ory of Lie algebras shows that the universal enveloping algebra U(g) of g is just
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a PBW-deformation of the algebra S(g), which plays an important role in estab-

lishing the PBW theorem of U(g), see [12]. For an arbitrary Koszul algebra A,

in [4] Braverman and Gaitsgory gave a Jacobi condition which decides when a de-

formation U of A is a PBW-deformation, see also [20]. For an arbitrary d-Koszul

algebra A, a generalized Jacobi type condition was given for the determination of

PBW-deformations, see [2], [8].

For an arbitrary connected graded algebra A over a field K, using the notion

of regular central extension of algebras, Cassidy and Shelton in [5] established the

most general Jacobi condition for deciding when certain deformations of A obtained

by altering its defining relations are PBW-ones. The Jacobi condition transforms

the determination of PBW-deformations into a finite linear algebra problem, where

a homological constant called complexity (see Definition 2.2) controls the degree of

difficulty in a sense.

For a finite dimensional complex semisimple Lie algebra g, the negative part U−
q (g)

of Drinfeld-Jimbo’s quantum group Uq(g) is a connected graded algebra with defin-

ing relations of mixed degrees except the cases U−
q (sl2) and U

−
q (sl3). Some concrete

PBW-deformations of U−
q (g), which we call PBW-deformations of quantum group,

have appeared in many researches about coideal subalgebras of Uq(g) (cf. [15], [16],

[17], [18], [19]) and nonstandard quantum deformations of U(g) (cf. [10], [13], [14]).

In [25] Yang and the first author focused on a class of PBW-deformations Bq(g)

of quantum groups, see also [23], [24]. They proved a PBW theorem for Bq(g),

where the role of Bq(g) as a PBW-deformation is also very crucial. Using the

Jacobi condition given in [5], they also proposed an algorithm for the judgement of

PBW-deformations of U−
q (g) and applied it to compute the PBW-deformations of

quantum groups for g of Dynkin type A2, B2, see Theorem 3.5 in [25]. The above

practical computations show that constructing all the PBW-deformations via direct

calculations is not easy in general, even though the Jacobi condition comes down to

a linear algebra problem.

Motivated by the above researches, we aim to construct some special PBW-

deformations of connected graded algebras instead of all. For this purpose, in this

paper we introduce the notions such as τ -(self-)symmetric connected graded algebra,

sign-(self-)symmetric PBW-deformation and (self-)symmetric PBW-deformation, see

Definition 3.5. In fact, the τ -commutative homogenous algebras defined by Berger

in [1] are a special class of τ -symmetric connected graded algebras. Another rea-

son why we pay close attention to connected graded algebras and their PBW-

deformations with certain symmetries arises from a wealth of existed examples, see

Section 3. As it is stated above, the connected graded algebras with some good ho-

mological properties such as Koszul algebras and d-Koszul algebras often emerge in

the PBW-deformation theory. As a generalization of a (d-)Koszul algebra, Cassidy
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and Shelton introduced the notion of a K2 algebra in [5], [6]. To compute the coho-

mology of the 12-dimensional Fomin-Kirillov algebra FK3, Stefan and Vay defined

a K2 algebra A in [21]. In virtue of the Jacobi condition in [5], we construct all the

(self-)symmetric and sign-(self-)symmetric PBW-deformations of the K2 algebra A,

see Theorem 4.2.

This paper is organized as follows. In Section 2, we fix some notations and collect

some background materials that will be necessary in the sequel. In Section 3, we state

the definitions and some properties of connected graded algebras and their PBW-

deformations with certain symmetries, then present some examples. In Section 4,

using Cassidy-Shelton’s PBW-deformation theory, we compute the complexity of

a K2 algebra A and explicitly describe its four kinds of PBW-deformations.

Throughout, we, respectively, denote by K and Z an algebraically closed field with

suitable characteristic and the set of integers. All linear spaces, algebras and modules

are over the field K unless otherwise stated.

2. Preliminaries

In this section, we recall some necessary preliminaries about PBW-deformation

theory of connected graded algebras formed by Cassidy and Shelton in [5].

Fix X = {x1, x2, . . . , xn} and V = SpanKX . Let T be the free algebra K〈X〉 =

K〈x1, x2, . . . , xn〉 with a standard grading, that is, Deg(xi) = 1 for 1 6 i 6 n.

Denote by

A = K〈X〉/〈r1, r2, . . . , rm0〉

the quotient algebra of T withm0 homogeneous relations r1, r2, . . . , rm0 . Throughout

this paper, we assume that R = {r1, r2, . . . , rm0} is a minimal set of relations for A

and none of the relations is linear. By a deformation of A we mean a K-algebra

U = K〈X〉/〈r1 + l1, r2 + l2, . . . , rm0 + lm0〉

with the set of relations P = {r1+ l1, r2+ l2, . . . , rm0 + lm0}, where l1, l2, . . . , lm0 are

(not necessarily homogeneous) elements of T such that Deg(li) < Deg(ri) for all i.

The algebra A is graded and the algebra U is filtered. We denote by Fk(U) (k ∈ Z)

the filtration of U and define gr(U) =
⊕
k∈Z

Fk(U)/Fk−1(U) to be the graded algebra

associated with U .

Definition 2.1 ([5]). The nongraded deformation U of the graded K-algebra A

is said to be a PBW-deformation if its associated graded algebra gr(U) is isomor-

phic to A.
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Let A-Mod be the category of Z-graded A-modules. For d ∈ Z let A{d} denote

the graded left A-module AA with grading shifted by d, that is, A{d}k = Ad+k for

k ∈ Z. For
−→
d = (d′1, d

′
2, . . . , d

′
r0
) ∈ Zr0 we denote

A{
−→
d } := A{d′1} ⊕ A{d′2} . . .⊕A{d′r0}.

Similarly, for each object M in A-Mod, symbol M{d} denotes the graded left A-

module M with grading shifted by d, i.e., M{d}k = Md+k for k ∈ Z. For M,N in

A-Mod, we define

Homj
A(M,N) := {φ ∈ HomA(M,N) : φ(Mi) ⊆ Ni−j},

HomA(M,N) :=
⊕

j∈Z

Homj
A
(M,N).

Obviously, HomA(M,N) is a Z-graded vector space. Fix a minimal projective

resolution

(2.1) . . . → C2
ϕ2
−→ C1

ϕ1
−→ C0

ε
→ K → 0

for the trivial A-module K in A-Mod. Each module Ci is graded-free and can be

expressed in the form Ci = A{
−→
di }, where

−→
di = (d1,i, d2,i, . . . , dti,i) and ti may be

infinite for i > 2. If we apply the functor HomA(·,K) to the truncated complex P•

of the above resolution (2.1), then the cohomology of the resulting cochain com-

plex HomA(P•,K) of abelian groups equals E(A) = ⊕Extr,s
A

(K,K), which is the

associated bigraded Yoneda algebra of A with r the cohomology degree and −s the

internal degree inherited from the grading on A.

Definition 2.2 ([5]). The complexity of the graded K-algebra A is defined by

c(A) = sup{s : Ext3,s
A

(K,K) 6= 0} − 1

if the global dimension of A is at least 3. For global dimension less than 3 we set

c(A) = 0.

Take Fk(T ) =
⊕
i6k

V ⊗i. Let

P1 = SpanK(P ∩ F1(T )),(2.2)

Pk = V Pk−1 + Pk−1V + SpanK(P ∩ Fk(T )) for k > 1.(2.3)

In [5], a Jacobi type condition was given for determining PBW-deformations of A.
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Theorem 2.3 ([5]). Let A be a graded K-algebra of finite complexity c(A) and

let U be a deformation of A. Then U is a PBW-deformation of A if and only if

P1 = 0 and the following Jacobi condition is satisfied:

(2.4) Pk+1 ∩ Fk(T ) ⊂ Pk ∀ 1 6 k 6 c(A).

For more details about unexplained concepts, we refer the readers to [5], [6].

3. Connected graded algebras and PBW-deformations

with symmetries

In this section, we introduce some notions around connected graded algebras and

their PBW-deformations with certain symmetries, list some basic properties about

them and present some concrete examples.

For convenience, we firstly fix some notations and conventions. Let SX be the set

consisting of all permutations ofX andX− = {−x1,−x2, . . . ,−xn}. Set X̂=X∪X−.

For any integer m > 2, denote by Γm the Cartesian product Γ× Γ× . . .× Γ︸ ︷︷ ︸
m

with

Γ = {1,−1}.

Definition 3.1. Assume that σX ∈ SX and ε = (ε1, ε2, . . . , εn) ∈ Γn. For

a given pair (σX , ε) define a map τ : X → X̂ by τ(xi) = εiσX(xi) for xi ∈ X .

We call τ a sign-permutation of X and denote by SPX the set of all sign-

permutations of X .

Remark 3.2. We can naturally identify SX with the symmetric group Sn. Fur-

thermore, there exists a bijection ϕ : SPX → Sn × Γn defined as ϕ(τ) = (σX , ε). So

we will identify τ with its image ϕ(τ).

Each element f in K〈X〉 can be uniquely expressed as

f = f0 + f1 + f2 + . . .+ fq,

where q ∈ Z>0 and fs =
∑

16i1,i2,...,is6n

ai1i2...isxi1xi2 . . . xis is the s-homogeneous part

of f with 0 6 s 6 q and ai1i2...is ∈ K. For τ ∈ SPX and f ∈ K〈X〉 we define

τ0(fs) =
∑

16i1,i2,...,is6n

ai1i2...isτ(xi1 )τ(xi2 ) . . . τ(xis ),

τ1(fs) =
∑

16i1,i2,...,is6n

ai1i2...isτ(xis )τ(xis−1 ) . . . τ(xi1 ),

τ0(f) = f0 + τ0(f1) + τ0(f2) + . . .+ τ0(fq),

τ1(f) = f0 + τ1(f1) + τ1(f2) + . . .+ τ1(fq).
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Definition 3.3. Assume that A = K〈X〉/〈R〉 with R not necessarily homoge-

nous and τ ∈ SPX .

(1) If there exist a permutation σR of R and δ = (δ1, δ2, . . . , δm0) ∈ Γm0 such

that τ0(ri) = δiσR(ri) (or τ1(ri) = δiσR(ri)) for all 1 6 i 6 m0, then we

call τ a sign-permutation (or an anti-sign-permutation) of A. In particular,

when τ ∈ SX , we call a sign-permutation (or an anti-sign-permutation) τ of A

just a permutation (or an anti-permutation) of A. Respectively, denote by

SP0(A), SP1(A), S0(A) and S1(A) the set of all sign-permutations, all anti-

sign-permutations, all permutations and all anti-permutations of A.

(2) Let τ be an automorphism of A. If the restriction of τ on X belongs to SP0(A)

(or S0(A)), then we call τ a sign-permutation (or permutation) automorphism

of A. Denote by Autsp(A) (or Autp(A)) the set of all sign-permutation (or per-

mutation) automorphisms of A.

(3) Let τ be an anti-automorphism of A. If the restriction of τ on X belongs

to SP1(A) (or S1(A)), then we call τ a sign-permutation (or permutation)

anti-automorphism of A. Denote by Autopsp (A) (or Autopp (A)) the set of all

sign-permutation (or permutation) anti-automorphisms of A.

Remark 3.4. In this paper, almost all concepts and results depend on the choice

of presentation of an algebra. For example, take A1 = K〈x, y〉/〈x3, y3〉 and A2 =

K〈x, y〉/〈x3 + 2y3, x3 + 3y3〉. It is easy to see that A1
∼= A2 but Sk(A1) 6= Sk(A2),

SPk(A1) 6= SPk(A2) for 0 6 k 6 1.

Now we introduce some concepts concerning connected graded algebras and their

PBW-deformations with certain symmetries.

Definition 3.5. Retain the notations A = K〈X〉/〈R〉 and U = K〈X〉/〈P 〉 in

Section 3.

(1) For a given τ ∈ SPX , we call A a τ -self-symmetric (or τ -symmetric) connected

graded algebra if τ ∈ SP0(A) (or τ ∈ SP1(A)).

(2) When SPX = SP0(A) (or SPX = SP1(A)), we call A a completely sign-self-

symmetric (or sign-symmetric) connected graded algebra.

(3) When SX = S0(A) (or SX = S1(A)), we call A a completely self-symmetric

(or symmetric) connected graded algebra.

(4) Assume that U is a PBW-deformation of A.

(i) For a given τ ∈ SPX , we call U a τ -self-symmetric (or τ -symmetric) PBW-

deformation of A if τ ∈ SP0(A) ∩ SP0(U) (or τ ∈ SP1(A) ∩ SP1(U)).

(ii) If SP0(A) = SP0(U) (or SP1(A) = SP1(U), S0(A) = S0(U), S1(A) =

S1(U)), then U is said to be a sign-self-symmetric (or sign-symmetric, self-

symmetric, symmetric) PBW-deformation of A.
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Remark 3.6. Suppose that A = K〈X〉/〈R〉 is a homogeneous algebra. If we

choose τ to be a sign-permutation corresponding to the pair (σX , ε) with σX = id,

then A is a τ -symmetric connected graded algebra if and only if A is a τ -commutative

algebra in the sense of Berger, cf. [1].

Around the notions in Definitions 3.3 and 3.5, we have the following statements.

Proposition 3.7.

(1) The algebra A is a τ -self-symmetric (or τ -symmetric) connected graded al-

gebra if and only if there exists a sign-permutation automorphism (or anti-

automorphism) τ : A → A such that τ |X = τ .

(2) For τ, τ ′ ∈ SP0(A), define X
τ ·τ ′

−→ X̂ by

(τ · τ ′)(xi) =

{
τ [τ ′(xi)] if τ ′(xi) ∈ X,

−τ [−τ ′(xi)] if τ
′(xi) ∈ X−.

Then SP0(A) is a group under the above multiplication.

(3) As groups SP0(A) ∼= Autsp(A) and S0(A) ∼= Autp(A).

(4) A completely sign-self-symmetric (or sign-symmetric) connected graded algebra

is completely self-symmetric (or symmetric).

(5) For 0 6 k 6 1, one has SPk(A) ⊇ SPk(U) and Sk(A) ⊇ Sk(U).

(6) A sign-self-symmetric (or sign-symmetric) PBW-deformation U of the connected

graded algebra A is a self-symmetric (or symmetric) PBW-deformation.

P r o o f. We can easily obtain (1), (2) and (3) if we note that there exists a natural

bijection from SP0(A) (or SP1(A), S0(A)) to Autsp(A) (or Autopsp (A), Autp(A)). It

follows from Definition 3.5 (2) and (3) that the statement in (4) holds. For a given

τ ∈ SPX (or τ ∈ SX), it follows from Definition 3.3 that τ ∈ SPk(U) (or τ ∈ Sk(U))

if and only if there exist a permutation σP of P and δ = (δ1, δ2, . . . , δm0) ∈ Γm0

such that τk(ri + li) = δiσP (ri + li) for all 1 6 i 6 m0, where the latter condition is

equivalent to saying that τk(ri) = δiσP (ri) and τk(li) = δiσP (li). Hence, (5) holds.

Since Sk(A) ⊆ SPk(A) = SPk(U) implies Sk(A) ⊆ Sk(U), by (5) we can obtain (6).

�

Remark 3.8. It follows from Definition 3.5 (4) (ii) and Proposition 3.7 (3) that

self-symmetric (or sign-self-symmetric) PBW-deformations of A are just the PBW-

deformations of A in the representation category of the group S0(A) (SP0(A)).

Next we present some examples about τ -symmetric connected graded algebras and

their PBW-deformations with certain symmetries.
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Example 3.9. Let A = K〈X〉/〈R〉, where

R =

{∑

σ∈Sd

(−1)sgn(σ)xiσ(1)
xiσ(2)

. . . xiσ(d)
: 1 6 i1 < i2 < . . . < id 6 n

}
.

Then A is not only completely sign-self-symmetric but also completely sign-

symmetric. In fact, A is a d-Koszul algebra and A = K[x1, x2, . . . , xn] when

d = 2. The PBW-deformations of A were explicitly described in Theorems 4.1

and 4.2 in [8] for n > d+ 2.

Example 3.10. Let A = K〈X〉/〈R〉, where

R =

{∑

σ∈Sd

xiσ(1)
xiσ(2)

. . . xiσ(d)
: 1 6 i1 6 i2 6 . . . 6 id 6 n

}
.

Then A is completely sign-self-symmetric and completely sign-symmetric. It is

a d-Koszul algebra and its PBW-deformation is characterized in Theorem 4.6 in [8].

Especially when d = 2, the above algebra A is generated by x1, x2, . . . , xn with

relations

x2
i = 0 (1 6 i 6 n), xixj + xjxi = 0 (1 6 i 6= j 6 n).

The Clifford algebra CL(V ) can be presented by generators x1, x2, . . . , xn and rela-

tions

x2
i = Q(xi) (1 6 i 6 n), xixj + xjxi = 0 (1 6 i 6= j 6 n),

where V = SpanKX and Q : V → K is a quadratic form on V . It is easy to see

that CL(V ) is a sign-self-symmetric, sign-symmetric, self-symmetric or symmetric

PBW-deformation of A if and only if Q(xi) = Q(xj) for all 1 6 i, j 6 n.

Example 3.11. Assume that g is a complex simple Lie algebra of rank n (> 2)

and A = (aij)n×n is the Cartan matrix of g. Denote by U
−
q (g) the negative part of

Drinfeld-Jimbo quantum group Uq(g). For g of different Dynkin type, SP0(U
−
q (g))

and SP1(U
−
q (g)) can be described in the following table:

Type of g An, Dn(n > 5), E6 D4 Bn(n > 2), Cn(n > 3), E7, E8, F4, G2

SP0(U
−
q (g)) Z2 S3 {id}

SP1(U
−
q (g)) Z2 × Γn S3 × Γ4 Γn

In fact, the group SP0(U
−
q (g)) is just the group of all automorphisms of Dynkin

diagram corresponding to g, cf. [9].
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The deformation Bq(g) of U
−
q (g) is the K-algebra with generators Bi (1 6 i 6 n)

and relations:

(3.1)

1−aij∑

k=0

(−1)k
(
1− aij

k

)

i

B
1−aij−k

i BjB
k
i = h(Bi, Bj)

for all i 6= j, where

h(Bi, Bj) =





0 if aij = 0,

−q−1
i Bj if aij = −1,

−q−1[2]2(BiBj −BjBi) if aij = −2,

−q−1([3]2 + 1)(B2
i Bj +BjB

2
i )

+q−1[2]([2][4] + q2 + q−2)BiBjBi − q−2[3]2Bj if aij = −3.

The algebraBq(g) is a class of coideal subalgebras of Uq(g) and Letzter’s work in [18]

showed that Bq(g) is a PBW-deformation of U
−
q (g), cf. [15], [24], [25]. It is routine

to check that Bq(g) is a sign-self-symmetric and sign-symmetric PBW-deformation

of U−
q (g) for each g.

Example 3.12.

(1) The cubic Artin-Schelter algebra CAS(A) of type A is presented by generators

x, y and relations

ay2x+ byxy + axy2 + x3 = 0,

y3 + ayx2 + bxyx+ ax2y = 0,

where a, b ∈ K. Then CAS(A) is completely sign-self-symmetric and com-

pletely sign-symmetric. It follows from [8] that all the sign-(self-)symmetric

PBW-deformations of CAS(A) are the algebras DAS(A) with generators x, y and

relations
ay2x+ byxy + axy2 + x3 = cx,

y3 + ayx2 + bxyx+ ax2y = cy,

where c ∈ K.

(2) The cubic Artin-Schelter algebra CAS(S
′
2) of type S

′
2 is generated by x, y and

subject to relations
y2x+ xy2 + x3 = 0,

yx2 − x2y = 0,

where a, b ∈ K. In this case,

SP0(CAS(S
′
2)) = SP1(CAS(S

′
2)) = {τ : τ(x) = ±x, τ(y) = ±y},
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while S0(CAS(S
′
2)) = S1(CAS(S

′
2)) = {id}. It follows from [8] that all the PBW-

deformations of CAS(S
′
2) are the following algebras DAS(S

′
2) with generators x, y

and relations

y2x+ xy2 + x3 = a11x
2 + a14y

2 + a21x+ a3,(3.2)

yx2 − x2y = − a14xy + a14yx,(3.3)

which are exactly all the (self-)symmetric PBW-deformations. Moreover, it is

easy to check that DAS(S
′
2) is a sign-(self-)symmetric PBW-deformation if and

only if a11 = a14 = a3 = 0.

Example 3.13. Denote by P2
K
the projective plane. For every i = 1, 2, 3, let

a, b, c, di, ei ∈ K with

[a : b : c] ∈ P
2
K \ {[a : b : c] : abc = 0 or a3 = b3 = c3 = 1}.

The three-dimensional Sklyanin algebra S(a, b, c) is generated by x, y, z and subject

to relations
ayz + bzy + cx2 = 0,

azx+ bxz + cy2 = 0,

axy + byx+ cz2 = 0.

Then up to isomorphism or bijection one has

S0(S(a, b, c)) SP0(S(a, b, c)) S1(S(a, b, c)) SP1(S(a, b, c))

a = b S3 S3 ⊕ Z2 S3 S3 × Z2

a 6= b Z3 Z3 ⊕ Z2 {(12), (13), (23)} {(12), (13), (23)} × Z2

Hence, the algebra S(a, b, c) is completely (self-)symmetric but not completely

sign-(self)-symmetric.

Let Sd(a, b, c) be the deformation of S(a, b, c) given by generators x, y, z and three

relations
ayz + bzy + cx2 + d1x+ e1 = 0,

azx+ bxz + cy2 + d2y + e2 = 0,

axy + byx+ cz2 + d3z + e3 = 0.

It can be seen from [3], [7], [22] that Sd(a, b, c) is a PBW-deformation of S(a, b, c).

In our terms, Sd(a, b, c) is a (self-)symmetric PBW-deformation of S(a, b, c), while

Sd(a, b, c) is a sign-(self-)symmetric PBW-deformation of S(a, b, c) only if d1 = d2 =

d3 = 0 and e1 = e2 = e3.
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Example 3.14. The Fomin-Kirillov algebra FK3 is defined by generators a, b, c

and relations
a2 = b2 = c2 = 0,

ab+ bc+ ca = ba+ cb+ ac = 0.

One has S0(FK3) = S1(FK3) = S3 and SP0(FK3) = SP1(FK3) = S3 × Z2. It

is easy to check that FK3 is completely (self-)symmetric but not completely sign-

(self-)symmetric. For α1, α2 ∈ K, let D3(α1, α2) be the deformation of FK3 given

by generators a, b, c and relations

a2 = b2 = c2 = α1,

ab+ bc+ ca = ba+ cb+ ac = α2.

Then D3(α1, α2) is a (self-)symmetric and sign-(self-)symmetric PBW-deformation

of FK3, cf. [11].

4. PBW-deformations of a K2 algebra

In this section, we focus on a K2 algebra A which is a subalgebra of the Fomin-

Kirillov algebra FK3, and aim to explicitly constructing its four kinds of PBW-

deformations in Definition 3.5 (4) (ii).

Let

A = K〈a, b〉/〈a2, b2, aba− bab〉,(4.1)

R = K〈c〉/〈c2〉.(4.2)

The Fomin-Kirillov algebra FK3 can be realized by a twisted tensor product A⊗σR,

where σ : R ⊗ A → A ⊗ R is a twisting map, cf. [21]. The identification of FK3

and A⊗σR plays a fundamental role in computing the cohomology of FK3, see [21].

Now we can obtain the accurate value of the complexity c(A) of A as follows.

Proposition 4.1.

(1) The complexity c(A) of the K2 algebra A is 3.

(2) S0(A) = S1(A) = {σi ∈ SX : 1 6 i 6 2} and SP0(A) = SP1(A) = {σi ∈ SPX :

1 6 i 6 4}, whereX = {a, b} and σi (1 6 i 6 4) are, respectively, determined by

(4.3)

{
σ1(a) = a,

σ1(b) = b,

{
σ2(a) = b,

σ2(b) = a,

{
σ3(a) = −a,

σ3(b) = −b,

{
σ4(a) = −b,

σ4(b) = −a.
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P r o o f. (1) In [21], a first quadrant double complex of left A-modules is obtained

as follows:

(4.4) ...

̺b

��

...

̺−a

��

...

̺b

��

...

̺−a

��

...

̺ba

��

A

̺b

��

A

̺−a

��

̺ba

oo A

̺b

��

̺ab

oo A

̺ab

��

̺ba

oo A

̺ab

��

̺b

oo . . .
̺b

oo

A

̺b

��

A

̺−a

��

̺ba

oo A

̺ba

��

̺ab

oo A

̺ba

��

̺−a

oo A

̺ba

��

̺−a

oo . . .
̺−a

oo

A

̺b

��

A

̺ab

��

̺ba

oo A

̺ab

��

̺b

oo A

̺ab

��

̺b

oo A

̺ab

��

̺b

oo . . .
̺b

oo

A A̺−a

oo A̺−a

oo A̺−a

oo A̺−a

oo . . .
̺−a

oo

where ̺x denotes the right multiplication by x ∈ A. Then a minimal projective

resolution for the trivial A-module K in A-Mod can be obtained as the following

total complex associated to the double complex (4.4)

. . . → A{−3,−4,−4,−3}
ϕ3
−→ A{−2,−3,−2}

ϕ2
−→ A{−1,−1}

ϕ1
−→ A

ε
→ K → 0.

Hence, by Definition 2.2 one knows that c(A) = 3.

(2) We can directly check (2) according to Definition 3.3 (1). �

Every deformation U of A can be presented with generators a, b and relations

a2 + λ11a+ λ12b+ λ13 = 0,(4.5)

b2 + λ21a+ λ22b+ λ23 = 0,(4.6)

aba− bab+ λ31a
2 + λ32ab+ λ33ba+ λ34b

2 + λ35a+ λ36b+ λ37 = 0,(4.7)

where λij ∈ K are called the structure coefficients of U . For convenience, we set

r1 = a2, r2 = b2, r3 = aba− bab,(4.8)

l1 = λ11a+ λ12b+ λ13, l2 = λ21a+ λ22b+ λ23,(4.9)

l3 = λ31a
2 + λ32ab+ λ33ba+ λ34b

2 + λ35a+ λ36b+ λ37.(4.10)

We are ready to determine all the self-symmetric, sign-self-symmetric, symmetric

and sign-symmetric PBW-deformations of the K2 algebra A, where the main tool is

the Jacobi condition (2.4) in Theorem 2.3.
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Theorem 4.2.

(1) A deformation U is a PBW-deformation of A if and only if its structure coeffi-

cients λij satisfy the conditions

(4.11)





λ12 = λ21 = 0,

λ11 − λ = λ22 + λ,

(λ11 − λ)λ = λ13 − λ23,

λ11λ31 + λ11µ+ λ22λ34 − λµ− λ35 − λ36 = 0,

λ11λ31λ− λ13λ31 − λ23µ− λ23λ34 − λλ35 + λ37 = 0,

λ22λλ34 + λ13λ31 + λ13µ+ λ23λ34 − λλ36 − λ37 = 0,

λ13λ31λ− λ23λλ34 + λ11λ37 − λ13λ35 − λ23λ36 − λλ37 = 0,

where (λ, µ) = (λ32, λ33) and (λ33, λ32).

(2) U is a (self-)symmetric PBW-deformation of A if and only if U satisfies the

relations

(4.12)





a2 + λ1a+ λ2 = 0,

b2 + λ1b+ λ2 = 0,

aba− bab+ λ3(a
2 − b2) + λ4(a− b) = 0.

(3) U is a sign-(self-)symmetric PBW-deformation of A if and only if U satisfies the

relations

(4.13)





a2 + λ1 = 0,

b2 + λ1 = 0,

aba− bab+ λ2(a− b) = 0.

P r o o f. In the following, we will firstly prove (1) for determining all the PBW-

deformations of A, then, respectively, choose from them all the self-symmetric, sign-

self-symmetric, symmetric and sign-symmetric PBW-deformations. We will omit the

proof of (3) because it is similar as (2).

(1) For the case A, P1 = 0 in (2.2) and for 2 6 k 6 4, in (2.3) one has

(4.14) Pk = SpanK{x1x2 . . . xs(ri + li)xs+1xs+2 . . . xt :

1 6 i 6 3, t+Deg(ri) 6 k, xj = a, b, 1 6 j 6 t}.

Denote

P ′
k = SpanK{x1x2 . . . xs(ri + li)xs+1xs+2 . . . xt :

1 6 i 6 3, t+Deg(ri) = k + 1, xj = a, b, 1 6 j 6 t}.
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Note that Pk+1 = Pk ∪ P ′
k, so the Jacobi condition (2.4) in Theorem 2.3 is equiva-

lent to

(4.15) P ′
k ∩ Fk(T ) ⊆ Pk

for all 1 6 k 6 c(A) = 3. Since

(4.16) P2 = SpanK{r1 + l1, r2 + l2}

for any element α1(r1 + l1) + α2(r2 + l2) ∈ P ′
1 ∩ F1(T ) (α1, α2 ∈ K), one has

(4.17) α1r1 + α2r2 = 0.

It can be obtained from (4.8) and (4.17) that α1 = α2 = 0. Hence, P ′
1 ∩ F1(T ) =

0 ⊆ P1 always holds. Because

P3 = SpanK{ri + li, x(rj + lj), (rj + lj)x : 1 6 i 6 3, 1 6 j 6 2, x = a, b},(4.18)

P ′
2 = SpanK{r3 + l3, x(rj + lj), (rj + lj)x : 1 6 j 6 2, x = a, b},(4.19)

any element in P ′
2 ∩ F2(T ) can be expressed as

(4.20) α3(r3 + l3) +
∑

x=a,b,
16j62

αxjx(rj + lj) +
∑

16j62,
x=a,b

αjx(rj + lj)x

with α3, αxj , αjx ∈ K and

(4.21) α3r3 +
∑

x=a,b,
16j62

αxjxrj +
∑

16j62,
x=a,b

αjxrjx = 0.

Putting (4.8) into (4.21), one can obtain

α3(aba−bab)+(αa1+α1a)a
3+αa2ab

2+αb1ba
2+α2ab

2a+α1ba
2b+(αb2+α2b)b

3 = 0.

By linear independence, the coefficients in (4.20) should satisfy the following linear

equations:

(4.22)





α3 = αa2 = αb1 = α2a = α1b = 0,

αa1 + α1a = 0,

αb2 + α2b = 0.
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Now the condition P ′
2∩F

2(T ) ⊆ P2 holds if and only if there exist βi ∈ K (1 6 i 6 4)

such that

(4.23)

{
−al1 + l1a = β1(r1 + l1) + β2(r2 + l2),

−bl2 + l2b = β3(r1 + l1) + β4(r2 + l2),

which is equivalent to λ12 = λ21 = 0 after substituting (4.8), (4.9) into (4.23) and

using linear independence. Because

P4 = SpanK{ri + li, x(ri + li), (ri + li)x, xy(rj + lj),(4.24)

x(rj + lj)y, (rj + lj)xy : 1 6 i 6 3, 1 6 j 6 2, x, y = a, b},

P ′
3 = SpanK{x(r3 + l3), (r3 + l3)x, xy(rj + lj),(4.25)

x(rj + lj)y, (rj + lj)xy : 1 6 j 6 2, x, y = a, b},

any element in P ′
3 ∩ F3(T ) can be expressed as

(4.26)
∑

x=a,b

[αx3x(r3 + l3) + α3x(r3 + l3)x]

+
∑

16j62,
x,y=a,b

[αxyjxy(rj + lj) + αxjyx(rj + lj)y + αjxy(rj + lj)xy]

with α3x, αx3, αxyj, αxjy , αjxy ∈ K and

(4.27)
∑

x=a,b

(αx3xr3 + α3xr3x) +
∑

16j62,
x,y=a,b

(αxyjxyrj + αxjyxrjy + αjxyrjxy) = 0.

Put (4.8) into (4.27), then the linear independence implies that the coefficients

in (4.26) should satisfy the set of linear equations:

(4.28)





αaa1 + αa1a + α1aa = 0, αa3 + α1ba = 0, αbb2 + αb2b + α2bb = 0,

αaa2 + α1bb = 0, αa3 − α3b = 0, αb1b = 0,

αab1 + α3a = 0, αba1 + αb1a = 0, αb2a + α2ba = 0,

αab2 + αa2b = 0, αba2 − α3b = 0, αb3 − α2ab = 0,

αa1b + α1ab = 0, αbb1 + α2aa = 0, αb3 − α3a = 0,

αa2a = 0,

where α’s are arranged in the lexicographic order of a, b, 1, 2, 3 with

(4.29) a < b < 1 < 2 < 3.
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The condition P ′
3 ∩ F3(T ) ⊆ P3 exactly means that to each basic solution of (4.28)

we assign the linear combination

(4.30)
∑

x=a,b

(αx3xl3 + α3xl3x) +
∑

16j62,
x,y=a,b

(αxyjxylj + αxjyxljy + αjxyljxy) ∈ P3,

that is to say,

a2l1 − al1a, bal1 − bl1a, a2l1 − l1a
2, al1b− l1ab ∈ P3,(4.31)

abl2 − al2b, b2l2 − bl2b, bl2a− l2ba, b2l2 − l2b
2 ∈ P3(4.32)

a2l2 − l1b
2, b2l1 − l2a

2 ∈ P3,(4.33)

abl1 − bl3 − l2ab− l3a, al3 + bal2 − l1ba+ l3b ∈ P3.(4.34)

The linear combinations in (4.31) and (4.32) are zero since λ12 = λ21 = 0, while the

ones in (4.33) can be expressed as follows:

(4.35){
a2l2 − l1b

2 = λ23(r1 + l1)− λ13(r2 + l2)− λ11a(r2 + l2) + λ22(r1 + l1)b ∈ P3,

b2l1 − l2a
2 = −λ23(r1 + l1) + λ13(r2 + l2) + λ11(r2 + l2)a− λ22b(r1 + l1) ∈ P3.

By substituting (4.8)–(4.10) into (4.34) and using linear independence, we can check

that (4.34) is equivalent to the equalities in (4.11).

(2) By Definition 3.5 (4) (ii), a PBW-deformation U is a self-symmetric (or sym-

metric) PBW-deformation of A if S0(A) = S0(U) (or S1(A) = S1(U)). Moreover,

S0(A) = S0(U) if and only if the structure coefficients of U satisfy

(4.36)

{
λ11 = λ22, λ12 = λ21, λ13 = λ23,

λ31 + λ34 = 0, λ32 + λ33 = 0, λ35 + λ36 = 0, λ37 = 0,

while S1(A) = S1(U) if and only if the structure coefficients of U satisfy

(4.37)

{
λ11 = λ22, λ12 = λ21, λ13 = λ23,

λ31 + λ34 = 0, λ32 = λ33 = 0, λ35 + λ36 = 0, λ37 = 0.

Now we can obtain (2) by combining (4.11), (4.36) and (4.37). �
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