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Abstract. We improve a few results related to Huppert’s g-o conjecture. We also gener-
alize a result about the covering number of character degrees to arbitrary finite groups.
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1. INTRODUCTION

Let 7(n) denote the set of prime divisors of a positive integer n. Let G be a finite
group and let 7(G) denote the set of prime divisors of its order |G|. Let Irr(G) denote
the set of irreducible characters of G. We set

0(G) = max{[x(x(1))|: x € Irr(G)}

and

o(G) = {p prime: p | x(1) for some x € Irr(G)}.

Huppert’s g-o conjecture states that |o(G)| can be bounded in terms of o(G) and if G
is solvable, then |o(G)| < 20(G). It is a problem of central importance in character
theory. Many analogues of Huppert’s conjecture were proposed and studied. In
fact, the conjugacy class version of Huppert’s conjecture was proposed by Huppert
himself. The element order version of Huppert’s conjecture was first introduced by
Shi in [10]. Let g be an element in G and let w(o(g)) denote the set of prime divisors
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of the order of g. We set
0°(G) = a(G) = max{|r(o(g))|: g € G}

and
0°(G) = {p prime: p | o(g) for some g € G}.

Shi asked in [10] if |¢°(G)| is bounded by a function of 0¢(G) (we note that
0°(G) = 7(G)). Answering Shi’s question, Zhang in [13] proved that if G is solvable,
then |p°(G)| is bounded by a quadratic function of «(G) and that for arbitrary G,
|o¢(G)| is bounded by a super-exponential function of a(G). The result for solvable
groups was improved later by Keller (see [3]) to a linear bound. Keller showed that
for C > 4, it is true that [0°(G)| < Co®(G) when 0°(G) > 2e5¢/(C=4)_ Later, the
constant of a solvable group was determined by Yang in [11]. Using this result, we can
improve the element order version of Huppert’s conjecture for arbitray finite groups.

Character codegrees were first defined in [9]. Let the codegree of a character x be
codeg(x) = |G : ker x|/x(1). Then, we set

codeg(G) = {codeg(x): x € Irr(G)},
o(codeg(@)) = max{|m(codeg(x))|: x € Irr(G)},
o(codeg(G)) = {p prime: p | codeg(x) for some x € Irr(G)}.

The codegree version of Huppert’s conjecture was studied in [7], [11], [12].

The following can be viewed as another alternative of Huppert’s g-o conjecture.
Let G be a finite simple group and S be a subset of Irr(G). Then S is called
a covering set of G if for every p € m(G) there is a character x in S such that p
divides x(1). The covering number of G, denoted by cn(G), is defined as the minimal
number of Card(S), where S is a covering set of G and Card(S) is the cardinality
of the set S, see [4]. We know that for an arbitrary finite group G, there might
exist p € 7(G) that does not divide any irreducible character degree of G. Thus, in
order to generalize the concept of covering number to arbitrary finite groups, we will
consider the set o(G) instead of m(G). In this note, we generalize the main result
of [4] to arbitrary finite groups.

We will prove the following three results.

Theorem 1.1. Let G be an arbitrary finite group. Then |o(codeg(G))| <
4 o (codeg(@)).

Theorem 1.2. Let G be a finite group. Then |7(G)| < 168a(G)*.

Theorem 1.3. Let G be a finite group, then the covering number cn(G) < 6.
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2. PRELIMINARIES

Lemma 2.1. Let G be a finite solvable group. Then |o¢(G)
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£
Q

Proof. See[11], Theorem 1.1. O

Lemma 2.2. Let G be a finite group with trivial solvable radical, then |7(G)| <
30 (codeg(Q)).

Proof. Thisis Theorem 1.3. of [7]. O

Lemma 2.3. Suppose that K/F(K) is nilpotent and C' < K. Then there exists
w € Irr(C) such that w(p(1)) = n(C/F(K)NC).

Proof. ThisisProposition 17.3 of [5]. In fact, u(1)=|C/F(C)|=|(C/(F(K)NC)|.
(I

We set 00(G) = 0(G) \ {2,3} and 79(G) = n(G) \ {2, 3}.

Lemma 2.4. Suppose that M is a normal elementary abelian subgroup of the
solvable group G. Assume that M = Cqg(M) is a completely reducible G-module
(possibly of mixed characteristic). Set V. = Irr(M) and write V. = V1 & ... dV,
for irreducible G-modules V;. Write V; = YiG for primitive modules Y; for each 1.
Assume that N¢(Y;)/Cq(Y;) is nilpotent by nilpotent for each i. If M < N < G,
there exist 61,02 € Irr(IN) such that 01(1)62(1) is divisible by each prime in 7o (N/M).

Proof. First, we can write each V; as a direct sum of the G-conjugates of Y,
i =1,....m. Thus, V = X; & ... ® X,, for subspaces X; of V' permuted by G
(not necessarily transitively) with {Y1,...,Y,,} C {Xy,...,X,}. Furthermore, if
N; = N¢g(X;), C; = Ca(X;) and F;/C; = F(N;/C;), then X; is a primitive, faithful
N;/Ci-module and N;/F; is nilpotent.

Let K = (\N; < G be the kernel of the permutation representation of G on

{Xl,...,Xn}.z Since (C; = M, wehave " F;/M =F(K/M) SG/M. Let H=\F;,

so that H/M = F(Kz/M) Observe thatz K/H is nilpotent. Set C' = K N Nzand
F =HnNN = CnH. By Lemma 2.3, there exists § € Irr(C/M) such that
6(1) = |C/F|. Since C < N, there exists 6, € Irr(N) such that |C/F| | 6:(1).
Consequently it suffices to show that there exists 62 € Irr(IN) with 62(1) divisible by
each prime in mo(N/C) U mo(F/M). To do this, we need just to find some A € V
such that 7T0(N : CN(A)) D) 7T0(N/C) @] 7T0(F/M)

We can choose A C {Xq,...,X,} such that staby(A)/(N N K) = staby(A)/C
is a {2,3}-group by [5], Corollary 5.7. Assess that A intersects each N-orbit non-
trivially. Without losing generality, A = {Xi,...,X;} for some | € {1,...,n}.
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Set A = A1...\ € V for nonprincipal \; € X;. Finally suppose that @ € Syl (N)
for a prime ¢ > 5 and @ centralizes A. Thus, @ < staby(A). But staby(A)/C is
a {2,3}-group. Thus, Q < C. The intersection F;NC/C;NC is isomorphic to a normal
nilpotent subgroup of N;/C; and N;/C; acts irreducibly on X; for each i. Thus, \; is
not centralized by a nontrivial Sylow subgroup of F;NC/C;NC fori=1,...,l. Since
QN F; € Syl (F; N C), we have that ¢ { [[; NC/C;NC| fori=1,...,l. Each F;/C;
(j = 1,...,n) is conjugate to some F;/C; with ¢ € {1,...,1} by our choice of A.
Hence, ¢ 1 [F; NC/C;NC| for j =1,...,n. Since ((C; = M and (((F5NC) = F,

7 K]
we have that ¢ { |[F//M|. We have already seen above that Q < C and so ¢ { |[N/C|.
Thus, |N : Cn(A)| is divisible by each prime in 7o(N/C) U mo(F/M). O

Lemma 2.5. Suppose that M = Cg(M) is a normal elementary abelian sub-
group of a solvable group G and a completely reducible G-module (possibly of mixed
characteristic). Assume that G splits over M, then there exists x1, x2 € Irr(G) such
that x1(1)x2(1) is divisible by each prime in mo(G/M).

Proof. By induction on |M|. Write M = M; & ... & M, for n > 1 irreducible
G-modules M;. Set V; = Irr(M;) so that each V; is an irreducible G-module and
V=W&...aV, is a faithful G/M-module by Proposition 12.1 of [5]. For each ¢,
choose H; < G and X; to be an irreducible primitive H;-module with X& = V;.
If H;/Cn,(X;) < I'(X;) for each 4, the result follows from Lemma 2.4. We assess
without losing generality that Hy/Cpr, (X1) € T'(X4).

Let K = Cg(M1) < G. Let H be a complement for M in G and let J = NH,
where N = My @ ... ® M,. Then JN M = N. Now JNK = N(HNK)
acts on N and Cjnx(N) = N. By induction, there exist pi,us € Irr(J N K)
such that p;(1)pz(1) is divisible by the primes in mo((J N K)/N) = mo(K/M),
as (JNK)/N =2 K/M. Now JN K < J and centralizes M/N = M;. Thus,
JNK <4 KJ =G and K/N = M/N x (JN K)/N. By the choice of M;, there
exists A € Vi such that mo(G/K) = mo(G : Ig(N)). Set f1 = A -1 € Irr(K),
B = A~ Uo € II‘I"(K) Now Ig(ﬂl) @] Ic;(ﬂg) C Ig(A) Thus, 7T0(G : Ig(ﬂl)) @]
m0(G : Ig(B2)) 2 mo(G/K). Choose x; € Irr(G | 8;) (i = 1,2), then, as K < G, we
have 7(G/K)Un(p1(1)) Un(p2(1)) C 7(x1(1)) Um(x2(1)). Since g1 (1)pa(1) is divis-
ible by each prime in 7o (K /M), x1(1)x2(1) is divisible by each prime in mo(G/M).

O

We note that the statements of Lemmas 2.4 and 2.5 are stronger than Lemmas 17.4
and 17.5 of [5], but the proof is similar.

Lemma 2.6. Let G be a finite solvable group, then there exists pi,us €
2
Irr(G/®(G)) such that mo(G/F(G)) C |J mo(us(1)).
i=1
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Proof. Apply Lemma 2.5 with G/®(G) and F(G)/®(G), respectively, in the
role of G and M. Note that F(G/®(G)) = F(G)/®(G) is a completely reducible and
faithful G/F(G)-module (possibly of mixed characteristic). Furthermore, G/®(G)
splits over F(G)/®(G). O

Lemma 2.7. Let G be a finite group with trivial fitting subgroup, then the cov-
ering number ¢cn(G) < 3. Especially, if PSLa(q) or Jy is not involved in G, then
en(G) < 2.

Proof. Thisis Theorem 1.1 of [4]. O

3. MAIN RESULTS
We now prove the first main result.

Theorem 3.1. Let G be a finite group. Then |o(codeg(G))| < £ (codeg(G)).

Proof. We note that p(codeg(G)) = 7(G) by [9], Lemma 2.4.

Let S be the largest solvable normal subgroup of G. By the main result of [§],
we know that 0¢(5) < o(codeg(S)). We also know that o(codeg(S)) < o(codeg(G))
by [11], Lemma 2.2 (1). Thus, we have |7 (S)| < Yo (codeg(S)) < Lo (codeg(G)) by
Lemma 2.1.

By Lemma 2.2, we know that |7(G/S)| < 20(codeg(G/S9)).

Since o(codeg(G/S)) < o(codeg(G)) by [11], Lemma 2.2 (2), we have |7(G/S)| <
3o (codeg(G)). Thus, we have

17 3

7(G)] < ()| + m(G/S)] < (5 + 5 )oleoder(@) = L olcodes(C).

We now are ready to prove the second main result.

Theorem 3.2. Let G be a finite group. Then |7(G)| < 168a(G)*.

Proof. First note that if a(G) =1 then |7(G)| < 4. Therefore we may assume
that a(G) > 2. By Lemma 2.1, we know that |7(G)| < Y a(G) for every solvable
group G.

Following the proof of Theorem A of [6] by Moretd, let G be a minimal counterex-
ample and introduce the series

1=5<RI<S1<R<S<...<Ry <Sn<Rpy1 =G,

such that R;y1/S; is the largest normal solvable subgroup of G/S; for every i > 0
and S;/R; is the socle of G/R; for every i > 1. Moret6 then constructed a solvable
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subgroup H of G in the following way. First, for each i = 1,...,m, it was proved
that there is a prime divisor ¢; of |:S;/R;| that is relatively prime to |G/S;||R;|. Then,
put H :=Q1Qs2...Qm, where Q; (i =1,2,...,m—1) is a Sylow ¢;-subgroup of R;11
that is Q;11 ... @Qp-invariant, and @,, is simply a Sylow g¢,,-subgroup of G. Note
that the primes ¢; are pairwise distinct and thus, |[7(H)| = m. By Lemma 2.1, we
have m < Y a(H), and thus, m < Y a(G).

We now have

7(G)] < me max [w(Si/Si-1)| + [m(G/Sw)|
< max {w(Si/Ro)| + [n(Ri/ Sic1)[} + |(G/ )]

%a(a)(%a(a)f* + gMG)) + %7@(61) < 168a(G)*,

N

where the third inequality follows from o(G) < 28a(G)? by [2], Theorem 3.2 and the
fact that |7(G)| < Y a(G) for every solvable group G, and the last inequality comes
from a(G) > 2. O

Remark 3.1. After the paper has been submitted for publication, we noticed
that the coefficient in Lemma 2.1 has been improved to 5 by [1], Theorem 1. In view
of this, the coefficient in Theorem 3.1 can be improved to % and the coefficient in
Theorem 3.2 can be improved to 141.

We now prove the third main result.

Theorem 3.3. Let G be a finite solvable group, then there exist x1,Xx2,X3 €
3
Irr(G) such that po(G) C U mo(xi(1)).
i=1

Proof. By the Ito-Michler theorem a prime p does not divide the degree of
any irreducible character of a group G if and only if G has a normal abelian Sylow
p-subgroup. Thus, p € o(G) if and only if p | |G/F(G)| or F(G) has a nonabelian
Sylow p-subgroup. Let 7 be the set of primes r for which O, (G) is nonabelian and
r {1 |G/Op(G)|. Then there exists u € Irr(G) such that r | (1) for all » € 7. By

2
Lemma 2.6, there exists x1, x2 € Irr(G/®(G)) such that 7o (G/F(G)) C U mo(x:i(1)).
Thus, we have =1

00(G) = mo(G/F(G U ) Umo(p(1)).

This completes the proof. ([

Theorem 3.4. Let G be a finite group, then the covering number cn(G) < 6.
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3
Proof. Let G be a solvable group, we have go(G) C |J mo(xs(1)) by Theo-
i=1
rem 3.3, where x1, X2, X3 € Irt(G). If 2 or 3 belongs to o(G), we can always find an

irreducible character of G to cover it. Thus c¢n(G) < 5.
Let G be a nonsolvable group. Let S be the largest solvable normal subgroup of G.

3
By Theorem 3.3, there exists 1, 82, 83 € Irr(S) such that go(S) C U mo(Bi(1)). B

Lemma 2.7, there exists p1, o, us € Irr(G/S) such that 7(G/S) C U (i (1)).

It is easy to see that o(G) = w(G/S)Up(S). Since the order of a nonabehan simple
group is divisible by 2, we have 2 € 7(G/S). If 3 | |G/S|, then 3 € 7(G/S). We have

mo(Bi(1))-

Coo

() = w(G/5) v els) < Ul

i=1

If 31 |G/S|, then the only non-abelian simple groups involved in G/S will be Sz(q).
In this case, we have c¢n(G/S) < 2 by Lemma 2.7. In other words, there exists
2

01,0, € Irr(G/S) such that 7(G/S) C | w(0;(1)). If 3 € o(S5), then there exists

i=1
7 € Irr(G) such that 3| 7(1). We have
2 3
0(G) =w(G/S)Uo(S U ) U [ mo(Bi(1) Um(r(1)).
i=1 i=1
Therefore, cn(G) < 6 for all finite groups. O
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