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Abstract. We improve a few results related to Huppert’s ̺-σ conjecture. We also gener-
alize a result about the covering number of character degrees to arbitrary finite groups.
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1. Introduction

Let π(n) denote the set of prime divisors of a positive integer n. Let G be a finite

group and let π(G) denote the set of prime divisors of its order |G|. Let Irr(G) denote

the set of irreducible characters of G. We set

σ(G) = max{|π(χ(1))| : χ ∈ Irr(G)}

and

̺(G) = {p prime : p | χ(1) for some χ ∈ Irr(G)}.

Huppert’s ̺-σ conjecture states that |̺(G)| can be bounded in terms of σ(G) and if G

is solvable, then |̺(G)| 6 2σ(G). It is a problem of central importance in character

theory. Many analogues of Huppert’s conjecture were proposed and studied. In

fact, the conjugacy class version of Huppert’s conjecture was proposed by Huppert

himself. The element order version of Huppert’s conjecture was first introduced by

Shi in [10]. Let g be an element in G and let π(o(g)) denote the set of prime divisors
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of the order of g. We set

σe(G) = α(G) = max{|π(o(g))| : g ∈ G}

and

̺e(G) = {p prime : p | o(g) for some g ∈ G}.

Shi asked in [10] if |̺e(G)| is bounded by a function of σe(G) (we note that

̺e(G) = π(G)). Answering Shi’s question, Zhang in [13] proved that if G is solvable,

then |̺e(G)| is bounded by a quadratic function of α(G) and that for arbitrary G,

|̺e(G)| is bounded by a super-exponential function of α(G). The result for solvable

groups was improved later by Keller (see [3]) to a linear bound. Keller showed that

for C > 4, it is true that |̺e(G)| 6 Cσe(G) when σe(G) > 1
2e

6C/(C−4). Later, the

constant of a solvable group was determined by Yang in [11]. Using this result, we can

improve the element order version of Huppert’s conjecture for arbitray finite groups.

Character codegrees were first defined in [9]. Let the codegree of a character χ be

codeg(χ) = |G : kerχ|/χ(1). Then, we set

codeg(G) = {codeg(χ) : χ ∈ Irr(G)},

σ(codeg(G)) = max{|π(codeg(χ))| : χ ∈ Irr(G)},

̺(codeg(G)) = {p prime : p | codeg(χ) for some χ ∈ Irr(G)}.

The codegree version of Huppert’s conjecture was studied in [7], [11], [12].

The following can be viewed as another alternative of Huppert’s ̺-σ conjecture.

Let G be a finite simple group and S be a subset of Irr(G). Then S is called

a covering set of G if for every p ∈ π(G) there is a character χ in S such that p

divides χ(1). The covering number of G, denoted by cn(G), is defined as the minimal

number of Card(S), where S is a covering set of G and Card(S) is the cardinality

of the set S, see [4]. We know that for an arbitrary finite group G, there might

exist p ∈ π(G) that does not divide any irreducible character degree of G. Thus, in

order to generalize the concept of covering number to arbitrary finite groups, we will

consider the set ̺(G) instead of π(G). In this note, we generalize the main result

of [4] to arbitrary finite groups.

We will prove the following three results.

Theorem 1.1. Let G be an arbitrary finite group. Then |̺(codeg(G))| 6
43
6 σ(codeg(G)).

Theorem 1.2. Let G be a finite group. Then |π(G)| < 168α(G)4.

Theorem 1.3. Let G be a finite group, then the covering number cn(G) 6 6.
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2. Preliminaries

Lemma 2.1. Let G be a finite solvable group. Then |̺e(G)| 6 17
3 α(G).

P r o o f. See [11], Theorem 1.1. �

Lemma 2.2. Let G be a finite group with trivial solvable radical, then |π(G)| 6
3
2σ(codeg(G)).

P r o o f. This is Theorem 1.3. of [7]. �

Lemma 2.3. Suppose that K/F(K) is nilpotent and C E K. Then there exists

µ ∈ Irr(C) such that π(µ(1)) = π(C/F(K) ∩C).

P r o o f. This is Proposition 17.3 of [5]. In fact, µ(1)= |C/F(C)|= |(C/(F(K)∩C)|.

�

We set ̺0(G) = ̺(G) \ {2, 3} and π0(G) = π(G) \ {2, 3}.

Lemma 2.4. Suppose that M is a normal elementary abelian subgroup of the

solvable group G. Assume that M = CG(M) is a completely reducible G-module

(possibly of mixed characteristic). Set V = Irr(M) and write V = V1 ⊕ . . . ⊕ Vm

for irreducible G-modules Vi. Write Vi = Y G
i for primitive modules Yi for each i.

Assume that NG(Yi)/CG(Yi) is nilpotent by nilpotent for each i. If M 6 N E G,

there exist θ1, θ2 ∈ Irr(N) such that θ1(1)θ2(1) is divisible by each prime in π0(N/M).

P r o o f. First, we can write each Vi as a direct sum of the G-conjugates of Yi,

i = 1, . . . ,m. Thus, V = X1 ⊕ . . . ⊕ Xn for subspaces Xi of V permuted by G

(not necessarily transitively) with {Y1, . . . , Ym} ⊆ {X1, . . . , Xn}. Furthermore, if

Ni = NG(Xi), Ci = CG(Xi) and Fi/Ci = F(Ni/Ci), then Xi is a primitive, faithful

Ni/Ci-module and Ni/Fi is nilpotent.

Let K =
⋂

i

Ni E G be the kernel of the permutation representation of G on

{X1, . . . , Xn}. Since
⋂

i

Ci = M , we have
⋂

i

Fi/M = F(K/M) E G/M . LetH =
⋂

i

Fi,

so that H/M = F(K/M). Observe that K/H is nilpotent. Set C = K ∩ N and

F = H ∩ N = C ∩ H . By Lemma 2.3, there exists θ ∈ Irr(C/M) such that

θ(1) = |C/F |. Since C E N , there exists θ1 ∈ Irr(N) such that |C/F | | θ1(1).

Consequently it suffices to show that there exists θ2 ∈ Irr(N) with θ2(1) divisible by

each prime in π0(N/C) ∪ π0(F/M). To do this, we need just to find some λ ∈ V

such that π0(N : CN (λ)) ⊇ π0(N/C) ∪ π0(F/M).

We can choose ∆ ⊆ {X1, . . . , Xn} such that stabN (∆)/(N ∩ K) = stabN (∆)/C

is a {2, 3}-group by [5], Corollary 5.7. Assess that ∆ intersects each N -orbit non-

trivially. Without losing generality, ∆ = {X1, . . . , Xl} for some l ∈ {1, . . . , n}.
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Set λ = λ1 . . . λl ∈ V for nonprincipal λi ∈ Xi. Finally suppose that Q ∈ Sylq(N)

for a prime q > 5 and Q centralizes λ. Thus, Q 6 stabN (∆). But stabN (∆)/C is

a {2, 3}-group. Thus, Q 6 C. The intersection Fi∩C/Ci∩C is isomorphic to a normal

nilpotent subgroup of Ni/Ci and Ni/Ci acts irreducibly on Xi for each i. Thus, λi is

not centralized by a nontrivial Sylow subgroup of Fi∩C/Ci∩C for i = 1, . . . , l. Since

Q ∩ Fi ∈ Sylq(Fi ∩C), we have that q ∤ |Fi ∩C/Ci ∩C| for i = 1, . . . , l. Each Fj/Cj

(j = 1, . . . , n) is conjugate to some Fi/Ci with i ∈ {1, . . . , l} by our choice of ∆.

Hence, q ∤ |Fj ∩ C/Cj ∩ C| for j = 1, . . . , n. Since
⋂

i

Ci = M and
⋂

i

(Fi ∩ C) = F ,

we have that q ∤ |F/M |. We have already seen above that Q 6 C and so q ∤ |N/C|.

Thus, |N : CN (λ)| is divisible by each prime in π0(N/C) ∪ π0(F/M). �

Lemma 2.5. Suppose that M = CG(M) is a normal elementary abelian sub-

group of a solvable group G and a completely reducible G-module (possibly of mixed

characteristic). Assume that G splits over M , then there exists χ1, χ2 ∈ Irr(G) such

that χ1(1)χ2(1) is divisible by each prime in π0(G/M).

P r o o f. By induction on |M |. Write M = M1 ⊕ . . .⊕Mn for n > 1 irreducible

G-modules Mi. Set Vi = Irr(Mi) so that each Vi is an irreducible G-module and

V = V1 ⊕ . . .⊕ Vn is a faithful G/M -module by Proposition 12.1 of [5]. For each i,

choose Hi 6 G and Xi to be an irreducible primitive Hi-module with XG
i = Vi.

If Hi/CHi
(Xi) 6 Γ(Xi) for each i, the result follows from Lemma 2.4. We assess

without losing generality that H1/CH1
(X1) 66 Γ(X1).

Let K = CG(M1) E G. Let H be a complement for M in G and let J = NH ,

where N = M2 ⊕ . . . ⊕ Mn. Then J ∩ M = N . Now J ∩ K = N(H ∩ K)

acts on N and CJ∩K(N) = N . By induction, there exist µ1, µ2 ∈ Irr(J ∩ K)

such that µ1(1)µ2(1) is divisible by the primes in π0((J ∩ K)/N) = π0(K/M),

as (J ∩ K)/N ∼= K/M . Now J ∩ K E J and centralizes M/N ∼= M1. Thus,

J ∩ K E KJ = G and K/N = M/N × (J ∩ K)/N. By the choice of M1, there

exists λ ∈ V1 such that π0(G/K) = π0(G : IG(λ)). Set β1 = λ · µ1 ∈ Irr(K),

β2 = λ · µ2 ∈ Irr(K). Now IG(β1) ∪ IG(β2) ⊆ IG(λ). Thus, π0(G : IG(β1)) ∪

π0(G : IG(β2)) ⊇ π0(G/K). Choose χi ∈ Irr(G | βi) (i = 1, 2), then, as K E G, we

have π(G/K)∪ π(µ1(1))∪π(µ2(1)) ⊆ π(χ1(1))∪π(χ2(1)). Since µ1(1)µ2(1) is divis-

ible by each prime in π0(K/M), χ1(1)χ2(1) is divisible by each prime in π0(G/M).

�

We note that the statements of Lemmas 2.4 and 2.5 are stronger than Lemmas 17.4

and 17.5 of [5], but the proof is similar.

Lemma 2.6. Let G be a finite solvable group, then there exists µ1, µ2 ∈

Irr(G/Φ(G)) such that π0(G/F(G)) ⊆
2
⋃

i=1

π0(µi(1)).
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P r o o f. Apply Lemma 2.5 with G/Φ(G) and F(G)/Φ(G), respectively, in the

role of G and M . Note that F(G/Φ(G)) = F(G)/Φ(G) is a completely reducible and

faithful G/F(G)-module (possibly of mixed characteristic). Furthermore, G/Φ(G)

splits over F(G)/Φ(G). �

Lemma 2.7. Let G be a finite group with trivial fitting subgroup, then the cov-

ering number cn(G) 6 3. Especially, if PSL2(q) or J1 is not involved in G, then

cn(G) 6 2.

P r o o f. This is Theorem 1.1 of [4]. �

3. Main results

We now prove the first main result.

Theorem 3.1. Let G be a finite group. Then |̺(codeg(G))| 6 43
6 σ(codeg(G)).

P r o o f. We note that ̺(codeg(G)) = π(G) by [9], Lemma 2.4.

Let S be the largest solvable normal subgroup of G. By the main result of [8],

we know that σe(S) 6 σ(codeg(S)). We also know that σ(codeg(S)) 6 σ(codeg(G))

by [11], Lemma 2.2 (1). Thus, we have |π(S)| 6 17
3 σ(codeg(S)) 6 17

3 σ(codeg(G)) by

Lemma 2.1.

By Lemma 2.2, we know that |π(G/S)| 6 3
2σ(codeg(G/S)).

Since σ(codeg(G/S)) 6 σ(codeg(G)) by [11], Lemma 2.2 (2), we have |π(G/S)| 6
3
2σ(codeg(G)). Thus, we have

|π(G)| 6 |π(S)|+ |π(G/S)| 6
(17

3
+

3

2

)

σ(codeg(G)) =
43

6
σ(codeg(G)).

�

We now are ready to prove the second main result.

Theorem 3.2. Let G be a finite group. Then |π(G)| < 168α(G)4.

P r o o f. First note that if α(G) = 1 then |π(G)| 6 4. Therefore we may assume

that α(G) > 2. By Lemma 2.1, we know that |π(G)| 6 17
3 α(G) for every solvable

group G.

Following the proof of Theorem A of [6] by Moretó, let G be a minimal counterex-

ample and introduce the series

1 = S0 6 R1 < S1 < R2 < S2 < . . . < Rm < Sm 6 Rm+1 = G,

such that Ri+1/Si is the largest normal solvable subgroup of G/Si for every i > 0

and Si/Ri is the socle of G/Ri for every i > 1. Moretó then constructed a solvable
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subgroup H of G in the following way. First, for each i = 1, . . . ,m, it was proved

that there is a prime divisor qi of |Si/Ri| that is relatively prime to |G/Si||Ri|. Then,

put H := Q1Q2 . . . Qm, where Qi (i = 1, 2, . . . ,m−1) is a Sylow qi-subgroup of Ri+1

that is Qi+1 . . .Qm-invariant, and Qm is simply a Sylow qm-subgroup of G. Note

that the primes qi are pairwise distinct and thus, |π(H)| = m. By Lemma 2.1, we

have m 6 17
3 α(H), and thus, m 6 17

3 α(G).

We now have

|π(G)| 6 m · max
16i6m

|π(Si/Si−1)|+ |π(G/Sm)|

6 m · max
16i6m

{|π(Si/Ri)|+ |π(Ri/Si−1)|}+ |π(G/Sm)|

6
17

3
α(G)

(

28α(G)3 +
17

3
α(G)

)

+
17

3
α(G) < 168α(G)4,

where the third inequality follows from ̺(G) < 28α(G)3 by [2], Theorem 3.2 and the

fact that |π(G)| 6 17
3 α(G) for every solvable group G, and the last inequality comes

from α(G) > 2. �

Remark 3.1. After the paper has been submitted for publication, we noticed

that the coefficient in Lemma 2.1 has been improved to 5 by [1], Theorem 1. In view

of this, the coefficient in Theorem 3.1 can be improved to 13
2 and the coefficient in

Theorem 3.2 can be improved to 141.

We now prove the third main result.

Theorem 3.3. Let G be a finite solvable group, then there exist χ1, χ2, χ3 ∈

Irr(G) such that ̺0(G) ⊆
3
⋃

i=1

π0(χi(1)).

P r o o f. By the Ito-Michler theorem a prime p does not divide the degree of

any irreducible character of a group G if and only if G has a normal abelian Sylow

p-subgroup. Thus, p ∈ ̺(G) if and only if p | |G/F(G)| or F(G) has a nonabelian

Sylow p-subgroup. Let π be the set of primes r for which Or(G) is nonabelian and

r ∤ |G/Op(G)|. Then there exists µ ∈ Irr(G) such that r | µ(1) for all r ∈ π. By

Lemma 2.6, there exists χ1, χ2 ∈ Irr(G/Φ(G)) such that π0(G/F(G)) ⊆
2
⋃

i=1

π0(χi(1)).

Thus, we have

̺0(G) = π0(G/F(G)) ∪ π ⊆

2
⋃

i=1

π0(χi(1)) ∪ π0(µ(1)).

This completes the proof. �

Theorem 3.4. Let G be a finite group, then the covering number cn(G) 6 6.
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P r o o f. Let G be a solvable group, we have ̺0(G) ⊆
3
⋃

i=1

π0(χi(1)) by Theo-

rem 3.3, where χ1, χ2, χ3 ∈ Irr(G). If 2 or 3 belongs to ̺(G), we can always find an

irreducible character of G to cover it. Thus cn(G) 6 5.

Let G be a nonsolvable group. Let S be the largest solvable normal subgroup of G.

By Theorem 3.3, there exists β1, β2, β3 ∈ Irr(S) such that ̺0(S) ⊆
3
⋃

i=1

π0(βi(1)). By

Lemma 2.7, there exists µ1, µ2, µ3 ∈ Irr(G/S) such that π(G/S) ⊆
3
⋃

i=1

π(µi(1)).

It is easy to see that ̺(G) = π(G/S)∪̺(S). Since the order of a nonabelian simple

group is divisible by 2, we have 2 ∈ π(G/S). If 3 | |G/S|, then 3 ∈ π(G/S). We have

̺(G) = π(G/S) ∪ ̺(S) ⊆

3
⋃

i=1

π(µi(1)) ∪

3
⋃

i=1

π0(βi(1)).

If 3 ∤ |G/S|, then the only non-abelian simple groups involved in G/S will be Sz(q).

In this case, we have cn(G/S) 6 2 by Lemma 2.7. In other words, there exists

θ1, θ2 ∈ Irr(G/S) such that π(G/S) ⊆
2
⋃

i=1

π(θi(1)). If 3 ∈ ̺(S), then there exists

τ ∈ Irr(G) such that 3 | τ(1). We have

̺(G) = π(G/S) ∪ ̺(S) ⊆

2
⋃

i=1

π(θi(1)) ∪

3
⋃

i=1

π0(βi(1)) ∪ π(τ(1)).

Therefore, cn(G) 6 6 for all finite groups. �
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