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Abstract. Let H be a subgroup of a finite group G. We say that H satisfies the II-property
in G if for any chief factor L/K of G, |G/K : Ng g (HK/KNL/K)|isan(HK/KNL/K)-
number. We study the influence of some p-subgroups of G satisfying the II-property on the
structure of GG, and generalize some known results.
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1. INTRODUCTION

All groups considered in this paper are finite. We use conventional notions as
in [8]. Throughout the paper, G always denotes a finite group, p denotes a fixed
prime, 7 denotes a set of primes and 7(G) denotes the set of all primes dividing |G|.
An integer n is called a w-number if all prime divisors of n belong to 7. In particular,
an integer n is called a p-number if it is a power of p.

Suppose that P is a p-group. Let M(P) be the set of all maximal subgroups of P.
Let d be the smallest generator number of P, i.e., p? = |P/®(P)|, where ®(P) is the
Frattini subgroup of P. Following [13], M4(P) = {Pi,...,P;} is a subset of M(P)
such that (d] P, = ®(P). Notice that the subset My(P) is not unique for a fixed

i=1

1=

This work is supported by the National Natural Science Foundation of China (Grant
No. 12071376, 11971391), the Fundamental Research Funds for the Central Universities
(No. XDJK2020B052), the Natural Science Foundation Project of CQ (No. cstc2021jcyj-
msxmX0426) and the Fundamental Research Funds for the Central Universities (Nos.
XDJK2019C116 and XDJK2019B030).

DOI: 10.21136/CMJ.2023.0089-23 1349

© Institute of Mathematics, Czech Academy of Sciences 2023.


http://dx.doi.org/10.21136/CMJ.2023.0089-23

p-group P in general. We know that |[M(P)| = (p¢ —1)/(p — 1), |IMa(P)| = d and
Tim (o~ 1)/((p — 1)) = 00, 50 [M(P)] > [ Mu(P)|.

In [12], Li introduced the concept of the II-property of subgroups of finite groups.
Let H be a subgroup of G. We say that H satisfies the Il-property in G if for any
chief factor L/K of G, |G/K : Nk (HK/KNL/K)|is a 7(HK/KNL/K)-number.
This embedding property of subgroups has a strong structural impact and generalises
many other known properties, see Section 4.

In this note, we study the influence of some maximal subgroups of Sylow sub-
groups satisfying the Il-property on the structure of finite groups. Our first result
is as follows:

Theorem 1.1. Let P be a Sylow p-subgroup of G for a prime p € 7(G). Suppose
that every member of a fixed My(P) satisfies the Il-property in G. Then either
|P| = p or G is p-supersoluble.

Based on Theorem 1.1, we can prove the following results.

Theorem 1.2. Suppose that P is a Sylow p-subgroup of G and Ng(P) is
p-nilpotent for a prime p € w(G). Then G is p-nilpotent if and only if every member
of a fixed M 4(P) satisfies the Il-property in G.

Theorem 1.3. Let p be a prime dividing the order of G with (|G|,p—1) =1 and
P € Syl,(G). Then G is p-nilpotent if and only if every member of a fixed Ma(P)
satisfies the Il-property in G.

Theorem 1.4. Let G be a group. Suppose that every member of a fixed M 4(P)
satisfies the Il-property in G for every non-cyclic Sylow subgroup P of G. Then G
is supersoluble.

2. PRELIMINARIES
In this section, we give some lemmas that will be used in our proofs.

Lemma 2.1 ([12], Proposition 2.1(1)). Let H be a subgroup of G and N a nor-
mal subgroup of G. If H satisfies the Il-property in G, then HN/N satisfies the
II-property in G/N.

Lemma 2.2 ([3], Chaper A, Lemma 1.2). Let U, V and W be subgroups of G.
Then the following statements are equivalent:
L) UNVW=UnV)(UNW).
(2) UVNUW =U({V NnW).
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Lemma 2.3 ([4], Lemma 2.4). Suppose that H is a non-abelian simple group. If
the Sylow p-subgroups H,, of H are of order p, then the outer automorphism group
Out(H) of H is a p'-group.

Lemma 2.4 ([8], Kapitel I, Hauptsatz 17.4). Suppose that N is an abelian normal
subgroup of G and N < M < G such that (|N|,|G : M|) = 1. If N is complemented
in M, then N is complemented in G.

Lemma 2.5. Let H be a p-subgroup of G for some prime p € m(G) and K < G.
If H satisfies the II-property in G and H < K, then H satisfies the II-property in K.

Proof. Let A/B be an arbitrary chief factor of K. Let C//D be a chief factor
of G below K such that D < B < A < C. Then |G : Ng(HD N ()| is a p-number.
Thus, |K : Nx(HDNC)| is a p-number. Clearly, Ny (HDNC) < Nx((HDNA)B) =
Nk (HBNA) and hence |K : Nx(HBNA)| is a p-number. This shows that H satisfies
the Il-property in K. O

Lemma 2.6. Let H be a p-subgroup of G for a prime p € n(G). If G is p-super-
soluble, then H satisfies the II-property in G.

Proof. Let M/N be an arbitrary chief factor of G. Then |M/N| is a p’-number
or [IM/N|=p. If [M/N]| is a p’-number, then (HNM)N/N = 1. If [M/N| = p, then
(HNM)N/N = M/N or 1. In any case, we have that |G/N: Ng/n((HNM)N/N)|=1.
Therefore, H satisfies the II-property in G, as wanted. (]

3. PROOFS

Proof of Theorem 1.1. Suppose that the theorem is not true and G is a coun-
terexample of minimal order. Then |P| > p? and G is not p-supersoluble. Set
My(P)={P,...,Ps}. We divide the proof into the following steps.

Step 1: Oy (G) = 1. Set G = G/O,(G). Tt is clear that P is a Sylow p-subgroup
of G. Moreover, P has the same smallest generator number as P. So M4(P) =
{Py,..., P} and fd] P, = ®(P;). By Lemma 2.1, P; satisfies the II-property in G for

i=1
any P; € My(P). Thus, G satisfies the hypotheses of the theorem. If O, (G) > 1,
then either |P| = p or G is p-supersoluble by the minimal choice of G. It follows
that either |P| = p or G is p-supersoluble, a contradiction. Therefore, Oy (G) = 1.

Step 2: P is non-cyclic. Assume that P is cyclic. Then P has a unique maximal
subgroup P;. Let K be a minimal normal subgroup of G. Since O,/ (G) = 1, it follows
that PNK > 1. Note that |P| > p?. Since P is a cyclic p-group, we have that PiNK =
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PiN(PNK) > 1. By hypothesis, P; satisfies the II-property in G. As a consequence,
|G : Ne¢(PiNK)| is a p-number. It follows that P, N K < G. By Theorem 2.1 of [19],
we deduce that GG is p-soluble. Furthermore, GG is p-supersoluble, a contradiction.
Step 3: Let ®(P)g be the core of ®(P) in G, then ®(P)g = 1. Assume that
®(P)e > 1. Then we can pick a minimal normal subgroup K of G contained
in ®(P)¢. Since ®(P) < P; for any P; € M4(P), we have that fd] P,/K = ®(P/K).
i=1

1=

Obviously, P/K has the same smallest generator number as P. By Lemma 2.1,
G/K satisfies the hypotheses of the theorem. The minimal choice of G implies that
|P/K| = p or G/K is p-supersoluble. If |P/K| = p, then P is cyclic, contrary to
Step 2. If G/K is p-supersoluble, then G is p-supersoluble, also a contradiction.
Step 4: If N is a minimal normal subgroup of G contained in P, then |N| = p. If

d
N < P, for every P, € My(P), then N < (] P, = ®(P), which is contrary to Step 3.
i=1

Hence, there exists P € My(P) such that N £ P. By hypothesis, P satisfies the
II-property in G. Then |G : Ng(ﬁ N N)| is a p-number. Since PAN< P, it follows
that PN N < G. Hence, PN N = 1. Note that N < P, we have |N| = p.

Step 5: All minimal normal subgroups of G are contained in O,(G). Assume
that 7" is a minimal normal subgroup of G which is not a p-subgroup. By Step 1,
we have that p | |[T| and T'=T1 x ... X T, where T; (i = 1,...,s) is a non-abelian
simple subgroup of T'.

Substep 5.1: P,NT =1 for any P; in My4(P) and |P NT| = p. In addition, T is
a non-abelian simple group. For any P; € My(P), P, satisfies the II-property in G.
Then |G : Ng(P; NT)| is a p-number. Since P, NT < P, it follows that P, NT < G.
Observe that T is not a p-group, we have P,NT = 1, and thus |PNT| = p by Step 1.
Hence, T'= T is a non-abelian simple group.

Substep 5.2: Under the assumption, O,(G) = 1. If O,(G) > 1, we can pick
a minimal normal subgroup N of G contained in O,(G). By Step 4, we know that N
is of order p. Hence, NT = N x T. By hypothesis, P; satisfies the II-property in G
for any P; € Mg(P). Consider the chief factor TN/N. Then |G : Ng(P;,N NTN)|
is a p-number. Note that LN NTN < P, and so LN NTN < G. This yields
that PLNNTN = N or bPNNTN =TN. Since T is not a p-group, it follows that
TN &« P;N. Therefore, LNNTN = N. If N « P;, then P,N = P. This implies
that PN NTN = PNTN = N(PNT) > N, a contradiction. Hence, N < P;. It

d
follows that N < () P, = ®(P), which is contrary to Step 3.
i=1

Substep 5.8: Cq(T) = 1. Assume that Cg(T) > 1. Let L be a minimal normal
subgroup of G contained in C¢(T). By (5.1), we get that TNL = 1. Consider the chief
factor LT/T. By hypothesis, P; satisfies the II-property in G for any P; € M4(P).
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Then |G : Ng(P,T N LT)| is a p-number, and thus P;T N LT < G. This forces that
LT < PTor PTNLT =T. If LT < PT, then PZLT/T = PlT/T = Pl/(PZ N T),
and thus P,LT/T is a p-group. This shows that LT/T is a p-group. Since LNT =1,
we conclude that L is a non-identity p-group, which is contrary to Substep 5.2.
Therefore, ;T N LT = T. This forces that P, N L = 1. By Lemma 2.2, we have
that TN PL = (TNPF)(TNL)=TnNP,. By Substep 5.1, there exists a subgroup
P; € My(P) such that TN P; = 1. Thus, |P;TL|, > |P|, a contradiction.

Substep 5.4: Finishing the proof of Step 5. Since Cg(T) = 1 by Substep 5.3, we
see that G is isomorphic to a subgroup of Aut(7"). Note that Z(T) < Ce(T) =1,
and so |G/T| divides |Aut(T")/Inn(T")|. In view of Substep 5.1, we conclude that p
divides |Out(7")|. By Lemma 2.3, this is impossible.

Step 6: Op(Q) is a direct product of some normal subgroups of G of order p and
G = 0,(G) x R, the semi-direct product of O,(G) with a subgroup R of G. Let K,
be a minimal normal subgroup of G contained in O,(G). Then |K;| = p by Step 4
and K1 N®(P) = 1 by Step 3. Hence, there exists a maximal subgroup M of P such
that K1 NM; = 1. By Lemma 2.4, K7 has a complement U in G, i.e., G = K;U and
K1NU = 1. Hence, P = K;(PNU). Then O,(G) = K1(0p(G)NU). It O,(G)NU =1,
then Step 6 holds. Now assume that O,(G) NU > 1. Hence, we can pick a minimal
normal subgroup K of G contained in O,(G)NU. Then |K;| = p by Step 4 and KyN
®(P) = 1 by Step 3. Hence, there exists a maximal subgroup Ms of P such that KoN
My =1. Then P = KyMs = (O,(G)NU)My = (PNU)Ma,. It is clear that |(PNU) :
(ManNU)| = |Ma(PNU) : Ma| = |P : Ms| =p. Thus, M>NU is a complement of K,
in PNU. Therefore, K5 has a complement V in U by Lemma 2.4. Then G = K,U =
(K1 x K3)xV. Continuing this process, we finally have G = O,(G) x R and O,(G) =
K1 X Ky x +--x Ky, where K; (i =1,...,t) is a normal subgroup of G of order p.

Step 7: The final contradiction. By Step 6, we know that O,(G) is a direct product
of some normal subgroups of G of order p. Hence, P < Cg(O,(G)). Notice that
Cc(0p(G)) N R < O,(G)R = G. By Step 5, we have Cq(O,(G)) N R = 1. Then
PN R =1. This yields that P = PNO,(G)R = O,(G)(PNR) = O,(G). By Step 6,
G is p-supersoluble, the final contradiction. Our proof is now complete. O

Proof of Theorem 1.2. By Lemma 2.6, we only need to prove the sufficiency.
Applying Theorem 1.1, we know that either |P| = p or G is p-supersoluble. If
|P| = p, then P < Z(Ng(P)) because N¢(P) is p-nilpotent. By Burnside’s theorem
(see [9], Theorem 5.13), G is p-nilpotent, as wanted. Hence, we may suppose that G
is p-supersoluble. By [8], Kapitel VI, Hauptsatz 6.6 we know that the p-length
of a p-supersoluble group is at most 1. Thus, PO, (G) is normal in G. Write
G = G/Oy(G). Then G = Nz(P) = Ng(P)Oy(G)/O, (G) is p-nilpotent. Hence,
G is p-nilpotent, as wanted. O
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Proof of Theorem 1.3. We only need to prove the sufficiency. By Theo-
rem 1.1, we know that either |P| = p or G is p-supersoluble. If |P| = p, then G is
p-nilpotent by [6], Chapter 1, Lemma 3.39 as desired. If G is p-supersoluble, then G
is p-nilpotent by [6], Chapter 2, Lemma 5.25 and we are done. O

Corollary 3.1. Let N be a normal subgroup of G such that G/N is p-nilpotent
and P is a Sylow p-subgroup of N, where p is a prime divisor of |G| with (|G|,p—1)=1.
Suppose that every member of some fixed My(P) satisfies the Il-property in G.
Then G is p-nilpotent.

Proof. By Theorem 1.3, we know that N is p-nilpotent. Let M be the normal
p-complement of N. Then M < G. By Lemma 2.1, G/M satisfies the hypotheses
of the corollary. If M > 1, then G/M is p-nilpotent by induction. Thus, G is
p-nilpotent, as desired. Now assume that M = 1, then N = P. Let K/P be the
normal p-complement of G/P. Then K < G and P is the Sylow p-subgroup of K.
By Lemma 2.5, we see that every member of M,(P) satisfies the II-property in K.
Then K is p-nilpotent by Theorem 1.3. Let K; be the normal p-complement of K.
Clearly, K; is also a normal p-complement of G. Hence, G is p-nilpotent and the
proof is complete. O

Proof of Theorem 1.4. Let g be the smallest prime of |G| and @ € Syl (G).

If @ is cyclic, then G is ¢g-nilpotent by [9], Corollary 5.14. If @ is non-cyclic, then by
Theorem 1.3, G is ¢g-nilpotent. By the same arguments and induction, we see that G
is a Sylow tower group. Applying Theorem 1.1, we conclude that G is supersoluble.
O

Remark 3.2. There exists a saturated formation F containing U, the class of
all supersoluble groups, and a soluble group G with a normal subgroup N such
that G/N € F, and for every non-cyclic Sylow subgroup P of N, every member of
a fixed M (P) satisfies the II-property in G. But G ¢ F.

For example, let f be a formation function defined by f(p), the class of p’-groups for
any prime p, and let F be the formation locally defined by f(p). If M is a supersoluble
group, then any p-chief factor L/K of M is cyclic of order p, and so M/Cy(L/K) is
cyclic of order dividing p — 1. Hence, M/Cy(L/K) € f(p). Therefore, M € F and
so F contains Y. It is not difficult to see that A4 € F.

Let P = (a,b,c) be an elementary abelian group of order 33, and let a, 3 be two
automorphisms of P defined respectively by

_abc 6_abc
e a ) P \p ot gt )

1354



Then o = 82 = (aB)? = 1 and H = (o, 3) = A4. Thus, H acts on P by automor-
phisms. Let G = P x H be the corresponding semidirect product. Then P is an
irreducible and faithful A4-module on GF'(3), and so it is a minimal normal subgroup
of G with Cyg(P) = 1. Since Ay € F and G/P = H = A4, we have G/P € F. Let
R = PS, where S is a Sylow 2-subgroup of G. We have O3(G) < R < G. Since S is
elementary abelian of order 4, it follows that a minimal normal subgroup of R con-
tained in P is of order 3. By Maschke’s theorem (see [5], Chapter 3, Theorem 3.1),
P is a completely reducible S-module. Hence, P = (a1) x (a2) X (as), where (a;)
(t = 1,2,3) is S-invariant. Let P; = (a;: j # 4). Then every P; is normalized
by O3(G), and so P; satisfies the II-property in G. Set My(P) = {P1, P, P3}. On
the other hand, P/1 is a 3-chief factor of G and G/Cq(P) = G/P = A4, which is
not a 3’-group. Hence, G ¢ F.

4. FINAL REMARKS AND APPLICATIONS

In this section, we will show that the concept of the II-property can be viewed as
a generalization of many known embedding properties.

Recall that two subgroups H and K of G are said to be permutable if HK = KH.
From [11], a subgroup H of G is said to be S-permutable (or m-quasinormal,
S-quasinormal) in G if H permutes with all Sylow subgroups of G. According to [7],
a subgroup H of G is said to be X-permutable with a subgroup T of G if there is
an element z € X such that HT® = T*H, where X is a nonempty subset of G. Fol-
lowing [1], the U-hypercenter Z;;(G) of G is the product of all normal subgroups H
of GG, such that all G-chief factors under H have prime orders, where I/ denotes the
class of all supersoluble groups. A subgroup H of G is called a CAP-subgroup of G
if H either covers or avoids every chief factor L/K of G, that is, HL = HK or
HNL=HnNK, see [3], Chapter A, Definition 10.8.

Proposition 4.1. Let H be a subgroup of G. Then H satisfies the II-property

in G if one of the following holds:

(1) H is normal in G;

(2) H is permutable in G;

(3) H is S-permutable in G;

(4) H is X -permutable with all Sylow subgroups of G, where X is a soluble normal
subgroup of G;
(5) H is a CAP-subgroup of G;
(6) H/Hg < Zu(G/Hg).

Proof. Statements (1)—(6) were proved in Propositions 2.2-2.3 of [12]. O
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A subgroup H of G is said to be S-semipermutable (see [2]) in G if HG), = G,H
for any Sylow p-subgroup G, of G with (p,|H|) = 1. A subgroup H of G is said to
be SS-quasinormal (see [14]) in G if there is a subgroup B of G such that G = H
and H permutes with every Sylow subgroup of B.

Proposition 4.2. Let H be a p-subgroup of G for a prime p € n(G). Then H
satisfies II-property in G if one of the following holds:
(1) H is S-semipermutable in G;
(2) H is SS-quasinormal in G.

Proof. (1) Let L/K be an arbitrary chief factor of G. Write G = G/K. At
first, we argue that |G : Ng(H N L)| is a p-number. It is no loss of generality to
assume that HNL > 1. By Lemma 2.2(4) of [16], H N L is S-semipermutable
in G. Tt follows from Lemma 2.2 (2) of [16] that HNL = H N L is S-semipermutable
in G. Then the normal closure (H N L)% of HNL in G is soluble by Theorem A
of [10]. Since L is a minimal normal subgroup of G and H N L > 1, we have that
(H—ﬁL)a = L is a normal p-subgroup of G. Applying Lemmas 2.2 (3) and 2.1 (6)
of [12], we get that OP(G) < Nz(H N L), and thus |G : Ng(H N L)| is a p-number,
as claimed. Therefore, H satisfies the II-property in G.

(2) Applying Lemma 2.5 of [14], we know that H is S-semipermutable in G. By (1),
the conclusion follows. O

By Propositions 4.1 and 4.2, we can obtain the following corollaries.

Corollary 4.3 ([14], Theorem 1.1). Let p be the smallest prime dividing the
order of G and P a Sylow p-subgroup of G. If every member of a fixed M4(P) is
SS-quasinormal in G, then G is p-nilpotent.

Corollary 4.4 ([14], Theorem 1.2). Let p be a prime dividing the order of G
and P a Sylow p-subgroup of G. If Ng(P) is p-nilpotent and every member of
a fixed M (P) is SS-quasinormal in G, then G is p-nilpotent.

Corollary 4.5 ([14], Theorem 1.3). Let G be a p-solvable group for a prime p
and P a Sylow p-subgroup of G. Suppose that every member of a fixed M4(P) is
S S-quasinormal in G. Then G is p-supersoluble.

Corollary 4.6 ([17], Theorem 3.1). Let G be a p-soluble group and let P be
a Sylow p-subgroup of G, where p is a fixed prime. Then G is p-supersoluble if and
only if every member of a fixed M (P) is a CAP-subgroup of G.
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Corollary 4.7 ([17], Theorem 3.3). Let p be the smallest prime dividing the order
of G and let P be a Sylow p-subgroup of G. Then G is p-nilpotent if and only if
every member of a fixed My(P) is a CAP-subgroup of G.

Corollary 4.8 ([17], Theorem 3.4). Suppose that P is a Sylow p-subgroup of G
and Ng(P) is p-nilpotent for a prime p € w(G). Then G is p-nilpotent if and only if
every member of a fixed M4(P) is a CAP-subgroup of G.

Corollary 4.9 ([15], Theorem 3.1). Let G be a group and P be a Sylow
p-subgroup of G, where p is the smallest prime dividing |G|. If all maximal subgroups
of P are S-semipermutable in G, then G is p-nilpotent.

Corollary 4.10 ([4], Main result). Let P be a Sylow p-subgroup of G for a prime
p € w(G). Suppose that every member of some fixed M(P) is a CAP-subgroup
of G. Then either |P| = p or G is p-supersoluble.

Corollary 4.11 ([18], Theorem 3.8). Let p be a prime dividing the order of
a p-soluble group G and let P be a Sylow p-subgroup of G. If every member of
a fixed M (P) is S-semipermutable in G, then G is p-supersoluble.

Corollary 4.12 ([18], Theorem 3.9). Let p be an odd prime dividing the order
of G and let P be a Sylow p-subgroup of G. If Ng(P) is p-nilpotent and every
member of a fixed My(P) is S-semipermutable in G, then G is p-nilpotent.
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