

Zhengtian Qiu; Jianjun Liu; Guiyun Chen

On Π -property of some maximal subgroups of Sylow subgroups of finite groups

Czechoslovak Mathematical Journal, Vol. 73 (2023), No. 4, 1349–1358

Persistent URL: <http://dml.cz/dmlcz/151964>

Terms of use:

© Institute of Mathematics AS CR, 2023

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these *Terms of use*.

This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project *DML-CZ: The Czech Digital Mathematics Library* <http://dml.cz>

ON Π -PROPERTY OF SOME MAXIMAL SUBGROUPS
OF SYLOW SUBGROUPS OF FINITE GROUPS

ZHENGTIAN QIU, JIANJUN LIU, GUIYUN CHEN, Chongqing

Received March 2, 2023. Published online September 8, 2023.

Abstract. Let H be a subgroup of a finite group G . We say that H satisfies the Π -property in G if for any chief factor L/K of G , $|G/K : N_{G/K}(HK/K \cap L/K)|$ is a $\pi(HK/K \cap L/K)$ -number. We study the influence of some p -subgroups of G satisfying the Π -property on the structure of G , and generalize some known results.

Keywords: finite group; p -supersoluble group, p -nilpotent group, Π -property

MSC 2020: 20D10, 20D20

1. INTRODUCTION

All groups considered in this paper are finite. We use conventional notions as in [8]. Throughout the paper, G always denotes a finite group, p denotes a fixed prime, π denotes a set of primes and $\pi(G)$ denotes the set of all primes dividing $|G|$. An integer n is called a π -number if all prime divisors of n belong to π . In particular, an integer n is called a p -number if it is a power of p .

Suppose that P is a p -group. Let $\mathcal{M}(P)$ be the set of all maximal subgroups of P . Let d be the smallest generator number of P , i.e., $p^d = |P/\Phi(P)|$, where $\Phi(P)$ is the Frattini subgroup of P . Following [13], $\mathcal{M}_d(P) = \{P_1, \dots, P_d\}$ is a subset of $\mathcal{M}(P)$ such that $\bigcap_{i=1}^d P_i = \Phi(P)$. Notice that the subset $\mathcal{M}_d(P)$ is not unique for a fixed

This work is supported by the National Natural Science Foundation of China (Grant No. 12071376, 11971391), the Fundamental Research Funds for the Central Universities (No. XDKJ2020B052), the Natural Science Foundation Project of CQ (No. cstc2021jcyj-msxmX0426) and the Fundamental Research Funds for the Central Universities (Nos. XDKJ2019C116 and XDKJ2019B030).

p -group P in general. We know that $|\mathcal{M}(P)| = (p^d - 1)/(p - 1)$, $|\mathcal{M}_d(P)| = d$ and $\lim_{d \rightarrow \infty} (p^d - 1)/((p - 1)d) = \infty$, so $|\mathcal{M}(P)| \gg |\mathcal{M}_d(P)|$.

In [12], Li introduced the concept of the Π -property of subgroups of finite groups. Let H be a subgroup of G . We say that H satisfies the Π -property in G if for any chief factor L/K of G , $|G/K : N_{G/K}(HK/K \cap L/K)|$ is a $\pi(HK/K \cap L/K)$ -number. This embedding property of subgroups has a strong structural impact and generalises many other known properties, see Section 4.

In this note, we study the influence of some maximal subgroups of Sylow subgroups satisfying the Π -property on the structure of finite groups. Our first result is as follows:

Theorem 1.1. *Let P be a Sylow p -subgroup of G for a prime $p \in \pi(G)$. Suppose that every member of a fixed $\mathcal{M}_d(P)$ satisfies the Π -property in G . Then either $|P| = p$ or G is p -supersoluble.*

Based on Theorem 1.1, we can prove the following results.

Theorem 1.2. *Suppose that P is a Sylow p -subgroup of G and $N_G(P)$ is p -nilpotent for a prime $p \in \pi(G)$. Then G is p -nilpotent if and only if every member of a fixed $\mathcal{M}_d(P)$ satisfies the Π -property in G .*

Theorem 1.3. *Let p be a prime dividing the order of G with $(|G|, p - 1) = 1$ and $P \in \text{Syl}_p(G)$. Then G is p -nilpotent if and only if every member of a fixed $\mathcal{M}_d(P)$ satisfies the Π -property in G .*

Theorem 1.4. *Let G be a group. Suppose that every member of a fixed $\mathcal{M}_d(P)$ satisfies the Π -property in G for every non-cyclic Sylow subgroup P of G . Then G is supersoluble.*

2. PRELIMINARIES

In this section, we give some lemmas that will be used in our proofs.

Lemma 2.1 ([12], Proposition 2.1 (1)). *Let H be a subgroup of G and N a normal subgroup of G . If H satisfies the Π -property in G , then HN/N satisfies the Π -property in G/N .*

Lemma 2.2 ([3], Chaper A, Lemma 1.2). *Let U , V and W be subgroups of G . Then the following statements are equivalent:*

- (1) $U \cap VW = (U \cap V)(U \cap W)$.
- (2) $UV \cap UW = U(V \cap W)$.

Lemma 2.3 ([4], Lemma 2.4). *Suppose that H is a non-abelian simple group. If the Sylow p -subgroups H_p of H are of order p , then the outer automorphism group $\text{Out}(H)$ of H is a p' -group.*

Lemma 2.4 ([8], Kapitel I, Hauptsatz 17.4). *Suppose that N is an abelian normal subgroup of G and $N \leq M \leq G$ such that $(|N|, |G : M|) = 1$. If N is complemented in M , then N is complemented in G .*

Lemma 2.5. *Let H be a p -subgroup of G for some prime $p \in \pi(G)$ and $K \trianglelefteq G$. If H satisfies the Π -property in G and $H \leq K$, then H satisfies the Π -property in K .*

Proof. Let A/B be an arbitrary chief factor of K . Let C/D be a chief factor of G below K such that $D \leq B \leq A \leq C$. Then $|G : N_G(HD \cap C)|$ is a p -number. Thus, $|K : N_K(HD \cap C)|$ is a p -number. Clearly, $N_K(HD \cap C) \leq N_K((HD \cap A)B) = N_K(HB \cap A)$ and hence $|K : N_K(HB \cap A)|$ is a p -number. This shows that H satisfies the Π -property in K . \square

Lemma 2.6. *Let H be a p -subgroup of G for a prime $p \in \pi(G)$. If G is p -supersoluble, then H satisfies the Π -property in G .*

Proof. Let M/N be an arbitrary chief factor of G . Then $|M/N|$ is a p' -number or $|M/N| = p$. If $|M/N|$ is a p' -number, then $(H \cap M)N/N = 1$. If $|M/N| = p$, then $(H \cap M)N/N = M/N$ or 1. In any case, we have that $|G/N : N_{G/N}((H \cap M)N/N)| = 1$. Therefore, H satisfies the Π -property in G , as wanted. \square

3. PROOFS

Proof of Theorem 1.1. Suppose that the theorem is not true and G is a counterexample of minimal order. Then $|P| \geq p^2$ and G is not p -supersoluble. Set $\mathcal{M}_d(P) = \{P_1, \dots, P_d\}$. We divide the proof into the following steps.

Step 1: $O_{p'}(G) = 1$. Set $\overline{G} = G/O_{p'}(G)$. It is clear that \overline{P} is a Sylow p -subgroup of \overline{G} . Moreover, \overline{P} has the same smallest generator number as P . So $\mathcal{M}_d(\overline{P}) = \{\overline{P}_1, \dots, \overline{P}_d\}$ and $\bigcap_{i=1}^d \overline{P}_i = \Phi(\overline{P})$. By Lemma 2.1, \overline{P}_i satisfies the Π -property in \overline{G} for any $\overline{P}_i \in \mathcal{M}_d(\overline{P})$. Thus, \overline{G} satisfies the hypotheses of the theorem. If $O_{p'}(G) > 1$, then either $|\overline{P}| = p$ or \overline{G} is p -supersoluble by the minimal choice of G . It follows that either $|P| = p$ or G is p -supersoluble, a contradiction. Therefore, $O_{p'}(G) = 1$.

Step 2: P is non-cyclic. Assume that P is cyclic. Then P has a unique maximal subgroup P_1 . Let K be a minimal normal subgroup of G . Since $O_{p'}(G) = 1$, it follows that $P \cap K > 1$. Note that $|P| \geq p^2$. Since P is a cyclic p -group, we have that $P_1 \cap K =$

$P_1 \cap (P \cap K) > 1$. By hypothesis, P_1 satisfies the II-property in G . As a consequence, $|G : N_G(P_1 \cap K)|$ is a p -number. It follows that $P_1 \cap K \trianglelefteq G$. By Theorem 2.1 of [19], we deduce that G is p -soluble. Furthermore, G is p -supersoluble, a contradiction.

Step 3: Let $\Phi(P)_G$ be the core of $\Phi(P)$ in G , then $\Phi(P)_G = 1$. Assume that $\Phi(P)_G > 1$. Then we can pick a minimal normal subgroup K of G contained in $\Phi(P)_G$. Since $\Phi(P) \leq P_i$ for any $P_i \in \mathcal{M}_d(P)$, we have that $\bigcap_{i=1}^d P_i / K = \Phi(P/K)$. Obviously, P/K has the same smallest generator number as P . By Lemma 2.1, G/K satisfies the hypotheses of the theorem. The minimal choice of G implies that $|P/K| = p$ or G/K is p -supersoluble. If $|P/K| = p$, then P is cyclic, contrary to Step 2. If G/K is p -supersoluble, then G is p -supersoluble, also a contradiction.

Step 4: If N is a minimal normal subgroup of G contained in P , then $|N| = p$. If $N \leq P_i$ for every $P_i \in \mathcal{M}_d(P)$, then $N \leq \bigcap_{i=1}^d P_i = \Phi(P)$, which is contrary to Step 3.

Hence, there exists $\widehat{P} \in \mathcal{M}_d(P)$ such that $N \not\leq \widehat{P}$. By hypothesis, \widehat{P} satisfies the II-property in G . Then $|G : N_G(\widehat{P} \cap N)|$ is a p -number. Since $\widehat{P} \cap N \trianglelefteq P$, it follows that $\widehat{P} \cap N \trianglelefteq G$. Hence, $\widehat{P} \cap N = 1$. Note that $N \leq P$, we have $|N| = p$.

Step 5: All minimal normal subgroups of G are contained in $O_p(G)$. Assume that T is a minimal normal subgroup of G which is not a p -subgroup. By Step 1, we have that $p \mid |T|$ and $T = T_1 \times \dots \times T_s$, where T_i ($i = 1, \dots, s$) is a non-abelian simple subgroup of T .

Substep 5.1: $P_i \cap T = 1$ for any P_i in $\mathcal{M}_d(P)$ and $|P \cap T| = p$. In addition, T is a non-abelian simple group. For any $P_i \in \mathcal{M}_d(P)$, P_i satisfies the II-property in G . Then $|G : N_G(P_i \cap T)|$ is a p -number. Since $P_i \cap T \trianglelefteq P$, it follows that $P_i \cap T \trianglelefteq G$. Observe that T is not a p -group, we have $P_i \cap T = 1$, and thus $|P \cap T| = p$ by Step 1. Hence, $T = T_1$ is a non-abelian simple group.

Substep 5.2: Under the assumption, $O_p(G) = 1$. If $O_p(G) > 1$, we can pick a minimal normal subgroup N of G contained in $O_p(G)$. By Step 4, we know that N is of order p . Hence, $NT = N \times T$. By hypothesis, P_i satisfies the II-property in G for any $P_i \in \mathcal{M}_d(P)$. Consider the chief factor TN/N . Then $|G : N_G(P_i N \cap TN)|$ is a p -number. Note that $P_i N \cap TN \trianglelefteq P$, and so $P_i N \cap TN \trianglelefteq G$. This yields that $P_i N \cap TN = N$ or $P_i N \cap TN = TN$. Since T is not a p -group, it follows that $TN \not\leq P_i N$. Therefore, $P_i N \cap TN = N$. If $N \not\leq P_i$, then $P_i N = P$. This implies that $P_i N \cap TN = P \cap TN = N(P \cap T) > N$, a contradiction. Hence, $N \leq P_i$. It follows that $N \leq \bigcap_{i=1}^d P_i = \Phi(P)$, which is contrary to Step 3.

Substep 5.3: $C_G(T) = 1$. Assume that $C_G(T) > 1$. Let L be a minimal normal subgroup of G contained in $C_G(T)$. By (5.1), we get that $T \cap L = 1$. Consider the chief factor LT/T . By hypothesis, P_i satisfies the II-property in G for any $P_i \in \mathcal{M}_d(P)$.

Then $|G : N_G(P_i T \cap LT)|$ is a p -number, and thus $P_i T \cap LT \trianglelefteq G$. This forces that $LT \leq P_i T$ or $P_i T \cap LT = T$. If $LT \leq P_i T$, then $P_i LT / T = P_i T / T \cong P_i / (P_i \cap T)$, and thus $P_i LT / T$ is a p -group. This shows that LT / T is a p -group. Since $L \cap T = 1$, we conclude that L is a non-identity p -group, which is contrary to Substep 5.2. Therefore, $P_i T \cap LT = T$. This forces that $P_i \cap L = 1$. By Lemma 2.2, we have that $T \cap P_i L = (T \cap P_i)(T \cap L) = T \cap P_i$. By Substep 5.1, there exists a subgroup $P_j \in \mathcal{M}_d(P)$ such that $T \cap P_j = 1$. Thus, $|P_j TL|_p > |P|$, a contradiction.

Substep 5.4: Finishing the proof of Step 5. Since $C_G(T) = 1$ by Substep 5.3, we see that G is isomorphic to a subgroup of $\text{Aut}(T)$. Note that $Z(T) \leq C_G(T) = 1$, and so $|G/T|$ divides $|\text{Aut}(T)/\text{Inn}(T)|$. In view of Substep 5.1, we conclude that p divides $|\text{Out}(T)|$. By Lemma 2.3, this is impossible.

Step 6: $O_p(G)$ is a direct product of some normal subgroups of G of order p and $G = O_p(G) \rtimes R$, the semi-direct product of $O_p(G)$ with a subgroup R of G . Let K_1 be a minimal normal subgroup of G contained in $O_p(G)$. Then $|K_1| = p$ by Step 4 and $K_1 \cap \Phi(P) = 1$ by Step 3. Hence, there exists a maximal subgroup M_1 of P such that $K_1 \cap M_1 = 1$. By Lemma 2.4, K_1 has a complement U in G , i.e., $G = K_1 U$ and $K_1 \cap U = 1$. Hence, $P = K_1(P \cap U)$. Then $O_p(G) = K_1(O_p(G) \cap U)$. If $O_p(G) \cap U = 1$, then Step 6 holds. Now assume that $O_p(G) \cap U > 1$. Hence, we can pick a minimal normal subgroup K_2 of G contained in $O_p(G) \cap U$. Then $|K_2| = p$ by Step 4 and $K_2 \cap \Phi(P) = 1$ by Step 3. Hence, there exists a maximal subgroup M_2 of P such that $K_2 \cap M_2 = 1$. Then $P = K_2 M_2 = (O_p(G) \cap U) M_2 = (P \cap U) M_2$. It is clear that $|(P \cap U) : (M_2 \cap U)| = |M_2(P \cap U) : M_2| = |P : M_2| = p$. Thus, $M_2 \cap U$ is a complement of K_2 in $P \cap U$. Therefore, K_2 has a complement V in U by Lemma 2.4. Then $G = K_1 U = (K_1 \times K_2) \rtimes V$. Continuing this process, we finally have $G = O_p(G) \rtimes R$ and $O_p(G) = K_1 \times K_2 \times \cdots \times K_t$, where K_i ($i = 1, \dots, t$) is a normal subgroup of G of order p .

Step 7: The final contradiction. By Step 6, we know that $O_p(G)$ is a direct product of some normal subgroups of G of order p . Hence, $P \leq C_G(O_p(G))$. Notice that $C_G(O_p(G)) \cap R \trianglelefteq O_p(G)R = G$. By Step 5, we have $C_G(O_p(G)) \cap R = 1$. Then $P \cap R = 1$. This yields that $P = P \cap O_p(G)R = O_p(G)(P \cap R) = O_p(G)$. By Step 6, G is p -supersoluble, the final contradiction. Our proof is now complete. \square

Proof of Theorem 1.2. By Lemma 2.6, we only need to prove the sufficiency. Applying Theorem 1.1, we know that either $|P| = p$ or G is p -supersoluble. If $|P| = p$, then $P \leq Z(N_G(P))$ because $N_G(P)$ is p -nilpotent. By Burnside's theorem (see [9], Theorem 5.13), G is p -nilpotent, as wanted. Hence, we may suppose that G is p -supersoluble. By [8], Kapitel VI, Hauptsatz 6.6 we know that the p -length of a p -supersoluble group is at most 1. Thus, $PO_{p'}(G)$ is normal in G . Write $\overline{G} = G/O_{p'}(G)$. Then $\overline{G} = N_{\overline{G}}(\overline{P}) = N_G(P)O_{p'}(G)/O_{p'}(G)$ is p -nilpotent. Hence, G is p -nilpotent, as wanted. \square

Proof of Theorem 1.3. We only need to prove the sufficiency. By Theorem 1.1, we know that either $|P| = p$ or G is p -supersoluble. If $|P| = p$, then G is p -nilpotent by [6], Chapter 1, Lemma 3.39 as desired. If G is p -supersoluble, then G is p -nilpotent by [6], Chapter 2, Lemma 5.25 and we are done. \square

Corollary 3.1. *Let N be a normal subgroup of G such that G/N is p -nilpotent and P is a Sylow p -subgroup of N , where p is a prime divisor of $|G|$ with $(|G|, p-1)=1$. Suppose that every member of some fixed $\mathcal{M}_d(P)$ satisfies the Π -property in G . Then G is p -nilpotent.*

Proof. By Theorem 1.3, we know that N is p -nilpotent. Let M be the normal p -complement of N . Then $M \trianglelefteq G$. By Lemma 2.1, G/M satisfies the hypotheses of the corollary. If $M > 1$, then G/M is p -nilpotent by induction. Thus, G is p -nilpotent, as desired. Now assume that $M = 1$, then $N = P$. Let K/P be the normal p -complement of G/P . Then $K \trianglelefteq G$ and P is the Sylow p -subgroup of K . By Lemma 2.5, we see that every member of $\mathcal{M}_d(P)$ satisfies the Π -property in K . Then K is p -nilpotent by Theorem 1.3. Let K_1 be the normal p -complement of K . Clearly, K_1 is also a normal p -complement of G . Hence, G is p -nilpotent and the proof is complete. \square

Proof of Theorem 1.4. Let q be the smallest prime of $|G|$ and $Q \in \text{Syl}_q(G)$. If Q is cyclic, then G is q -nilpotent by [9], Corollary 5.14. If Q is non-cyclic, then by Theorem 1.3, G is q -nilpotent. By the same arguments and induction, we see that G is a Sylow tower group. Applying Theorem 1.1, we conclude that G is supersoluble. \square

Remark 3.2. There exists a saturated formation \mathcal{F} containing \mathcal{U} , the class of all supersoluble groups, and a soluble group G with a normal subgroup N such that $G/N \in \mathcal{F}$, and for every non-cyclic Sylow subgroup P of N , every member of a fixed $\mathcal{M}_d(P)$ satisfies the Π -property in G . But $G \notin \mathcal{F}$.

For example, let f be a formation function defined by $f(p)$, the class of p' -groups for any prime p , and let \mathcal{F} be the formation locally defined by $f(p)$. If M is a supersoluble group, then any p -chief factor L/K of M is cyclic of order p , and so $M/C_M(L/K)$ is cyclic of order dividing $p-1$. Hence, $M/C_M(L/K) \in f(p)$. Therefore, $M \in \mathcal{F}$ and so \mathcal{F} contains \mathcal{U} . It is not difficult to see that $A_4 \in \mathcal{F}$.

Let $P = \langle a, b, c \rangle$ be an elementary abelian group of order 3^3 , and let α, β be two automorphisms of P defined respectively by

$$\alpha = \begin{pmatrix} a & b & c \\ c & a & b \end{pmatrix}, \quad \beta = \begin{pmatrix} a & b & c \\ b & c^{-1} & a^{-1} \end{pmatrix}.$$

Then $\alpha^3 = \beta^3 = (\alpha\beta)^2 = 1$ and $H = \langle \alpha, \beta \rangle \cong A_4$. Thus, H acts on P by automorphisms. Let $G = P \rtimes H$ be the corresponding semidirect product. Then P is an irreducible and faithful A_4 -module on $GF(3)$, and so it is a minimal normal subgroup of G with $C_H(P) = 1$. Since $A_4 \in \mathcal{F}$ and $G/P \cong H \cong A_4$, we have $G/P \in \mathcal{F}$. Let $R = PS$, where S is a Sylow 2-subgroup of G . We have $O^3(G) \leq R \trianglelefteq G$. Since S is elementary abelian of order 4, it follows that a minimal normal subgroup of R contained in P is of order 3. By Maschke's theorem (see [5], Chapter 3, Theorem 3.1), P is a completely reducible S -module. Hence, $P = \langle a_1 \rangle \times \langle a_2 \rangle \times \langle a_3 \rangle$, where $\langle a_i \rangle$ ($i = 1, 2, 3$) is S -invariant. Let $P_i = \langle a_j : j \neq i \rangle$. Then every P_i is normalized by $O^3(G)$, and so P_i satisfies the Π -property in G . Set $\mathcal{M}_d(P) = \{P_1, P_2, P_3\}$. On the other hand, $P/1$ is a 3-chief factor of G and $G/C_G(P) = G/P \cong A_4$, which is not a 3'-group. Hence, $G \notin \mathcal{F}$.

4. FINAL REMARKS AND APPLICATIONS

In this section, we will show that the concept of the Π -property can be viewed as a generalization of many known embedding properties.

Recall that two subgroups H and K of G are said to be permutable if $HK = KH$. From [11], a subgroup H of G is said to be S -permutable (or π -quasinormal, S -quasinormal) in G if H permutes with all Sylow subgroups of G . According to [7], a subgroup H of G is said to be X -permutable with a subgroup T of G if there is an element $x \in X$ such that $HT^x = T^xH$, where X is a nonempty subset of G . Following [1], the \mathcal{U} -hypercenter $Z_{\mathcal{U}}(G)$ of G is the product of all normal subgroups H of G , such that all G -chief factors under H have prime orders, where \mathcal{U} denotes the class of all supersoluble groups. A subgroup H of G is called a CAP-subgroup of G if H either covers or avoids every chief factor L/K of G , that is, $HL = HK$ or $H \cap L = H \cap K$, see [3], Chapter A, Definition 10.8.

Proposition 4.1. *Let H be a subgroup of G . Then H satisfies the Π -property in G if one of the following holds:*

- (1) H is normal in G ;
- (2) H is permutable in G ;
- (3) H is S -permutable in G ;
- (4) H is X -permutable with all Sylow subgroups of G , where X is a soluble normal subgroup of G ;
- (5) H is a CAP-subgroup of G ;
- (6) $H/H_G \leq Z_{\mathcal{U}}(G/H_G)$.

P r o o f. Statements (1)–(6) were proved in Propositions 2.2–2.3 of [12]. \square

A subgroup H of G is said to be S -semipermutable (see [2]) in G if $HG_p = G_pH$ for any Sylow p -subgroup G_p of G with $(p, |H|) = 1$. A subgroup H of G is said to be SS -quasinormal (see [14]) in G if there is a subgroup B of G such that $G = H$ and H permutes with every Sylow subgroup of B .

Proposition 4.2. *Let H be a p -subgroup of G for a prime $p \in \pi(G)$. Then H satisfies Π -property in G if one of the following holds:*

- (1) H is S -semipermutable in G ;
- (2) H is SS -quasinormal in G .

P r o o f. (1) Let L/K be an arbitrary chief factor of G . Write $\overline{G} = G/K$. At first, we argue that $|\overline{G} : N_{\overline{G}}(\overline{H \cap L})|$ is a p -number. It is no loss of generality to assume that $\overline{H \cap L} > 1$. By Lemma 2.2(4) of [16], $H \cap L$ is S -semipermutable in G . It follows from Lemma 2.2(2) of [16] that $\overline{H \cap L} = \overline{H \cap L}$ is S -semipermutable in \overline{G} . Then the normal closure $(\overline{H \cap L})^{\overline{G}}$ of $\overline{H \cap L}$ in \overline{G} is soluble by Theorem A of [10]. Since \overline{L} is a minimal normal subgroup of \overline{G} and $\overline{H \cap L} > 1$, we have that $(\overline{H \cap L})^{\overline{G}} = \overline{L}$ is a normal p -subgroup of \overline{G} . Applying Lemmas 2.2(3) and 2.1(6) of [12], we get that $O^p(\overline{G}) \leq N_{\overline{G}}(\overline{H \cap L})$, and thus $|\overline{G} : N_{\overline{G}}(\overline{H \cap L})|$ is a p -number, as claimed. Therefore, H satisfies the Π -property in G .

(2) Applying Lemma 2.5 of [14], we know that H is S -semipermutable in G . By (1), the conclusion follows. \square

By Propositions 4.1 and 4.2, we can obtain the following corollaries.

Corollary 4.3 ([14], Theorem 1.1). *Let p be the smallest prime dividing the order of G and P a Sylow p -subgroup of G . If every member of a fixed $\mathcal{M}_d(P)$ is SS -quasinormal in G , then G is p -nilpotent.*

Corollary 4.4 ([14], Theorem 1.2). *Let p be a prime dividing the order of G and P a Sylow p -subgroup of G . If $N_G(P)$ is p -nilpotent and every member of a fixed $\mathcal{M}_d(P)$ is SS -quasinormal in G , then G is p -nilpotent.*

Corollary 4.5 ([14], Theorem 1.3). *Let G be a p -solvable group for a prime p and P a Sylow p -subgroup of G . Suppose that every member of a fixed $\mathcal{M}_d(P)$ is SS -quasinormal in G . Then G is p -supersoluble.*

Corollary 4.6 ([17], Theorem 3.1). *Let G be a p -soluble group and let P be a Sylow p -subgroup of G , where p is a fixed prime. Then G is p -supersoluble if and only if every member of a fixed $\mathcal{M}_d(P)$ is a CAP-subgroup of G .*

Corollary 4.7 ([17], Theorem 3.3). *Let p be the smallest prime dividing the order of G and let P be a Sylow p -subgroup of G . Then G is p -nilpotent if and only if every member of a fixed $\mathcal{M}_d(P)$ is a CAP-subgroup of G .*

Corollary 4.8 ([17], Theorem 3.4). *Suppose that P is a Sylow p -subgroup of G and $N_G(P)$ is p -nilpotent for a prime $p \in \pi(G)$. Then G is p -nilpotent if and only if every member of a fixed $\mathcal{M}_d(P)$ is a CAP-subgroup of G .*

Corollary 4.9 ([15], Theorem 3.1). *Let G be a group and P be a Sylow p -subgroup of G , where p is the smallest prime dividing $|G|$. If all maximal subgroups of P are S -semipermutable in G , then G is p -nilpotent.*

Corollary 4.10 ([4], Main result). *Let P be a Sylow p -subgroup of G for a prime $p \in \pi(G)$. Suppose that every member of some fixed $\mathcal{M}_d(P)$ is a CAP-subgroup of G . Then either $|P| = p$ or G is p -supersoluble.*

Corollary 4.11 ([18], Theorem 3.8). *Let p be a prime dividing the order of a p -soluble group G and let P be a Sylow p -subgroup of G . If every member of a fixed $\mathcal{M}_d(P)$ is S -semipermutable in G , then G is p -supersoluble.*

Corollary 4.12 ([18], Theorem 3.9). *Let p be an odd prime dividing the order of G and let P be a Sylow p -subgroup of G . If $N_G(P)$ is p -nilpotent and every member of a fixed $\mathcal{M}_d(P)$ is S -semipermutable in G , then G is p -nilpotent.*

References

- [1] A. Y. Alsheik Ahmad, J. J. Jaraden, A. N. Skiba: On \mathcal{U}_c -normal subgroups of finite groups. *Algebra Colloq.* **14** (2007), 25–36. zbl [MR](#) [doi](#)
- [2] Z. Chen: On a theorem of Srinivasan. *J. Southwest Teach. Univ., Ser. B* **12** (1987), 1–4. (In Chinese.) zbl
- [3] K. Doerk, T. Hawkes: Finite Soluble Groups. De Gruyter Expositions in Mathematics 4. Walter de Gruyter, Berlin, 1992. zbl [MR](#) [doi](#)
- [4] L. M. Ezquerro, X. Li, Y. Li: Finite groups with some CAP-subgroups. *Rend. Semin. Mat. Univ. Padova* **131** (2014), 77–87. zbl [MR](#) [doi](#)
- [5] D. Gorenstein: Finite Groups. Chelsea Publishing, New York, 1980. zbl [MR](#)
- [6] W. Guo: Structure Theory for Canonical Classes of Finite Groups. Springer, Berlin, 2015. zbl [MR](#) [doi](#)
- [7] W. Guo, K.-P. Shum, A. N. Skiba: X -quasinormal subgroups. *Sib. Math. J.* **48** (2007), 593–605. zbl [MR](#) [doi](#)
- [8] B. Huppert: Endliche Gruppen. I. Die Grundlehren der Mathematischen Wissenschaften 134. Springer, Berlin, 1967. (In German.) zbl [MR](#) [doi](#)
- [9] I. M. Isaacs: Finite Group Theory. Graduate Studies in Mathematics 92. AMS, Providence, 2008. zbl [MR](#) [doi](#)
- [10] I. M. Isaacs: Semipermutable π -subgroups. *Arch. Math.* **102** (2014), 1–6. zbl [MR](#) [doi](#)

- [11] *O. H. Kegel*: Sylow-Gruppen und Subnormalteiler endlicher Gruppen. *Math. Z.* **78** (1962), 205–221. (In German.) [zbl](#) [MR](#) [doi](#)
- [12] *B. Li*: On Π -property and Π -normality of subgroups of finite groups. *J. Algebra* **334** (2011), 321–337. [zbl](#) [MR](#) [doi](#)
- [13] *S. Li, X. He*: On normally embedded subgroups of prime power order in finite groups. *Commun. Algebra* **36** (2008), 2333–2340. [zbl](#) [MR](#) [doi](#)
- [14] *S. Li, Z. Shen, J. Liu, X. Liu*: The influence of SS-quasinormality of some subgroups on the structure of finite groups. *J. Algebra* **319** (2008), 4275–4287. [zbl](#) [MR](#) [doi](#)
- [15] *Y. M. Li, X. L. He, Y. M. Wang*: On s -semipermutable subgroups of finite groups. *Acta Math. Sin., Engl. Ser.* **26** (2010), 2215–2222. [zbl](#) [MR](#) [doi](#)
- [16] *Y. Li, S. Qiao, N. Su, Y. Wang*: On weakly s -semipermutable subgroups of finite groups. *J. Algebra* **371** (2012), 250–261. [zbl](#) [MR](#) [doi](#)
- [17] *J. Liu, S. Li, Z. Shen, X. Liu*: Finite groups with some CAP-subgroups. *Indian J. Pure Appl. Math.* **42** (2011), 145–156. [zbl](#) [MR](#) [doi](#)
- [18] *J. Lu, S. Li*: On S -semipermutable subgroups of finite groups. *J. Math. Res. Expo.* **29** (2009), 985–991. [zbl](#) [MR](#) [doi](#)
- [19] *R. M. Peacock*: Groups with a cyclic Sylow subgroup. *J. Algebra* **56** (1979), 506–509. [zbl](#) [MR](#) [doi](#)

Authors' address: Zhengtian Qiu, Jianjun Liu, Guiyun Chen (corresponding author), School of Mathematics and Statistics, Southwest University, Tiansheng Rd, Beibei, Chongqing 400715, P. R. China, e-mail: qztqzt506@163.com, liujj198123@163.com, gychen1963@163.com.