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Abstract. LetH be a subgroup of a finite group G. We say thatH satisfies the Π-property
in G if for any chief factor L/K of G, |G/K : NG/K(HK/K∩L/K)| is a π(HK/K∩L/K)-
number. We study the influence of some p-subgroups of G satisfying the Π-property on the
structure of G, and generalize some known results.
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1. Introduction

All groups considered in this paper are finite. We use conventional notions as

in [8]. Throughout the paper, G always denotes a finite group, p denotes a fixed

prime, π denotes a set of primes and π(G) denotes the set of all primes dividing |G|.

An integer n is called a π-number if all prime divisors of n belong to π. In particular,

an integer n is called a p-number if it is a power of p.

Suppose that P is a p-group. LetM(P ) be the set of all maximal subgroups of P .

Let d be the smallest generator number of P , i.e., pd = |P/Φ(P )|, where Φ(P ) is the

Frattini subgroup of P . Following [13],Md(P ) = {P1, . . . , Pd} is a subset ofM(P )

such that
d⋂

i=1

Pi = Φ(P ). Notice that the subset Md(P ) is not unique for a fixed
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p-group P in general. We know that |M(P )| = (pd − 1)/(p− 1), |Md(P )| = d and

lim
d→∞

(pd − 1)/((p− 1)d) = ∞, so |M(P )| ≫ |Md(P )|.

In [12], Li introduced the concept of the Π-property of subgroups of finite groups.

Let H be a subgroup of G. We say that H satisfies the Π-property in G if for any

chief factor L/K of G, |G/K : NG/K(HK/K∩L/K)| is a π(HK/K∩L/K)-number.

This embedding property of subgroups has a strong structural impact and generalises

many other known properties, see Section 4.

In this note, we study the influence of some maximal subgroups of Sylow sub-

groups satisfying the Π-property on the structure of finite groups. Our first result

is as follows:

Theorem 1.1. Let P be a Sylow p-subgroup of G for a prime p ∈ π(G). Suppose

that every member of a fixed Md(P ) satisfies the Π-property in G. Then either

|P | = p or G is p-supersoluble.

Based on Theorem 1.1, we can prove the following results.

Theorem 1.2. Suppose that P is a Sylow p-subgroup of G and NG(P ) is

p-nilpotent for a prime p ∈ π(G). Then G is p-nilpotent if and only if every member

of a fixedMd(P ) satisfies the Π-property in G.

Theorem 1.3. Let p be a prime dividing the order of G with (|G|, p− 1) = 1 and

P ∈ Sylp(G). Then G is p-nilpotent if and only if every member of a fixedMd(P )

satisfies the Π-property in G.

Theorem 1.4. Let G be a group. Suppose that every member of a fixedMd(P )

satisfies the Π-property in G for every non-cyclic Sylow subgroup P of G. Then G

is supersoluble.

2. Preliminaries

In this section, we give some lemmas that will be used in our proofs.

Lemma 2.1 ([12], Proposition 2.1 (1)). Let H be a subgroup of G and N a nor-

mal subgroup of G. If H satisfies the Π-property in G, then HN/N satisfies the

Π-property in G/N .

Lemma 2.2 ([3], Chaper A, Lemma 1.2). Let U , V and W be subgroups of G.

Then the following statements are equivalent:

(1) U ∩ VW = (U ∩ V )(U ∩W ).

(2) UV ∩ UW = U(V ∩W ).
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Lemma 2.3 ([4], Lemma 2.4). Suppose that H is a non-abelian simple group. If

the Sylow p-subgroups Hp of H are of order p, then the outer automorphism group

Out(H) of H is a p′-group.

Lemma 2.4 ([8], Kapitel I, Hauptsatz 17.4). Suppose that N is an abelian normal

subgroup of G and N 6 M 6 G such that (|N |, |G : M |) = 1. If N is complemented

in M , then N is complemented in G.

Lemma 2.5. Let H be a p-subgroup of G for some prime p ∈ π(G) and K E G.

If H satisfies the Π-property in G and H 6 K, then H satisfies the Π-property in K.

P r o o f. Let A/B be an arbitrary chief factor of K. Let C/D be a chief factor

of G below K such that D 6 B 6 A 6 C. Then |G : NG(HD ∩ C)| is a p-number.

Thus, |K : NK(HD∩C)| is a p-number. Clearly, NK(HD∩C) 6 NK((HD∩A)B) =

NK(HB∩A) and hence |K : NK(HB∩A)| is a p-number. This shows thatH satisfies

the Π-property in K. �

Lemma 2.6. Let H be a p-subgroup of G for a prime p ∈ π(G). If G is p-super-

soluble, then H satisfies the Π-property in G.

P r o o f. Let M/N be an arbitrary chief factor of G. Then |M/N | is a p′-number

or |M/N | = p. If |M/N | is a p′-number, then (H ∩M)N/N = 1. If |M/N | = p, then

(H∩M)N/N =M/N or 1. In any case, we have that |G/N :NG/N ((H∩M)N/N)|=1.

Therefore, H satisfies the Π-property in G, as wanted. �

3. Proofs

P r o o f of Theorem 1.1. Suppose that the theorem is not true and G is a coun-

terexample of minimal order. Then |P | > p2 and G is not p-supersoluble. Set

Md(P ) = {P1, . . . , Pd}. We divide the proof into the following steps.

Step 1 : Op′(G) = 1. Set G = G/Op′(G). It is clear that P is a Sylow p-subgroup

of G. Moreover, P has the same smallest generator number as P . So Md(P ) =

{P1, . . . , Pd} and
d⋂

i=1

Pi = Φ(Pi). By Lemma 2.1, Pi satisfies the Π-property in G for

any Pi ∈ Md(P ). Thus, G satisfies the hypotheses of the theorem. If Op′(G) > 1,

then either |P | = p or G is p-supersoluble by the minimal choice of G. It follows

that either |P | = p or G is p-supersoluble, a contradiction. Therefore, Op′(G) = 1.

Step 2 : P is non-cyclic. Assume that P is cyclic. Then P has a unique maximal

subgroup P1. LetK be a minimal normal subgroup ofG. Since Op′(G) = 1, it follows

that P∩K > 1. Note that |P | > p2. Since P is a cyclic p-group, we have that P1∩K =
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P1∩(P ∩K) > 1. By hypothesis, P1 satisfies the Π-property in G. As a consequence,

|G : NG(P1∩K)| is a p-number. It follows that P1∩K E G. By Theorem 2.1 of [19],

we deduce that G is p-soluble. Furthermore, G is p-supersoluble, a contradiction.

Step 3 : Let Φ(P )G be the core of Φ(P ) in G, then Φ(P )G = 1. Assume that

Φ(P )G > 1. Then we can pick a minimal normal subgroup K of G contained

in Φ(P )G. Since Φ(P ) 6 Pi for any Pi ∈ Md(P ), we have that
d⋂

i=1

Pi/K = Φ(P/K).

Obviously, P/K has the same smallest generator number as P . By Lemma 2.1,

G/K satisfies the hypotheses of the theorem. The minimal choice of G implies that

|P/K| = p or G/K is p-supersoluble. If |P/K| = p, then P is cyclic, contrary to

Step 2. If G/K is p-supersoluble, then G is p-supersoluble, also a contradiction.

Step 4 : If N is a minimal normal subgroup of G contained in P , then |N | = p. If

N 6 Pi for every Pi ∈ Md(P ), then N 6
d⋂

i=1

Pi = Φ(P ), which is contrary to Step 3.

Hence, there exists P̂ ∈ Md(P ) such that N � P̂ . By hypothesis, P̂ satisfies the

Π-property in G. Then |G : NG(P̂ ∩N)| is a p-number. Since P̂ ∩N E P , it follows

that P̂ ∩N E G. Hence, P̂ ∩N = 1. Note that N 6 P , we have |N | = p.

Step 5 : All minimal normal subgroups of G are contained in Op(G). Assume

that T is a minimal normal subgroup of G which is not a p-subgroup. By Step 1,

we have that p | |T | and T = T1 × . . .× Ts, where Ti (i = 1, . . . , s) is a non-abelian

simple subgroup of T .

Substep 5.1 : Pi ∩ T = 1 for any Pi inMd(P ) and |P ∩ T | = p. In addition, T is

a non-abelian simple group. For any Pi ∈ Md(P ), Pi satisfies the Π-property in G.

Then |G : NG(Pi ∩ T )| is a p-number. Since Pi ∩ T E P , it follows that Pi ∩ T E G.

Observe that T is not a p-group, we have Pi∩T = 1, and thus |P ∩T | = p by Step 1.

Hence, T = T1 is a non-abelian simple group.

Substep 5.2 : Under the assumption, Op(G) = 1. If Op(G) > 1, we can pick

a minimal normal subgroup N of G contained in Op(G). By Step 4, we know that N

is of order p. Hence, NT = N × T . By hypothesis, Pi satisfies the Π-property in G

for any Pi ∈ Md(P ). Consider the chief factor TN/N . Then |G : NG(PiN ∩ TN)|

is a p-number. Note that PiN ∩ TN E P , and so PiN ∩ TN E G. This yields

that PiN ∩ TN = N or PiN ∩ TN = TN . Since T is not a p-group, it follows that

TN � PiN . Therefore, PiN ∩ TN = N . If N � Pi, then PiN = P . This implies

that PiN ∩ TN = P ∩ TN = N(P ∩ T ) > N , a contradiction. Hence, N 6 Pi. It

follows that N 6
d⋂

i=1

Pi = Φ(P ), which is contrary to Step 3.

Substep 5.3 : CG(T ) = 1. Assume that CG(T ) > 1. Let L be a minimal normal

subgroup ofG contained in CG(T ). By (5.1), we get that T∩L = 1. Consider the chief

factor LT/T . By hypothesis, Pi satisfies the Π-property in G for any Pi ∈ Md(P ).
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Then |G : NG(PiT ∩ LT )| is a p-number, and thus PiT ∩ LT E G. This forces that

LT 6 PiT or PiT ∩ LT = T . If LT 6 PiT , then PiLT/T = PiT/T ∼= Pi/(Pi ∩ T ),

and thus PiLT/T is a p-group. This shows that LT/T is a p-group. Since L∩T = 1,

we conclude that L is a non-identity p-group, which is contrary to Substep 5.2.

Therefore, PiT ∩ LT = T . This forces that Pi ∩ L = 1. By Lemma 2.2, we have

that T ∩ PiL = (T ∩ Pi)(T ∩ L) = T ∩ Pi. By Substep 5.1, there exists a subgroup

Pj ∈ Md(P ) such that T ∩ Pj = 1. Thus, |PjTL|p > |P |, a contradiction.

Substep 5.4 : Finishing the proof of Step 5. Since CG(T ) = 1 by Substep 5.3, we

see that G is isomorphic to a subgroup of Aut(T ). Note that Z(T ) 6 CG(T ) = 1,

and so |G/T | divides |Aut(T )/Inn(T )|. In view of Substep 5.1, we conclude that p

divides |Out(T )|. By Lemma 2.3, this is impossible.

Step 6 : Op(G) is a direct product of some normal subgroups of G of order p and

G = Op(G)⋊R, the semi-direct product of Op(G) with a subgroup R of G. Let K1

be a minimal normal subgroup of G contained in Op(G). Then |K1| = p by Step 4

and K1∩Φ(P ) = 1 by Step 3. Hence, there exists a maximal subgroupM1 of P such

that K1 ∩M1 = 1. By Lemma 2.4, K1 has a complement U in G, i.e., G = K1U and

K1∩U = 1. Hence, P = K1(P∩U). ThenOp(G) = K1(Op(G)∩U). IfOp(G)∩U = 1,

then Step 6 holds. Now assume that Op(G) ∩ U > 1. Hence, we can pick a minimal

normal subgroupK2 of G contained in Op(G)∩U . Then |K2| = p by Step 4 and K2∩

Φ(P ) = 1 by Step 3. Hence, there exists a maximal subgroupM2 of P such that K2∩

M2 = 1. Then P = K2M2 = (Op(G)∩U)M2 = (P ∩U)M2. It is clear that |(P ∩U) :

(M2 ∩U)| = |M2(P ∩U) : M2| = |P : M2| = p. Thus, M2 ∩U is a complement of K2

in P ∩U . Therefore, K2 has a complement V in U by Lemma 2.4. Then G = K1U =

(K1×K2)⋊V . Continuing this process, we finally have G = Op(G)⋊R and Op(G) =

K1 ×K2 × · · · ×Kt, where Ki (i = 1, . . . , t) is a normal subgroup of G of order p.

Step 7 : The final contradiction. By Step 6, we know that Op(G) is a direct product

of some normal subgroups of G of order p. Hence, P 6 CG(Op(G)). Notice that

CG(Op(G)) ∩ R E Op(G)R = G. By Step 5, we have CG(Op(G)) ∩ R = 1. Then

P ∩R = 1. This yields that P = P ∩Op(G)R = Op(G)(P ∩R) = Op(G). By Step 6,

G is p-supersoluble, the final contradiction. Our proof is now complete. �

P r o o f of Theorem 1.2. By Lemma 2.6, we only need to prove the sufficiency.

Applying Theorem 1.1, we know that either |P | = p or G is p-supersoluble. If

|P | = p, then P 6 Z(NG(P )) because NG(P ) is p-nilpotent. By Burnside’s theorem

(see [9], Theorem 5.13), G is p-nilpotent, as wanted. Hence, we may suppose that G

is p-supersoluble. By [8], Kapitel VI, Hauptsatz 6.6 we know that the p-length

of a p-supersoluble group is at most 1. Thus, POp′(G) is normal in G. Write

G = G/Op′(G). Then G = NG(P ) = NG(P )Op′ (G)/Op′ (G) is p-nilpotent. Hence,

G is p-nilpotent, as wanted. �
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P r o o f o f T h e o r e m 1 . 3. We only need to prove the sufficiency. By Theo-

rem 1.1, we know that either |P | = p or G is p-supersoluble. If |P | = p, then G is

p-nilpotent by [6], Chapter 1, Lemma 3.39 as desired. If G is p-supersoluble, then G

is p-nilpotent by [6], Chapter 2, Lemma 5.25 and we are done. �

Corollary 3.1. Let N be a normal subgroup of G such that G/N is p-nilpotent

and P is a Sylow p-subgroup ofN , where p is a prime divisor of |G| with (|G|, p−1)=1.

Suppose that every member of some fixed Md(P ) satisfies the Π-property in G.

Then G is p-nilpotent.

P r o o f. By Theorem 1.3, we know that N is p-nilpotent. Let M be the normal

p-complement of N . Then M E G. By Lemma 2.1, G/M satisfies the hypotheses

of the corollary. If M > 1, then G/M is p-nilpotent by induction. Thus, G is

p-nilpotent, as desired. Now assume that M = 1, then N = P . Let K/P be the

normal p-complement of G/P . Then K E G and P is the Sylow p-subgroup of K.

By Lemma 2.5, we see that every member ofMd(P ) satisfies the Π-property in K.

Then K is p-nilpotent by Theorem 1.3. Let K1 be the normal p-complement of K.

Clearly, K1 is also a normal p-complement of G. Hence, G is p-nilpotent and the

proof is complete. �

P r o o f of Theorem 1.4. Let q be the smallest prime of |G| and Q ∈ Sylq(G).

If Q is cyclic, then G is q-nilpotent by [9], Corollary 5.14. If Q is non-cyclic, then by

Theorem 1.3, G is q-nilpotent. By the same arguments and induction, we see that G

is a Sylow tower group. Applying Theorem 1.1, we conclude that G is supersoluble.

�

Remark 3.2. There exists a saturated formation F containing U , the class of

all supersoluble groups, and a soluble group G with a normal subgroup N such

that G/N ∈ F , and for every non-cyclic Sylow subgroup P of N , every member of

a fixedMd(P ) satisfies the Π-property in G. But G 6∈ F .

For example, let f be a formation function defined by f(p), the class of p′-groups for

any prime p, and let F be the formation locally defined by f(p). IfM is a supersoluble

group, then any p-chief factor L/K ofM is cyclic of order p, and so M/CM (L/K) is

cyclic of order dividing p− 1. Hence, M/CM (L/K) ∈ f(p). Therefore, M ∈ F and

so F contains U . It is not difficult to see that A4 ∈ F .

Let P = 〈a, b, c〉 be an elementary abelian group of order 33, and let α, β be two

automorphisms of P defined respectively by

α =

(
a b c

c a b

)
, β =

(
a b c

b c−1 a−1

)
.
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Then α3 = β3 = (αβ)2 = 1 and H = 〈α, β〉 ∼= A4. Thus, H acts on P by automor-

phisms. Let G = P ⋊ H be the corresponding semidirect product. Then P is an

irreducible and faithful A4-module on GF (3), and so it is a minimal normal subgroup

of G with CH(P ) = 1. Since A4 ∈ F and G/P ∼= H ∼= A4, we have G/P ∈ F . Let

R = PS, where S is a Sylow 2-subgroup of G. We have O3(G) 6 R E G. Since S is

elementary abelian of order 4, it follows that a minimal normal subgroup of R con-

tained in P is of order 3. By Maschke’s theorem (see [5], Chapter 3, Theorem 3.1),

P is a completely reducible S-module. Hence, P = 〈a1〉 × 〈a2〉 × 〈a3〉, where 〈ai〉

(i = 1, 2, 3) is S-invariant. Let Pi = 〈aj : j 6= i〉. Then every Pi is normalized

by O3(G), and so Pi satisfies the Π-property in G. SetMd(P ) = {P1, P2, P3}. On

the other hand, P/1 is a 3-chief factor of G and G/CG(P ) = G/P ∼= A4, which is

not a 3′-group. Hence, G 6∈ F .

4. Final remarks and applications

In this section, we will show that the concept of the Π-property can be viewed as

a generalization of many known embedding properties.

Recall that two subgroups H and K of G are said to be permutable if HK = KH .

From [11], a subgroup H of G is said to be S-permutable (or π-quasinormal,

S-quasinormal) in G if H permutes with all Sylow subgroups of G. According to [7],

a subgroup H of G is said to be X-permutable with a subgroup T of G if there is

an element x ∈ X such that HT x = T xH , where X is a nonempty subset of G. Fol-

lowing [1], the U-hypercenter ZU (G) of G is the product of all normal subgroups H

of G, such that all G-chief factors under H have prime orders, where U denotes the

class of all supersoluble groups. A subgroup H of G is called a CAP-subgroup of G

if H either covers or avoids every chief factor L/K of G, that is, HL = HK or

H ∩ L = H ∩K, see [3], Chapter A, Definition 10.8.

Proposition 4.1. Let H be a subgroup of G. Then H satisfies the Π-property

in G if one of the following holds:

(1) H is normal in G;

(2) H is permutable in G;

(3) H is S-permutable in G;

(4) H is X-permutable with all Sylow subgroups of G, where X is a soluble normal

subgroup of G;

(5) H is a CAP-subgroup of G;

(6) H/HG 6 ZU(G/HG).

P r o o f. Statements (1)–(6) were proved in Propositions 2.2–2.3 of [12]. �
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A subgroup H of G is said to be S-semipermutable (see [2]) in G if HGp = GpH

for any Sylow p-subgroup Gp of G with (p, |H |) = 1. A subgroup H of G is said to

be SS-quasinormal (see [14]) in G if there is a subgroup B of G such that G = H

and H permutes with every Sylow subgroup of B.

Proposition 4.2. Let H be a p-subgroup of G for a prime p ∈ π(G). Then H

satisfies Π-property in G if one of the following holds:

(1) H is S-semipermutable in G;

(2) H is SS-quasinormal in G.

P r o o f. (1) Let L/K be an arbitrary chief factor of G. Write G = G/K. At

first, we argue that |G : NG(H ∩ L)| is a p-number. It is no loss of generality to

assume that H ∩ L > 1. By Lemma 2.2 (4) of [16], H ∩ L is S-semipermutable

in G. It follows from Lemma 2.2 (2) of [16] that H ∩L = H ∩ L is S-semipermutable

in G. Then the normal closure (H ∩ L)G of H ∩ L in G is soluble by Theorem A

of [10]. Since L is a minimal normal subgroup of G and H ∩ L > 1, we have that

(H ∩ L)G = L is a normal p-subgroup of G. Applying Lemmas 2.2 (3) and 2.1 (6)

of [12], we get that Op(G) 6 NG(H ∩ L), and thus |G : NG(H ∩ L)| is a p-number,

as claimed. Therefore, H satisfies the Π-property in G.

(2) Applying Lemma 2.5 of [14], we know thatH is S-semipermutable in G. By (1),

the conclusion follows. �

By Propositions 4.1 and 4.2, we can obtain the following corollaries.

Corollary 4.3 ([14], Theorem 1.1). Let p be the smallest prime dividing the

order of G and P a Sylow p-subgroup of G. If every member of a fixed Md(P ) is

SS-quasinormal in G, then G is p-nilpotent.

Corollary 4.4 ([14], Theorem 1.2). Let p be a prime dividing the order of G

and P a Sylow p-subgroup of G. If NG(P ) is p-nilpotent and every member of

a fixedMd(P ) is SS-quasinormal in G, then G is p-nilpotent.

Corollary 4.5 ([14], Theorem 1.3). Let G be a p-solvable group for a prime p

and P a Sylow p-subgroup of G. Suppose that every member of a fixed Md(P ) is

SS-quasinormal in G. Then G is p-supersoluble.

Corollary 4.6 ([17], Theorem 3.1). Let G be a p-soluble group and let P be

a Sylow p-subgroup of G, where p is a fixed prime. Then G is p-supersoluble if and

only if every member of a fixedMd(P ) is a CAP-subgroup of G.
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Corollary 4.7 ([17], Theorem 3.3). Let p be the smallest prime dividing the order

of G and let P be a Sylow p-subgroup of G. Then G is p-nilpotent if and only if

every member of a fixedMd(P ) is a CAP-subgroup of G.

Corollary 4.8 ([17], Theorem 3.4). Suppose that P is a Sylow p-subgroup of G

and NG(P ) is p-nilpotent for a prime p ∈ π(G). Then G is p-nilpotent if and only if

every member of a fixedMd(P ) is a CAP-subgroup of G.

Corollary 4.9 ([15], Theorem 3.1). Let G be a group and P be a Sylow

p-subgroup of G, where p is the smallest prime dividing |G|. If all maximal subgroups

of P are S-semipermutable in G, then G is p-nilpotent.

Corollary 4.10 ([4], Main result). Let P be a Sylow p-subgroup of G for a prime

p ∈ π(G). Suppose that every member of some fixed Md(P ) is a CAP-subgroup

of G. Then either |P | = p or G is p-supersoluble.

Corollary 4.11 ([18], Theorem 3.8). Let p be a prime dividing the order of

a p-soluble group G and let P be a Sylow p-subgroup of G. If every member of

a fixedMd(P ) is S-semipermutable in G, then G is p-supersoluble.

Corollary 4.12 ([18], Theorem 3.9). Let p be an odd prime dividing the order

of G and let P be a Sylow p-subgroup of G. If NG(P ) is p-nilpotent and every

member of a fixedMd(P ) is S-semipermutable in G, then G is p-nilpotent.
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