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Some results on quasi-t-dual Baer modules

RAcHID TRIBAK, YAHYA TALEBI, MEHRAB HOSSEINPOUR

Abstract. Let R be a ring and let M be an R-module with S = Endgr(M).
Consider the preradical Z for the category of right R-modules Mod-R introduced
by Y. Talebi and N. Vanaja in 2002 and defined by Z (M) = N{U < M: M/U
is small in its injective hull}. The module M is called quasi-t-dual Baer if
Zwej <p(ZQ(M)) is a direct summand of M for every two-sided ideal J of S,
where ZQ(M) = Z(Z(M)). In this paper, we show that M is quasi-t-dual Baer
if and only if 22(M) is a direct summand of M and 22(M) is a quasi-dual Baer
module. It is also shown that any direct summand of a quasi-t-dual Baer module
inherits the property. The last part of the paper is devoted to the comparison
of the notions of quasi-dual Baer modules and quasi-t-dual Baer modules. Also,
right quasi-t-dual Baer rings are investigated.

Keywords: fully invariant submodule; quasi-dual Baer module; quasi-dual Baer
ring; quasi-t-dual Baer module; quasi-t-dual Baer ring

Classification: 16D10, 16D80

1. Introduction

Throughout this paper, R is an associative ring with identity, and all the
modules are unital right R-modules unless stated otherwise. Let M be an R-
module. The notation N C M and N < M means that N is a subset of M and N
is a submodule of M, respectively. We will write Endg(M) and E(M) for the
endomorphism ring of M and the injective hull of M, respectively. By Q and Z,
we denote the ring of rational numbers and integer numbers, respectively. Also,
for any prime number p, the Priifer p-group will be denoted by Z(p).

In 1967 in [5], W. E. Clark introduced the concept of quasi-Baer rings. A ring R
is called right quasi-Baer if the right annihilator of any right ideal of R is gener-
ated as a right ideal by an idempotent. Recall that a submodule K of M is called
fully invariant if f(K) C K for all f € Endg(M). In 2004 in [14], S.T. Rizvi
and C.S. Roman generalized the notion of right quasi-Baer rings to a module
theoretic version. A module M is called quasi-Baer if the right annihilator in M
of any two-sided ideal of Endr(M) is a direct summand of M. Equivalently, for
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any fully invariant submodule N of M, the left annihilator of N in Endg(M)
is generated by an idempotent of Endg(M). In 2013 in [1], T. Amouzegar and
Y. Talebi introduced a dual notion of quasi-Baer modules. A module M is said
to be quasi-dual Baer if for every fully invariant submodule N of M, there exists
an idempotent e in S = Endr(M) such that {¢ € S: Im¢ C N} = eS. To
introduce the concept studied in this article, recall that the singular submodule
Z(M) of an R-module M is the set of m € M such that mI = 0 for some
essential right ideal I of R. Dually, Y. Talebi and N. Vanaja introduced in [16]
the submodule Z (M) of M which is defined by

Z(M)=({U < M: M/U is small in E(M/U)}.

The R-module M is said to be cosingular (or noncosingular) if Z(M) = 0 (or
Z(M) = M). We write the submodule Z(Z(M)) of M as Z%(Mg) = Z?(Mg)
and abbreviate to Z2(M) when no confusion can result. Similar notations are
used in case M is a left R-module. In [2], the authors introduced and studied
t-dual Baer modules. A module M is said to be t-dual Baer if }_ ., 0(Z2(M))
is a direct summand of M for every right ideal J of Endg(M). Motivated by
this work, we introduce the notion of quasi-t-dual Baer modules. We call a mod-
ule M quasi-t-dual Baer if }- 4 ©(Z%(M)) is a direct summand of M for every
two-sided ideal J of Endgr(M).

In Section 2, the main result shows that an R-module M is quasi-t-dual Baer
if and only if Z2(M) is a direct summand of M and Z?(M) is a quasi-dual
Baer module (Theorem 2.4). As a consequence of this result, it turns out that
a module M is quasi-t-dual Baer if and only if M = M; ® M> such that M is
a noncosingular quasi-dual Baer module and Z%(My) = 0 (Corollary 2.8). We
also show that being quasi-t-dual Baer is preserved by taking direct summands
(Corollary 2.5). We provide a characterization for an arbitrary direct sum M =
@ie ; M; of quasi-t-dual Baer modules M;, ¢ € I, to be quasi-t-dual Baer when
each M;, i € I, is fully invariant in M (Proposition 2.17).

The investigations in Section 3 focus on the comparison of the notions of
(right) quasi-dual Baer modules (rings) and (right) quasi-t-dual Baer modules
(rings). We begin by providing some examples to show that the implication

quasi-t-dual Baer = quasi-dual Baer

is not true (Example 3.1). Unfortunately, the converse to this implication is
still open. On the other hand, a (necessary and) sufficient condition for a quasi-
dual Baer module to be quasi-t-dual Baer is provided (Proposition 3.2 and The-
orem 3.4). It is shown that any quasi-dual Baer ring is right and left quasi-t-dual
Baer (Corollary 3.8). We also prove a characterization of when a direct product
of right quasi-t-dual Baer rings is right quasi-t-dual Baer (Proposition 3.13).
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2. Quasi-t-dual Baer modules

Recently, a number of research papers have been devoted to the study of many
generalizations of known algebraic properties using the preradical Z2. The con-
cepts obtained were themselves dualized by using the preradical Z2. In this
way, many new notions were introduced and studied, namely, we include t-lifting
modules, t-dual Baer modules, T-dual Rickart modules, and FI-t-lifting modules,
among others, see for example [2], [3], [18], and [19]. According to [2], a module M
is said to be t-dual Baer if 3(Z%(M)) is a direct summand of M for every right
ideal J of Endgr(M). Motivated by this, it is natural to introduce and investigate
the following notion.

Definition 2.1. We say that a module M is quasi-t-dual Baer if J(Z2?(M)) is
a direct summand of M for every two-sided ideal J of S = Endg(M).

Let N be a submodule of a module M. Then N is said to be small in M if
N + L # M for every proper submodule L of M. A module M is called small
if M is a small submodule of its injective hull E(M). A module M is called
lifting if for every submodule N of M, there exists a direct summand K of M
such that N/K is small in M/K, see, for example, [4]. Recall that a ring R is
called a (left) right H-ring if every injective (left) right R-module is lifting. Left
H-rings are characterized in [4, 28.10]. Note that every quasi-Frobenius ring is
a left and right H-ring. Also, every left and right artinian serial ring is a left and
right H-ring, see [4, 29.7].

Example 2.2. Note that every lifting module is amply supplemented i.e., for
any two submodules A and B of M with A+ B = M, B contains a submod-
ule C' such that C' is minimal with property A+ C = M, see for example [13,
Proposition 4.8]. From [2, Theorems 1 and 4], we infer that every lifting module
is t-dual Baer. Moreover, it is clear that every t-dual Baer module is quasi-t-dual
Baer. This implies that every lifting module is quasi-t-dual Baer. Now using [13,
Corollary 4.42], it follows that the R-module Rp is quasi-t-dual Baer for every
semiperfect ring R.

The next lemma which is taken from [11, Lemma 2.7 (3) (b)] and [16, Propo-
sition 2.1] will be used frequently in this paper.

Lemma 2.3. Let M be an R-module. Then the following hold:

(i) Z2(M) is a fully invariant submodule of M.
(ii) For any decomposition M = @,;.; M;, we have Z*(M) = @, Z*(M;).
(iii) For any family (M;);c1 of modules, we have Z? (Hiel Mi) - Hie[ZQ(Mi)-
(iv) If R = Ry ® Ry where R;, i = 1,2, are nonzero two-sided ideals of R
and M is an R-module, then Z% (MR;) = Z%(MR;) for i = 1,2.

i
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Following T. Amouzegar and Y. Talebi in [1], a module M is said to have the
FI-strong summand sum property (FI-SSSP for short) if the sum of any family
of fully invariant direct summands of M is a direct summand of M. Next, we
provide a characterization of quasi-t-dual Baer modules which can be considered
as the analogue of [2, Theorem 2].

Theorem 2.4. Let M be an R-module with S = Endg(M). Then the following
are equivalent:
(i) M is a quasi-t-dual Baer module;
(ii) 3(Z%(M)) is a direct summand of M for every left ideal J of S;
(iii) Z2(M) is a direct summand of M and Z?(M) is a quasi-dual Baer module;
) Z2(M) has the FI-SSSP and S¢(Z*(M)) is a direct summand of M for
every ¢ € S;
(V) Ypea S(Z%(M)) is a direct summand of M for every nonempty sub-
set A of S.

(iv

PrOOF: Throughout this proof, u: Z2(M) — M stands for the inclusion map
and when Z2%(M) is a direct summand of M, m: M — Z*(M) stands for the
projection map. Moreover, let T = Endg(Z%(M)). Note that Z2(M) is fully
invariant in M by Lemma 2.3 (i). This implies that Z2(M) = S(Z%(M)).

(i) = (i) Let J be a left ideal of S. Then JS is a two-sided ideal of S.
Therefore, 3S(Z%(M)) = 3(Z?(M)) is a direct summand of M since M is quasi-
t-dual Baer.

(ii) = (iii) Since Z%(M) = S(Z*(M)), Z*(M) is a direct summand of M
by (ii). Now let I be a left ideal of the ring T. Consider the subset J = {u ¢ m:
peltof S. Let f € Sand ¢ € I. It is easily seen that f(uon) =pnflpon) =
w(rfug)w. Since wfu € T, we have mfu¢ € I and hence f(uonm) € J. So
J is a left ideal of S. By hypothesis, J(Z2(M)) is a direct summand of M.
But 3(Z3(M)) = I(Z*(M)) C Z*(M). Then I(Z%(M)) is a direct summand
of Z2(M). This shows that Z2(M) is a quasi-dual Baer R-module, see [17,
Proposition 2.4].

(ii) = (iv) By [1, Lemma 2.2], Z2(M) has the FI-SSSP. Now take ¢ € S and
consider the subset A = {nfou: f € S} of T. Since Z2(M) is fully invariant
in M, it follows easily that Sp(Z2(M)) = A(Z2(M)). Moreover, it is easy to check
that A(Z2(M)) = TA(Z*(M)). Since Z2(M) is quasi-dual Baer, it follows from
[17, Proposition 2.4] that TA(Z2?(M)) is a direct summand of Z2(M). Hence
Sp(Z2(M)) is a direct summand of M as Z2(M) is a direct summand of M.

(iv) = (v) Let A be a nonempty subset of S. Note that Sp(Z2(M)) is a direct
summand of M for every ¢ € S by (iv). In particular, S1y(Z%(M)) = Z?(M)
is a direct summand of M since Z2(M) is fully invariant in M. Therefore,
So(Z23(M)) is a direct summand of Z2(M) for every ¢ € A. Moreover, it is
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easily seen that Sp(Z2(M)) is a fully invariant submodule of Z2(M) for every
¢ € A. Now the implication follows from the fact that Z2(M) has the FI-SSSP.
(v) = (i) Let J be a two-sided ideal of S. Since J(Z*(M)) =3 _5S¢p(Z*(M)),
it follows from (v) that J(Z2(M)) is a direct summand of M. Consequently, M is
a quasi-t-dual Baer module. (I

As an application of Theorem 2.4, we obtain the following corollary which
shows that being quasi-t-dual Baer is preserved by taking direct summands.

Corollary 2.5. Let M be a quasi-t-dual Baer module. Then every direct sum-
mand of M is also quasi-t-dual Baer.

PROOF: Let N be a direct summand of M. Then M = N & N’ for some
submodule N’ of M. By Lemma 2.3 (ii), we have Z2(M) = Z2(N) & Z*(N').
Moreover, using Theorem 2.4, it follows that Z2(M) is a direct summand of M
and Z2(M) is a quasi-dual Baer R-module. Therefore Z2(N) is a direct summand
of N. Moreover, Z2(N) is a quasi-dual Baer R-module by [17, Corollary 2.5].
Now using again Theorem 2.4, we infer that N is quasi-t-dual Baer. O

In the sequel, the class of quasi-t-dual Baer right (or left) R-modules will be
denoted by Cr (rC, respectively). It is worth pointing out two special subclasses
of Cr, namely

Cir = {M € Mod—R: Z(M) =M and M is quasi-dual Baer} and
Cor = {M € Mod—R: Z2(M) = 0}.
In fact, it is clear that Ca, C Cg. In addition, using [17, Proposition 2.4], we infer

that a noncosingular module M is quasi-dual Baer if and only if M is quasi-t-dual
Baer. Thus Ci,- C Cr. Similarly, we can define C1; and Cy.

Example 2.6. Let D be a commutative local domain with maximal ideal m

D
and quotient field @ # D. Consider the ring R = [ @

0 @
m Q o
0 0 ] and it is easy to check that R/Rad (R) &

(D/m) x Q (as rings). This implies that R is a semilocal ring. Moreover, we have
0 @
Soc (RR) =
oc (Rpg) [ 0 Q
(i) Using [20, Corollary 2.7], we see that Z(Rgr) = Soc(rR) = 0 and hence
Rpg € Co,. This implies that R is a right quasi-t-dual Baer ring.
(ii) Now to study if R is left quasi-t-dual Baer, note that R = I; & I is the

0 @ | D
{0 Q]andfg{o

} . Then the Jacobson

radical of R is Rad (R) = {

] and Soc (gR) = 0.

direct sum of the left ideals I} = 8 } Using again

415
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[20, Corollary 2.7], we deduce that Z(rl1) = Soc(Rg)l; = I, and Z(gly) =
Soc (Rg)Is = 0. Therefore, Z2(rR) = I by Lemma 2.3 (ii). Moreover, it is easy
to check that for every endomorphism ¢ of rR, either ¢(I1) = 0 or ¢(l1) = I1.
Taking into account Theorem 2.4, we obtain that pkR €z C and gly € Cy;. Also,
it is clear that pls € Coy and gR ¢& C1; U Co.

Example 2.7. (i) Let R be a right V-ring. Applying [16, Proposition 2.5],
it follows that Z(M) = M for any R-module M. Thus Cgr = Ci,, see [17,
Proposition 2.4].
(ii) It is well known that every small module is cosingular. Hence every small
module M is quasi-t-dual Baer. This implies that
(a) for every commutative domain which is not a field R, the R-module Rp
is quasi-t-dual Baer by [9, Corollary 6]; and
(b) for any family (M;);er of small modules, M = []
Baer since Z%(M) =0 by Lemma 2.3 (iii).

ier Mi is quasi-t-dual

The next result which is another consequence of Theorem 2.4 shows that the
class of quasi-t-dual Baer right R-modules is precisely

Cr = {Ml @ Msy: My € Cir and My € CQT}.

Corollary 2.8. Let M be an R-module. Then the following are equivalent:

(i) M is a quasi-t-dual Baer module;
(il) M = My & My such that M, is a noncosingular quasi-dual Baer sub-
module and Z?(Ms) = 0 (in this case, Z?(M) = Mj).

PROOF: (i) = (ii) By Theorem 2.4, there exists a submodule My of M such
that M = My & M, where My = ZQ(M). Hence M; is noncosingular by [19,
Lemma 3.10]. Moreover, M; is quasi-t-dual Baer by Corollary 2.5. Therefore M;
is a quasi-dual Baer module.

(ii) = (i) Note that Z2(M) = Z?(M;) ® Z*(Mz) = M; is a direct summand
of M. Now the result follows from Theorem 2.4. (I

Example 2.9. Let R be a right hereditary, right noetherian ring. Let an R-
module M = N@ L be a direct sum of an injective submodule N and a submod-
ule L with Z2(L) = 0 (for example, L may be taken to be small in E(L)). Then
N is quasi-dual Baer by [12, Corollary 2.30]. Moreover, N is noncosingular by
[16, Proposition 2.7]. In addition, it is clear that Z (L) = 0 and hence Z2(L) = 0.
From Corollary 2.8, we infer that M is a quasi-t-dual Baer module.
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Corollary 2.10. Let M be an indecomposable R-module. Then the following
are equivalent:
(i) M is a quasi-t-dual Baer module;
(ii) (a) Z2(M) =0; or
(b) Z(M) = M and M is a quasi-dual Baer module.

ProoF: This follows directly from Corollary 2.8. ]

It is well known that any simple R-module is either a small module or an
injective module. Recall that the class of noncosingular modules is closed under
homomorphic images, see [16, Proposition 2.4]. Combining Corollary 2.8 and [17,
Corollary 3.9], we obtain the following corollary.

Corollary 2.11. Let M be a nonzero module over a commutative perfect ring R.
Then the following are equivalent:
(i) M is quasi-t-dual Baer;
(i) M = (®i€] Si) @ N where each S;, i € I, is a simple injective R-module
and Z2(N) = 0.

Next, we provide two classes of rings over which all modules are quasi-t-dual
Baer.

Example 2.12. (i) Let R be a right perfect ring which has no injective simple
R-modules (for example, R can be a local right perfect ring which is not a division
ring). Using [16, Theorem 3.8 (3)], we conclude that Z2(M) = 0 (i.e. M € Ca,)
for all R-modules M. In particular, every R-module is quasi-t-dual Baer.

(ii) Let R be a right H-ring and let M be an R-module. By [16, the proof
of Theorem 3.8 (1)], M = M; @& M, such that Z(M;) = M, is injective and
Z?(Ms) = 0. Since R is aright H-ring, M is lifting and hence M is a quasi-t-dual
Baer module, see Example 2.2. Therefore M is quasi-dual Baer as Z2(M;) = M.
Consequently, M is quasi-t-dual Baer by Corollary 2.8.

Proposition 2.13. Assume that R is a commutative noetherian ring and let M
be an R-module which has no nonzero submodules N with Rad (N) = N. Then
the following are equivalent:

(i) M is a quasi-t-dual Baer module;
(ii) Z2(M) is a semisimple, injective, and projective module.
If R is a Dedekind domain, then (i)—(ii) are also equivalent to:
(iii) Z2(M) = 0, that is M € Ca,-.
ProOF: (i) = (ii) By Corollary 2.8, Z(Z2(M)) = Z?(M). Applying [21, Satz 2.6],
we infer that Z2(M) is semisimple and projective. Hence Z2(M) = @,.; Si is
a direct sum of simple projective submodules S;, ¢ € I. By Lemma 2.3 (ii),
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ZQ(Si) = 5; for all ¢ € I. It follows that each S; is an injective module. Since R
is noetherian, we conclude that Z2(M) is injective.

(ii) = (i) Since Z2(M) is semisimple, it is clear that Z2(M) is a quasi-dual
Baer module. Moreover, Z%(M) is a direct summand of M since Z2(M) is injec-
tive. Therefore M is quasi-t-dual Baer by Theorem 2.4.

(i) = (iii) Suppose that R is a Dedekind domain. Then R is a small R-
module, see Example 2.7 (ii), and so every simple R-module is a small module.
Since Z2(M) is semisimple and injective, it follows that Z2(M) = 0.

(iii) = (ii) This is clear. O

The next result should be compared with Example 2.9.

Corollary 2.14. Let M be a module over a Dedekind domain R. Then the
following are equivalent:

(i) M is a quasi-t-dual Baer module;
(ii) M = My ® My such that M is an injective module and Z?(Ms) = 0. In
particular, Cy, is exactly the class of all injective R-modules.

PRrROOF: (i) = (ii) It is well known that M = M; & My such that M; is injec-
tive and M, has no nonzero submodules N with Rad (V) = N, see for example
[10, Theorem 8]. Note that My is quasi-t-dual Baer by Corollary 2.5. Then
Z?(Mz) = 0 by Proposition 2.13.

(ii) = (i) This follows from Example 2.9. O

Consider the question Qi: When is the direct sum of two or more quasi-t-
dual Baer modules, quasi-t-dual Baer? Note that for any indexed set of mod-
ules (M;);e; with Z2(M;) = 0 for all i € I, we have 22(®iel Mi) = 0, see
Lemma 2.3 (ii). In view of Corollary 2.8, one can observe that the question Q; is
equivalent to the question Q2: When is the direct sum of two or more noncosin-
gular quasi-dual Baer modules, quasi-dual Baer?

The next two propositions deal with two special cases of direct sums of quasi-
t-dual Baer modules. We first prove the following elementary lemma.

Lemma 2.15. Let an R-module M = @, M be a direct sum of quasi-t-dual
Baer R-modules My, A € A. Then Z?(M) is a direct summand of M.

PROOF: Note that Z2(M)=@D, ,Z*(M») by Lemma 2.3 (ii). Moreover, Z2(M)
is a direct summand of M) for each A € A by Theorem 2.4. Therefore Z2(M) is
a direct summand of M. O

Proposition 2.16. Let M be an R-module. If M is quasi-t-dual Baer, then
every direct sum of copies of M is quasi-t-dual Baer.
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PROOF: Assume that M is quasi-t-dual Baer and let I be a nonempty index set.
By Lemma 2.15, Z2(M) = (Z*(M))!) is a direct summand of M), Moreover,
Z%(M) is quasi-dual Baer by Theorem 2.4. Therefore (Z2(M))!) is quasi-dual
Baer by [1, Theorem 2.7]. Now using again Theorem 2.4, we conclude that M @D
is a quasi-t-dual Baer module. (I

Proposition 2.17. Let M = @,., Mx be such that each My, X € A, is a fully
invariant submodule of M. Then M is quasi-t-dual Baer if and only if M) is
quasi-t-dual Baer for all A € A.

PROOF: The necessity is clear by Corollary 2.5. Conversely, suppose that each
M), is quasi-t-dual Baer. Note first that Z2(M) = @, Z*(M,) is a direct
summand of M by Lemma 2.15. Using Theorem 2.4, we only need to show
that Z2(M) is quasi-dual Baer. Fix A € A. Since Z%(M,) is a fully invariant
submodule of My (Lemma 2.3 (i)) and M} is fully invariant in M, it follows that
Z2(M,) is a fully invariant submodule of M. But Z2(M) is a direct summand
of M. Then it is not difficult to see that Z2(My) is a fully invariant submodule
of Z%(M). Moreover, Z2(M,) is quasi-dual Baer by Theorem 2.4. Now applying
[17, Proposition 2.19], we deduce that Z2(M) is a quasi-dual Baer module since
Z%(M) = @, Z*(My). Therefore, M is a quasi-t-dual Baer module. O

Proposition 2.18. The following statements are equivalent for a module M :

(i) M is a quasi-t-dual Baer module;
(i) M @ Z%(M) is a quasi-t-dual Baer module.

ProoF: (i) = (ii) By Corollary 2.8, Z2(M) is a noncosingular quasi-dual Baer
module and M = Z2(M) @ N for some submodule N of M with Z2(N) = 0.
Therefore the R-module L = M & Z?(M) can be written as L = M; ®& My & Ms
the direct sum of submodules M;, i = 1,2,3, of L with M; = My = Z%(M) and
ZQ(M3) = 0. It follows from [1, Theorem 2.7] that M; @ My is quasi-dual Baer.
Moreover, note that Z2(L) = M; ® M by Lemma 2.3 (ii). Now use Theorem 2.4
to conclude that L is quasi-t-dual Baer.

(ii) = (i) This is clear by Corollary 2.5. O

3. Quasi-t-dual Baer (rings) modules versus quasi-dual Baer (rings)
modules

The investigations in this section focus on the comparison of the notions of
quasi-t-dual Baer modules and quasi-dual Baer modules. We begin by exhibiting
some quasi-t-dual Baer modules which are not quasi-dual Baer.
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Example 3.1. (i) Let p be a prime number. Consider the Z-modules M; = Z
and My = Z/p*Z. Tt is clear that M; < E(M;) for each i € {1,2}. Therefore
Z(M;) =0 for each i € {1,2}. This implies that the Z-modules M; and M are
quasi-t-dual Baer. However, neither of M7 and M> is quasi-dual Baer since they
are both indecomposable Z-modules, see [17, Corollary 3.7].

(ii) Let P denote the set of all prime numbers and consider the Z-module
M =[],epZ/pZ. Note that the torsion submodule of M is T(M) = @, cp Z/pZ.
Then clearly T'(M) is not a direct summand of M. It is shown in [17, Example 3.4]
that M is not quasi-dual Baer. Indeed, for every fixed prime number g, let m; be
the endomorphism of M defined by (xp)per — (Yp)pep such that y, = 0 for all
p # q and y, = xq. Since > pmy(M) = T(M), we have J(M) = T'(M) where
J=9(T(M)). Now use [17, Corollary 2.6]. On the other hand, since each Z/pZ
is a small Z-module, we have Z2(M) C HpePZQ(Z/pZ) =0, see Lemma 2.3 (iii).
Therefore M is a quasi-t-dual Baer module.

One may ask whether every quasi-dual Baer module is quasi-t-dual Baer. We do
not know the answer to this question. It would be desirable to construct a quasi-
dual Baer module which is not quasi-t-dual Baer, but we have not been able to
find an example of such a module. In the next result, we give a characterization
for a quasi-dual Baer module to be quasi-t-dual Baer.

Proposition 3.2. Let M be a quasi-dual Baer R-module. Then the following
conditions are equivalent:

(i) M is a quasi-t-dual Baer module;
(ii) Z2(M) is a direct summand of M;
(iii) J(M) = Z2%(M), where 3 = D(Z*(M)).

PROOF: (i) = (ii) This follows from Theorem 2.4.

(i) = (iii) It is clear that for any direct summand K of M, J(M) = K, where
J=9(K).

(iii) = (i) Using [17, Corollary 2.6] and Lemma 2.3 (i), we conclude that Z2(M)
is a direct summand of M. Hence Z2(M) is quasi-dual Baer by [17, Corollary 2.5].
It follows from Theorem 2.4 that M is quasi-t-dual Baer. ([

An R-module M is said to be retractable if Hom r(M, N) # 0 for any nonzero
submodule N of M, see [8] and [15]. For example, any finitely generated module
over a commutative ring is retractable by [8, Theorem 2.7]. Recall that a ring R is
called right (left) semiartinian if every nonzero right (left) R-module has nonzero
socle, and R is called semiartinian if it is right and left semiartinian. By [8,
Theorem 2.8], every module over a commutative semiartinian ring is retractable.
Next, we provide sufficient conditions for a quasi-dual Baer module to be quasi-
t-dual Baer. To prove the next theorem, we need the following lemma.
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Lemma 3.3. Let M be a quasi-dual Baer R-module. Then M = M; ® M> is
a direct sum of submodules My and Mo such that Z(M;) = M; and Hom r(M,
Z2(My)) = 0.

PRrOOF: Note that N = Z2(M) is a fully invariant submodule of M. According
to [17, Proposition 2.1], we obtain that M = M; & M; for some submodules M;
and My of M with M; C N and Hom gr(M,Ms N N) = 0. By modularity,
we have N = M; @ (My N N). On the other hand, we have N = Z%(M) =
ZQ(Ml) &) 22(M2), see Lemma 2.3 (ii). Moreover, 22(M2) C M>; N N by [16,
Proposition 2.1 (1)]. Therefore Z2(M;) = M; and Z?(My) = My N N. It follows
that Z(M;) = My and Hom r(M,Z?%(Ms)) = 0. O

Theorem 3.4. Let M be a quasi-dual Baer nonzero R-module and assume that
M is retractable. Then M is quasi-t-dual Baer.

Proor: By Lemma 3.3, there exists a direct sum decomposition M = M; & M
with Z (M) = M; and Hom g(M,Z?(Ms)) = 0. Since M is retractable, Z2(My)
must be zero. Hence Z2(M) = M; is a direct summand of M by Lemma 2.3 (ii).
Now the result follows from Proposition 3.2. O

Combining Theorem 3.4 with [8, Theorems 2.7 and 2.8], we obtain the following
corollary.

Corollary 3.5. Let M be a quasi-dual Baer nonzero R-module over a commu-
tative ring R. Suppose that one of the following conditions is fulfilled:

(i) R is a semiartinian ring; or

(ii) M is a finitely generated R-module.
Then M is quasi-t-dual Baer.

Proposition 3.6. Let M be a module such that M ©Z?(M) is quasi-dual Baer.
Then M and M @& Z*(M) are quasi-t-dual Baer.

PrOOF: Note that Z2(M) is fully invariant in M. Using [14, Lemma 1.11],
it follows that there exists a fully invariant submodule X of Z2(M) such that
N =Z*M) @ X is fully invariant in L = M ® Z?(M). Consider the two-sided
ideal J = Hom g(L, N) of Endg(L). It is easily seen that Z2(M)®0 C J(L) C N.
Hence Z2(M) @ 0 is a direct summand of J(L). But J(L) is a direct summand
of L by [17, Proposition 2.4]. This implies that Z2(M) is a direct summand
of M. Moreover, Z?(M) is quasi-dual Baer by [17, Corollary 2.5]. Therefore
M is quasi-t-dual Baer by Theorem 2.4. Now use Proposition 2.18 to infer that
M @ Z?(M) is quasi-t-dual Baer. O

421
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Remark 3.7. If R is a ring such that every R-module is quasi-dual Baer, then
every R-module is quasi-t-dual Baer, see Proposition 3.6. But the converse does
not hold. To see this, we can take a local right perfect ring which is not a di-
vision ring R (e.g. R can be taken to be Z/p"Z for some prime number p and
some integer n > 2). By Example 2.12 (i), every R-module is quasi-t-dual Baer.
However, the R-module Rp is not quasi-dual Baer since R is not a simple ring,
see [17, Proposition 2.10].

It is shown in [17, Corollary 2.11] that the quasi-dual Baer property is left-right
symmetric for any ring. Moreover, a ring R is quasi-dual Baer if and only if R
is a finite product of simple rings by [17, Proposition 2.10]. A ring R is called
a right quasi-t-dual Baer ring if the right R-module Rp is a quasi-t-dual Baer
R-module. Left quasi-t-dual Baer rings are defined similarly. The ring R is called
quasi-t-dual Baer in case R is left and right quasi-t-dual Baer. It is well known
that for any ring R, the R-module Rp is retractable. The next corollary follows
easily from Theorem 3.4.

Corollary 3.8. Every quasi-dual Baer ring is a quasi-t-dual Baer ring. That is,
every finite product of simple rings is a quasi-t-dual Baer ring.

We next present some right quasi-t-dual Baer rings which are not quasi-dual
Baer.

Example 3.9. (i) Let R be a local ring which is not a division ring. Then
Z(RR) # R since otherwise R will be a right V-ring by [16, Corollary 2.6]. In
this case R will be a division ring. Hence Z(Rg) < Rg and so Z%(Rg) = 0.
This implies that R is a right quasi-t-dual Baer ring. Similarly, we can see that
R is left quasi-t-dual Baer. On the other hand, R is not quasi-dual Baer by [17,
Proposition 2.10].

(i) Let R be a commutative semiperfect ring which is not semisimple. Then R
is a quasi-t-dual Baer ring by Example 2.2. However, the ring R is not quasi-dual
Baer by [17, Proposition 2.10].

Example 3.10. Consider the ring R of all upper triangular 2 x 2 matrices with
entries in a field F. It is well known that R is a left and right hereditary ar-
tinian ring, see for example [7, Example 13.6]. Note that R = M; & M» with

M, = { OF 0 ] is an injective indecomposable R-module and M = [ 8 OF }

is a simple small R-module. Then R is a right quasi-t-dual Baer ring by Exam-
ple 2.9. On the other hand, note that R is not quasi-dual Baer, since otherwise
Rad (R) is a direct summand of the R-module Rg by [17, Proposition 2.10]. But
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Rad (R) is small in Rr. Hence Rad (R) = 0. This contradicts the fact that

Rad (R) = {8 OF}

Proposition 3.11. The following conditions are equivalent for a ring R:
(i) R is a right quasi-t-dual Baer ring;
(ii) IZ%(Rg) is a direct summand of Rp for any two-sided ideal I of R;
(iii) IZ%(RR) is a direct summand of Rp for any left ideal I of R;
(iv) every free right R-module is quasi-t-dual Baer;
(v) every projective right R-module is quasi-t-dual Baer.

PROOF: (i) = (ii) This follows directly from the definition of a quasi-t-dual Baer
module.

(ii) = (iii) This is obvious.

(iii) = (i) Let J be a left ideal of Endg(Rg). Put I =3 . 5 f(R). It is easy
to check that I is a left ideal of R. Then IZ%(Rpg) is a direct summand of Rp.
But 3(Z2(Rg)) = IZ*(Rg). Hence J(Z2(RpR)) is a direct summand of Rg. It
follows from Theorem 2.4 that R is a right quasi-t-dual Baer ring.

(i) = (iv) By Proposition 2.16.

(iv) = (v) This follows from Corollary 2.5 and the fact that every projective
module is isomorphic to a direct summand of a free module.

(v) = (i) This is immediate. O

Our next endeavor is to characterize when a product of right quasi-t-dual Baer
rings is right quasi-t-dual Baer. The following lemma is needed.

Lemma 3.12.
(i) Let (R;)ier be an indexed set of rings with R =[]
Z% (Rig,) =0 for all i € I. Then Z%(Rpg) = 0.
(ii) For any ring R, Z%(RRg) is a two-sided ideal of R.
(ili) Let R = Ry @ Rs be a ring decomposition of a ring R. Then R is right
quasi-t-dual Baer if and only if both Ry and Ry are right quasi-t-dual

scr It and assume that

Baer rings.

PROOF: (i) Using Lemma 2.3 (iv), we infer that Z%(Rigr) = Z% (Rig,) = 0 for
cach i € I. But Z%(Rg) C [[;c;Z%(Rig) by Lemma 2.3 (iii). It follows that
Z%(Rr) = 0.

(ii) It is clear that Z%(Rg) is a right ideal of R. Moreover, Z%(Rg) is a ful-
ly invariant submodule of the right R-module R by Lemma 2.3 (i). Thus
aZ%(Rr) CZ%(RR) for every a € R, that is, Z%(Rg) is a left ideal of R.

(iii) Note that Z%(RR) = Z%(RU?) @Z%(RQR) = Z%h (RlRl) @2%2 (R2R2)
by Lemma 2.3 (ii) and (iv). Moreover, 22}?,7-, (Rig,) is a two-sided ideal of R; for
i=1,2 by (ii).



424 R. Tribak, Y. Talebi, M. Hosseinpour

(=) Let A; be a two-sided ideal of R;. Then A; is a two-sided ideal of R.
Hence Alz%(RR) is a direct summand of Rr by Proposition 3.11. It is clear
that Alz%%(RR) = Alzél (Rig,)- So AE%I (Rig,) is a direct summand of Rip,.
From Proposition 3.11, it follows that R; is a right quasi-t-dual Baer ring.

(<) Take a two-sided ideal A of R. Then,

AZ}(RR) = AZ% (Rig,)®AZ%, (Ryg,) = (AR1)Z % (Rig,) @ (ARy)Z%, (Rag,).-

Since each AR; is a two-sided ideal of R;, it follows from Proposition 3.11 that
(AR;)Z% (Rig,) is a direct summand of R, for i = 1,2. Therefore AZ?(Rpg) is
a direct summand of Rp. Using again Proposition 3.11, we conclude that R is
a right quasi-t-dual Baer ring. (Il

Proposition 3.13. Let (R;);e; be an indexed set of rings and let R =[]
Then the following statements are equivalent:

16]

(i) R is a right quasi-t-dual Baer ring;
(ii) there exists a finite subset J C I such that 22}?,7-, (Rigr,) = 0 for every
it € I\ J and each R;, j € J, is a right quasi-t-dual Baer ring.

PROOF: (i) = (ii) Consider the two-sided ideal A = @, ; R; of R. We claim that
AZ%(RR) = Z%(Ag). Note that Z%(Ar) = @,c;Z%(Rir) by Lemma 2.3 (ii).
Also, we have Z%(R;g) = Z% (Rig,), see Lemma 2.3 (iv) for all 4 € I. Thus
Z%(RiR) is a two-sided ideal of R; for every i € I. Therefore AZ%(AR) =
Z%(AR) and hence Z%(Agr) C AZ? (RR) by [16, Proposition 2.1 (1)]. More-

over, we have AZ%(Rg) C A(l;,c;Z%(Rig)) by Lemma 2.3 (iii). However,
A(TLic; Z%(Rig)) = @leIZ (R; ) = Z%(AR). So AZ%(RRr) C Z%(AR). Tt
follows that AZ 2 (R r) =Z%(Ag) as claimed. Now applying Proposition 3.11, we

obtain that @,.; Z%(R;g) is a direct summand of Rg. Thus (@,c;Z%(Rir)) ®
B = Rp for some right ideal B of R. This implies that 1 = a —|— b for some
a € @;c;Z%(Rig) and some b € B. This yields aR = @,.;Z%(Rir) and
bR = B. Then there exists a finite subset J C I such that Z2 “(Rig) = 0 for
every i € I'\ J. Therefore Z%, (Rir,) = 0 for all i € I'\ J, sce Lemma 2.3 (iv).
Note that R; is a right quasi-t-dual Baer ring for all j € J by Lemma 3.12 (iii).
(i) = (i) Set T =J[;cp s R and S =]];c; R;. Then R=T x S (as rings).
Note that ZZ(Tr) = 0 by Lemma 3.12 (i). Hence T is a right quasi-t-dual
Baer ring. Since J is a finite set, the proof is completed by induction and using
Lemma 3.12 (iii). O

From the preceding result, it follows easily that an infinite product of right
quasi-t-dual Baer rings need not be a right quasi-t-dual Baer ring. Next, we
provide some explicit examples.
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Example 3.14. Taking a right quasi-t-dual Baer ring R with Z%(Rg) # 0, it
follows from Proposition 3.13 that RY is not a right quasi-t-dual Baer ring, where
N denotes the set of all positive integers. For example, we can take R to be one
of the following rings:

F F
(i) Let R = { 0 F }, where F' is a field. By Example 3.10, R is a right

quasi-t-dual Baer ring and Rr = M; & Ms such that M; is a nonzero injective
module and M, is a small module. Since R is right hereditary, Z2(M;) = M,
see [16, Proposition 2.7], and hence Z%(Rg) = M; by Lemma 2.3 (ii).

(ii) Let R = [[;—; R: be the product of simple rings R;, 1 < ¢ < n, such
that at least one of them is a right V-ring, see [6]. So Z%(Rgr) # 0 by [16,
Propositions 2.1 (1) and 2.5]. Moreover, R is a right quasi-t-dual Baer ring by
Corollary 3.8.

Remark 3.15. Let F' be a field.
(i) Consider the ring R = [ 5 ? ] By Example 3.14 (i), Z%(Rg) =
0
0
Z ) This shows that the preradical Z?2 is not left-right symmetric.
i) Assume that R is a right quasi-t-dual Baer ring. Then R = Z2 L(Rr)®I
for some right ideal I of R by Theorem 2.4. Note that I need not be a two-sided

F F
ideal of R. In fact, for the ring R = [ 0 F ], see Examples 3.10 and 3.14 (i),

— F —
} Similarly, we can show that Z%(rR) = [ 7 } Thus Z%(Rg) #

F
0

R(r
(i

0 0

we have R = Z%(Rg) ® My where My = [ 0 F

]. On the other hand, it is

clear that M is not a left ideal of R.

Proposition 3.16. Let R = Ry & Ry be a ring decomposition of a ring R such
that Ry is a right V-ring and Z2RZ (R2g,) = 0. Then R is a right quasi-t-dual
Baer ring if and only if R; is a finite product of simple rings.

PRrROOF: We first note that using [16, Corollary 2.6] and Lemma 2.3 (ii) and (iv),
we get
Z%(RRr) =Z%(Rig) = Z%,(Rig,) = Ri.

For the necessity, assume that R is a right quasi-t-dual Baer ring and take a two-
sided ideal I1 of R;. Then clearly I; is a two-sided ideal of R. Thus 1122R(RR) =
1Ry = I is a direct summand of Rr by Proposition 3.11. So [; is a direct
summand of Rig,. According to [17, Proposition 2.10], R; is a finite product
of simple rings. Conversely, note that 722 (R2r,) = 0 by hypothesis. Moreover,
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R; is right quasi-t-dual Baer by Corollary 3.8. Now use Proposition 3.13 to deduce

that R is a right quasi-t-dual Baer ring. ([
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