

Rachid Tribak; Yahya Talebi; Mehrab Hosseinpour
Some results on quasi-t-dual Baer modules

Commentationes Mathematicae Universitatis Carolinae, Vol. 64 (2023), No. 4, 411–427

Persistent URL: <http://dml.cz/dmlcz/152621>

Terms of use:

© Charles University in Prague, Faculty of Mathematics and Physics, 2023

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these *Terms of use*.

This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project *DML-CZ: The Czech Digital Mathematics Library* <http://dml.cz>

Some results on quasi-t-dual Baer modules

RACHID TRIBAK, YAHYA TALEBI, MEHRAB HOSSEINPOUR

Abstract. Let R be a ring and let M be an R -module with $S = \text{End}_R(M)$. Consider the preradical \bar{Z} for the category of right R -modules $\text{Mod-}R$ introduced by Y. Talebi and N. Vanaja in 2002 and defined by $\bar{Z}(M) = \bigcap \{U \leq M : M/U \text{ is small in its injective hull}\}$. The module M is called quasi-t-dual Baer if $\sum_{\varphi \in \mathfrak{I}} \varphi(\bar{Z}^2(M))$ is a direct summand of M for every two-sided ideal \mathfrak{I} of S , where $\bar{Z}^2(M) = \bar{Z}(\bar{Z}(M))$. In this paper, we show that M is quasi-t-dual Baer if and only if $\bar{Z}^2(M)$ is a direct summand of M and $\bar{Z}^2(M)$ is a quasi-dual Baer module. It is also shown that any direct summand of a quasi-t-dual Baer module inherits the property. The last part of the paper is devoted to the comparison of the notions of quasi-dual Baer modules and quasi-t-dual Baer modules. Also, right quasi-t-dual Baer rings are investigated.

Keywords: fully invariant submodule; quasi-dual Baer module; quasi-dual Baer ring; quasi-t-dual Baer module; quasi-t-dual Baer ring

Classification: 16D10, 16D80

1. Introduction

Throughout this paper, R is an associative ring with identity, and all the modules are unital right R -modules unless stated otherwise. Let M be an R -module. The notation $N \subseteq M$ and $N \leq M$ means that N is a subset of M and N is a submodule of M , respectively. We will write $\text{End}_R(M)$ and $E(M)$ for the endomorphism ring of M and the injective hull of M , respectively. By \mathbb{Q} and \mathbb{Z} , we denote the ring of rational numbers and integer numbers, respectively. Also, for any prime number p , the Prüfer p -group will be denoted by $\mathbb{Z}(p^\infty)$.

In 1967 in [5], W. E. Clark introduced the concept of quasi-Baer rings. A ring R is called right quasi-Baer if the right annihilator of any right ideal of R is generated as a right ideal by an idempotent. Recall that a submodule K of M is called fully invariant if $f(K) \subseteq K$ for all $f \in \text{End}_R(M)$. In 2004 in [14], S. T. Rizvi and C. S. Roman generalized the notion of right quasi-Baer rings to a module theoretic version. A module M is called quasi-Baer if the right annihilator in M of any two-sided ideal of $\text{End}_R(M)$ is a direct summand of M . Equivalently, for

any fully invariant submodule N of M , the left annihilator of N in $\text{End}_R(M)$ is generated by an idempotent of $\text{End}_R(M)$. In 2013 in [1], T. Amouzegar and Y. Talebi introduced a dual notion of quasi-Baer modules. A module M is said to be quasi-dual Baer if for every fully invariant submodule N of M , there exists an idempotent e in $S = \text{End}_R(M)$ such that $\{\phi \in S: \text{Im } \phi \subseteq N\} = eS$. To introduce the concept studied in this article, recall that the singular submodule $Z(M)$ of an R -module M is the set of $m \in M$ such that $mI = 0$ for some essential right ideal I of R . Dually, Y. Talebi and N. Vanaja introduced in [16] the submodule $\bar{Z}(M)$ of M which is defined by

$$\bar{Z}(M) = \bigcap \{U \leq M: M/U \text{ is small in } E(M/U)\}.$$

The R -module M is said to be *cosingular* (or *noncosingular*) if $\bar{Z}(M) = 0$ (or $\bar{Z}(M) = M$). We write the submodule $\bar{Z}(\bar{Z}(M))$ of M as $\bar{Z}_R^2(M_R) = \bar{Z}^2(M_R)$ and abbreviate to $\bar{Z}^2(M)$ when no confusion can result. Similar notations are used in case M is a left R -module. In [2], the authors introduced and studied t-dual Baer modules. A module M is said to be t-dual Baer if $\sum_{\varphi \in \mathfrak{I}} \varphi(\bar{Z}^2(M))$ is a direct summand of M for every right ideal \mathfrak{I} of $\text{End}_R(M)$. Motivated by this work, we introduce the notion of quasi-t-dual Baer modules. We call a module M quasi-t-dual Baer if $\sum_{\varphi \in \mathfrak{I}} \varphi(\bar{Z}^2(M))$ is a direct summand of M for every two-sided ideal \mathfrak{I} of $\text{End}_R(M)$.

In Section 2, the main result shows that an R -module M is quasi-t-dual Baer if and only if $\bar{Z}^2(M)$ is a direct summand of M and $\bar{Z}^2(M)$ is a quasi-dual Baer module (Theorem 2.4). As a consequence of this result, it turns out that a module M is quasi-t-dual Baer if and only if $M = M_1 \oplus M_2$ such that M_1 is a noncosingular quasi-dual Baer module and $\bar{Z}^2(M_2) = 0$ (Corollary 2.8). We also show that being quasi-t-dual Baer is preserved by taking direct summands (Corollary 2.5). We provide a characterization for an arbitrary direct sum $M = \bigoplus_{i \in I} M_i$ of quasi-t-dual Baer modules M_i , $i \in I$, to be quasi-t-dual Baer when each M_i , $i \in I$, is fully invariant in M (Proposition 2.17).

The investigations in Section 3 focus on the comparison of the notions of (right) quasi-dual Baer modules (rings) and (right) quasi-t-dual Baer modules (rings). We begin by providing some examples to show that the implication

$$\text{quasi-t-dual Baer} \Rightarrow \text{quasi-dual Baer}$$

is not true (Example 3.1). Unfortunately, the converse to this implication is still open. On the other hand, a (necessary and) sufficient condition for a quasi-dual Baer module to be quasi-t-dual Baer is provided (Proposition 3.2 and Theorem 3.4). It is shown that any quasi-dual Baer ring is right and left quasi-t-dual Baer (Corollary 3.8). We also prove a characterization of when a direct product of right quasi-t-dual Baer rings is right quasi-t-dual Baer (Proposition 3.13).

2. Quasi-t-dual Baer modules

Recently, a number of research papers have been devoted to the study of many generalizations of known algebraic properties using the preradical Z^2 . The concepts obtained were themselves dualized by using the preradical \bar{Z}^2 . In this way, many new notions were introduced and studied, namely, we include t-lifting modules, t-dual Baer modules, T-dual Rickart modules, and FI-t-lifting modules, among others, see for example [2], [3], [18], and [19]. According to [2], a module M is said to be *t-dual Baer* if $\mathfrak{I}(\bar{Z}^2(M))$ is a direct summand of M for every right ideal \mathfrak{I} of $\text{End}_R(M)$. Motivated by this, it is natural to introduce and investigate the following notion.

Definition 2.1. We say that a module M is *quasi-t-dual Baer* if $\mathfrak{I}(\bar{Z}^2(M))$ is a direct summand of M for every two-sided ideal \mathfrak{I} of $S = \text{End}_R(M)$.

Let N be a submodule of a module M . Then N is said to be *small* in M if $N + L \neq M$ for every proper submodule L of M . A module M is called *small* if M is a small submodule of its injective hull $E(M)$. A module M is called *lifting* if for every submodule N of M , there exists a direct summand K of M such that N/K is small in M/K , see, for example, [4]. Recall that a ring R is called a (*left*) *right H-ring* if every injective (left) right R -module is lifting. Left H-rings are characterized in [4, 28.10]. Note that every quasi-Frobenius ring is a left and right H-ring. Also, every left and right artinian serial ring is a left and right H-ring, see [4, 29.7].

Example 2.2. Note that every lifting module is amply supplemented i.e., for any two submodules A and B of M with $A + B = M$, B contains a submodule C such that C is minimal with property $A + C = M$, see for example [13, Proposition 4.8]. From [2, Theorems 1 and 4], we infer that every lifting module is t-dual Baer. Moreover, it is clear that every t-dual Baer module is quasi-t-dual Baer. This implies that every lifting module is quasi-t-dual Baer. Now using [13, Corollary 4.42], it follows that the R -module R_R is quasi-t-dual Baer for every semiperfect ring R .

The next lemma which is taken from [11, Lemma 2.7 (3) (b)] and [16, Proposition 2.1] will be used frequently in this paper.

Lemma 2.3. *Let M be an R -module. Then the following hold:*

- (i) $\bar{Z}^2(M)$ is a fully invariant submodule of M .
- (ii) For any decomposition $M = \bigoplus_{i \in I} M_i$, we have $\bar{Z}^2(M) = \bigoplus_{i \in I} \bar{Z}^2(M_i)$.
- (iii) For any family $(M_i)_{i \in I}$ of modules, we have $\bar{Z}^2(\prod_{i \in I} M_i) \subseteq \prod_{i \in I} \bar{Z}^2(M_i)$.
- (iv) If $R = R_1 \oplus R_2$ where R_i , $i = 1, 2$, are nonzero two-sided ideals of R and M is an R -module, then $\bar{Z}_{R_i}^2(MR_i) = \bar{Z}_R^2(MR_i)$ for $i = 1, 2$.

Following T. Amouzegar and Y. Talebi in [1], a module M is said to have the *FI-strong summand sum property* (FI-SSSP for short) if the sum of any family of fully invariant direct summands of M is a direct summand of M . Next, we provide a characterization of quasi-t-dual Baer modules which can be considered as the analogue of [2, Theorem 2].

Theorem 2.4. *Let M be an R -module with $S = \text{End}_R(M)$. Then the following are equivalent:*

- (i) M is a quasi-t-dual Baer module;
- (ii) $\mathfrak{I}(\bar{Z}^2(M))$ is a direct summand of M for every left ideal \mathfrak{I} of S ;
- (iii) $\bar{Z}^2(M)$ is a direct summand of M and $\bar{Z}^2(M)$ is a quasi-dual Baer module;
- (iv) $\bar{Z}^2(M)$ has the FI-SSSP and $S\varphi(\bar{Z}^2(M))$ is a direct summand of M for every $\varphi \in S$;
- (v) $\sum_{\varphi \in A} S\varphi(\bar{Z}^2(M))$ is a direct summand of M for every nonempty subset A of S .

PROOF: Throughout this proof, $\mu: \bar{Z}^2(M) \rightarrow M$ stands for the inclusion map and when $\bar{Z}^2(M)$ is a direct summand of M , $\pi: M \rightarrow \bar{Z}^2(M)$ stands for the projection map. Moreover, let $T = \text{End}_R(\bar{Z}^2(M))$. Note that $\bar{Z}^2(M)$ is fully invariant in M by Lemma 2.3 (i). This implies that $\bar{Z}^2(M) = S(\bar{Z}^2(M))$.

(i) \Rightarrow (ii) Let \mathfrak{I} be a left ideal of S . Then $\mathfrak{I}S$ is a two-sided ideal of S . Therefore, $\mathfrak{I}S(\bar{Z}^2(M)) = \mathfrak{I}(\bar{Z}^2(M))$ is a direct summand of M since M is quasi-t-dual Baer.

(ii) \Rightarrow (iii) Since $\bar{Z}^2(M) = S(\bar{Z}^2(M))$, $\bar{Z}^2(M)$ is a direct summand of M by (ii). Now let I be a left ideal of the ring T . Consider the subset $\mathfrak{I} = \{\mu\phi\pi: \phi \in I\}$ of S . Let $f \in S$ and $\phi \in I$. It is easily seen that $f(\mu\phi\pi) = \mu\pi f(\mu\phi\pi) = \mu(\pi f\mu\phi)\pi$. Since $\pi f\mu \in T$, we have $\pi f\mu\phi \in I$ and hence $f(\mu\phi\pi) \in \mathfrak{I}$. So \mathfrak{I} is a left ideal of S . By hypothesis, $\mathfrak{I}(\bar{Z}^2(M))$ is a direct summand of M . But $\mathfrak{I}(\bar{Z}^2(M)) = I(\bar{Z}^2(M)) \subseteq \bar{Z}^2(M)$. Then $I(\bar{Z}^2(M))$ is a direct summand of $\bar{Z}^2(M)$. This shows that $\bar{Z}^2(M)$ is a quasi-dual Baer R -module, see [17, Proposition 2.4].

(iii) \Rightarrow (iv) By [1, Lemma 2.2], $\bar{Z}^2(M)$ has the FI-SSSP. Now take $\varphi \in S$ and consider the subset $A = \{\pi f\varphi\mu: f \in S\}$ of T . Since $\bar{Z}^2(M)$ is fully invariant in M , it follows easily that $S\varphi(\bar{Z}^2(M)) = A(\bar{Z}^2(M))$. Moreover, it is easy to check that $A(\bar{Z}^2(M)) = TA(\bar{Z}^2(M))$. Since $\bar{Z}^2(M)$ is quasi-dual Baer, it follows from [17, Proposition 2.4] that $TA(\bar{Z}^2(M))$ is a direct summand of $\bar{Z}^2(M)$. Hence $S\varphi(\bar{Z}^2(M))$ is a direct summand of M as $\bar{Z}^2(M)$ is a direct summand of M .

(iv) \Rightarrow (v) Let A be a nonempty subset of S . Note that $S\varphi(\bar{Z}^2(M))$ is a direct summand of M for every $\varphi \in S$ by (iv). In particular, $S1_M(\bar{Z}^2(M)) = \bar{Z}^2(M)$ is a direct summand of M since $\bar{Z}^2(M)$ is fully invariant in M . Therefore, $S\varphi(\bar{Z}^2(M))$ is a direct summand of $\bar{Z}^2(M)$ for every $\varphi \in A$. Moreover, it is

easily seen that $S\varphi(\bar{Z}^2(M))$ is a fully invariant submodule of $\bar{Z}^2(M)$ for every $\varphi \in A$. Now the implication follows from the fact that $\bar{Z}^2(M)$ has the FI-SSSP.

(v) \Rightarrow (i) Let \mathfrak{I} be a two-sided ideal of S . Since $\mathfrak{I}(\bar{Z}^2(M)) = \sum_{\varphi \in \mathfrak{I}} S\varphi(\bar{Z}^2(M))$, it follows from (v) that $\mathfrak{I}(\bar{Z}^2(M))$ is a direct summand of M . Consequently, M is a quasi-t-dual Baer module. \square

As an application of Theorem 2.4, we obtain the following corollary which shows that being quasi-t-dual Baer is preserved by taking direct summands.

Corollary 2.5. *Let M be a quasi-t-dual Baer module. Then every direct summand of M is also quasi-t-dual Baer.*

PROOF: Let N be a direct summand of M . Then $M = N \oplus N'$ for some submodule N' of M . By Lemma 2.3 (ii), we have $\bar{Z}^2(M) = \bar{Z}^2(N) \oplus \bar{Z}^2(N')$. Moreover, using Theorem 2.4, it follows that $\bar{Z}^2(M)$ is a direct summand of M and $\bar{Z}^2(M)$ is a quasi-dual Baer R -module. Therefore $\bar{Z}^2(N)$ is a direct summand of N . Moreover, $\bar{Z}^2(N)$ is a quasi-dual Baer R -module by [17, Corollary 2.5]. Now using again Theorem 2.4, we infer that N is quasi-t-dual Baer. \square

In the sequel, the class of quasi-t-dual Baer right (or left) R -modules will be denoted by \mathcal{C}_R (${}_R\mathcal{C}$, respectively). It is worth pointing out two special subclasses of \mathcal{C}_R , namely

$$\mathcal{C}_{1r} = \{M \in \text{Mod-}R: \bar{Z}(M) = M \text{ and } M \text{ is quasi-dual Baer}\} \text{ and} \\ \mathcal{C}_{2r} = \{M \in \text{Mod-}R: \bar{Z}^2(M) = 0\}.$$

In fact, it is clear that $\mathcal{C}_{2r} \subseteq \mathcal{C}_R$. In addition, using [17, Proposition 2.4], we infer that a noncosingular module M is quasi-dual Baer if and only if M is quasi-t-dual Baer. Thus $\mathcal{C}_{1r} \subseteq \mathcal{C}_R$. Similarly, we can define \mathcal{C}_{1l} and \mathcal{C}_{2l} .

Example 2.6. Let D be a commutative local domain with maximal ideal \mathfrak{m} and quotient field $Q \neq D$. Consider the ring $R = \begin{bmatrix} D & Q \\ 0 & Q \end{bmatrix}$. Then the Jacobson radical of R is $\text{Rad}(R) = \begin{bmatrix} \mathfrak{m} & Q \\ 0 & 0 \end{bmatrix}$ and it is easy to check that $R/\text{Rad}(R) \cong (D/\mathfrak{m}) \times Q$ (as rings). This implies that R is a semilocal ring. Moreover, we have $\text{Soc}(R_R) = \begin{bmatrix} 0 & Q \\ 0 & Q \end{bmatrix}$ and $\text{Soc}({}_R R) = 0$.

(i) Using [20, Corollary 2.7], we see that $\bar{Z}(R_R) = \text{Soc}({}_R R) = 0$ and hence $R_R \in \mathcal{C}_{2r}$. This implies that R is a right quasi-t-dual Baer ring.

(ii) Now to study if R is left quasi-t-dual Baer, note that ${}_R R = I_1 \oplus I_2$ is the direct sum of the left ideals $I_1 = \begin{bmatrix} 0 & Q \\ 0 & Q \end{bmatrix}$ and $I_2 = \begin{bmatrix} D & 0 \\ 0 & 0 \end{bmatrix}$. Using again

[20, Corollary 2.7], we deduce that $\bar{Z}({}_R I_1) = \text{Soc}({}_R R)I_1 = I_1$ and $\bar{Z}({}_R I_2) = \text{Soc}({}_R R)I_2 = 0$. Therefore, $\bar{Z}^2({}_R R) = I_1$ by Lemma 2.3 (ii). Moreover, it is easy to check that for every endomorphism φ of ${}_R R$, either $\varphi(I_1) = 0$ or $\varphi(I_1) = I_1$. Taking into account Theorem 2.4, we obtain that ${}_R R \in {}_R \mathcal{C}$ and ${}_R I_1 \in \mathcal{C}_{1l}$. Also, it is clear that ${}_R I_2 \in \mathcal{C}_{2l}$ and ${}_R R \notin \mathcal{C}_{1l} \cup \mathcal{C}_{2l}$.

Example 2.7. (i) Let R be a right V-ring. Applying [16, Proposition 2.5], it follows that $\bar{Z}(M) = M$ for any R -module M . Thus $\mathcal{C}_R = \mathcal{C}_{1r}$, see [17, Proposition 2.4].

(ii) It is well known that every small module is cosingular. Hence every small module M is quasi-t-dual Baer. This implies that

- (a) for every commutative domain which is not a field R , the R -module ${}_R R$ is quasi-t-dual Baer by [9, Corollary 6]; and
- (b) for any family $(M_i)_{i \in I}$ of small modules, $M = \prod_{i \in I} M_i$ is quasi-t-dual Baer since $\bar{Z}^2(M) = 0$ by Lemma 2.3 (iii).

The next result which is another consequence of Theorem 2.4 shows that the class of quasi-t-dual Baer right R -modules is precisely

$$\mathcal{C}_R = \{M_1 \oplus M_2 : M_1 \in \mathcal{C}_{1r} \text{ and } M_2 \in \mathcal{C}_{2r}\}.$$

Corollary 2.8. Let M be an R -module. Then the following are equivalent:

- (i) M is a quasi-t-dual Baer module;
- (ii) $M = M_1 \oplus M_2$ such that M_1 is a noncosingular quasi-dual Baer submodule and $\bar{Z}^2(M_2) = 0$ (in this case, $\bar{Z}^2(M) = M_1$).

PROOF: (i) \Rightarrow (ii) By Theorem 2.4, there exists a submodule M_2 of M such that $M = M_1 \oplus M_2$, where $M_1 = \bar{Z}^2(M)$. Hence M_1 is noncosingular by [19, Lemma 3.10]. Moreover, M_1 is quasi-t-dual Baer by Corollary 2.5. Therefore M_1 is a quasi-dual Baer module.

(ii) \Rightarrow (i) Note that $\bar{Z}^2(M) = \bar{Z}^2(M_1) \oplus \bar{Z}^2(M_2) = M_1$ is a direct summand of M . Now the result follows from Theorem 2.4. \square

Example 2.9. Let R be a right hereditary, right noetherian ring. Let an R -module $M = N \oplus L$ be a direct sum of an injective submodule N and a submodule L with $\bar{Z}^2(L) = 0$ (for example, L may be taken to be small in $E(L)$). Then N is quasi-dual Baer by [12, Corollary 2.30]. Moreover, N is noncosingular by [16, Proposition 2.7]. In addition, it is clear that $\bar{Z}(L) = 0$ and hence $\bar{Z}^2(L) = 0$. From Corollary 2.8, we infer that M is a quasi-t-dual Baer module.

Corollary 2.10. *Let M be an indecomposable R -module. Then the following are equivalent:*

- (i) M is a quasi-t-dual Baer module;
- (ii) (a) $\bar{Z}^2(M) = 0$; or
- (b) $\bar{Z}(M) = M$ and M is a quasi-dual Baer module.

PROOF: This follows directly from Corollary 2.8. \square

It is well known that any simple R -module is either a small module or an injective module. Recall that the class of noncosingular modules is closed under homomorphic images, see [16, Proposition 2.4]. Combining Corollary 2.8 and [17, Corollary 3.9], we obtain the following corollary.

Corollary 2.11. *Let M be a nonzero module over a commutative perfect ring R . Then the following are equivalent:*

- (i) M is quasi-t-dual Baer;
- (ii) $M = (\bigoplus_{i \in I} S_i) \oplus N$ where each S_i , $i \in I$, is a simple injective R -module and $\bar{Z}^2(N) = 0$.

Next, we provide two classes of rings over which all modules are quasi-t-dual Baer.

Example 2.12. (i) Let R be a right perfect ring which has no injective simple R -modules (for example, R can be a local right perfect ring which is not a division ring). Using [16, Theorem 3.8 (3)], we conclude that $\bar{Z}^2(M) = 0$ (i.e. $M \in \mathcal{C}_{2r}$) for all R -modules M . In particular, every R -module is quasi-t-dual Baer.

(ii) Let R be a right H-ring and let M be an R -module. By [16, the proof of Theorem 3.8 (1)], $M = M_1 \oplus M_2$ such that $\bar{Z}(M_1) = M_1$ is injective and $\bar{Z}^2(M_2) = 0$. Since R is a right H-ring, M_1 is lifting and hence M_1 is a quasi-t-dual Baer module, see Example 2.2. Therefore M_1 is quasi-dual Baer as $\bar{Z}^2(M_1) = M_1$. Consequently, M is quasi-t-dual Baer by Corollary 2.8.

Proposition 2.13. *Assume that R is a commutative noetherian ring and let M be an R -module which has no nonzero submodules N with $\text{Rad}(N) = N$. Then the following are equivalent:*

- (i) M is a quasi-t-dual Baer module;
- (ii) $\bar{Z}^2(M)$ is a semisimple, injective, and projective module.

If R is a Dedekind domain, then (i)–(ii) are also equivalent to:

- (iii) $\bar{Z}^2(M) = 0$, that is $M \in \mathcal{C}_{2r}$.

PROOF: (i) \Rightarrow (ii) By Corollary 2.8, $\bar{Z}(\bar{Z}^2(M)) = \bar{Z}^2(M)$. Applying [21, Satz 2.6], we infer that $\bar{Z}^2(M)$ is semisimple and projective. Hence $\bar{Z}^2(M) = \bigoplus_{i \in I} S_i$ is a direct sum of simple projective submodules S_i , $i \in I$. By Lemma 2.3 (ii),

$\bar{Z}^2(S_i) = S_i$ for all $i \in I$. It follows that each S_i is an injective module. Since R is noetherian, we conclude that $\bar{Z}^2(M)$ is injective.

(ii) \Rightarrow (i) Since $\bar{Z}^2(M)$ is semisimple, it is clear that $\bar{Z}^2(M)$ is a quasi-dual Baer module. Moreover, $\bar{Z}^2(M)$ is a direct summand of M since $\bar{Z}^2(M)$ is injective. Therefore M is quasi-t-dual Baer by Theorem 2.4.

(ii) \Rightarrow (iii) Suppose that R is a Dedekind domain. Then R is a small R -module, see Example 2.7 (ii), and so every simple R -module is a small module. Since $\bar{Z}^2(M)$ is semisimple and injective, it follows that $\bar{Z}^2(M) = 0$.

(iii) \Rightarrow (ii) This is clear. \square

The next result should be compared with Example 2.9.

Corollary 2.14. *Let M be a module over a Dedekind domain R . Then the following are equivalent:*

- (i) M is a quasi-t-dual Baer module;
- (ii) $M = M_1 \oplus M_2$ such that M_1 is an injective module and $\bar{Z}^2(M_2) = 0$. In particular, \mathcal{C}_{1r} is exactly the class of all injective R -modules.

PROOF: (i) \Rightarrow (ii) It is well known that $M = M_1 \oplus M_2$ such that M_1 is injective and M_2 has no nonzero submodules N with $\text{Rad}(N) = N$, see for example [10, Theorem 8]. Note that M_2 is quasi-t-dual Baer by Corollary 2.5. Then $\bar{Z}^2(M_2) = 0$ by Proposition 2.13.

(ii) \Rightarrow (i) This follows from Example 2.9. \square

Consider the question **Q₁**: When is the direct sum of two or more quasi-t-dual Baer modules, quasi-t-dual Baer? Note that for any indexed set of modules $(M_i)_{i \in I}$ with $\bar{Z}^2(M_i) = 0$ for all $i \in I$, we have $\bar{Z}^2(\bigoplus_{i \in I} M_i) = 0$, see Lemma 2.3 (ii). In view of Corollary 2.8, one can observe that the question **Q₁** is equivalent to the question **Q₂**: When is the direct sum of two or more noncosingular quasi-dual Baer modules, quasi-dual Baer?

The next two propositions deal with two special cases of direct sums of quasi-t-dual Baer modules. We first prove the following elementary lemma.

Lemma 2.15. *Let an R -module $M = \bigoplus_{\lambda \in \Lambda} M_\lambda$ be a direct sum of quasi-t-dual Baer R -modules M_λ , $\lambda \in \Lambda$. Then $\bar{Z}^2(M)$ is a direct summand of M .*

PROOF: Note that $\bar{Z}^2(M) = \bigoplus_{\lambda \in \Lambda} \bar{Z}^2(M_\lambda)$ by Lemma 2.3 (ii). Moreover, $\bar{Z}^2(M_\lambda)$ is a direct summand of M_λ for each $\lambda \in \Lambda$ by Theorem 2.4. Therefore $\bar{Z}^2(M)$ is a direct summand of M . \square

Proposition 2.16. *Let M be an R -module. If M is quasi-t-dual Baer, then every direct sum of copies of M is quasi-t-dual Baer.*

PROOF: Assume that M is quasi-t-dual Baer and let I be a nonempty index set. By Lemma 2.15, $\bar{Z}^2(M^{(I)}) = (\bar{Z}^2(M))^{(I)}$ is a direct summand of $M^{(I)}$. Moreover, $\bar{Z}^2(M)$ is quasi-dual Baer by Theorem 2.4. Therefore $(\bar{Z}^2(M))^{(I)}$ is quasi-dual Baer by [1, Theorem 2.7]. Now using again Theorem 2.4, we conclude that $M^{(I)}$ is a quasi-t-dual Baer module. \square

Proposition 2.17. *Let $M = \bigoplus_{\lambda \in \Lambda} M_\lambda$ be such that each M_λ , $\lambda \in \Lambda$, is a fully invariant submodule of M . Then M is quasi-t-dual Baer if and only if M_λ is quasi-t-dual Baer for all $\lambda \in \Lambda$.*

PROOF: The necessity is clear by Corollary 2.5. Conversely, suppose that each M_λ is quasi-t-dual Baer. Note first that $\bar{Z}^2(M) = \bigoplus_{\lambda \in \Lambda} \bar{Z}^2(M_\lambda)$ is a direct summand of M by Lemma 2.15. Using Theorem 2.4, we only need to show that $\bar{Z}^2(M)$ is quasi-dual Baer. Fix $\lambda \in \Lambda$. Since $\bar{Z}^2(M_\lambda)$ is a fully invariant submodule of M_λ (Lemma 2.3 (i)) and M_λ is fully invariant in M , it follows that $\bar{Z}^2(M_\lambda)$ is a fully invariant submodule of M . But $\bar{Z}^2(M)$ is a direct summand of M . Then it is not difficult to see that $\bar{Z}^2(M_\lambda)$ is a fully invariant submodule of $\bar{Z}^2(M)$. Moreover, $\bar{Z}^2(M_\lambda)$ is quasi-dual Baer by Theorem 2.4. Now applying [17, Proposition 2.19], we deduce that $\bar{Z}^2(M)$ is a quasi-dual Baer module since $\bar{Z}^2(M) = \bigoplus_{\lambda \in \Lambda} \bar{Z}^2(M_\lambda)$. Therefore, M is a quasi-t-dual Baer module. \square

Proposition 2.18. *The following statements are equivalent for a module M :*

- (i) M is a quasi-t-dual Baer module;
- (ii) $M \oplus \bar{Z}^2(M)$ is a quasi-t-dual Baer module.

PROOF: (i) \Rightarrow (ii) By Corollary 2.8, $\bar{Z}^2(M)$ is a noncosingular quasi-dual Baer module and $M = \bar{Z}^2(M) \oplus N$ for some submodule N of M with $\bar{Z}^2(N) = 0$. Therefore the R -module $L = M \oplus \bar{Z}^2(M)$ can be written as $L = M_1 \oplus M_2 \oplus M_3$ the direct sum of submodules M_i , $i = 1, 2, 3$, of L with $M_1 \cong M_2 \cong \bar{Z}^2(M)$ and $\bar{Z}^2(M_3) = 0$. It follows from [1, Theorem 2.7] that $M_1 \oplus M_2$ is quasi-dual Baer. Moreover, note that $\bar{Z}^2(L) = M_1 \oplus M_2$ by Lemma 2.3 (ii). Now use Theorem 2.4 to conclude that L is quasi-t-dual Baer.

(ii) \Rightarrow (i) This is clear by Corollary 2.5. \square

3. Quasi-t-dual Baer (rings) modules versus quasi-dual Baer (rings) modules

The investigations in this section focus on the comparison of the notions of quasi-t-dual Baer modules and quasi-dual Baer modules. We begin by exhibiting some quasi-t-dual Baer modules which are not quasi-dual Baer.

Example 3.1. (i) Let p be a prime number. Consider the \mathbb{Z} -modules $M_1 = \mathbb{Z}$ and $M_2 = \mathbb{Z}/p^3\mathbb{Z}$. It is clear that $M_i \ll E(M_i)$ for each $i \in \{1, 2\}$. Therefore $\bar{Z}(M_i) = 0$ for each $i \in \{1, 2\}$. This implies that the \mathbb{Z} -modules M_1 and M_2 are quasi-t-dual Baer. However, neither of M_1 and M_2 is quasi-dual Baer since they are both indecomposable \mathbb{Z} -modules, see [17, Corollary 3.7].

(ii) Let \mathbb{P} denote the set of all prime numbers and consider the \mathbb{Z} -module $M = \prod_{p \in \mathbb{P}} \mathbb{Z}/p\mathbb{Z}$. Note that the torsion submodule of M is $T(M) = \bigoplus_{p \in \mathbb{P}} \mathbb{Z}/p\mathbb{Z}$. Then clearly $T(M)$ is not a direct summand of M . It is shown in [17, Example 3.4] that M is not quasi-dual Baer. Indeed, for every fixed prime number q , let π_q be the endomorphism of M defined by $(x_p)_{p \in \mathbb{P}} \mapsto (y_p)_{p \in \mathbb{P}}$ such that $y_p = 0$ for all $p \neq q$ and $y_q = x_q$. Since $\sum_{p \in \mathbb{P}} \pi_p(M) = T(M)$, we have $\mathfrak{I}(M) = T(M)$ where $\mathfrak{I} = \mathfrak{D}(T(M))$. Now use [17, Corollary 2.6]. On the other hand, since each $\mathbb{Z}/p\mathbb{Z}$ is a small \mathbb{Z} -module, we have $\bar{Z}^2(M) \subseteq \prod_{p \in \mathbb{P}} \bar{Z}^2(\mathbb{Z}/p\mathbb{Z}) = 0$, see Lemma 2.3 (iii). Therefore M is a quasi-t-dual Baer module.

One may ask whether every quasi-dual Baer module is quasi-t-dual Baer. We do not know the answer to this question. It would be desirable to construct a quasi-dual Baer module which is not quasi-t-dual Baer, but we have not been able to find an example of such a module. In the next result, we give a characterization for a quasi-dual Baer module to be quasi-t-dual Baer.

Proposition 3.2. *Let M be a quasi-dual Baer R -module. Then the following conditions are equivalent:*

- (i) M is a quasi-t-dual Baer module;
- (ii) $\bar{Z}^2(M)$ is a direct summand of M ;
- (iii) $\mathfrak{I}(M) = \bar{Z}^2(M)$, where $\mathfrak{I} = \mathfrak{D}(\bar{Z}^2(M))$.

PROOF: (i) \Rightarrow (ii) This follows from Theorem 2.4.

(ii) \Rightarrow (iii) It is clear that for any direct summand K of M , $\mathfrak{I}(M) = K$, where $\mathfrak{I} = \mathfrak{D}(K)$.

(iii) \Rightarrow (i) Using [17, Corollary 2.6] and Lemma 2.3 (i), we conclude that $\bar{Z}^2(M)$ is a direct summand of M . Hence $\bar{Z}^2(M)$ is quasi-dual Baer by [17, Corollary 2.5]. It follows from Theorem 2.4 that M is quasi-t-dual Baer. \square

An R -module M is said to be *retractable* if $\text{Hom}_R(M, N) \neq 0$ for any nonzero submodule N of M , see [8] and [15]. For example, any finitely generated module over a commutative ring is retractable by [8, Theorem 2.7]. Recall that a ring R is called *right (left) semiartinian* if every nonzero right (left) R -module has nonzero socle, and R is called *semiartinian* if it is right and left semiartinian. By [8, Theorem 2.8], every module over a commutative semiartinian ring is retractable. Next, we provide sufficient conditions for a quasi-dual Baer module to be quasi-t-dual Baer. To prove the next theorem, we need the following lemma.

Lemma 3.3. *Let M be a quasi-dual Baer R -module. Then $M = M_1 \oplus M_2$ is a direct sum of submodules M_1 and M_2 such that $\bar{Z}(M_1) = M_1$ and $\text{Hom}_R(M, \bar{Z}^2(M_2)) = 0$.*

PROOF: Note that $N = \bar{Z}^2(M)$ is a fully invariant submodule of M . According to [17, Proposition 2.1], we obtain that $M = M_1 \oplus M_2$ for some submodules M_1 and M_2 of M with $M_1 \subseteq N$ and $\text{Hom}_R(M, M_2 \cap N) = 0$. By modularity, we have $N = M_1 \oplus (M_2 \cap N)$. On the other hand, we have $N = \bar{Z}^2(M) = \bar{Z}^2(M_1) \oplus \bar{Z}^2(M_2)$, see Lemma 2.3 (ii). Moreover, $\bar{Z}^2(M_2) \subseteq M_2 \cap N$ by [16, Proposition 2.1 (1)]. Therefore $\bar{Z}^2(M_1) = M_1$ and $\bar{Z}^2(M_2) = M_2 \cap N$. It follows that $\bar{Z}(M_1) = M_1$ and $\text{Hom}_R(M, \bar{Z}^2(M_2)) = 0$. \square

Theorem 3.4. *Let M be a quasi-dual Baer nonzero R -module and assume that M is retractable. Then M is quasi-t-dual Baer.*

PROOF: By Lemma 3.3, there exists a direct sum decomposition $M = M_1 \oplus M_2$ with $\bar{Z}(M_1) = M_1$ and $\text{Hom}_R(M, \bar{Z}^2(M_2)) = 0$. Since M is retractable, $\bar{Z}^2(M_2)$ must be zero. Hence $\bar{Z}^2(M) = M_1$ is a direct summand of M by Lemma 2.3 (ii). Now the result follows from Proposition 3.2. \square

Combining Theorem 3.4 with [8, Theorems 2.7 and 2.8], we obtain the following corollary.

Corollary 3.5. *Let M be a quasi-dual Baer nonzero R -module over a commutative ring R . Suppose that one of the following conditions is fulfilled:*

- (i) R is a semiartinian ring; or
- (ii) M is a finitely generated R -module.

Then M is quasi-t-dual Baer.

Proposition 3.6. *Let M be a module such that $M \oplus \bar{Z}^2(M)$ is quasi-dual Baer. Then M and $M \oplus \bar{Z}^2(M)$ are quasi-t-dual Baer.*

PROOF: Note that $\bar{Z}^2(M)$ is fully invariant in M . Using [14, Lemma 1.11], it follows that there exists a fully invariant submodule X of $\bar{Z}^2(M)$ such that $N = \bar{Z}^2(M) \oplus X$ is fully invariant in $L = M \oplus \bar{Z}^2(M)$. Consider the two-sided ideal $\mathfrak{I} = \text{Hom}_R(L, N)$ of $\text{End}_R(L)$. It is easily seen that $\bar{Z}^2(M) \oplus 0 \subseteq \mathfrak{I}(L) \subseteq N$. Hence $\bar{Z}^2(M) \oplus 0$ is a direct summand of $\mathfrak{I}(L)$. But $\mathfrak{I}(L)$ is a direct summand of L by [17, Proposition 2.4]. This implies that $\bar{Z}^2(M)$ is a direct summand of M . Moreover, $\bar{Z}^2(M)$ is quasi-dual Baer by [17, Corollary 2.5]. Therefore M is quasi-t-dual Baer by Theorem 2.4. Now use Proposition 2.18 to infer that $M \oplus \bar{Z}^2(M)$ is quasi-t-dual Baer. \square

Remark 3.7. If R is a ring such that every R -module is quasi-dual Baer, then every R -module is quasi-t-dual Baer, see Proposition 3.6. But the converse does not hold. To see this, we can take a local right perfect ring which is not a division ring R (e.g. R can be taken to be $\mathbb{Z}/p^n\mathbb{Z}$ for some prime number p and some integer $n \geq 2$). By Example 2.12 (i), every R -module is quasi-t-dual Baer. However, the R -module R_R is not quasi-dual Baer since R is not a simple ring, see [17, Proposition 2.10].

It is shown in [17, Corollary 2.11] that the quasi-dual Baer property is left-right symmetric for any ring. Moreover, a ring R is quasi-dual Baer if and only if R is a finite product of simple rings by [17, Proposition 2.10]. A ring R is called a right quasi-t-dual Baer ring if the right R -module R_R is a quasi-t-dual Baer R -module. Left quasi-t-dual Baer rings are defined similarly. The ring R is called quasi-t-dual Baer in case R is left and right quasi-t-dual Baer. It is well known that for any ring R , the R -module R_R is retractable. The next corollary follows easily from Theorem 3.4.

Corollary 3.8. *Every quasi-dual Baer ring is a quasi-t-dual Baer ring. That is, every finite product of simple rings is a quasi-t-dual Baer ring.*

We next present some right quasi-t-dual Baer rings which are not quasi-dual Baer.

Example 3.9. (i) Let R be a local ring which is not a division ring. Then $\bar{Z}(R_R) \neq R$ since otherwise R will be a right V-ring by [16, Corollary 2.6]. In this case R will be a division ring. Hence $\bar{Z}(R_R) \ll R_R$ and so $\bar{Z}^2(R_R) = 0$. This implies that R is a right quasi-t-dual Baer ring. Similarly, we can see that R is left quasi-t-dual Baer. On the other hand, R is not quasi-dual Baer by [17, Proposition 2.10].

(ii) Let R be a commutative semiperfect ring which is not semisimple. Then R is a quasi-t-dual Baer ring by Example 2.2. However, the ring R is not quasi-dual Baer by [17, Proposition 2.10].

Example 3.10. Consider the ring R of all upper triangular 2×2 matrices with entries in a field F . It is well known that R is a left and right hereditary artinian ring, see for example [7, Example 13.6]. Note that $R = M_1 \oplus M_2$ with $M_1 = \begin{bmatrix} F & F \\ 0 & 0 \end{bmatrix}$ is an injective indecomposable R -module and $M_2 = \begin{bmatrix} 0 & 0 \\ 0 & F \end{bmatrix}$ is a simple small R -module. Then R is a right quasi-t-dual Baer ring by Example 2.9. On the other hand, note that R is not quasi-dual Baer, since otherwise $\text{Rad}(R)$ is a direct summand of the R -module R_R by [17, Proposition 2.10]. But

$\text{Rad}(R)$ is small in R_R . Hence $\text{Rad}(R) = 0$. This contradicts the fact that

$$\text{Rad}(R) = \begin{bmatrix} 0 & F \\ 0 & 0 \end{bmatrix}.$$

Proposition 3.11. *The following conditions are equivalent for a ring R :*

- (i) R is a right quasi-t-dual Baer ring;
- (ii) $I\bar{Z}^2(R_R)$ is a direct summand of R_R for any two-sided ideal I of R ;
- (iii) $I\bar{Z}^2(R_R)$ is a direct summand of R_R for any left ideal I of R ;
- (iv) every free right R -module is quasi-t-dual Baer;
- (v) every projective right R -module is quasi-t-dual Baer.

PROOF: (i) \Rightarrow (ii) This follows directly from the definition of a quasi-t-dual Baer module.

(ii) \Rightarrow (iii) This is obvious.

(iii) \Rightarrow (i) Let \mathfrak{I} be a left ideal of $\text{End}_R(R_R)$. Put $I = \sum_{f \in \mathfrak{I}} f(R)$. It is easy to check that I is a left ideal of R . Then $I\bar{Z}^2(R_R)$ is a direct summand of R_R . But $\mathfrak{I}(\bar{Z}^2(R_R)) = I\bar{Z}^2(R_R)$. Hence $\mathfrak{I}(\bar{Z}^2(R_R))$ is a direct summand of R_R . It follows from Theorem 2.4 that R is a right quasi-t-dual Baer ring.

(i) \Rightarrow (iv) By Proposition 2.16.

(iv) \Rightarrow (v) This follows from Corollary 2.5 and the fact that every projective module is isomorphic to a direct summand of a free module.

(v) \Rightarrow (i) This is immediate. \square

Our next endeavor is to characterize when a product of right quasi-t-dual Baer rings is right quasi-t-dual Baer. The following lemma is needed.

Lemma 3.12.

- (i) Let $(R_i)_{i \in I}$ be an indexed set of rings with $R = \prod_{i \in I} R_i$ and assume that $\bar{Z}_{R_i}^2(R_{iR_i}) = 0$ for all $i \in I$. Then $\bar{Z}_R^2(R_R) = 0$.
- (ii) For any ring R , $\bar{Z}_R^2(R_R)$ is a two-sided ideal of R .
- (iii) Let $R = R_1 \oplus R_2$ be a ring decomposition of a ring R . Then R is right quasi-t-dual Baer if and only if both R_1 and R_2 are right quasi-t-dual Baer rings.

PROOF: (i) Using Lemma 2.3 (iv), we infer that $\bar{Z}_R^2(R_{iR}) = \bar{Z}_{R_i}^2(R_{iR_i}) = 0$ for each $i \in I$. But $\bar{Z}_R^2(R_R) \subseteq \prod_{i \in I} \bar{Z}_R^2(R_{iR})$ by Lemma 2.3 (iii). It follows that $\bar{Z}_R^2(R_R) = 0$.

(ii) It is clear that $\bar{Z}_R^2(R_R)$ is a right ideal of R . Moreover, $\bar{Z}_R^2(R_R)$ is a fully invariant submodule of the right R -module R_R by Lemma 2.3 (i). Thus $a\bar{Z}_R^2(R_R) \subseteq \bar{Z}_R^2(R_R)$ for every $a \in R$, that is, $\bar{Z}_R^2(R_R)$ is a left ideal of R .

(iii) Note that $\bar{Z}_R^2(R_R) = \bar{Z}_R^2(R_{1R}) \oplus \bar{Z}_R^2(R_{2R}) = \bar{Z}_{R_1}^2(R_{1R_1}) \oplus \bar{Z}_{R_2}^2(R_{2R_2})$ by Lemma 2.3 (ii) and (iv). Moreover, $\bar{Z}_{R_i}^2(R_{iR_i})$ is a two-sided ideal of R_i for $i = 1, 2$ by (ii).

(\Rightarrow) Let A_1 be a two-sided ideal of R_1 . Then A_1 is a two-sided ideal of R . Hence $A_1\bar{Z}_R^2(R_R)$ is a direct summand of R_R by Proposition 3.11. It is clear that $A_1\bar{Z}_R^2(R_R) = A_1\bar{Z}_{R_1}^2(R_{1R_1})$. So $A_1\bar{Z}_{R_1}^2(R_{1R_1})$ is a direct summand of R_{1R_1} . From Proposition 3.11, it follows that R_1 is a right quasi-t-dual Baer ring.

(\Leftarrow) Take a two-sided ideal A of R . Then,

$$A\bar{Z}_R^2(R_R) = A\bar{Z}_{R_1}^2(R_{1R_1}) \oplus A\bar{Z}_{R_2}^2(R_{2R_2}) = (AR_1)\bar{Z}_{R_1}^2(R_{1R_1}) \oplus (AR_2)\bar{Z}_{R_2}^2(R_{2R_2}).$$

Since each AR_i is a two-sided ideal of R_i , it follows from Proposition 3.11 that $(AR_i)\bar{Z}_{R_i}^2(R_{iR_i})$ is a direct summand of R_{iR_i} for $i = 1, 2$. Therefore $A\bar{Z}_R^2(R_R)$ is a direct summand of R_R . Using again Proposition 3.11, we conclude that R is a right quasi-t-dual Baer ring. \square

Proposition 3.13. *Let $(R_i)_{i \in I}$ be an indexed set of rings and let $R = \prod_{i \in I} R_i$. Then the following statements are equivalent:*

- (i) R is a right quasi-t-dual Baer ring;
- (ii) there exists a finite subset $J \subseteq I$ such that $\bar{Z}_{R_i}^2(R_{iR_i}) = 0$ for every $i \in I \setminus J$ and each R_j , $j \in J$, is a right quasi-t-dual Baer ring.

PROOF: (i) \Rightarrow (ii) Consider the two-sided ideal $A = \bigoplus_{i \in I} R_i$ of R . We claim that $A\bar{Z}_R^2(R_R) = \bar{Z}_R^2(A_R)$. Note that $\bar{Z}_R^2(A_R) = \bigoplus_{i \in I} \bar{Z}_R^2(R_{iR})$ by Lemma 2.3 (ii). Also, we have $\bar{Z}_R^2(R_{iR}) = \bar{Z}_{R_i}^2(R_{iR_i})$, see Lemma 2.3 (iv) for all $i \in I$. Thus $\bar{Z}_R^2(R_{iR})$ is a two-sided ideal of R_i for every $i \in I$. Therefore $A\bar{Z}_R^2(A_R) = \bar{Z}_R^2(A_R)$ and hence $\bar{Z}_R^2(A_R) \subseteq A\bar{Z}_R^2(R_R)$ by [16, Proposition 2.1 (1)]. Moreover, we have $A\bar{Z}_R^2(R_R) \subseteq A(\prod_{i \in I} \bar{Z}_R^2(R_{iR}))$ by Lemma 2.3 (iii). However, $A(\prod_{i \in I} \bar{Z}_R^2(R_{iR})) = \bigoplus_{i \in I} \bar{Z}_R^2(R_{iR}) = \bar{Z}_R^2(A_R)$. So $A\bar{Z}_R^2(R_R) \subseteq \bar{Z}_R^2(A_R)$. It follows that $A\bar{Z}_R^2(R_R) = \bar{Z}_R^2(A_R)$ as claimed. Now applying Proposition 3.11, we obtain that $\bigoplus_{i \in I} \bar{Z}_R^2(R_{iR})$ is a direct summand of R_R . Thus $(\bigoplus_{i \in I} \bar{Z}_R^2(R_{iR})) \oplus B = R_R$ for some right ideal B of R . This implies that $1_R = a + b$ for some $a \in \bigoplus_{i \in I} \bar{Z}_R^2(R_{iR})$ and some $b \in B$. This yields $aR = \bigoplus_{i \in I} \bar{Z}_R^2(R_{iR})$ and $bR = B$. Then there exists a finite subset $J \subseteq I$ such that $\bar{Z}_R^2(R_{iR}) = 0$ for every $i \in I \setminus J$. Therefore $\bar{Z}_{R_i}^2(R_{iR_i}) = 0$ for all $i \in I \setminus J$, see Lemma 2.3 (iv). Note that R_j is a right quasi-t-dual Baer ring for all $j \in J$ by Lemma 3.12 (iii).

(ii) \Rightarrow (i) Set $T = \prod_{i \in I \setminus J} R_i$ and $S = \prod_{j \in J} R_j$. Then $R \cong T \times S$ (as rings). Note that $\bar{Z}_T^2(T_T) = 0$ by Lemma 3.12 (i). Hence T is a right quasi-t-dual Baer ring. Since J is a finite set, the proof is completed by induction and using Lemma 3.12 (iii). \square

From the preceding result, it follows easily that an infinite product of right quasi-t-dual Baer rings need not be a right quasi-t-dual Baer ring. Next, we provide some explicit examples.

Example 3.14. Taking a right quasi-t-dual Baer ring R with $\bar{Z}_R^2(R_R) \neq 0$, it follows from Proposition 3.13 that $R^{\mathbb{N}}$ is not a right quasi-t-dual Baer ring, where \mathbb{N} denotes the set of all positive integers. For example, we can take R to be one of the following rings:

- (i) Let $R = \begin{bmatrix} F & F \\ 0 & F \end{bmatrix}$, where F is a field. By Example 3.10, R is a right quasi-t-dual Baer ring and $R_R = M_1 \oplus M_2$ such that M_1 is a nonzero injective module and M_2 is a small module. Since R is right hereditary, $\bar{Z}^2(M_1) = M_1$, see [16, Proposition 2.7], and hence $\bar{Z}_R^2(R_R) = M_1$ by Lemma 2.3 (ii).
- (ii) Let $R = \prod_{i=1}^n R_i$ be the product of simple rings R_i , $1 \leq i \leq n$, such that at least one of them is a right V-ring, see [6]. So $\bar{Z}_R^2(R_R) \neq 0$ by [16, Propositions 2.1 (1) and 2.5]. Moreover, R is a right quasi-t-dual Baer ring by Corollary 3.8.

Remark 3.15. Let F be a field.

- (i) Consider the ring $R = \begin{bmatrix} F & F \\ 0 & F \end{bmatrix}$. By Example 3.14 (i), $\bar{Z}_R^2(R_R) = \begin{bmatrix} F & F \\ 0 & 0 \end{bmatrix}$. Similarly, we can show that $\bar{Z}_R^2(RR) = \begin{bmatrix} 0 & F \\ 0 & F \end{bmatrix}$. Thus $\bar{Z}_R^2(R_R) \neq \bar{Z}_R^2(RR)$. This shows that the preradical \bar{Z}^2 is not left-right symmetric.

- (ii) Assume that R is a right quasi-t-dual Baer ring. Then $R_R = \bar{Z}_R^2(R_R) \oplus I$ for some right ideal I of R by Theorem 2.4. Note that I need not be a two-sided ideal of R . In fact, for the ring $R = \begin{bmatrix} F & F \\ 0 & F \end{bmatrix}$, see Examples 3.10 and 3.14 (i), we have $R_R = \bar{Z}_R^2(R_R) \oplus M_2$ where $M_2 = \begin{bmatrix} 0 & 0 \\ 0 & F \end{bmatrix}$. On the other hand, it is clear that M_2 is not a left ideal of R .

Proposition 3.16. Let $R = R_1 \oplus R_2$ be a ring decomposition of a ring R such that R_1 is a right V-ring and $\bar{Z}_{R_2}^2(R_{2R_2}) = 0$. Then R is a right quasi-t-dual Baer ring if and only if R_1 is a finite product of simple rings.

PROOF: We first note that using [16, Corollary 2.6] and Lemma 2.3 (ii) and (iv), we get

$$\bar{Z}_R^2(R_R) = \bar{Z}_R^2(R_{1R}) = \bar{Z}_{R_1}^2(R_{1R_1}) = R_1.$$

For the necessity, assume that R is a right quasi-t-dual Baer ring and take a two-sided ideal I_1 of R_1 . Then clearly I_1 is a two-sided ideal of R . Thus $I_1\bar{Z}_R^2(R_R) = I_1R_1 = I_1$ is a direct summand of R_R by Proposition 3.11. So I_1 is a direct summand of R_{1R_1} . According to [17, Proposition 2.10], R_1 is a finite product of simple rings. Conversely, note that $\bar{Z}_{R_2}^2(R_{2R_2}) = 0$ by hypothesis. Moreover,

R_1 is right quasi-t-dual Baer by Corollary 3.8. Now use Proposition 3.13 to deduce that R is a right quasi-t-dual Baer ring. \square

REFERENCES

- [1] Amouzegar T., Talebi Y., *On quasi-dual Baer modules*, TWMS J. Pure Appl. Math. **4** (2013), no. 1, 78–86.
- [2] Amouzegar T., Tütüncü D.K., Talebi Y., *t-dual Baer modules and t-lifting modules*, Vietnam J. Math. **42** (2014), no. 2, 159–169.
- [3] Atani S. E., Khoramdel M., Hesari S. D. P., *T-dual Rickart modules*, Bull. Iranian Math. Soc. **42** (2016), no. 3, 627–642.
- [4] Clark J., Lomp C., Vanaja N., Wisbauer R., *Lifting Modules*, Supplements and Projectivity in Module Theory, Frontiers in Mathematics, Birkhäuser, Basel, 2006.
- [5] Clark W. E., *Twisted matrix units semigroup algebras*, Duke Math. J. **34** (1967), 417–424.
- [6] Cozzens J. H., *Homological properties of the ring of differential polynomials*, Bull. Amer. Math. Soc. **76** (1970), 75–79.
- [7] Dung N. V., Huynh D. V., Smith P. F., Wisbauer R., *Extending Modules*, Pitman Research Notes in Mathematics Series, 313, Longman Scientific & Technical, Harlow, 1994.
- [8] Haghany A., Karamzadeh O. A. S., Vedadi M. R., *Rings with all finitely generated modules retractable*, Bull. Iranian Math. Soc. **35** (2009), no. 2, 37–45, 270.
- [9] Harada M., *On small submodules in the total quotient ring of a commutative ring*, Rev. Un. Mat. Argentina **28** (1977), 99–102.
- [10] Kaplansky I., *Modules over Dedekind rings and valuation rings*, Trans. Amer. Math. Soc. **72** (1952), 327–340.
- [11] Keskin Tütüncü D., Orhan Ertaş N., Smith P. F., Tribak R., *Some rings for which the cosingular submodule of every module is a direct summand*, Turkish J. Math. **38** (2014), no. 4, 649–657.
- [12] Lee G., Rizvi S. T., Roman C. S., *Dual Rickart modules*, Comm. Algebra **39** (2011), no. 11, 4036–4058.
- [13] Mohamed S. H., Müller B. J., *Continuous and Discrete Modules*, London Mathematical Society Lecture Note Series, 147, Cambridge University Press, Cambridge, 1990.
- [14] Rizvi S. T., Roman C. S., *Baer and quasi-Baer modules*, Comm. Algebra **32** (2004), no. 1, 103–123.
- [15] Smith P. F., *Modules with many homomorphisms*, J. Pure Appl. Algebra **197** (2005), no. 1–3, 305–321.
- [16] Talebi Y., Vanaja N., *The torsion theory cogenerated by M -small modules*, Comm. Algebra **30** (2002), no. 3, 1449–1460.
- [17] Tribak R., Talebi Y., Hosseinpour M., *Quasi-dual Baer modules*, Arab. J. Math. (Springer) **10** (2021), no. 2, 497–504.
- [18] Tribak R., Talebi Y., Hosseinpour M., Abdi M., *Some results on t-lifting modules*, Vietnam J. Math. **46** (2018), no. 3, 653–664.
- [19] Tribak R., Talebi Y., Hosseinpour M., Abdi M., *On FI-t-lifting modules*, Bol. Soc. Mat. Mex. **26** (2020), no. 3, 973–989.
- [20] Tribak R., Tütüncü K. D., *On \overline{Z}_M -semiperfect modules*, East-West J. Math. **8** (2006), no. 2, 195–205.

[21] Zöschinger H., *Schwach-injective moduln*, Period. Math. Hungar. **52** (2006), no. 2, 105–128 (German, English summary).

R. Tribak:

CENTRE RÉGIONAL DES MÉTIERS DE L'EDUCATION ET DE LA FORMATION
(CRMEF-TTH)-TANGER, AVENUE MY ABDELAZIZ, SOUANI 90000, B.P. 3117,
TANGIER, MOROCCO

E-mail: tribak12@yahoo.com

Y. Talebi, M. Hosseinpour:

DEPARTMENT OF MATHEMATICS, FACULTY OF MATHEMATICAL SCIENCES,
UNIVERSITY OF MAZANDARAN, PASDARAN STREET, P.C. 47416-13534, BABOLSAR,
IRAN

E-mail: talebi@umz.ac.ir

E-mail: mehrab.hosseinpour@gmail.com

(Received July 27, 2023, revised October 23, 2023)