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Some results on quasi-t-dual Baer modules

Rachid Tribak, Yahya Talebi, Mehrab Hosseinpour

Abstract. Let R be a ring and let M be an R-module with S = EndR(M).

Consider the preradicalZ for the category of right R-modules Mod-R introduced
by Y. Talebi and N. Vanaja in 2002 and defined by Z (M) =

⋂
{U ≤ M : M/U

is small in its injective hull}. The module M is called quasi-t-dual Baer if
∑

ϕ∈I
ϕ(Z

2
(M)) is a direct summand of M for every two-sided ideal I of S,

where Z
2
(M) = Z (Z (M)). In this paper, we show that M is quasi-t-dual Baer

if and only if Z
2
(M) is a direct summand of M andZ

2
(M) is a quasi-dual Baer

module. It is also shown that any direct summand of a quasi-t-dual Baer module
inherits the property. The last part of the paper is devoted to the comparison
of the notions of quasi-dual Baer modules and quasi-t-dual Baer modules. Also,
right quasi-t-dual Baer rings are investigated.

Keywords: fully invariant submodule; quasi-dual Baer module; quasi-dual Baer
ring; quasi-t-dual Baer module; quasi-t-dual Baer ring

Classification: 16D10, 16D80

1. Introduction

Throughout this paper, R is an associative ring with identity, and all the

modules are unital right R-modules unless stated otherwise. Let M be an R-

module. The notation N ⊆ M and N ≤ M means that N is a subset of M and N

is a submodule of M , respectively. We will write EndR(M) and E(M) for the

endomorphism ring of M and the injective hull of M , respectively. By Q and Z,

we denote the ring of rational numbers and integer numbers, respectively. Also,

for any prime number p, the Prüfer p-group will be denoted by Z(p∞).

In 1967 in [5], W.E. Clark introduced the concept of quasi-Baer rings. A ring R

is called right quasi-Baer if the right annihilator of any right ideal of R is gener-

ated as a right ideal by an idempotent. Recall that a submodule K of M is called

fully invariant if f(K) ⊆ K for all f ∈ EndR(M). In 2004 in [14], S. T. Rizvi

and C. S. Roman generalized the notion of right quasi-Baer rings to a module

theoretic version. A module M is called quasi-Baer if the right annihilator in M

of any two-sided ideal of EndR(M) is a direct summand of M . Equivalently, for
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any fully invariant submodule N of M , the left annihilator of N in EndR(M)

is generated by an idempotent of EndR(M). In 2013 in [1], T. Amouzegar and

Y. Talebi introduced a dual notion of quasi-Baer modules. A module M is said

to be quasi-dual Baer if for every fully invariant submodule N of M , there exists

an idempotent e in S = EndR(M) such that {φ ∈ S : Imφ ⊆ N} = eS. To

introduce the concept studied in this article, recall that the singular submodule

Z(M) of an R-module M is the set of m ∈ M such that mI = 0 for some

essential right ideal I of R. Dually, Y. Talebi and N. Vanaja introduced in [16]

the submodule Z (M) of M which is defined by

Z (M) =
⋂

{U ≤ M : M/U is small in E(M/U)}.

The R-module M is said to be cosingular (or noncosingular) if Z (M) = 0 (or

Z (M) = M). We write the submodule Z (Z (M)) of M as Z 2
R(MR) = Z 2(MR)

and abbreviate to Z 2(M) when no confusion can result. Similar notations are

used in case M is a left R-module. In [2], the authors introduced and studied

t-dual Baer modules. A module M is said to be t-dual Baer if
∑

ϕ∈I
ϕ(Z 2(M))

is a direct summand of M for every right ideal I of EndR(M). Motivated by

this work, we introduce the notion of quasi-t-dual Baer modules. We call a mod-

ule M quasi-t-dual Baer if
∑

ϕ∈I
ϕ(Z 2(M)) is a direct summand of M for every

two-sided ideal I of EndR(M).

In Section 2, the main result shows that an R-module M is quasi-t-dual Baer

if and only if Z 2(M) is a direct summand of M and Z 2(M) is a quasi-dual

Baer module (Theorem 2.4). As a consequence of this result, it turns out that

a module M is quasi-t-dual Baer if and only if M = M1 ⊕M2 such that M1 is

a noncosingular quasi-dual Baer module and Z 2(M2) = 0 (Corollary 2.8). We

also show that being quasi-t-dual Baer is preserved by taking direct summands

(Corollary 2.5). We provide a characterization for an arbitrary direct sum M =
⊕

i∈I Mi of quasi-t-dual Baer modules Mi, i ∈ I, to be quasi-t-dual Baer when

each Mi, i ∈ I, is fully invariant in M (Proposition 2.17).

The investigations in Section 3 focus on the comparison of the notions of

(right) quasi-dual Baer modules (rings) and (right) quasi-t-dual Baer modules

(rings). We begin by providing some examples to show that the implication

quasi-t-dual Baer ⇒ quasi-dual Baer

is not true (Example 3.1). Unfortunately, the converse to this implication is

still open. On the other hand, a (necessary and) sufficient condition for a quasi-

dual Baer module to be quasi-t-dual Baer is provided (Proposition 3.2 and The-

orem 3.4). It is shown that any quasi-dual Baer ring is right and left quasi-t-dual

Baer (Corollary 3.8). We also prove a characterization of when a direct product

of right quasi-t-dual Baer rings is right quasi-t-dual Baer (Proposition 3.13).
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2. Quasi-t-dual Baer modules

Recently, a number of research papers have been devoted to the study of many

generalizations of known algebraic properties using the preradical Z2. The con-

cepts obtained were themselves dualized by using the preradical Z 2. In this

way, many new notions were introduced and studied, namely, we include t-lifting

modules, t-dual Baer modules, T-dual Rickart modules, and FI-t-lifting modules,

among others, see for example [2], [3], [18], and [19]. According to [2], a module M

is said to be t-dual Baer if I(Z 2(M)) is a direct summand of M for every right

ideal I of EndR(M). Motivated by this, it is natural to introduce and investigate

the following notion.

Definition 2.1. We say that a module M is quasi-t-dual Baer if I(Z 2(M)) is

a direct summand of M for every two-sided ideal I of S = EndR(M).

Let N be a submodule of a module M . Then N is said to be small in M if

N + L 6= M for every proper submodule L of M . A module M is called small

if M is a small submodule of its injective hull E(M). A module M is called

lifting if for every submodule N of M , there exists a direct summand K of M

such that N/K is small in M/K, see, for example, [4]. Recall that a ring R is

called a (left) right H-ring if every injective (left) right R-module is lifting. Left

H-rings are characterized in [4, 28.10]. Note that every quasi-Frobenius ring is

a left and right H-ring. Also, every left and right artinian serial ring is a left and

right H-ring, see [4, 29.7].

Example 2.2. Note that every lifting module is amply supplemented i.e., for

any two submodules A and B of M with A + B = M , B contains a submod-

ule C such that C is minimal with property A + C = M , see for example [13,

Proposition 4.8]. From [2, Theorems 1 and 4], we infer that every lifting module

is t-dual Baer. Moreover, it is clear that every t-dual Baer module is quasi-t-dual

Baer. This implies that every lifting module is quasi-t-dual Baer. Now using [13,

Corollary 4.42], it follows that the R-module RR is quasi-t-dual Baer for every

semiperfect ring R.

The next lemma which is taken from [11, Lemma 2.7 (3) (b)] and [16, Propo-

sition 2.1] will be used frequently in this paper.

Lemma 2.3. Let M be an R-module. Then the following hold:

(i) Z 2(M) is a fully invariant submodule of M .

(ii) For any decomposition M =
⊕

i∈I Mi, we have Z 2(M) =
⊕

i∈IZ
2(Mi).

(iii) For any family (Mi)i∈I of modules, we have Z 2
(
∏

i∈I Mi

)

⊆
∏

i∈IZ
2(Mi).

(iv) If R = R1 ⊕ R2 where Ri, i = 1, 2, are nonzero two-sided ideals of R

and M is an R-module, then Z 2
Ri
(MRi) =Z 2

R(MRi) for i = 1, 2.
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Following T. Amouzegar and Y. Talebi in [1], a module M is said to have the

FI-strong summand sum property (FI-SSSP for short) if the sum of any family

of fully invariant direct summands of M is a direct summand of M . Next, we

provide a characterization of quasi-t-dual Baer modules which can be considered

as the analogue of [2, Theorem 2].

Theorem 2.4. Let M be an R-module with S = EndR(M). Then the following

are equivalent:

(i) M is a quasi-t-dual Baer module;

(ii) I(Z 2(M)) is a direct summand of M for every left ideal I of S;

(iii) Z 2(M) is a direct summand of M and Z 2(M) is a quasi-dual Baer module;

(iv) Z 2(M) has the FI-SSSP and Sϕ(Z 2(M)) is a direct summand of M for

every ϕ ∈ S;

(v)
∑

ϕ∈A Sϕ(Z 2(M)) is a direct summand of M for every nonempty sub-

set A of S.

Proof: Throughout this proof, µ : Z 2(M) → M stands for the inclusion map

and when Z 2(M) is a direct summand of M , π : M → Z 2(M) stands for the

projection map. Moreover, let T = EndR(Z
2(M)). Note that Z 2(M) is fully

invariant in M by Lemma 2.3 (i). This implies that Z 2(M) = S(Z 2(M)).

(i) ⇒ (ii) Let I be a left ideal of S. Then IS is a two-sided ideal of S.

Therefore, IS(Z 2(M)) = I(Z 2(M)) is a direct summand of M since M is quasi-

t-dual Baer.

(ii) ⇒ (iii) Since Z 2(M) = S(Z 2(M)), Z 2(M) is a direct summand of M

by (ii). Now let I be a left ideal of the ring T . Consider the subset I = {µφπ:

φ ∈ I} of S. Let f ∈ S and φ ∈ I. It is easily seen that f(µφπ) = µπf(µφπ) =

µ(πfµφ)π. Since πfµ ∈ T , we have πfµφ ∈ I and hence f(µφπ) ∈ I. So

I is a left ideal of S. By hypothesis, I(Z 2(M)) is a direct summand of M .

But I(Z 2(M)) = I(Z 2(M)) ⊆ Z 2(M). Then I(Z 2(M)) is a direct summand

of Z 2(M). This shows that Z 2(M) is a quasi-dual Baer R-module, see [17,

Proposition 2.4].

(iii) ⇒ (iv) By [1, Lemma 2.2], Z 2(M) has the FI-SSSP. Now take ϕ ∈ S and

consider the subset A = {πfϕµ : f ∈ S} of T . Since Z 2(M) is fully invariant

in M , it follows easily that Sϕ(Z 2(M)) = A(Z 2(M)). Moreover, it is easy to check

that A(Z 2(M)) = TA(Z 2(M)). Since Z 2(M) is quasi-dual Baer, it follows from

[17, Proposition 2.4] that TA(Z2(M)) is a direct summand of Z 2(M). Hence

Sϕ(Z 2(M)) is a direct summand of M as Z 2(M) is a direct summand of M .

(iv) ⇒ (v) Let A be a nonempty subset of S. Note that Sϕ(Z 2(M)) is a direct

summand of M for every ϕ ∈ S by (iv). In particular, S 1M (Z 2(M)) = Z 2(M)

is a direct summand of M since Z 2(M) is fully invariant in M . Therefore,

Sϕ(Z 2(M)) is a direct summand of Z 2(M) for every ϕ ∈ A. Moreover, it is
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easily seen that Sϕ(Z 2(M)) is a fully invariant submodule of Z 2(M) for every

ϕ ∈ A. Now the implication follows from the fact that Z 2(M) has the FI-SSSP.

(v)⇒ (i) Let I be a two-sided ideal of S. Since I(Z 2(M)) =
∑

ϕ∈I
Sϕ(Z 2(M)),

it follows from (v) that I(Z 2(M)) is a direct summand of M . Consequently, M is

a quasi-t-dual Baer module. �

As an application of Theorem 2.4, we obtain the following corollary which

shows that being quasi-t-dual Baer is preserved by taking direct summands.

Corollary 2.5. Let M be a quasi-t-dual Baer module. Then every direct sum-

mand of M is also quasi-t-dual Baer.

Proof: Let N be a direct summand of M . Then M = N ⊕ N ′ for some

submodule N ′ of M . By Lemma 2.3 (ii), we have Z 2(M) = Z 2(N) ⊕Z 2(N ′).

Moreover, using Theorem 2.4, it follows that Z 2(M) is a direct summand of M

and Z 2(M) is a quasi-dual Baer R-module. Therefore Z 2(N) is a direct summand

of N . Moreover, Z 2(N) is a quasi-dual Baer R-module by [17, Corollary 2.5].

Now using again Theorem 2.4, we infer that N is quasi-t-dual Baer. �

In the sequel, the class of quasi-t-dual Baer right (or left) R-modules will be

denoted by CR (RC, respectively). It is worth pointing out two special subclasses

of CR, namely

C1r = {M ∈ Mod−R : Z (M) = M and M is quasi-dual Baer} and

C2r = {M ∈ Mod−R : Z 2(M) = 0}.

In fact, it is clear that C2r ⊆ CR. In addition, using [17, Proposition 2.4], we infer

that a noncosingular moduleM is quasi-dual Baer if and only if M is quasi-t-dual

Baer. Thus C1r ⊆ CR. Similarly, we can define C1l and C2l.

Example 2.6. Let D be a commutative local domain with maximal ideal m

and quotient field Q 6= D. Consider the ring R =

[

D Q

0 Q

]

. Then the Jacobson

radical of R is Rad (R) =

[

m Q

0 0

]

and it is easy to check that R/Rad (R) ∼=

(D/m)×Q (as rings). This implies that R is a semilocal ring. Moreover, we have

Soc (RR) =

[

0 Q

0 Q

]

and Soc (RR) = 0.

(i) Using [20, Corollary 2.7], we see that Z (RR) = Soc (RR) = 0 and hence

RR ∈ C2r. This implies that R is a right quasi-t-dual Baer ring.

(ii) Now to study if R is left quasi-t-dual Baer, note that RR = I1 ⊕ I2 is the

direct sum of the left ideals I1 =

[

0 Q

0 Q

]

and I2 =

[

D 0

0 0

]

. Using again
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[20, Corollary 2.7], we deduce that Z (RI1) = Soc (RR)I1 = I1 and Z (RI2) =

Soc (RR)I2 = 0. Therefore, Z 2(RR) = I1 by Lemma 2.3 (ii). Moreover, it is easy

to check that for every endomorphism ϕ of RR, either ϕ(I1) = 0 or ϕ(I1) = I1.

Taking into account Theorem 2.4, we obtain that RR ∈R C and RI1 ∈ C1l. Also,

it is clear that RI2 ∈ C2l and RR 6∈ C1l ∪ C2l.

Example 2.7. (i) Let R be a right V-ring. Applying [16, Proposition 2.5],

it follows that Z (M) = M for any R-module M . Thus CR = C1r, see [17,

Proposition 2.4].

(ii) It is well known that every small module is cosingular. Hence every small

module M is quasi-t-dual Baer. This implies that

(a) for every commutative domain which is not a field R, the R-module RR

is quasi-t-dual Baer by [9, Corollary 6]; and

(b) for any family (Mi)i∈I of small modules, M =
∏

i∈I Mi is quasi-t-dual

Baer since Z 2(M) = 0 by Lemma 2.3 (iii).

The next result which is another consequence of Theorem 2.4 shows that the

class of quasi-t-dual Baer right R-modules is precisely

CR = {M1 ⊕M2 : M1 ∈ C1r and M2 ∈ C2r}.

Corollary 2.8. Let M be an R-module. Then the following are equivalent:

(i) M is a quasi-t-dual Baer module;

(ii) M = M1 ⊕ M2 such that M1 is a noncosingular quasi-dual Baer sub-

module and Z 2(M2) = 0 (in this case, Z 2(M) = M1).

Proof: (i) ⇒ (ii) By Theorem 2.4, there exists a submodule M2 of M such

that M = M1 ⊕ M2, where M1 = Z 2(M). Hence M1 is noncosingular by [19,

Lemma 3.10]. Moreover, M1 is quasi-t-dual Baer by Corollary 2.5. Therefore M1

is a quasi-dual Baer module.

(ii) ⇒ (i) Note that Z 2(M) = Z 2(M1) ⊕Z 2(M2) = M1 is a direct summand

of M . Now the result follows from Theorem 2.4. �

Example 2.9. Let R be a right hereditary, right noetherian ring. Let an R-

module M = N⊕L be a direct sum of an injective submodule N and a submod-

ule L with Z 2(L) = 0 (for example, L may be taken to be small in E(L)). Then

N is quasi-dual Baer by [12, Corollary 2.30]. Moreover, N is noncosingular by

[16, Proposition 2.7]. In addition, it is clear that Z (L) = 0 and hence Z 2(L) = 0.

From Corollary 2.8, we infer that M is a quasi-t-dual Baer module.
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Corollary 2.10. Let M be an indecomposable R-module. Then the following

are equivalent:

(i) M is a quasi-t-dual Baer module;

(ii) (a) Z 2(M) = 0; or

(b) Z (M) = M and M is a quasi-dual Baer module.

Proof: This follows directly from Corollary 2.8. �

It is well known that any simple R-module is either a small module or an

injective module. Recall that the class of noncosingular modules is closed under

homomorphic images, see [16, Proposition 2.4]. Combining Corollary 2.8 and [17,

Corollary 3.9], we obtain the following corollary.

Corollary 2.11. Let M be a nonzero module over a commutative perfect ring R.

Then the following are equivalent:

(i) M is quasi-t-dual Baer;

(ii) M =
(
⊕

i∈I Si

)

⊕N where each Si, i ∈ I, is a simple injective R-module

and Z 2(N) = 0.

Next, we provide two classes of rings over which all modules are quasi-t-dual

Baer.

Example 2.12. (i) Let R be a right perfect ring which has no injective simple

R-modules (for example, R can be a local right perfect ring which is not a division

ring). Using [16, Theorem 3.8 (3)], we conclude that Z 2(M) = 0 (i.e. M ∈ C2r)

for all R-modules M . In particular, every R-module is quasi-t-dual Baer.

(ii) Let R be a right H-ring and let M be an R-module. By [16, the proof

of Theorem 3.8 (1)], M = M1 ⊕ M2 such that Z (M1) = M1 is injective and

Z 2(M2) = 0. Since R is a right H-ring,M1 is lifting and henceM1 is a quasi-t-dual

Baer module, see Example 2.2. ThereforeM1 is quasi-dual Baer as Z
2(M1) = M1.

Consequently, M is quasi-t-dual Baer by Corollary 2.8.

Proposition 2.13. Assume that R is a commutative noetherian ring and let M

be an R-module which has no nonzero submodules N with Rad (N) = N . Then

the following are equivalent:

(i) M is a quasi-t-dual Baer module;

(ii) Z 2(M) is a semisimple, injective, and projective module.

If R is a Dedekind domain, then (i)–(ii) are also equivalent to:

(iii) Z 2(M) = 0, that is M ∈ C2r.

Proof: (i)⇒ (ii) By Corollary 2.8, Z (Z 2(M)) =Z 2(M). Applying [21, Satz 2.6],

we infer that Z 2(M) is semisimple and projective. Hence Z 2(M) =
⊕

i∈I Si is

a direct sum of simple projective submodules Si, i ∈ I. By Lemma 2.3 (ii),
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Z 2(Si) = Si for all i ∈ I. It follows that each Si is an injective module. Since R

is noetherian, we conclude that Z 2(M) is injective.

(ii) ⇒ (i) Since Z 2(M) is semisimple, it is clear that Z 2(M) is a quasi-dual

Baer module. Moreover, Z 2(M) is a direct summand of M since Z 2(M) is injec-

tive. Therefore M is quasi-t-dual Baer by Theorem 2.4.

(ii) ⇒ (iii) Suppose that R is a Dedekind domain. Then R is a small R-

module, see Example 2.7 (ii), and so every simple R-module is a small module.

Since Z 2(M) is semisimple and injective, it follows that Z 2(M) = 0.

(iii) ⇒ (ii) This is clear. �

The next result should be compared with Example 2.9.

Corollary 2.14. Let M be a module over a Dedekind domain R. Then the

following are equivalent:

(i) M is a quasi-t-dual Baer module;

(ii) M = M1 ⊕M2 such that M1 is an injective module and Z 2(M2) = 0. In

particular, C1r is exactly the class of all injective R-modules.

Proof: (i) ⇒ (ii) It is well known that M = M1 ⊕ M2 such that M1 is injec-

tive and M2 has no nonzero submodules N with Rad (N) = N , see for example

[10, Theorem 8]. Note that M2 is quasi-t-dual Baer by Corollary 2.5. Then

Z 2(M2) = 0 by Proposition 2.13.

(ii) ⇒ (i) This follows from Example 2.9. �

Consider the question Q1: When is the direct sum of two or more quasi-t-

dual Baer modules, quasi-t-dual Baer? Note that for any indexed set of mod-

ules (Mi)i∈I with Z 2(Mi) = 0 for all i ∈ I, we have Z 2
(
⊕

i∈I Mi

)

= 0, see

Lemma 2.3 (ii). In view of Corollary 2.8, one can observe that the question Q1 is

equivalent to the question Q2: When is the direct sum of two or more noncosin-

gular quasi-dual Baer modules, quasi-dual Baer?

The next two propositions deal with two special cases of direct sums of quasi-

t-dual Baer modules. We first prove the following elementary lemma.

Lemma 2.15. Let an R-module M =
⊕

λ∈Λ Mλ be a direct sum of quasi-t-dual

Baer R-modules Mλ, λ ∈ Λ. Then Z 2(M) is a direct summand of M .

Proof: Note that Z 2(M)=
⊕

λ∈ΛZ
2(Mλ) by Lemma 2.3 (ii). Moreover, Z 2(Mλ)

is a direct summand of Mλ for each λ ∈ Λ by Theorem 2.4. Therefore Z 2(M) is

a direct summand of M . �

Proposition 2.16. Let M be an R-module. If M is quasi-t-dual Baer, then

every direct sum of copies of M is quasi-t-dual Baer.
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Proof: Assume that M is quasi-t-dual Baer and let I be a nonempty index set.

By Lemma 2.15, Z 2(M (I)) = (Z 2(M))(I) is a direct summand of M (I). Moreover,

Z 2(M) is quasi-dual Baer by Theorem 2.4. Therefore (Z 2(M))(I) is quasi-dual

Baer by [1, Theorem 2.7]. Now using again Theorem 2.4, we conclude that M (I)

is a quasi-t-dual Baer module. �

Proposition 2.17. Let M =
⊕

λ∈Λ Mλ be such that each Mλ, λ ∈ Λ, is a fully

invariant submodule of M . Then M is quasi-t-dual Baer if and only if Mλ is

quasi-t-dual Baer for all λ ∈ Λ.

Proof: The necessity is clear by Corollary 2.5. Conversely, suppose that each

Mλ is quasi-t-dual Baer. Note first that Z 2(M) =
⊕

λ∈ΛZ
2(Mλ) is a direct

summand of M by Lemma 2.15. Using Theorem 2.4, we only need to show

that Z 2(M) is quasi-dual Baer. Fix λ ∈ Λ. Since Z 2(Mλ) is a fully invariant

submodule of Mλ (Lemma 2.3 (i)) and Mλ is fully invariant in M , it follows that

Z 2(Mλ) is a fully invariant submodule of M . But Z 2(M) is a direct summand

of M . Then it is not difficult to see that Z 2(Mλ) is a fully invariant submodule

of Z 2(M). Moreover, Z 2(Mλ) is quasi-dual Baer by Theorem 2.4. Now applying

[17, Proposition 2.19], we deduce that Z 2(M) is a quasi-dual Baer module since

Z 2(M) =
⊕

λ∈ΛZ
2(Mλ). Therefore, M is a quasi-t-dual Baer module. �

Proposition 2.18. The following statements are equivalent for a module M :

(i) M is a quasi-t-dual Baer module;

(ii) M ⊕Z 2(M) is a quasi-t-dual Baer module.

Proof: (i) ⇒ (ii) By Corollary 2.8, Z 2(M) is a noncosingular quasi-dual Baer

module and M = Z 2(M) ⊕ N for some submodule N of M with Z 2(N) = 0.

Therefore the R-module L = M ⊕Z 2(M) can be written as L = M1 ⊕M2 ⊕M3

the direct sum of submodules Mi, i = 1, 2, 3, of L with M1
∼= M2

∼=Z 2(M) and

Z 2(M3) = 0. It follows from [1, Theorem 2.7] that M1 ⊕M2 is quasi-dual Baer.

Moreover, note that Z 2(L) = M1⊕M2 by Lemma 2.3 (ii). Now use Theorem 2.4

to conclude that L is quasi-t-dual Baer.

(ii) ⇒ (i) This is clear by Corollary 2.5. �

3. Quasi-t-dual Baer (rings) modules versus quasi-dual Baer (rings)

modules

The investigations in this section focus on the comparison of the notions of

quasi-t-dual Baer modules and quasi-dual Baer modules. We begin by exhibiting

some quasi-t-dual Baer modules which are not quasi-dual Baer.
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Example 3.1. (i) Let p be a prime number. Consider the Z-modules M1 = Z

and M2 = Z/p3Z. It is clear that Mi ≪ E(Mi) for each i ∈ {1, 2}. Therefore

Z (Mi) = 0 for each i ∈ {1, 2}. This implies that the Z-modules M1 and M2 are

quasi-t-dual Baer. However, neither of M1 and M2 is quasi-dual Baer since they

are both indecomposable Z-modules, see [17, Corollary 3.7].

(ii) Let P denote the set of all prime numbers and consider the Z-module

M =
∏

p∈P
Z/pZ. Note that the torsion submodule of M is T (M) =

⊕

p∈P
Z/pZ.

Then clearly T (M) is not a direct summand of M . It is shown in [17, Example 3.4]

that M is not quasi-dual Baer. Indeed, for every fixed prime number q, let πq be

the endomorphism of M defined by (xp)p∈P 7→ (yp)p∈P such that yp = 0 for all

p 6= q and yq = xq. Since
∑

p∈P
πp(M) = T (M), we have I(M) = T (M) where

I = D(T (M)). Now use [17, Corollary 2.6]. On the other hand, since each Z/pZ

is a small Z-module, we have Z 2(M) ⊆
∏

p∈P
Z 2(Z/pZ) = 0, see Lemma 2.3 (iii).

Therefore M is a quasi-t-dual Baer module.

One may ask whether every quasi-dual Baer module is quasi-t-dual Baer. We do

not know the answer to this question. It would be desirable to construct a quasi-

dual Baer module which is not quasi-t-dual Baer, but we have not been able to

find an example of such a module. In the next result, we give a characterization

for a quasi-dual Baer module to be quasi-t-dual Baer.

Proposition 3.2. Let M be a quasi-dual Baer R-module. Then the following

conditions are equivalent:

(i) M is a quasi-t-dual Baer module;

(ii) Z 2(M) is a direct summand of M ;

(iii) I(M) =Z 2(M), where I = D(Z 2(M)).

Proof: (i) ⇒ (ii) This follows from Theorem 2.4.

(ii) ⇒ (iii) It is clear that for any direct summand K of M , I(M) = K, where

I = D(K).

(iii) ⇒ (i) Using [17, Corollary 2.6] and Lemma 2.3 (i), we conclude thatZ 2(M)

is a direct summand of M . HenceZ 2(M) is quasi-dual Baer by [17, Corollary 2.5].

It follows from Theorem 2.4 that M is quasi-t-dual Baer. �

An R-module M is said to be retractable if HomR(M,N) 6= 0 for any nonzero

submodule N of M , see [8] and [15]. For example, any finitely generated module

over a commutative ring is retractable by [8, Theorem 2.7]. Recall that a ring R is

called right (left) semiartinian if every nonzero right (left) R-module has nonzero

socle, and R is called semiartinian if it is right and left semiartinian. By [8,

Theorem 2.8], every module over a commutative semiartinian ring is retractable.

Next, we provide sufficient conditions for a quasi-dual Baer module to be quasi-

t-dual Baer. To prove the next theorem, we need the following lemma.
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Lemma 3.3. Let M be a quasi-dual Baer R-module. Then M = M1 ⊕ M2 is

a direct sum of submodules M1 and M2 such that Z (M1) = M1 and HomR(M,

Z 2(M2)) = 0.

Proof: Note that N = Z 2(M) is a fully invariant submodule of M . According

to [17, Proposition 2.1], we obtain that M = M1 ⊕M2 for some submodules M1

and M2 of M with M1 ⊆ N and HomR(M,M2 ∩ N) = 0. By modularity,

we have N = M1 ⊕ (M2 ∩ N). On the other hand, we have N = Z 2(M) =

Z 2(M1) ⊕ Z 2(M2), see Lemma 2.3 (ii). Moreover, Z 2(M2) ⊆ M2 ∩ N by [16,

Proposition 2.1 (1)]. Therefore Z 2(M1) = M1 and Z 2(M2) = M2 ∩N . It follows

that Z (M1) = M1 and HomR(M,Z 2(M2)) = 0. �

Theorem 3.4. Let M be a quasi-dual Baer nonzero R-module and assume that

M is retractable. Then M is quasi-t-dual Baer.

Proof: By Lemma 3.3, there exists a direct sum decomposition M = M1 ⊕M2

with Z (M1) = M1 and HomR(M,Z 2(M2)) = 0. Since M is retractable, Z 2(M2)

must be zero. Hence Z 2(M) = M1 is a direct summand of M by Lemma 2.3 (ii).

Now the result follows from Proposition 3.2. �

Combining Theorem 3.4 with [8, Theorems 2.7 and 2.8], we obtain the following

corollary.

Corollary 3.5. Let M be a quasi-dual Baer nonzero R-module over a commu-

tative ring R. Suppose that one of the following conditions is fulfilled:

(i) R is a semiartinian ring; or

(ii) M is a finitely generated R-module.

Then M is quasi-t-dual Baer.

Proposition 3.6. Let M be a module such that M ⊕Z 2(M) is quasi-dual Baer.

Then M and M ⊕Z 2(M) are quasi-t-dual Baer.

Proof: Note that Z 2(M) is fully invariant in M . Using [14, Lemma 1.11],

it follows that there exists a fully invariant submodule X of Z 2(M) such that

N = Z 2(M) ⊕ X is fully invariant in L = M ⊕Z 2(M). Consider the two-sided

ideal I = HomR(L,N) of EndR(L). It is easily seen that Z 2(M)⊕0 ⊆ I(L) ⊆ N .

Hence Z 2(M) ⊕ 0 is a direct summand of I(L). But I(L) is a direct summand

of L by [17, Proposition 2.4]. This implies that Z 2(M) is a direct summand

of M . Moreover, Z 2(M) is quasi-dual Baer by [17, Corollary 2.5]. Therefore

M is quasi-t-dual Baer by Theorem 2.4. Now use Proposition 2.18 to infer that

M ⊕Z 2(M) is quasi-t-dual Baer. �
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Remark 3.7. If R is a ring such that every R-module is quasi-dual Baer, then

every R-module is quasi-t-dual Baer, see Proposition 3.6. But the converse does

not hold. To see this, we can take a local right perfect ring which is not a di-

vision ring R (e.g. R can be taken to be Z/pnZ for some prime number p and

some integer n ≥ 2). By Example 2.12 (i), every R-module is quasi-t-dual Baer.

However, the R-module RR is not quasi-dual Baer since R is not a simple ring,

see [17, Proposition 2.10].

It is shown in [17, Corollary 2.11] that the quasi-dual Baer property is left-right

symmetric for any ring. Moreover, a ring R is quasi-dual Baer if and only if R

is a finite product of simple rings by [17, Proposition 2.10]. A ring R is called

a right quasi-t-dual Baer ring if the right R-module RR is a quasi-t-dual Baer

R-module. Left quasi-t-dual Baer rings are defined similarly. The ring R is called

quasi-t-dual Baer in case R is left and right quasi-t-dual Baer. It is well known

that for any ring R, the R-module RR is retractable. The next corollary follows

easily from Theorem 3.4.

Corollary 3.8. Every quasi-dual Baer ring is a quasi-t-dual Baer ring. That is,

every finite product of simple rings is a quasi-t-dual Baer ring.

We next present some right quasi-t-dual Baer rings which are not quasi-dual

Baer.

Example 3.9. (i) Let R be a local ring which is not a division ring. Then

Z (RR) 6= R since otherwise R will be a right V-ring by [16, Corollary 2.6]. In

this case R will be a division ring. Hence Z (RR) ≪ RR and so Z 2(RR) = 0.

This implies that R is a right quasi-t-dual Baer ring. Similarly, we can see that

R is left quasi-t-dual Baer. On the other hand, R is not quasi-dual Baer by [17,

Proposition 2.10].

(ii) Let R be a commutative semiperfect ring which is not semisimple. Then R

is a quasi-t-dual Baer ring by Example 2.2. However, the ring R is not quasi-dual

Baer by [17, Proposition 2.10].

Example 3.10. Consider the ring R of all upper triangular 2× 2 matrices with

entries in a field F . It is well known that R is a left and right hereditary ar-

tinian ring, see for example [7, Example 13.6]. Note that R = M1 ⊕ M2 with

M1 =

[

F F

0 0

]

is an injective indecomposable R-module and M2 =

[

0 0

0 F

]

is a simple small R-module. Then R is a right quasi-t-dual Baer ring by Exam-

ple 2.9. On the other hand, note that R is not quasi-dual Baer, since otherwise

Rad (R) is a direct summand of the R-module RR by [17, Proposition 2.10]. But
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Rad (R) is small in RR. Hence Rad (R) = 0. This contradicts the fact that

Rad (R) =

[

0 F

0 0

]

.

Proposition 3.11. The following conditions are equivalent for a ring R:

(i) R is a right quasi-t-dual Baer ring;

(ii) IZ 2(RR) is a direct summand of RR for any two-sided ideal I of R;

(iii) IZ 2(RR) is a direct summand of RR for any left ideal I of R;

(iv) every free right R-module is quasi-t-dual Baer;

(v) every projective right R-module is quasi-t-dual Baer.

Proof: (i) ⇒ (ii) This follows directly from the definition of a quasi-t-dual Baer

module.

(ii) ⇒ (iii) This is obvious.

(iii) ⇒ (i) Let I be a left ideal of EndR(RR). Put I =
∑

f∈I
f(R). It is easy

to check that I is a left ideal of R. Then IZ 2(RR) is a direct summand of RR.

But I(Z 2(RR)) = IZ 2(RR). Hence I(Z 2(RR)) is a direct summand of RR. It

follows from Theorem 2.4 that R is a right quasi-t-dual Baer ring.

(i) ⇒ (iv) By Proposition 2.16.

(iv) ⇒ (v) This follows from Corollary 2.5 and the fact that every projective

module is isomorphic to a direct summand of a free module.

(v) ⇒ (i) This is immediate. �

Our next endeavor is to characterize when a product of right quasi-t-dual Baer

rings is right quasi-t-dual Baer. The following lemma is needed.

Lemma 3.12.

(i) Let (Ri)i∈I be an indexed set of rings with R =
∏

i∈I Ri and assume that

Z 2
Ri
(RiRi

) = 0 for all i ∈ I. Then Z 2
R(RR) = 0.

(ii) For any ring R, Z 2
R(RR) is a two-sided ideal of R.

(iii) Let R = R1 ⊕ R2 be a ring decomposition of a ring R. Then R is right

quasi-t-dual Baer if and only if both R1 and R2 are right quasi-t-dual

Baer rings.

Proof: (i) Using Lemma 2.3 (iv), we infer that Z 2
R(RiR) = Z 2

Ri
(RiRi

) = 0 for

each i ∈ I. But Z 2
R(RR) ⊆

∏

i∈IZ
2
R(RiR) by Lemma 2.3 (iii). It follows that

Z 2
R(RR) = 0.

(ii) It is clear that Z 2
R(RR) is a right ideal of R. Moreover, Z 2

R(RR) is a ful-

ly invariant submodule of the right R-module RR by Lemma 2.3 (i). Thus

aZ 2
R(RR) ⊆Z 2

R(RR) for every a ∈ R, that is, Z 2
R(RR) is a left ideal of R.

(iii) Note that Z 2
R(RR) = Z 2

R(R1R) ⊕Z 2
R(R2R) = Z 2

R1
(R1R1

) ⊕Z 2
R2

(R2R2
)

by Lemma 2.3 (ii) and (iv). Moreover, Z 2
Ri
(RiRi

) is a two-sided ideal of Ri for

i = 1, 2 by (ii).
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(⇒) Let A1 be a two-sided ideal of R1. Then A1 is a two-sided ideal of R.

Hence A1Z
2
R(RR) is a direct summand of RR by Proposition 3.11. It is clear

that A1Z
2
R(RR) = A1Z

2
R1

(R1R1
). So A1Z

2
R1

(R1R1
) is a direct summand of R1R1

.

From Proposition 3.11, it follows that R1 is a right quasi-t-dual Baer ring.

(⇐) Take a two-sided ideal A of R. Then,

AZ 2
R(RR) = AZ 2

R1
(R1R1

)⊕AZ 2
R2

(R2R2
) = (AR1)Z

2
R1

(R1R1
)⊕(AR2)Z

2
R2

(R2R2
).

Since each ARi is a two-sided ideal of Ri, it follows from Proposition 3.11 that

(ARi)Z
2
Ri
(RiRi

) is a direct summand of RiRi
for i = 1, 2. Therefore AZ 2(RR) is

a direct summand of RR. Using again Proposition 3.11, we conclude that R is

a right quasi-t-dual Baer ring. �

Proposition 3.13. Let (Ri)i∈I be an indexed set of rings and let R =
∏

i∈I Ri.

Then the following statements are equivalent:

(i) R is a right quasi-t-dual Baer ring;

(ii) there exists a finite subset J ⊆ I such that Z 2
Ri
(RiRi

) = 0 for every

i ∈ I \ J and each Rj , j ∈ J , is a right quasi-t-dual Baer ring.

Proof: (i) ⇒ (ii) Consider the two-sided ideal A =
⊕

i∈I Ri of R. We claim that

AZ 2
R(RR) = Z 2

R(AR). Note that Z 2
R(AR) =

⊕

i∈IZ
2
R(RiR) by Lemma 2.3 (ii).

Also, we have Z 2
R(RiR) = Z 2

Ri
(RiRi

), see Lemma 2.3 (iv) for all i ∈ I. Thus

Z 2
R(RiR) is a two-sided ideal of Ri for every i ∈ I. Therefore AZ 2

R(AR) =

Z 2
R(AR) and hence Z 2

R(AR) ⊆ AZ 2
R(RR) by [16, Proposition 2.1 (1)]. More-

over, we have AZ 2
R(RR) ⊆ A

(
∏

i∈IZ
2
R(RiR)

)

by Lemma 2.3 (iii). However,

A
(
∏

i∈IZ
2
R(RiR)

)

=
⊕

i∈IZ
2
R(RiR) = Z 2

R(AR). So AZ 2
R(RR) ⊆ Z 2

R(AR). It

follows that AZ 2
R(RR) =Z 2

R(AR) as claimed. Now applying Proposition 3.11, we

obtain that
⊕

i∈IZ
2
R(RiR) is a direct summand of RR. Thus

(
⊕

i∈IZ
2
R(RiR)

)

⊕

B = RR for some right ideal B of R. This implies that 1R = a + b for some

a ∈
⊕

i∈IZ
2
R(RiR) and some b ∈ B. This yields aR =

⊕

i∈IZ
2
R(RiR) and

bR = B. Then there exists a finite subset J ⊆ I such that Z 2
R(RiR) = 0 for

every i ∈ I \ J . Therefore Z 2
Ri
(RiRi

) = 0 for all i ∈ I \ J , see Lemma 2.3 (iv).

Note that Rj is a right quasi-t-dual Baer ring for all j ∈ J by Lemma 3.12 (iii).

(ii) ⇒ (i) Set T =
∏

i∈I\J Ri and S =
∏

j∈J Rj . Then R ∼= T × S (as rings).

Note that Z 2
T (TT ) = 0 by Lemma 3.12 (i). Hence T is a right quasi-t-dual

Baer ring. Since J is a finite set, the proof is completed by induction and using

Lemma 3.12 (iii). �

From the preceding result, it follows easily that an infinite product of right

quasi-t-dual Baer rings need not be a right quasi-t-dual Baer ring. Next, we

provide some explicit examples.
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Example 3.14. Taking a right quasi-t-dual Baer ring R with Z 2
R(RR) 6= 0, it

follows from Proposition 3.13 that RN is not a right quasi-t-dual Baer ring, where

N denotes the set of all positive integers. For example, we can take R to be one

of the following rings:

(i) Let R =

[

F F

0 F

]

, where F is a field. By Example 3.10, R is a right

quasi-t-dual Baer ring and RR = M1 ⊕M2 such that M1 is a nonzero injective

module and M2 is a small module. Since R is right hereditary, Z 2(M1) = M1,

see [16, Proposition 2.7], and hence Z 2
R(RR) = M1 by Lemma 2.3 (ii).

(ii) Let R =
∏n

i=1 Ri be the product of simple rings Ri, 1 ≤ i ≤ n, such

that at least one of them is a right V-ring, see [6]. So Z 2
R(RR) 6= 0 by [16,

Propositions 2.1 (1) and 2.5]. Moreover, R is a right quasi-t-dual Baer ring by

Corollary 3.8.

Remark 3.15. Let F be a field.

(i) Consider the ring R =

[

F F

0 F

]

. By Example 3.14 (i), Z 2
R(RR) =

[

F F

0 0

]

. Similarly, we can show that Z 2
R(RR) =

[

0 F

0 F

]

. Thus Z 2
R(RR) 6=

Z 2
R(RR). This shows that the preradical Z 2 is not left-right symmetric.

(ii) Assume that R is a right quasi-t-dual Baer ring. Then RR =Z 2
R(RR)⊕ I

for some right ideal I of R by Theorem 2.4. Note that I need not be a two-sided

ideal of R. In fact, for the ring R =

[

F F

0 F

]

, see Examples 3.10 and 3.14 (i),

we have RR = Z 2
R(RR) ⊕M2 where M2 =

[

0 0

0 F

]

. On the other hand, it is

clear that M2 is not a left ideal of R.

Proposition 3.16. Let R = R1 ⊕R2 be a ring decomposition of a ring R such

that R1 is a right V-ring and Z 2
R2

(R2R2
) = 0. Then R is a right quasi-t-dual

Baer ring if and only if R1 is a finite product of simple rings.

Proof: We first note that using [16, Corollary 2.6] and Lemma 2.3 (ii) and (iv),

we get

Z 2
R(RR) =Z 2

R(R1R) = Z 2
R1

(R1R1
) = R1.

For the necessity, assume that R is a right quasi-t-dual Baer ring and take a two-

sided ideal I1 of R1. Then clearly I1 is a two-sided ideal of R. Thus I1Z
2
R(RR) =

I1R1 = I1 is a direct summand of RR by Proposition 3.11. So I1 is a direct

summand of R1R1
. According to [17, Proposition 2.10], R1 is a finite product

of simple rings. Conversely, note that Z
2

R2
(R2R2

) = 0 by hypothesis. Moreover,
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R1 is right quasi-t-dual Baer by Corollary 3.8. Now use Proposition 3.13 to deduce

that R is a right quasi-t-dual Baer ring. �
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[21] Zöschinger H., Schwach-injective moduln, Period. Math. Hungar. 52 (2006), no. 2, 105–128
(German, English summary).

R. Tribak:

Centre Régional des Métiers de l’Education et de la Formation

(CRMEF-TTH)-Tanger, Avenue My Abdelaziz, Souani 90000, B.P. 3117,

Tangier, Morocco

E-mail: tribak12@yahoo.com

Y. Talebi, M. Hosseinpour:

Department of Mathematics, Faculty of Mathematical Sciences,

University of Mazandaran, Pasdaran Street, P.C. 47416-13534, Babolsar,

Iran

E-mail: talebi@umz.ac.ir

E-mail: mehrab.hosseinpour@gmail.com

(Received July 27, 2023, revised October 23, 2023)


