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Nobelova cena za zásadní objevy a inovace
v oblasti umělých neuronových sítí.
Od biologické inspirace k moderní
umělé inteligenci
Zdeněk Buk

Abstrakt. V roce 2024 byla Nobelova cena za fyziku udělena Geoffreyovi Hintonovi a Johnu
Hopfieldovi za zásadní objevy a inovace, které umožnily strojové učení s umělými neurono-
vými sítěmi. Tento článek se zaměřuje na historický vývoj neuronových sítí od jejich počátků,
inspirovaných biologickými modely, až po moderní architektury, jako jsou hluboké sítě, reku-
rentní modely či konvoluční sítě a transformery. Popisuje klíčové milníky, teoretické základy
a aplikace, které dnes ovlivňují širokou škálu oblastí od počítačového vidění po zpracování
přirozeného jazyka.

1. Úvod

Tento článek má za cíl přiblížit problematiku neuronových sítí a umělé inteligence
širší odborné veřejnosti. Motivací je nejen bouřlivý vývoj v této oblasti v posledních
letech, ale samozřejmě také mimořádné ocenění, kterého se dostalo dvěma osobnostem
v tomto oboru – Geoffreyovi Hintonovi a Johnu Hopfieldovi – v podobě Nobelových
cen za fyziku v roce 2024.

Geoffrey Hinton (*6. prosince 1947, Londýn) je britsko-kanadský vědec, známý
jako průkopník umělých neuronových sítí. Vystudoval experimentální psychologii na
Univerzitě v Cambridge a doktorát získal na Univerzitě v Edinburghu, kde se věnoval
umělé inteligenci. Během své kariéry působil na univerzitách v Sussexu, San Diegu
a Carnegie-Mellon v Pittsburghu, od roku 1987 pak na Univerzitě v Torontu.

Hinton se proslavil svou prací na algoritmu zpětného šíření chyb [19] a na Boltz-
mannových strojích [2], [3]. Je považován za jednoho z „kmotrů hlubokého učení“
a v roce 2018 obdržel prestižní Turingovu cenu společně s Yoshuou Bengiem a Yannem
LeCunem za technické průlomy, jež z neuronových sítí učinily klíčovou technologii
výpočetní techniky.

Kromě akademického působení byl také spojen s Googlem, odkud odešel v roce
2023, aby mohl upozorňovat na rizika spojená s rozvojem umělé inteligence (AI). Hin-
ton věří, že umělá inteligence bude mít na společnost podobný dopad jako průmyslová
revoluce, ale zároveň varuje před možnými nebezpečími, která by mohla ohrozit lid-
stvo.

Mezi další Hintonova vyznamenání patří členství v britské Královské společnosti,
Rumelhartova cena (2011) a Řád Kanady (2018).

Ing. Zdeněk Buk, Ph.D., Katedra teoretické informatiky, Fakulta informačních technologií
ČVUT v Praze, Thákurova 9, 160 00 Praha 6, e-mail: zdenek.buk@fit.cvut.cz
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John Hopfield (*15. července 1933, Chicago, Illinois) je americký fyzik, biofyzik
a neurovědec, známý svou průkopnickou prací v oblasti umělých neuronových sítí,
molekulární biologie a statistické fyziky. Po bakalářském studiu fyziky na Swarthmore
College (1954) získal doktorát na Cornellově univerzitě (1958) pod vedením Alberta
Overhausera. Během své kariéry působil na prestižních institucích, jako jsou Bellovy
laboratoře, Kalifornská univerzita v Berkeley, Kalifornský technologický institut v Pa-
sadeně a Princetonská univerzita, kde je emeritním profesorem molekulární biologie.

Hopfieldova vědecká činnost pokrývá širokou škálu disciplín. Jeho přínos zahrnuje
objev polaritonů, návrh Hopfieldovy dielektrické teorie, koncept kinetického proofrea-
dingu v biomolekulární syntéze a slavnou Hopfieldovu síť (1982), která položila základy
moderního strojového učení a výpočetní neurovědy. Je také spoluautorem pseudopo-
tenciálů zachovávajících normu v chemické fyzice a průkopníkem aplikací kolektivních
dynamik neuronových sítí.

Za svou práci obdržel mnoho významných ocenění, včetně Guggenheimova stipen-
dia (1968), ceny Olivera E. Buckleyho (1969), ceny Maxe Delbrücka (1985), Diracovy
medaile ICTP (2001), Harold Pender Award (2002), Světové ceny Alberta Einsteina
za vědu (2005), Benjamin Franklin Medal (2019) a Boltzmannovy medaile (2022).
V roce 1997 mu IEEE udělila Neural Networks Pioneer Award, a v roce 2009 získal
Frank Rosenblatt Award za přínos k porozumění zpracování informací v biologických
systémech.

Hopfield je členem Národní akademie věd USA, Americké akademie umění a věd
a Americké filozofické společnosti. Jako prezident Americké fyzikální společnosti (2006)
a pedagog inspiroval generace vědců. Jeho průkopnická práce zůstává klíčovou inspirací
pro fyziku, biologii a umělou inteligenci.

Obr. 1. Laureáti Nobelovy ceny za fyziku 2024: John Hopfield a Geoffrey Hinton. c© Nobel
Prize Outreach. Autor: Nanaka Adachi
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1.1. Neuronové sítě

Neuronové sítě původně inspirované svými biologickými vzory jsou dnes základem mo-
derní umělé inteligence a významně tak ovlivňují další technologie, vědu i společnost.
Popíšeme si základní principy fungování neuronových sítí a jejich aplikace. Zaměříme
se na historický vývoj a klíčové milníky. V dalších částech se pak zaměříme na perso-
nální přínosy oboru umělých neuronových sítí a popisy vybraných architektur a typů
sítí.

Problematika je natolik rozsáhlá, že není snadné zvolit jediný způsob její prezen-
tace. V první části se proto zaměříme na vývoj a jednotlivé historické epochy. Cílem
je ukázat, jak bouřlivý tento vývoj byl – od původních, dnes již triviálních modelů
a algoritmů, které oslovovaly jen hrstku nadšenců, až po moderní obor. Dnes jde o dis-
ciplínu, která zaměstnává celé laboratoře, katedry i fakulty a proniká do všech oblastí
lidské činnosti.

Aniž bychom si to explicitně uvědomovali, neuronové sítě a další prvky AI dnes
zasahují do mnoha běžných digitálních procesů. Každá fotografie pořízená mobilním
telefonem, každý text upravený automatickou korekturou či přeložený do jiného jazyka
prochází procesy, které tyto technologie využívají. Úlohy, jako je rozpoznávání doprav-
ních značek v asistenčních systémech moderních automobilů, automatické třídění foto-
grafií ve vašich digitálních albech, sledování bezpečnosti v robotických linkách, defek-
toskopie ve výrobě, řízení, optimalizace, detekce anomálií, extrakce znalostí a pravidel
z dat či doporučovací systémy, jsou příklady, kde se neuronové sítě uplatňují. Patří
sem také jazykové modely a dnes velmi populární generativní modely. Tento výčet by
mohl pokračovat – vše zmíněné se však opírá o metody, které jsou neuronovými sítěmi
buď přímo tvořeny, nebo alespoň inspirovány.

2. Klíčové epochy vývoje neuronových sítí a umělé inteligence

Historie neuronových sítí a umělé inteligence je příběhem plným dramatických zvratů,
vizionářských průlomů a nečekaných krizí. Je to cesta odvážných nápadů, které často
předběhly svou dobu, a jejich autorů, kteří navzdory skeptikům věřili ve svou vizi. Tato
historie je charakterizována obdobími euforického pokroku, kdy se zdálo, že hranice
možností lidského poznání se neustále posouvají, ale také chvílemi hluboké nejistoty,
kdy naděje na revoluční změny střídala deziluze z nenaplněných očekávání. Každá
epocha odráží klíčové objevy, technologický pokrok a zároveň výzvy, které vědci museli
překonat, aby tento fascinující obor posunuli k současnému významu. Je to příběh
nezdolné lidské touhy porozumět světu, simulovat myšlení a přetvořit stroje na nástroje
schopné skutečně „učit se“ a přemýšlet.

1. Počátky a biologická inspirace (1940–1957)

Tato éra se soustředila na první teoretické základy neuronových sítí inspirované
fungováním biologických mozků.

• 1943: McCulloch a Pitts publikovali práci A logical calculus of ideas immanent
in nervous activity [15], která představila matematický model neuronu.

Pokroky matematiky, fyziky a astronomie, ročník 69 (2024), č. 4 195



• 1949: Donald Hebb formuloval Hebbovo pravidlo [7], biologicky inspirovaný
mechanismus učení, popisující, jak se váhy mezi neurony mění na základě jejich
společné aktivace.

• Zkoumání se zaměřovalo především na abstraktní modely, které položily teo-
retické základy neuronových sítí.

2. Vzestup perceptronu a první vlna optimismu (1958–1969)
Neuronové sítě získaly pozornost díky praktickým aplikacím prvních modelů.

• 1958: Frank Rosenblatt představil perceptron (viz kapitolu 3), první trénovatel-
nou neuronovou síť. Jeho systém Mark I demonstroval schopnost rozpoznávat
jednoduché vizuální vzory.

• Perceptron ukázal potenciál učení z dat, což vedlo k nárůstu zájmu o AI.
• Nicméně omezení perceptronu (např. neschopnost řešit nelineární problémy)

zůstávala nevyřešena.

3. Kritika perceptronů a první AI zima (1969–1980)
Optimismus poháněný perceptronem opadl po zveřejnění jeho zásadních omezení.

• 1969: Marvin Minsky a Seymour Papert publikovali knihu Perceptrons, která
formálně ukázala, že jednovrstvé perceptrony nemohou řešit nelineárně sepa-
rabilní úlohy, jako je např. triviální XOR problém (viz obrázek 3).

• Tato kritika vedla ke ztrátě zájmu o neuronové sítě, což způsobilo tzv. první
AI zimu, během níž byla pozornost přesunuta k symbolické AI, například ex-
pertním systémům.

• Financování výzkumu neuronových sítí kleslo, což zpomalilo vývoj dalších mo-
delů.

4. Renesance neuronových sítí a pokroky v učení (1980–1990)
Neuronové sítě zažily obnovený zájem díky novým teoretickým a praktickým ob-
jevům.

• 1982: John Hopfield představil Hopfieldovy sítě (viz kapitolu 4), které fungovaly
jako asociační paměti a inspirovaly vývoj rekurentních sítí.

• 1986: Geoffrey Hinton, David Rumelhart a Ronald Williams formalizovali a po-
pularizovali algoritmus zpětného šíření chyby (backpropagation) pro vícevrstvé
perceptrony.

• 1989: Yann LeCun použil konvoluční neuronové sítě (CNN, viz kapitolu 4) pro
rozpoznávání rukopisu.

• Tyto pokroky vedly k oživení zájmu o neuronové sítě, přestože technologická
omezení, jako problémy mizení gradientů (vanishing gradient)1, stále ztěžovala
trénink hlubších modelů.

1Tento termín se používá k popisu problému, kdy gradienty při zpětném šíření chyb (backpro-
pagation) v hlubokých neuronových sítích postupně slábnou, což ztěžuje nebo znemožňuje efektivní
trénink vrstev blízko vstupu sítě.
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5. Druhá AI zima (1987–1993)
Nerealistická očekávání spojená s expertními systémy a omezení neuronových sítí
vedly k další krizi.

• Selhání symbolické AI, zejména expertních systémů, způsobilo zklamání inves-
torů a snížení financování.

• Investice do AI byly vnímány jako rizikové kvůli nenaplněným slibům. Očeká-
vání, že AI rychle změní průmysl, se ukázala jako přehnaná.

• Neuronové sítě stále trpěly problémy, jako je mizení gradientů, což znemožňo-
valo efektivní trénink hlubokých modelů.

• Výpočetní technika té doby nebyla dostatečně výkonná pro složitější AI modely.
• AI byla vnímána jako „příliš ambiciózní“ obor. Akademická komunita se více

zaměřila na alternativní oblasti, jako je tradiční počítačová věda nebo teorie
algoritmů.

• Tato zima však motivovala hledání nových přístupů a zlepšení technologií.

6. Překonání problémů a příchod hlubokého učení (1990–2010)
Tato éra je charakterizována průlomem v řešení klíčových problémů neuronových
sítí.

• 1997: Sepp Hochreiter a Jürgen Schmidhuber navrhli Long Short-Term Memory
(LSTM, viz kapitolu 4) [8], která vyřešila problém mizení gradientů u rekurent-
ních sítí (RNN). LSTM umožnila efektivní modelování dlouhodobých závislostí
v sekvenčních datech.

• 2006: Geoffrey Hinton a jeho tým představili metody předtrénování hlubokých
neuronových sítí, což položilo základy pro moderní hluboké učení.

Díky těmto inovacím se neuronové sítě staly schopnými modelovat složité vztahy
a řešit problémy, které byly dříve neřešitelné.

7. Éra hlubokého učení a průmyslové dominance (2010–2020)
Neuronové sítě se staly dominantní technologií díky masivnímu rozvoji aplikací.

• 2012: AlexNet (Krizhevsky, Sutskever, Hinton) vyhrál soutěž ImageNet [11]
a ukázal sílu konvolučních neuronových sítí (CNN).

• 2014: Ian Goodfellow představil generativní kontradiktorní sítě (GANs) [4],
které umožnily generování realistických dat.

• 2017: Transformerové modely [23] přinesly revoluci ve zpracování přirozeného
jazyka a vedly k vývoji modelů, jako jsou GPT a BERT.

• Tato éra přinesla masivní komerční využití neuronových sítí v oblastech, jako
je počítačové vidění, zpracování jazyka a medicína.

8. Současná éra generativních modelů a etických výzev (2020–současnost)
Neuronové sítě se staly nedílnou součástí moderní společnosti.
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• Velké jazykové modely (např. GPT-3, ChatGPT) a generativní modely (Stable
Diffusion, DALL-E) získaly široké uplatnění.

• Vzrůstá zájem o otázky regulace, vysvětlitelnosti a etiky spojené s AI. Roste
potřeba zajištění, že AI bude sloužit lidskému dobru a nebude zneužita napří-
klad k šíření dezinformací či manipulaci.

• Výzkum směřuje k obecné umělé inteligenci (AGI) a kombinaci neuronových sítí
s interdisciplinárními přístupy – kvantovým počítáním, biologií a teorií kom-
plexních systémů. Toto naznačuje, že můžeme v ne příliš vzdálené budoucnosti
vyhlížet vznik nové éry AI.

• Výzva pro lidstvo: Kam až nechat AI zajít? Současná éra přináší nejen techno-
logický triumf, ale i bezprecedentní odpovědnost.

Toto rozdělení zohledňuje chronologickou návaznost klíčových objevů, období krizí
(AI zim) i moderních průlomů, včetně řešení problémů, jako je mizení gradientů, díky
architekturám, jako jsou LSTM. AI zimy přinesly důležitá ponaučení pro výzkum:

• Nutnost realistických očekávání a diskuse o schopnostech AI.

• Potřebu výkonnějšího hardware a efektivních algoritmů.

• Význam praktických aplikací pro získání financování a důvěry veřejnosti.

3. Stručný úvod do fungování neuronových sítí

Neuronové sítě (Artificial Neural Networks, ANN) jsou výpočetní modely inspirované
biologickými neuronovými systémy. Fungují na principu propojených výpočetních jed-
notek – tzv. neuronů, které spolupracují při zpracování a transformaci dat. Cílem
neuronových sítí je především schopnost modelovat složité vztahy v datech, objevovat
skryté vzory a řešit úlohy, které jsou pro klasické algoritmy obtížně zvládnutelné.

Základy pro studium umělých neuronových sítí položili Warren McCulloch a Walter
Pitts v roce 1943 článkem A logical calculus of ideas immanent in nervous activity [15].
Vytvořili tu první matematický model neuronu, který se choval jako jednoduchá logická
jednotka, a ukázali, jak lze jednoduché logické funkce realizovat sítí propojených neu-
ronů. Touto publikací začíná první éra, kterou bychom mohli označit jako „Počátky“
(viz kapitolu 2) a která bude trvat do konce šedesátých let dvacátého století.

Frank Rosenblatt následně vyvinul perceptron [18], jednu z prvních praktických
implementací neuronových sítí, které se dokázaly učit na základě trénovacích dat.
Perceptron se stal milníkem ve vývoji umělé inteligence a neuronových sítí, protože
šlo o první výpočetní model s praktickou implementací, který byl schopen řešit reálné
úlohy. Rosenblatt demonstroval perceptron na úloze klasifikace jednoduchých vizuál-
ních vzorů. Na experimentální perceptron nazvaný Mark I, postavený na IBM 704, byl
připojen optický senzor, který převáděl obraz na binární vstupy. Systém byl schopen
naučit se rozpoznávat jednoduché tvary, například čtverce nebo trojúhelníky [13].
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3.1. Princip fungování perceptronu

Perceptron je jednoduchý výpočetní model, který přijímá několik vstupních hodnot
(x1, x2, . . . , xn), představujících vlastnosti zpracovávaných dat (například intenzitu
pixelů u obrázku) a jeden binární výstup. Každý vstup xi je spojen s odpovídajícím
váhovým faktorem wi. Tzv. vnitřní potenciál neuronu je výsledkem lineární kombinace
vstupů

z =
n∑

i=1

wixi + b, (1)

kde n je počet vstupů perceptronu, b představuje posun, nebo práh perceptronu (bias),
xi a wi pak jednotlivé vstupy a jejich váhy.

Tato lineární kombinace z je vstupem do aktivační funkce, která rozhoduje o vý-
sledku perceptronu. V původním perceptronu byla použita jednoduchá prahová funkce

y = f(z) =

{
1 pokud z >= 0,

0 jinak.
(2)

Výstupem perceptronu je tedy binární hodnota (0 nebo 1), což umožňuje klasifikaci
do dvou kategorií.

3.2. Omezení perceptronu a přechod k vícevrstvým sítím

Přestože perceptron znamenal významný krok vpřed, jeho schopnosti byly omezené.
Hlavním problémem byla neschopnost řešit lineárně neseparabilní úlohy, jako je známý
problém XOR. V roce 1969 tuto slabinu formálně dokázali Marvin Minsky a Seymour
Papert ve své knize Perceptrons [16]. Kritika perceptronů vedla k útlumu zájmu o neu-
ronové sítě na více než deset let (tzv. první AI zima, viz kapitolu 2).

Obr. 2. Ilustrace perceptronu a obecné vícevrstvé dopředné neuronové sítě se třemi výstupy.
Taková síť je aplikovatelná např. v klasifikačních úlohách, kdy se na základě n vstupních
příznaků klasifikuje do 3 tříd

Problém perceptronu spočíval v jeho jednovrstvé struktuře. Tento model dokáže
rozdělit vstupní prostor pouze pomocí přímky (v obecném případě nadroviny), což
je dostatečné pouze pro lineárně separabilní úlohy. Aby bylo možné řešit složitější
nelineární problémy, bylo nutné přidat další vrstvu neuronů, tzv. skrytou vrstvu.
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Obr. 3. Ilustrace rozdílu mezi lineárně a nelineárně separabilní úlohou. Zatímco u funkce
OR je možné oddělit dvě třídy jednoduchou přímkou, funkce XOR takovou separaci ne-
umožňuje. Řešení těchto nelineárně separabilních problémů vyžaduje vícevrstvé neuronové
sítě s nelineárními aktivačními funkcemi

3.3. Zavedení nelineárních aktivačních funkcí a vícevrstvých sítí

Přechod k vícevrstvým neuronovým sítím (MLP, Multi-Layer Perceptrons) a zave-
dení nelineárních aktivačních funkcí představovaly klíčový průlom, který umožnil ře-
šení lineárně neseparabilních úloh. Tento pokrok však nebyl možný bez dalších metod
a inovací, které zajistily efektivní trénink hlubokých sítí.

Jedním z klíčových momentů bylo zavedení algoritmu zpětného šíření chyb (back-
propagation), který v roce 1986 zásadně rozpracovali Geoffrey Hinton, David Ru-
melhart a Ronald Williams [19]. Tento algoritmus umožnil trénovat vícevrstvé sítě
s nelineárními aktivačními funkcemi tím, že efektivně optimalizoval váhové parametry
pomocí gradientního sestupu. Díky této metodě se neuronové sítě staly praktickým
nástrojem pro modelování komplexních vztahů v datech, což položilo základy moder-
ního hlubokého učení. Hintonův přínos byl tedy zásadní pro překonání bariér, které
dříve limitovaly rozvoj neuronových sítí.

V rámci vícevrstvých perceptronů je výstup jednotlivých neuronů první (skryté)
vrstvy vstupem pro neurony další vrstvy. Tato struktura umožňuje rozdělení vstupního
prostoru na komplexnější rozhodovací hranice. Aby však bylo možné využít této vý-
hody, musela být jednoduchá prahová funkce nahrazena spojitou nelineární aktivační
funkcí. Klíčové příklady těchto funkcí zahrnují:

• Sigmoidální funkce:

σ(z) =
1

1 + e−z
. (3)

Sigmoida mapuje vstupy do intervalu (0, 1) a umožňuje plynulé přechody mezi
aktivním a neaktivním stavem.

• Hyperbolický tangens (tanh):

tanh(z) = e
z − e−z

ez + e−z
. (4)

Tanh je podobný sigmoidální funkci, ale jeho hodnoty se pohybují v rozmezí
(−1, 1), což usnadňuje práci se zápornými i kladnými hodnotami.
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• ReLU (Rectified Linear Unit):

ReLU(z) = max(0, z). (5)

ReLU aktivuje pouze kladné hodnoty a díky své jednoduchosti umožňuje efektivní
trénink hlubokých sítí.

Nelineární aktivační funkce umožňují, aby vícevrstvé neuronové sítě modelovaly složité
vztahy ve vstupních datech, což byl zásadní předpoklad pro další rozvoj neuronových
sítí.

3.4. Pokroky a nové výzvy

Zatímco vícevrstvé sítě přinesly možnost řešit mnohem širší spektrum problémů, jejich
zavedení otevřelo nové otázky, například:

• Jak se vyhnout problémům mizení gradientů při trénování hlubokých sítí?

• Jak optimalizovat architektury sítí pro specifické úlohy?

• Jak zajistit, aby výsledné modely byly robustní a dobře se generalizovaly na nová
data?

Tyto otázky se staly základem dalšího rozvoje neuronových sítí a vedly k objevům
pokročilých architektur, jako jsou konvoluční neuronové sítě (CNN), rekurentní neu-
ronové sítě (RNN) a modely typu Transformer. Tímto vývojem pokračuje dynamická
historie neuronových sítí až do současnosti.

4. Pokročilejší architektury neuronových sítí

Neuronové sítě se od základního perceptronového modelu postupně rozvinuly do široké
škály pokročilejších architektur, které umožňují řešení komplexních úloh v různých do-
ménách. Tyto architektury přinesly nové způsoby zpracování dat, optimalizace a učení,
čímž zásadně rozšířily možnosti umělé inteligence.

4.1. Hopfieldovy sítě: První průkopníci auto-asociačních pamětí

John Hopfield v roce 1982 představil novou třídu rekurentních sítí známou jako Hop-
fieldovy sítě. Tyto sítě fungují jako auto-asociační paměti, což znamená, že dokážou
uložit (zapamatovat) a později si „vybavit“ vzory na základě neúplných nebo šumem
narušených vstupů. Hopfieldovy sítě položily základy mnoha klíčových konceptů v ob-
lasti rekurentních sítí a teorie dynamických systémů.

Fungování Hopfieldových sítí: Hopfieldovy sítě jsou plně propojené rekurentní
neuronové sítě, kde každý neuron je spojen se všemi ostatními (s výjimkou sebe sama).
Tyto sítě slouží jako asociativní paměť, která ukládá vzory a vrací stabilní stavy
odpovídající těmto vzorům. Základní princip jejich fungování spočívá v iterativní ak-
tualizaci stavů neuronů, dokud síť nedosáhne stacionárního stavu.

Pokroky matematiky, fyziky a astronomie, ročník 69 (2024), č. 4 201



Počáteční stav Hopfieldovy sítě je zadán jako binární vektor s = [s1, s2, . . . , sN ],
kde každý neuron si nabývá hodnot −1 nebo +1. Tento stav může být buď přesný
vzor uložený během trénování, nebo jeho narušená verze obsahující šum či chyby.

Síť konverguje ke stabilnímu stavu, který odpovídá lokálnímu minimu energetické
funkce (viz níže). Tento stabilní stav reprezentuje vzor, který je nejbližší zadanému
vstupu podle schopností sítě.

Proces iterativní aktualizace:

1. Inicializace: Počáteční stavy neuronů jsou nastaveny podle vstupního vektoru s.
Síť je připravena iterativně upravovat stavy jednotlivých neuronů na základě jejich
propojení a vstupní energie.

2. Výpočet aktivace neuronů: Pro každý neuron i se spočítá aktivace jako vážený
součet stavů všech ostatních neuronů, na které je propojen,

ai =
∑
j

wijsj − θi, (6)

kde wij je váha propojení mezi neurony i a j (wii = 0), θi je prahová hodnota
neuronu i, sj je aktuální stav neuronu j.

3. Aktualizace stavu neuronů: Stav neuronu i se aktualizuje podle pravidla

si =

{
+1 pokud ai >= 0,

−1 jinak.
(7)

Tato aktualizace probíhá opakovaně, přičemž se mohou používat dvě strategie.
Synchronní aktualizace, kdy se stavy všech neuronů aktualizují současně, a asyn-
chronní (sekvenční) aktualizace, kdy se stavy mění jeden po druhém, obvykle v ná-
hodném pořadí. Tento přístup je stabilnější a častěji používaný v praxi.

4. Iterace: Proces aktualizace se opakuje, dokud se všechny stavy neuronů nepře-
stanou měnit, tj. dokud síť nedosáhne stacionárního stavu.

Dynamika Hopfieldových sítí je řízena minimalizací energetické funkce definované
vztahem

E = − 1
2

∑
i,j

wijsisj +
∑
i

θisi. (8)

Každá aktualizace stavu neuronu si vede ke snížení hodnoty energetické funkce E.
Tento proces zaručuje, že síť bude vždy konvergovat do stabilního stavu odpovídajícího
lokálnímu minimu energie. Stabilní stav může být uložený vzor nebo jedno z „faleš-
ných“ minim, pokud je síť špatně trénovaná nebo vstupní vzor obsahuje příliš mnoho
šumu.
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4.2. Rekurentní neuronové sítě (RNN)

Rekurentní neuronové sítě (RNN) představují významný milník ve vývoji umělých
neuronových sítí. Byly navrženy tak, aby dokázaly efektivně modelovat sekvenční data,
jako jsou časové řady, řeč, přirozený jazyk nebo sekvence akcí/událostí. Na rozdíl od
dopředných neuronových sítí (Feedforward Neural Networks) mají RNN zpětné vazby,
což jim umožňuje přenášet informace mezi časovými kroky a vytvářet tak interní
paměťovou strukturu.

Obr. 4. Rozvinutí obecné rekurentní sítě v čase. Obrázek znázorňuje obecnou strukturu,
kdy skrytý stav ht je zaveden zpět do sítě. Některé topologie místo skrytého stavu zavádějí
zpětnou vazbu mezi výstupem yt a vstupem xt, což sice má vliv na funkcionalitu, ale nikoliv
na princip rozvinutí v čase, který se využívá v některých učicích algoritmech jako např.
backpropagation through time

Každý neuron v RNN zpracovává vstupní data postupně, časový krok za krokem,
přičemž využívá informace ze současného vstupu i z předchozích skrytých stavů. Pro
jeden časový krok t lze výpočet RNN popsat následujícími vztahy:

1. Aktualizace skrytého stavu

ht = f(Wxxt +Whht−1 + bh), (9)
kde:

• xt ∈ R
d je vstupní vektor v čase t,

• ht−1 ∈ R
m je skrytý stav z předchozího časového kroku,

• Wx ∈ R
m×d a Wh ∈ R

m×m jsou váhové matice pro vstupy a zpětné vazby,
• bh ∈ R

m je vektor posunu (bias),
• f : Rm → R

m je nelineární aktivační funkce (např. tanh nebo ReLU aplikovaná
po složkách),

• d je dimenze vstupního vektoru a m představuje dimenzi skrytého stavu (tj.
počet skrytých neuronů).

2. Výpočet výstupu
yt = g(Wyht + by), (10)

kde:

• Wy ∈ R
m×m je váhová matice propojující skrytý stav s výstupem,

• by ∈ R
m je vektor posunu pro výstupní vrstvu,

• g : Rm → R
m je aktivační funkce pro výstup.
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RNN tak vytváří sekvenci výstupů y1, y2, . . . , yT na základě sekvence vstupů
x1, x2, . . . , xT .

Pozn.: Výše uvedený popis se vztahuje k jedné konkrétní architektuře RNN, která
však není jedinou možnou variantou. Některé typy RNN využívají skrytý stav a vý-
stupní vrstvu, což znamená, že dimenze výstupního vektoru yt nemusí odpovídat di-
menzi skrytého stavu ht. Jiné architektury naopak používají skrytý stav přímo jako
výstup, a v takovém případě odpadá potřeba explicitní výstupní vrstvy aplikované na
skrytý stav.

Obr. 5. Obrázek ilustruje problém dlouhodobých závislostí u rekurentních neuronových sítí.
Základní RNN mají obtíže při učení spojení mezi vzdáleným kontextem a aktuální hodnotou,
čímž ztrácejí schopnost efektivně pracovat s dlouhodobými závislostmi

Výhody RNN:

• Schopnost zpracovávat data libovolné délky.

• Udržování kontextu z předchozích časových kroků díky zpětným vazbám.

• Možnost modelovat sekvence s dynamickými a nelineárními vztahy.

• Úspora parametrů (počtu vah).

Problémy RNN:

• Mizení gradientů: Při trénování RNN pomocí algoritmu zpětného šíření v čase
(Backpropagation Through Time, BPTT) gradienty během aktualizace váhových
parametrů exponenciálně klesají (nebo rostou). To způsobuje problémy při učení
dlouhodobých závislostí. Platí

∂L

∂Wh
∼

T∏
t=1

∂ht

∂ht−1
, (11)

kde L je ztrátová funkce (viz níže). Pokud derivace ∂ht

∂ht−1
obsahuje hodnoty menší

než 1, gradient rychle mizí s rostoucím T .

• Explodování gradientů: Pokud derivace přesahuje hodnotu 1, gradienty expo-
nenciálně rostou, což destabilizuje trénink.

Tyto problémy byly částečně vyřešeny zavedením architektur, jako jsou Long Short-
-Term Memory (LSTM) a Gated Recurrent Unit (GRU).
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4.2.1. Příklad definice ztrátové funkce

Ztrátová funkce rekurentní neuronové sítě
Rekurentní neuronová síť generuje sekvenci výstupů y = [y1, y2, . . . , yT ], která se
porovnává s cílovou/očekávanou sekvencí (trénovacími daty) ŷ = [ŷ1, ŷ2, . . . , ŷT ].
K vyjádření rozdílu mezi předpověďmi sítě a skutečnými cílovými hodnotami se typicky
používá ztrátová funkce přes všechny časové kroky t = 1, 2, . . . , T , např.

L(y, ŷ) =
1
T

T∑
t=1

n∑
i=1

(yt,i − ŷt,i)2, (12)

kde T je počet časových kroků v sekvenci, yt,i a ŷt,i jsou jednotlivé složky vektorů y
a ŷ.

Backpropagation Through Time
BPTT je algoritmus pro optimalizaci parametrů (vah) rekurentních neuronových sítí.
Rozkládá výpočet gradientu ztrátové funkce na jednotlivé časové kroky, aby bylo
možné trénovat síť pomocí gradientního sestupu. Proces lze shrnout takto:

1. Rozvinutí sítě v čase: Rekurentní síť je „rozvinuta“ přes časové kroky t, což
vytvoří sérii propojených vrstev. Stav skrytých neuronů ht na každém kroku je
definován jako

ht = f(ht−1, xt;W), (13)

kde ht je stav na kroku t, xt je vstup, W jsou váhové parametry a f je aktivační
funkce.

2. Ztrátová funkce: Celková ztrátová funkce je suma přes časové kroky

L =
T∑

t=1

�(yt, ŷt). (14)

3. Výpočet gradientu: Gradient ztrátové funkce vzhledem k parametrům W
v časovém kroku t ovlivňuje nejen stav ht, ale i stavy z předchozích kroků ht−1,
ht−2, . . .,

∂L

∂W
=

T∑
t=1

∂L

∂ht

∂ht

∂W
, (15)

kde ∂L
∂ht

zahrnuje součet zpětně šířených gradientů přes všechny následující časové
kroky.

4. Aktualizace parametrů: Parametry W jsou aktualizovány pomocí gradientního
sestupu

W ← W − η
∂L

∂W
, (16)

kde η je učicí konstanta (learning rate).
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Klíčové body BPTT

• Rozpad gradientu: V důsledku opakovaného násobení gradientů přes mnoho
časových kroků dochází k problémům, jako je mizení (vanishing gradients) nebo
explodování gradientu.

• Truncated BPTT: Aby se snížila výpočetní náročnost, používá se často zkrácená
verze BPTT, která zpětně šíří gradienty pouze přes omezený počet časových kroků.

4.2.2. LSTM a GRU

LSTM: Long Short-Term Memory (LSTM) je rozšíření RNN, které obsahuje spe-
ciální mechanismy nazývané brány, které umožňují řídit tok informací v síti.

Obr. 6. Neuron sítě LTSM (taktéž LSTM cell). Je zde vidět vstupní vektor, stav neuronu,
skrytý stav a rovněž vnitřní struktura v podobě bran (gates)

Výpočet bran v LSTM:

ft = σ(Wfxt + Ufht−1 + bf ) (zapomínací brána), (17)
it = σ(Wixt + Uiht−1 + bi) (vstupní brána), (18)
ot = σ(Woxt + Uoht−1 + bo) (výstupní brána), (19)
c̃t = tanh(Wcxt + Ucht−1 + bc) (kandidátní stav), (20)
ct = ft � ct−1 + it � c̃t (aktualizace stavu), (21)
ht = ot � tanh(ct) (skrytý stav). (22)

• ft, it, ot ∈ R
m jsou aktivační vektory pro brány řídící tok informací,

• ct ∈ R
m je stav buňky uchovávající dlouhodobé informace,

• � představuje násobení vektorů po složkách. Brány tak slouží k selekci nebo mo-
dulaci informací tím, že vynulují nebo váží určité prvky vektoru.
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Obr. 7. Ukázka rozvinutí LSTM sítě v čase

GRU: Gated Recurrent Unit (GRU) je jednodušší varianta LSTM, která kombinuje
některé brány a snižuje počet parametrů:

zt = σ(Wzxt + Uzht−1 + bz) (aktualizační brána), (23)
rt = σ(Wrxt + Urht−1 + br) (resetovací brána), (24)

h̃t = tanh(Whxt + rt � (Uhht−1) + bh) (kandidátní stav), (25)

ht = (1− zt)� ht−1 + zt � h̃t (skrytý stav). (26)

Aplikace RNN, LSTM a GRU:

• Zpracování přirozeného jazyka: automatický překlad, jazykové modelování,
generování nebo sumarizace textů.

• Analýza časových řad: predikce akciových trhů, sledování senzorických dat,
klasifikace sekvenčních dat.

• Rozpoznávání řeči: převod řeči na text.

• Generování sekvencí: generování textu, skladeb, řídicích signálů, atd.

Rekurentní sítě a jejich varianty, jako jsou LSTM a GRU, byly průkopnickými
přístupy pro modelování časových závislostí a sekvencí. Díky těmto architekturám se
staly jedním z klíčových nástrojů v oblasti umělé inteligence a hlubokého učení.

4.3. Radial Basis Function (RBF) sítě

Radial Basis Function (RBF) [5] jsou neuronové sítě založené na radiálně symetric-
kých aktivačních funkcích, které reagují na vzdálenost vstupu od určitého centra. Jsou
obzvláště vhodné pro úlohy klasifikace, interpolace, regrese a funkční aproximace.

Základní struktura: RBF sítě mají jednoduchou architekturu, která obvykle ob-
sahuje tři vrstvy:

1. Vstupní vrstva:

• Každý neuron přijímá jednu dimenzi vstupního vektoru
x = [x1, x2, . . . , xn]�.

• Tato vrstva pouze předává vstupy do další vrstvy.
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2. Skrytá vrstva:

• Každý neuron ve skryté vrstvě používá radiální aktivační funkci závislou na
vzdálenosti vstupu x od centra cj .

• Výstup hj j-tého neuronu je dán vztahem

hj(x) = φ(‖x− cj‖), (27)

kde ‖x − cj‖ je eukleidovská vzdálenost mezi vstupem x a centrem cj , φ je
radiální aktivační funkce, například gaussovská

φ(r) = exp

(
− r2

2σ2j

)
, (28)

kde σj je šířka (rozptyl) funkce.

3. Výstupní vrstva – lineární kombinace výstupů ze skryté vrstvy

yk =
m∑
j=1

wkjhj(x), (29)

kde wkj jsou váhové parametry spojující j-tý skrytý neuron s k-tým výstupem,
m je počet neuronů ve skryté vrstvě.

Trénink RBF sítí: Trénink RBF sítí probíhá ve dvou hlavních krocích:

1. Určení parametrů skryté vrstvy:

• Centra cj jsou často vybírána buď náhodně, nebo pomocí metod shlukování
(např. algoritmus k-means).

• Šířky σj mohou být nastaveny na základě maximální vzdálenosti mezi centry
nebo jako průměrná vzdálenost mezi nejbližšími centry.

2. Optimalizace váhových parametrů:

• Váhy wkj se určují pomocí lineární regrese tak, aby minimalizovaly chybu mezi
skutečnými výstupy y a predikovanými výstupy ŷ, tj.

min
W

‖y− ŷ‖2. (30)
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4.3.1. Klíčové vlastnosti RBF
RBF sítě stejně jako vícevrstvé perceptrony (MLP) patří mezi univerzální aproxi-
mátory [17], což znamená, že jsou schopny aproximovat libovolnou spojitou funkci
s libovolnou přesností, pokud mají dostatečný počet neuronů ve skryté vrstvě. U RBF
sítí tato schopnost vyplývá z jejich mechanismu modelování lokálních závislostí pomocí
radiálních funkcí.

Radiální aktivační funkce mají lokální charakter, což znamená, že každý neuron re-
aguje pouze na omezenou oblast vstupního prostoru. Tato vlastnost zlepšuje schopnost
sítě generalizovat.

Trénink RBF sítí je rychlejší než u vícevrstvých perceptronů, protože váhy výstupní
vrstvy lze optimalizovat lineární regresí. RBF sítě dokáží řešit nelineárně separabilní
úlohy díky použití nelineárních aktivačních funkcí.

Oproti MLP, které umožňují libovolný počet skrytých vrstev, mají RBF sítě pevnou
strukturu (vstupní–skrytá–výstupní vrstva). RBF sítě mají jednodušší a rychlejší tré-
nink, protože optimalizace výstupní vrstvy je lineární. Naproti tomu MLP vyžadující
složitější zpětné šíření chyb (backpropagation).

RBF sítě jsou výjimečně užitečné v aplikacích, kde je zapotřebí rychlá funkční
aproximace nebo robustní klasifikace s menším počtem datových bodů. Díky svým
vlastnostem a flexibilitě zůstávají důležitou architekturou neuronových sítí pro širokou
škálu úloh.

4.4. Samoorganizující se mapy (SOM)
Samoorganizující se mapy [10], které navrhl Teuvo Kohonen v roce 1980, představují
specifický typ neuronových sítí zaměřených na učení bez učitele (unsupervised lear-
ning). Na rozdíl od tradičních vícevrstvých perceptronů či konvolučních neuronových
sítí, které vyžadují trénink s cílovými hodnotami (supervised learning), SOM fun-
gují samostatně na základě podobnosti mezi datovými vzory. Jejich klíčovou funkcí
je schopnost redukovat dimenzionalitu dat a převádět složité, vysokodimenzionální
datové prostory do snadno interpretovatelných dvourozměrných nebo trojrozměrných
map. Tato vlastnost umožňuje vizualizaci a analýzu dat, která by jinak byla pro lidskou
intuici obtížně pochopitelná.

Kohonenovy mapy vznikly jako odpověď na potřebu nalézt efektivní způsob analýzy
a vizualizace datových souborů s vysokou dimenzionalitou. Klasické neuronové sítě,
jako jsou MLP, se soustředí na explicitní klasifikaci nebo regresi, ale nejsou přímo
navrženy pro explorativní analýzu dat bez známých cílových hodnot. SOM řeší problém
zobrazení datových vztahů v nižším rozměru, přičemž zachovávají jejich topologickou
strukturu. To znamená, že podobná data jsou mapována na blízké neurony v mřížce,
zatímco odlišná data jsou oddělena. Tento přístup je obzvláště užitečný při identifikaci
skrytých vzorů nebo shluků v datech.

4.4.1. Princip fungování
SOM se skládají z mřížky neuronů, kde každý neuron má svůj váhový vektor, který
odpovídá určitému bodu ve vstupním datovém prostoru. Během tréninku se váhy neu-
ronů iterativně přizpůsobují tak, aby co nejlépe odpovídaly vstupním datům. Proces
zahrnuje následující klíčové kroky:
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1. Porovnání: Pro každý vstupní vektor se identifikuje neuron, jehož váhový vektor
je nejbližší (tzv. vítězný neuron nebo BMU – Best Matching Unit).

2. Aktualizace: Váhy vítězného neuronu i jeho okolních neuronů se přiblíží ke vstup-
nímu vektoru. Tento krok je řízen funkcí sousedství, která zajišťuje, že blízké neu-
rony se adaptují společně.

3. Iterace: Proces se opakuje s různými vstupními vzory, přičemž se postupně snižují
parametry, jako je koeficient učení a šířka sousedství.

Na rozdíl od MLP, které se učí minimalizovat chybu pomocí gradientního sestupu,
SOM neoptimalizují specifickou ztrátovou funkci. Namísto toho jsou trénovány tak,
aby organizovaly data do přirozených struktur a odhalovaly vztahy mezi vzory. Tato
samoorganizace poskytuje vhled do datové struktury, aniž by bylo nutné definovat
konkrétní cílové výstupy.

4.4.2. Aplikace SOM

Díky své schopnosti analyzovat a vizualizovat složitá data našly SOM široké uplatnění
v různých oblastech:
• Analýza genových expresí a zkoumání genetických podobností.

• Segmentace zákazníků a analýza tržních dat.

• Detekce anomálií, poruchová diagnostika, klasifikace pacientských dat.

• Komprese obrazů a rozpoznávání vzorů.
Samoorganizující se mapy inspirovaly další pokročilé metody vizualizace dat, jako

jsou t-SNE nebo UMAP, které však často neposkytují explicitní interpretaci vztahů
mezi daty. Kohonenovy mapy zůstávají důležitou součástí historie neuronových sítí
a ukazují, jak mohou biologické principy vést k inovativním výpočetním přístupům.
Tento koncept byl přímým přínosem pro aplikace, kde bylo klíčové pochopit a zjedno-
dušit komplexní datové prostory.

4.5. Konvoluční neuronové sítě

Konvoluční neuronové sítě (CNN) jsou specifickou architekturou neuronových sítí na-
vrženou pro efektivní zpracování dat, která mají prostorovou strukturu, například ob-
razů. CNN byly poprvé navrženy Kunihiko Fukushimou v podobě neocognitronu v roce
1980, ale skutečný průlom přinesl Yann LeCun v roce 1989, kdy použil CNN (model
LeNet) pro rozpoznávání rukopisných číslic na poštovních směrovacích číslech [12].

CNN byly zavedeny jako řešení omezení plně propojených sítí při zpracování ob-
razových dat. Plně propojené sítě mají velké množství parametrů, což vede k vysoké
výpočetní náročnosti a riziku přeučení, zejména u dat s prostorovou strukturou, jako
jsou obrazy. CNN využívají konvoluční vrstvy, které aplikují filtry na lokální oblasti
vstupních dat, čímž zachycují prostorové rysy (např. hrany a textury) s menším po-
čtem parametrů. Díky sdílení vah a hierarchickému zpracování rysů umožňují CNN
efektivní extrakci informací a škálovatelnost, což z nich činí ideální nástroj pro úlohy
počítačového vidění, jako je např. rozpoznávání objektů.
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Obr. 8. Typická architektura konvoluční neuronové sítě. První část typicky pracuje jako
tzv. „feature extractor“, na který je následně napojena dopředná (typicky plně propojená)
neuronová síť. Na obrázku je vidět jednoduchý příklad klasifikátoru, který má na vstupu
monochromatický (jednokanálový) obraz a na výstupu tři třídy

4.5.1. Základní mechanismus a architektura

CNN se skládají z několika vrstev, přičemž klíčové jsou:

1. Konvoluční vrstvy (Convolutional Layers):

• Hlavní funkcí konvoluční vrstvy je extrakce prostorových rysů z dat pomocí
aplikace filtru (kernel).

• Konvoluce se vypočítává vztahem

Y [i, j, k] = X ∗Wk + bk =
∑
m,n,c

X [i+m, j + n, c] ·Wk[m, n, c] + bk, (31)

kde X [i, j, c] jsou vstupní data na pozici (i, j) v kanálu c, Wk[m, n, c] je filtr
pro kanál c a výstupní kanál k, bk je posun pro výstupní kanál k, Y [i, j, k] je
výstupní hodnota na pozici (i, j) v kanálu k.

• Výsledkem je tzv. matice příznaků (feature map), která reprezentuje rysy de-
tekované filtrem.

2. Aktivační funkce (Activation Function): Po konvoluci se na každý výstup
aplikuje nelineární aktivační funkce, např. ReLU (Rectified Linear Unit)

f(x) = max(0, x). (32)

– ReLU přispívá k rychlé konvergenci během trénování tím, že eliminuje saturaci
gradientů.

3. Poolingové vrstvy (Pooling Layers):

• Tyto vrstvy redukují dimenzionalitu dat a zachovávají klíčové informace.
• Nejčastější operací je max-pooling, definovaný jako

Y [i, j] = max
m,n

X [i+m, j + n], (33)

kde m, n reprezentují velikost poolingového okna.
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4. Plně propojené vrstvy (Fully Connected Layers):

• Výstupní feature mapy jsou převedeny na jeden vektor a zpracovány tradiční
neuronovou sítí.

4.5.2. Pokročilé varianty CNN

Residual Networks (ResNet) je architektura neuronové sítě, která byla navržena
k řešení problémů spojených s trénováním velmi hlubokých sítí, jako je mizení gra-
dientů a zhoršení přesnosti při přidávání dalších vrstev. Klíčovým inovativním prvkem
ResNet je zavedení reziduálních bloků [6], které umožňují přeskoky (skip connections)
přes jednu nebo více vrstev. Tyto přeskoky přenášejí vstupní informace přímo k poz-
dějším vrstvám, obcházejí některé výpočty a umožňují tak efektivnější učení.

Každý reziduální blok má formu: y = f(x) + x, kde f(x) představuje transformaci
vstupu x pomocí vrstev sítě (například konvolučních a aktivačních funkcí) a x je přímá
cesta (skip connection). Výsledný výstup y kombinuje transformovaný signál f(x)
s původním vstupem x. Tento mechanismus usnadňuje učení identického zobrazení
(f(x) = 0), pokud je to potřeba, což pomáhá při optimalizaci hlubokých sítí.

ResNet umožňuje trénování extrémně hlubokých modelů (sítě s více než 100 nebo
1 000 vrstvami) a zlepšuje jejich výkonnost díky stabilnějšímu šíření gradientů a lepší
schopnosti generalizace. Tato architektura je široce využívána v počítačovém vidění,
zejména v úlohách rozpoznávání objektů, detekce a segmentace obrazů.

Dense Convolutional Network (DenseNet) je architektura neuronové sítě, která
zlepšuje efektivitu učení a využití parametrů díky hustému propojení vrstev. Na rozdíl
od běžných architektur, kde je každá vrstva propojena pouze se sousedními vrstvami,
v DenseNet je každá vrstva přímo spojena se všemi předchozími vrstvami. To znamená,
že výstup každé vrstvy slouží jako vstup pro všechny následující vrstvy.

Každá vrstva v DenseNet přijímá jako vstup

xl = Hl([x0, x1, . . . , xl−1]),

kde xl je výstup l-té vrstvy, [x0, x1, . . . , xl−1] představuje spojení všech předchozích
výstupů (tzv. concatenation), a Hl je nelineární transformace, obvykle se skládající
z konvoluční operace, aktivační funkce a normalizace.

DenseNet je známý pro svou výbornou výkonnost v úlohách počítačového vidění,
jako je klasifikace obrazů a segmentace, a to při nižším počtu parametrů než srov-
natelné modely, jako je ResNet. Architektura je zvláště výhodná v aplikacích, kde je
důležité maximalizovat efektivitu výpočtu a využití paměti.

4.5.3. Generativní kontradiktorní sítě (GANs)

GAN (Generative Adversarial Networks) jsou inovativní architekturou neuronových
sítí, kterou v roce 2014 představil Ian Goodfellow [4]. GAN sestávají ze dvou sítí:
generátoru, který vytváří syntetická data, a diskriminátoru, který rozlišuje mezi reál-
nými a generovanými daty. Obě sítě se trénují v procesu, který připomíná soutěž –
generátor se snaží „oklamat“ diskriminátor, zatímco diskriminátor se snaží zlepšit
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své schopnosti rozpoznat „podvod“. Tento přístup umožňuje generátorům produko-
vat realistická data, jako jsou obrazy, texty nebo zvukové stopy, a našel široké využití
v oblastech od počítačového vidění po generativní umění a syntézu dat.

4.5.4. Konvoluční Long Short-Term Memory (ConvLSTM)

Architektura ConvLSTM spojuje vlastnosti CNN (konvoluční vrstvy) a RNN (pamě-
ťové buňky LSTM) [20]. Využívá konvoluční operace pro prostorové zpracování dat
v kombinaci s pamětí pro sekvenční zpracování.

Místo tradičních maticových operací ve vrstvách LSTM využívá ConvLSTM kon-
voluce k zachycení lokálních prostorových rysů. Stav buňky (ct) i skrytý stav (ht)
v čase t mají tvar tenzorů, což umožňuje modelu efektivněji zachytit prostorovou i ča-
sovou dynamiku. ConvLSTM nachází uplatnění v úlohách, jako je předpověď počasí,
analýza videí nebo detekce anomálií v časoprostorových datech.

4.5.5. Aplikace CNN

• Počítačové vidění: detekce objektů, rozpoznávání obličejů, analýza zdravotnic-
kých snímků (CT, MRI).

• Automatické řízení: identifikace dopravních značek, detekce překážek.

• Generativní modely GAN pro syntetická data.

• Analýza videí identifikace aktivit, predikce pohybu.

CNN a jejich varianty, jako jsou ResNet, DenseNet a GANs, přinesly revoluci ve zpra-
cování dat díky své schopnosti efektivně extrahovat a modelovat komplexní prostorové
a časové vzory.

4.6. Transformery

Transformery jsou klíčovou architekturou neuronových sítí, která způsobila revoluci
v oblasti zpracování sekvenčních dat, zejména přirozeného jazyka. Poprvé byly před-
staveny v práci Attention is all you need [23] a jejich hlavní inovací je mechanis-
mus self-attention, který umožňuje modelu přiřadit různou váhu jednotlivým částem
vstupní sekvence v závislosti na jejich relevanci pro aktuální úlohu. Na rozdíl od re-
kurentních neuronových sítí (RNN) zpracovávají transformery vstupní data paralelně,
což výrazně zlepšuje efektivitu a umožňuje škálování na velké datové soubory. Důleži-
tou součástí architektury je také použití pozičních kódů, které zachovávají informaci
o pořadí tokenů v sekvenci.

Transformery tvoří základ moderních jazykových modelů, jako jsou BERT, GPT
nebo T5. Model BERT využívá architekturu transformeru pro dvojstranné porozumění
textu, což jej činí ideálním pro úlohy jako klasifikace, odpovídání na otázky nebo po-
jmenované entity. Na druhé straně modely GPT (např. GPT-3) využívají jednosměrné
generování textu a excelují v generativních úlohách, jako je tvorba přirozeného textu,
překlad nebo programování.
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Transformery se staly standardem nejen ve zpracování přirozeného jazyka (Na-
tural Language Processing – NLP), ale také v dalších oblastech, jako je počítačové
vidění (Vision Transformers), bioinformatika nebo zpracování hudby. Jejich flexibi-
lita a schopnost efektivně modelovat složité vztahy v datech přinesly zásadní průlom
v umělé inteligenci a otevřely cestu k vývoji stále sofistikovanějších jazykových modelů
a generativních systémů.

5. Interdisciplinární přístupy a komplexní systémy

5.1. Neuronové sítě a evoluční algoritmy

Evoluční algoritmy (EA) vznikly jako výpočetní technika inspirovaná Darwinovou teo-
rií přirozeného výběru. Jejich principy byly poprvé formálně popsány v 60. a 70. letech
20. století. V roce 1964 John Holland definoval základní rámec genetických algoritmů
(GA) [9], který se stal základem pro mnoho dalších evolučních metod. Evoluční algo-
ritmy se postupně rozšířily o varianty, jako jsou evoluční strategie (Rechenberg, 1973),
evoluční programování (Fogel, 1966) a genetické programování (Cramer, 1985) [14].

5.1.1. Principy evolučních algoritmů

Evoluční algoritmy napodobují přirozený výběr a adaptaci v populaci jedinců, kde
každý jedinec představuje potenciální řešení daného problému:

1. Populace jedinců – Každý jedinec je reprezentován genomem, obvykle ve formě
binárního, celočíselného nebo reálného vektoru.

2. Hodnocení (fitness) – Každý jedinec je ohodnocen podle schopnosti řešit problém
pomocí tzv. fitness funkce f(x).

3. Selekce – Jedinci s vyšší fitness mají větší šanci předat své vlastnosti další ge-
neraci. – Selekční mechanismy zahrnují turnajovou selekci, ruletový výběr nebo
rankování.

4. Křížení (crossover) – Kombinace genetické informace dvou nebo více jedinců pro
vytvoření potomků.

5. Mutace – Náhodná změna některých genů pro udržení genetické diverzity.

6. Evoluční iterace – Proces selekce, křížení a mutace se opakuje, dokud není do-
saženo optimálního řešení nebo nevyprší stanovený počet iterací.

5.1.2. Spojení s neuronovými sítěmi (neuroevoluce)

Evoluční algoritmy se ukázaly jako efektivní metoda pro optimalizaci neuronových sítí
v několika směrech:

1. Optimalizace parametrů

• Evoluční algoritmy nahrazují gradientní sestup při hledání optimálních vah
sítě.
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• Výhodou je schopnost vyhnout se lokálním extrémům ve složitých optimalizač-
ních problémech

w∗ = arg max
w

f(w), (34)

kde f(w) je fitness funkce2 vyjadřující výkonnost sítě na validační sadě.

2. Návrh architektury sítí

• Evoluční algoritmy navrhují optimální topologie neuronových sítí, včetně počtu
vrstev, neuronů a propojení.

• Například NEAT (NeuroEvolution of Augmenting Topologies) [22] kombinuje
evoluci topologií a parametrů.

3. Hyperparametrická optimalizace

• Evoluční algoritmy hledají optimální hodnoty hyperparametrů, jako je rychlost
učení, velikost dávky nebo typ aktivačních funkcí.

5.2. Genetické programování (GP)

Genetické programování (GP) je varianta evolučních algoritmů, která se zaměřuje na
vývoj programů, funkcí nebo pravidel reprezentujících optimální řešení daného pro-
blému. Na rozdíl od klasických genetických algoritmů, které pracují s pevně defino-
vanými vektory, GP využívá stromové struktury pro reprezentaci komplexnějších vý-
početních procesů. Díky této flexibilitě se GP stalo mocným nástrojem pro návrh
adaptivních neuronových sítí.

5.2.1. Základní principy genetického programování

1. Reprezentace jedinců – Každý jedinec v populaci je reprezentován stromem,
kde uzel představuje operaci nebo funkci (např. +, -, *, /, sin, cos).

2. Evoluční operátory

• Selekce – Výběr jedinců na základě fitness funkce.

• Křížení – Kombinace částí dvou stromů pro vytvoření nových jedinců.

• Mutace – Náhodná změna uzlů nebo větví stromu.

3. Fitness funkce – Hodnotí kvalitu jedince na základě schopnosti řešit daný pro-
blém, například minimalizací chyby předpovědi nebo maximalizací přesnosti kla-
sifikace.

2Poznámka: oproti chybové funkci, kterou se snažíme gradientním sestupem minimalizovat, u fit-
ness funkce hledáme maximum. Někdy lze v kontextu evolučních algoritmů narazit na pojem „cost
function“, která je obdobou chybové funkce, a takovou pak opět minimalizujeme.
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5.2.2. HyperGP: Evoluční design topologií neuronových sítí

HyperGP [1] je rozšířením přístupu HyperNEAT [21], který kombinuje genetické pro-
gramování s principy nepřímého kódování (indirect encoding). Cílem HyperGP je ge-
nerovat efektivní topologie neuronových sítí, které dokáží řešit složité úlohy pomocí
evoluční optimalizace.

1. Nepřímé kódování

• Namísto přímého popisu každého spojení mezi neurony se používá pravidel
nebo funkcí k odvození celkové struktury sítě.

• Každý jedinec v GP reprezentuje pravidlo, jak se mají propojit neurony, na-
příklad

wij = f(i, j, d), (35)

kde wij je váha propojení mezi neurony i a j, d je vzdálenost mezi nimi a f je
funkce reprezentovaná stromem GP.

2. Využití geometrie – HyperGP zahrnuje prostorové uspořádání neuronů, což
umožňuje navrhovat topologie s využitím lokálních i globálních pravidel.

3. Optimalizace aktivací a propojení – HyperGP umožňuje návrh sítí se specia-
lizovanými funkcemi aktivace a propojení, které se přizpůsobují konkrétní úloze.

5.2.3. Konstrukce neuronových sítí pomocí GP a HyperGP

Genetické programování je obzvláště vhodné pro návrh architektur neuronových sítí,
které zahrnují:

• Hluboké sítě s adaptivní topologií – GP generuje vrstvy s různým počtem
neuronů a jejich propojení.

• Vrstvy se specializovanými aktivacemi – Stromy mohou obsahovat nelineární
aktivační funkce (např. ReLU, tanh, sigmoid) nebo jejich kombinace.

• Vrstvy s dynamickými parametry – Například HyperGP může navrhnout
dynamické změny v propojení během trénování.

5.2.4. Výhody HyperGP

• Efektivní design – Automatizace návrhu topologií šetří čas a eliminuje potřebu
manuálního ladění.

• Flexibilita – HyperGP může generovat sítě pro široké spektrum aplikací, od jed-
noduchých klasifikačních úloh po komplexní systémy řízení.

• Robustnost – Evolučně navržené sítě často vykazují vyšší odolnost vůči šumu
v datech.
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Genetické programování, zejména v kombinaci s nepřímým kódováním v HyperGP,
představuje pokročilý přístup k automatizovanému návrhu neuronových sítí. Tento
směr výzkumu otevírá nové možnosti pro efektivní řešení složitých úloh v různých
oblastech.

Spojení neuronových sítí, evolučních algoritmů a komplexních systémů umožňuje
řešit problémy, které byly dříve považovány za neřešitelné, a otevírá nové možnosti
pro aplikace v průmyslu, vědě i umění.

V této kapitole jsme ukázali, jak se neuronové sítě rozšířily od základních per-
ceptronů až po pokročilé architektury, jako jsou RNN, CNN nebo SOM. Každá z těchto
sítí přinesla unikátní přístupy k řešení problémů, čímž přispěla k rozvoji umělé inteli-
gence a její aplikaci v různých oborech. Laureáti Nobelovy ceny Geoffrey Hinton a John
Hopfield hráli klíčovou roli v překonání technických výzev a položili základy moderní
AI. Budoucnost tohoto oboru slibuje další fascinující objevy, které budou stavět na
těchto historických milnících.

6. Závěr

Příběh umělých neuronových sítí, jejich vývoje a přínosů pro současnou společnost je
nerozlučně spjat s přínosy Johna Hopfielda a Geoffreyho Hintona, laureátů Nobelovy
ceny za fyziku (2024). Oba vědci sehráli klíčovou roli v proměně neuronových sítí
z abstraktních matematických modelů v prakticky využitelné technologie, které dnes
ovlivňují mnoho oblastí našeho života.

John Hopfield svými průkopnickými pracemi na asociačních pamětech a rekurent-
ních neuronových sítích ukázal, jak mohou sítě modelovat dynamiku a dosáhnout sta-
bilních stavů, což otevřelo cestu k aplikacím v optimalizaci a biologicky inspirovaných
výpočtech. Jeho přístup založený na propojení fyziky, biologie a informatiky vytvořil
nový rámec pro chápání neuronových sítí jako komplexních systémů. Hopfield také
zdůraznil význam interdisciplinarity, což napomohlo vytvoření komunity výzkumníků
napříč obory.

Geoffrey Hinton, často označovaný za „kmotra hlubokého učení“, přispěl zásad-
ním způsobem k rozvoji vícevrstvých neuronových sítí, algoritmu zpětného šíření chyb
a hlubokého učení. Díky jeho práci se neuronové sítě staly schopnými modelovat slo-
žité vztahy v datech a řešit úlohy, které byly dříve mimo dosah tradičních přístupů.
Hintonovy obavy ohledně bezpečnosti a regulace AI dnes rezonují vědeckou komunitou
a upozorňují na nutnost odpovědného vývoje a využívání těchto technologií.

Budoucnost, kterou oba vědci nastínili, nabízí nespočet příležitostí, ale také výzev.
Hopfieldova vize zdůrazňuje důležitost porozumění vztahu mezi strukturou a dynami-
kou komplexních systémů, zatímco Hinton varuje před riziky spojenými s nekontrolova-
ným rozvojem umělé inteligence. Oba zároveň vyzdvihují potřebu interdisciplinárního
přístupu a spolupráce, která by mohla vést k vytvoření obecné umělé inteligence (AGI)
a nových inovací v oblastech, jako je kvantová fyzika, biologie nebo teorie komplexních
systémů.

Jejich práce nejen inspirovala celé generace vědců, ale také výrazně změnila techno-
logický a vědecký svět. Rozpoznávání vzorů, automatický překlad, analýza obrazových
dat, predikce časových řad – to vše a mnohem více dnes stojí na základech, které po-
ložili tito laureáti. Jak ale sami varují, s velkou silou neuronových sítí přichází i velká
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odpovědnost. Tato Nobelova cena není jen oslavou dosažených výsledků, ale také vý-
zvou k tomu, abychom tyto technologie využívali k dobru společnosti a budoucích
generací.

Je však důležité zdůraznit, že úspěchy Johna Hopfielda a Geoffreyho Hintona stojí
na širokých základech práce mnoha dalších výjimečných vědců, bez nichž by se obor
neuronových sítí a umělé inteligence nemohl vyvinout do současné podoby. Warren
McCulloch a Walter Pitts položili teoretické základy modelu neuronu, Donald Hebb
přispěl svým pravidlem o učení, Frank Rosenblatt vytvořil perceptron jako první prak-
tickou implementaci neuronové sítě. Další průlom přinesli Yann LeCun, jehož práce na
konvolučních sítích umožnila revoluci v počítačovém vidění, Sepp Hochreiter a Jürgen
Schmidhuber, kteří navrhli LSTM a umožnili efektivní modelování dlouhodobých zá-
vislostí v datech, nebo Ian Goodfellow, jehož generativní kontradiktorní sítě (GANs)
otevřely zcela nové možnosti v generování dat. V neposlední řadě je třeba zmínit také
vědce jako Marvin Minsky, Seymour Papert nebo David Rumelhart, kteří svými pří-
nosy formovali teoretické a praktické směry výzkumu. Nobelova cena pro Hopfielda
a Hintona je tak nejen uznáním jejich individuálních přínosů, ale také oslavou kolek-
tivního úsilí celé vědecké komunity, která se podílela na formování tohoto fascinujícího
oboru.

S dalším rozvojem technologií inspirovaných fungováním mozku se klíčovou vý-
zvou stává dosažení hlubšího porozumění, efektivní kontroly a etického využití umělé
inteligence – což jsou hodnoty, které oba laureáti zdůrazňují a předávají budoucím
generacím.

L i t e r a t u r a

[1] Buk, Z., Koutník, J., Šnorek, M.: NEAT in HyperNEAT substituted with genetic
programming. In: M. Kolehmainen, P. Toivanen, B. Beliczynski (eds.): Adaptive and
Natural Computing Algorithms, Springer, 2009, 243–252.

[2] Geoffrey, H., Sejnowski, T.: Optimal perceptual inference. Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 1983.

[3] Geoffrey, H. E., Sejnowski, T. J.: Learning and relearning in Boltzmann machines.
In: D.E. Rumelhart, J. L. McClelland (eds.): Parallel Distributed Processing: Explo-
rations in the Microstructure of Cognition, Volume 1: Foundations, MIT Press, 1986,
282–317.

[4] Goodfellow, I. J., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D.,
Ozair, S., Courville, A., Bengio, Y.: Generative adversarial networks [online].
https://arxiv.org/abs/1406.2661

[5] Haykin, S. S.: Neural networks and learning machines. Third edition, Pearson Edu-
cation, 2009.

[6] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In:
2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016,
770–778.

[7] Hebb, D.: The organization of behavior: A neuropsychological theory. John Wiley, 1949.

[8] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9 (1997),
1735–1780.

218 Pokroky matematiky, fyziky a astronomie, ročník 69 (2024), č. 4

https://arxiv.org/abs/1406.2661


[9] Holland, J. H.: Adaptation in natural and artificial systems. MIT Press, 1992.
[10] Kohonen, T.: Self-organized formation of topologically correct feature maps. Biol.

Cybernet. 43 (1982), 59–69.
[11] Krizhevsky, A., Sutskever, I., Hinton, G. E.: Imagenet classification with deep con-

volutional neural networks. Commun. ACM 60 (2017), 84–90.
[12] LeCun, Y., Boser, B., Denker, J. S., Henderson, D., Howard, R. E., Hub-

bard, W., Jackel, L. D.: Backpropagation applied to handwritten zip code recognition.
Neural Comput. 1 (1989), 541–551.

[13] Lefkowitz, M.: Professor’s perceptron paved the way for AI – 60 years too soon [online].
https://news.cornell.edu/stories/2019/09/
professors-perceptron-paved-way-ai-60-years-too-soon

[14] Lynn, C.N.: A representation for the adaptive generation of simple sequential programs.
In: J. J. Grefenstette (ed.): Proceedings of the 1st International Conference on Genetic
Algorithms, L. Erlbaum Associates, Inc., 1985, 183–187.

[15] McCulloch, W. S., Pitts, W.: A logical calculus of the ideas immanent in nervous
activity. Bull. Math. Biophys. 5 (1943), 115–133.

[16] Minsky, M., Papert, S.: Perceptrons. MIT Press, 1969.
[17] Park, J., Sandberg, I. W.: Universal approximation using radial-basis-function net-

works. Neural Comput. 3 (1991), 246–257.
[18] Rosenblatt, F.: The perceptron: A probabilistic model for information storage and

organization in the brain. Psychol. Rev. 65 (1958), 386–408.
[19] Rumelhart, D. E., Hinton, G. E., Williams, R. J.: Learning representations by back-

propagating errors. Nature 323 (1986), 533–536.
[20] Shi, X., Chen, Z., Wang, H., Yeung, D.-Y., Wong, W.-K., Woo, W.-Ch.: Convo-

lutional LSTM network: A machine learning approach for precipitation nowcasting. In:
C. Cortes, N. Lawrence, D. Lee, M. Sugiyama, R. Garnett (eds.): Advances in Neural
Information Processing Systems, vol. 28, Curran Associates, Inc., 2015.

[21] Stanley, K. O., D’Ambrosio, D.B., Gauci, J.: A hypercube-based encoding for evol-
ving large-scale neural networks. Artif. Life 15 (2009), 185–212.

[22] Stanley, K.O., Miikkulainen, R.: Evolving neural networks through augmenting to-
pologies. Evol. Comput. 10 (2002), 99–127.

[23] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N.,
Kaiser, L., Polosukhin, I.: Attention is all you need [online].
https://arxiv.org/abs/1706.03762

Pokroky matematiky, fyziky a astronomie, ročník 69 (2024), č. 4 219

https://news.cornell.edu/stories/2019/09/professors-perceptron-paved-way-ai-60-years-too-soon
https://news.cornell.edu/stories/2019/09/professors-perceptron-paved-way-ai-60-years-too-soon
https://arxiv.org/abs/1706.03762

