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Nobelova cena za zasadni objevy a inovace
v oblasti umelych neuronovych siti.
Od biologické inspirace k moderni

umelé inteligenci
Zdenek Buk

Abstrakt. V roce 2024 byla Nobelova cena za fyziku udélena Geoffreyovi Hintonovi a Johnu
Hopfieldovi za zasadni objevy a inovace, které umoznily strojové uceni s umélymi neurono-
vymi sitémi. Tento ¢lanek se zaméruje na historicky vyvoj neuronovych siti od jejich pocatki,
inspirovanych biologickymi modely, az po moderni architektury, jako jsou hluboké sité, reku-
rentni modely ¢i konvolucni sité a transformery. Popisuje klicové milniky, teoretické zaklady
a aplikace, které dnes ovlivnuji Sirokou skalu oblasti od pocitac¢ového vidéni po zpracovani
ptirozeného jazyka.

1. Uvod

Tento ¢lanek ma za cil priblizit problematiku neuronovych siti a umélé inteligence
Sirsi odborné verejnosti. Motivaci je nejen bourlivy vyvoj v této oblasti v poslednich
letech, ale samoziejmé také mimoradné ocenéni, kterého se dostalo dvéma osobnostem
v tomto oboru — Geoffreyovi Hintonovi a Johnu Hopfieldovi — v podobé Nobelovych
cen za fyziku v roce 2024.

Geoffrey Hinton (*6. prosince 1947, Londyn) je britsko-kanadsky védec, zndmy
jako prukopnik umélych neuronovych siti. Vystudoval experimentalni psychologii na
Univerzité v Cambridge a doktorat ziskal na Univerzité v Edinburghu, kde se vénoval
umélé inteligenci. Béhem své kariéry pusobil na univerzitach v Sussexu, San Diegu
a Carnegie-Mellon v Pittsburghu, od roku 1987 pak na Univerzité v Torontu.

Hinton se proslavil svou praci na algoritmu zpétného Sifen{ chyb [19] a na Boltz-
mannovych strojich [2], [3]. Je povazovén za jednoho z ,kmotri hlubokého uceni®
a v roce 2018 obdrzel prestizni Turingovu cenu spolecné s Yoshuou Bengiem a Yannem
LeCunem za technické prulomy, jez z neuronovych siti ucinily klicovou technologii
vypocetni techniky.

Kromé akademického pusobeni byl také spojen s Googlem, odkud odesel v roce
2023, aby mohl upozoriiovat na rizika spojend s rozvojem umélé inteligence (AI). Hin-
ton véri, ze umeéld inteligence bude mit na spole¢nost podobny dopad jako prumyslova
revoluce, ale zaroven varuje pred moznymi nebezpecimi, ktera by mohla ohrozit lid-
stvo.

Mezi dalsi Hintonova vyznamenéni patii ¢lenstvi v britské Kralovské spolec¢nosti,
Rumelhartova cena (2011) a Réad Kanady (2018).
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John Hopfield (*15. ¢ervence 1933, Chicago, Illinois) je americky fyzik, biofyzik
a neurovédec, znamy svou prukopnickou praci v oblasti umélych neuronovych siti,
molekuldrni biologie a statistické fyziky. Po bakalarském studiu fyziky na Swarthmore
College (1954) ziskal doktordt na Cornellové univerzité (1958) pod vedenim Alberta
Overhausera. Béhem své kariéry pusobil na prestiznich institucich, jako jsou Bellovy
laboratore, Kalifornska univerzita v Berkeley, Kalifornsky technologicky institut v Pa-
sadené a Princetonské univerzita, kde je emeritnim profesorem molekularni biologie.

Hopfieldova védeckd cinnost pokryva sirokou skélu disciplin. Jeho pfinos zahrnuje
objev polaritont, navrh Hopfieldovy dielektrické teorie, koncept kinetického proofrea-
dingu v biomolekuldrn{ syntéze a slavnou Hopfieldovu sit (1982), kterd polozila zaklady
moderniho strojového uceni a vypocetni neurovédy. Je také spoluautorem pseudopo-
tencialu zachovavajicich normu v chemické fyzice a prikopnikem aplikaci kolektivnich
dynamik neuronovych siti.

Za svou praci obdrzel mnoho vyznamnych ocenéni, véetné Guggenheimova stipen-
dia (1968), ceny Olivera E. Buckleyho (1969), ceny Maxe Delbriicka (1985), Diracovy
medaile ICTP (2001), Harold Pender Award (2002), Svétové ceny Alberta Einsteina
za védu (2005), Benjamin Franklin Medal (2019) a Boltzmannovy medaile (2022).
V roce 1997 mu IEEE udélila Neural Networks Pioneer Award, a v roce 2009 ziskal
Frank Rosenblatt Award za piinos k porozuméni zpracovani informaci v biologickych
systémech.

Hopfield je ¢lenem Narodni akademie véd USA, Americké akademie umeéni a véd
a Americké filozofické spole¢nosti. Jako prezident Americké fyzikdlni spole¢nosti (2006)
a pedagog inspiroval generace védct. Jeho prikopnicka prace zustava klicovou inspiraci
pro fyziku, biologii a umélou inteligenci.

Obr. 1. Laureati Nobelovy ceny za fyziku 2024: John Hopfield a Geoffrey Hinton. (¢©) Nobel
Prize Outreach. Autor: Nanaka Adachi
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1.1. Neuronové sité

Neuronové sité ptivodné inspirované svymi biologickymi vzory jsou dnes zdkladem mo-
derni umélé inteligence a vyznamné tak ovliviuji dalsi technologie, védu i spolec¢nost.
Popiseme si zakladni principy fungovani neuronovych siti a jejich aplikace. Zamérime
se na historicky vyvoj a klicové milniky. V dalsich ¢astech se pak zamérime na perso-
nélni prinosy oboru umélych neuronovych siti a popisy vybranych architektur a typu
siti.

Problematika je natolik rozsdhla, ze neni snadné zvolit jediny zpusob jeji prezen-
tace. V prvni ¢asti se proto zameérime na vyvoj a jednotlivé historické epochy. Cilem
je ukdzat, jak bourlivy tento vyvoj byl — od ptavodnich, dnes jiz trividlnich modela
a algoritm, které oslovovaly jen hrstku nadsencti, az po moderni obor. Dnes jde o dis-
ciplinu, ktera zaméstnava celé laboratore, katedry i fakulty a pronika do vSech oblasti
lidské ¢innosti.

Aniz bychom si to explicitné uvédomovali, neuronové sité a dalsi prvky Al dnes
zasahuji do mnoha béznych digitalnich procesti. Kazda fotografie porizend mobilnim
telefonem, kazdy text upraveny automatickou korekturou ¢i prelozeny do jiného jazyka
prochézi procesy, které tyto technologie vyuzivaji. Ulohy, jako je rozpoznavéni doprav-
nich znacek v asistenc¢nich systémech modernich automobilt, automatické tiidéni foto-
grafif ve vasich digitalnich albech, sledovani bezpecnosti v robotickych linkéch, defek-
toskopie ve vyrobé, fizeni, optimalizace, detekce anomalii, extrakce znalosti a pravidel
z dat ¢i doporucovaci systémy, jsou priklady, kde se neuronové sité uplatnuji. Patii
sem také jazykové modely a dnes velmi popularni generativni modely. Tento vycet by
mohl pokracovat — vSe zminéné se vSak opird o metody, které jsou neuronovymi sitémi
bud piimo tvoreny, nebo alespon inspirovany.

2. Kli¢ové epochy vyvoje neuronovych siti a umélé inteligence

Historie neuronovych siti a umélé inteligence je pribéhem plnym dramatickych zvrati,
vizionarskych prulomi a ne¢ekanych krizi. Je to cesta odvaznych napadu, které casto
predbéhly svou dobu, a jejich autori, kteri navzdory skeptiktim vérili ve svou vizi. Tato
historie je charakterizovana obdobimi euforického pokroku, kdy se zdalo, ze hranice
moznost{ lidského poznani se neustale posouvaji, ale také chvilemi hluboké nejistoty,
kdy nadéje na revolucni zmény stiidala deziluze z nenaplnénych ocekavani. Kazda
epocha odrazi klicové objevy, technologicky pokrok a zaroven vyzvy, které védci museli
prekonat, aby tento fascinujici obor posunuli k souc¢asnému vyznamu. Je to pribéh
nezdolné lidské touhy porozumét svétu, simulovat mysleni a pretvorit stroje na nastroje
schopné skutecné ,ucit se“ a premyslet.

1. Pocdatky a biologicka inspirace (1940-1957)

Tato éra se soustiedila na prvni teoretické zaklady neuronovych siti inspirované
fungovanim biologickych mozk.

e 1943: McCulloch a Pitts publikovali praci A logical calculus of ideas immanent
in nervous activity [15], kterd predstavila matematicky model neuronu.
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e 1949: Donald Hebb formuloval Hebbovo pravidlo [7], biologicky inspirovany
mechanismus uceni, popisujici, jak se vdhy mezi neurony méni na zakladé jejich
spolec¢né aktivace.

e Zkoumdni se zamérovalo predevsim na abstraktni modely, které polozily teo-
retické zaklady neuronovych siti.

2. Vzestup perceptronu a prvni vlna optimismu (1958-1969)
Neuronové sité ziskaly pozornost diky praktickym aplikacim prvnich modelu.
e 1958: Frank Rosenblatt predstavil perceptron (viz kapitolu 3), prvni trénovatel-

nou neuronovou sit. Jeho systém Mark I demonstroval schopnost rozpoznavat
jednoduché vizualni vzory.

e Perceptron ukdzal potencidl uceni z dat, coz vedlo k narustu zajmu o Al
e Nicméné omezeni perceptronu (napf. neschopnost fesit nelinedrni problémy)
zustavala nevytesena.
3. Kritika perceptroni a prvni AI zima (1969-1980)
Optimismus pohanény perceptronem opadl po zverejnéni jeho zasadnich omezeni.
e 1969: Marvin Minsky a Seymour Papert publikovali knihu Perceptrons, ktera

formélné ukézala, ze jednovrstvé perceptrony nemohou resit nelinedarné sepa-
rabiln{ tlohy, jako je napf. trividlni XOR problém (viz obrézek 3).
e Tato kritika vedla ke ztraté zdjmu o neuronové sité, coz zpusobilo tzv. prvni

Al zimu, béhem niz byla pozornost presunuta k symbolické Al, napriklad ex-
pertnim systémum.

e Financovani vyzkumu neuronovych siti kleslo, coz zpomalilo vyvoj dalsich mo-
delt.

4. Renesance neuronovych siti a pokroky v uceni (1980-1990)

Neuronové sité zazily obnoveny zajem diky novym teoretickym a praktickym ob-
jevam.

e 1982: John Hopfield predstavil Hopfieldovy sité (viz kapitolu 4), které fungovaly
jako asocia¢ni paméti a inspirovaly vyvoj rekurentnich siti.

e 1986: Geoffrey Hinton, David Rumelhart a Ronald Williams formalizovali a po-
pularizovali algoritmus zpétného siteni chyby (backpropagation) pro vicevrstvé
perceptrony.

e 1989: Yann LeCun pouzil konvoluéni neuronové sité (CNN, viz kapitolu 4) pro
rozpoznavani rukopisu.

e Tyto pokroky vedly k oziveni zadjmu o neuronové sité, prestoze technologicka
omezeni, jako problémy mizeni gradient@ (vanishing gradient)!, stale ztézovala
trénink hlubsich modelu.

ITento termin se pouzivd k popisu problému, kdy gradienty pii zpétném §ifeni chyb (backpro-
pagation) v hlubokych neuronovych sitich postupné sldbnou, coz ztézuje nebo znemoznuje efektivni
trénink vrstev blizko vstupu sité.
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5. Druha AI zima (1987-1993)
Nerealistickd ocekavani spojend s expertnimi systémy a omezeni neuronovych siti
vedly k dalsi krizi.
e Selhani symbolické Al, zejména expertnich systému, zpusobilo zklaméni inves-
tord a snizeni financovani.

e Investice do Al byly vnimény jako rizikové kvili nenaplnénym slibum. Oceka-
vani, ze Al rychle zméni prumysl, se ukdzala jako prehnané.

e Neuronové sité stéle trpély problémy, jako je mizeni gradientl, coz znemozno-
valo efektivni trénink hlubokych modelu.

vvvvv

e Al byla vniméana jako ,prilis ambiciézni® obor. Akademickd komunita se vice
zameérila na alternativni oblasti, jako je tradi¢ni pocitacova véda nebo teorie
algoritmi.

e Tato zima vsak motivovala hledani novych pristupt a zlepseni technologii.

6. Pirekonani problému a prichod hlubokého uéeni (1990-2010)
Tato éra je charakterizovana prulomem v feSeni klicovych problémi neuronovych
siti.

e 1997: Sepp Hochreiter a Jiirgen Schmidhuber navrhli Long Short-Term Memory
(LSTM, viz kapitolu 4) [8], kterd vyfesila problém mizen{ gradient u rekurent-
nich siti (RNN). LSTM umoznila efektivni modelovani dlouhodobych zévislosti
v sekvencnich datech.

e 2006: Geoffrey Hinton a jeho tym predstavili metody predtrénovani hlubokych
neuronovych siti, coz polozilo zéaklady pro moderni hluboké uceni.

Diky témto inovacim se neuronové sité staly schopnymi modelovat slozité vztahy
a Tesit problémy, které byly drive nereSitelné.
7. Era hlubokého uéeni a priimyslové dominance (2010-2020)
Neuronové sité se staly dominantni technologii diky masivnimu rozvoji aplikaci.
e 2012: AlexNet (Krizhevsky, Sutskever, Hinton) vyhrél soutéz ImageNet [11]
a ukazal silu konvoluénich neuronovych siti (CNN).

e 2014: Tan Goodfellow predstavil generativni kontradiktorni sité (GANs) [4],
které umoznily generovani realistickych dat.

e 2017: Transformerové modely [23] pFinesly revoluci ve zpracovani ptirozeného
jazyka a vedly k vyvoji modeli, jako jsou GPT a BERT.

e Tato éra prinesla masivni komerc¢ni vyuziti neuronovych siti v oblastech, jako
je pocitacové vidéni, zpracovani jazyka a medicina.

8. Soucasnd éra generativnich modela a etickych vyzev (2020-soucasnost)
Neuronové sité se staly nedilnou soucasti moderni spole¢nosti.
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e Velké jazykové modely (napt. GPT-3, ChatGPT) a generativni modely (Stable
Diffusion, DALL-E) ziskaly siroké uplatnéni.

e Vzrusta zajem o otazky regulace, vysvétlitelnosti a etiky spojené s Al. Roste
potieba zajisténi, ze Al bude slouzit lidskému dobru a nebude zneuzita napri-
klad k sifeni dezinformaci ¢i manipulaci.

e Vyzkum sméfuje k obecné umélé inteligenci (AGI) a kombinaci neuronovych siti
s interdisciplindrnimi pristupy — kvantovym pocitanim, biologii a teorii kom-
plexnich systémt. Toto naznacuje, ze muzeme v ne prilis vzdalené budoucnosti
vyhlizet vznik nové éry Al

e Vyzva pro lidstvo: Kam az nechat Al zajit? Souc¢asna éra prinasi nejen techno-
logicky triumf, ale i bezprecedentni odpovédnost.

Toto rozdéleni zohlednuje chronologickou navaznost klicovych objevii, obdobi krizi
(AT zim) i modernich prilomi, véetné Fesen{ problém, jako je mizeni gradienttt, diky
architekturam, jako jsou LSTM. Al zimy prinesly dulezitd ponauceni pro vyzkum:

e Nutnost realistickych oc¢ekavani a diskuse o schopnostech Al

e Potrebu vykonnéjsiho hardware a efektivnich algoritmu.

e Vyznam praktickych aplikaci pro ziskani financovani a davéry verejnosti.
3. Stru¢ny tvod do fungovani neuronovych siti

Neuronové sité (Artificial Neural Networks, ANN) jsou vypocetni modely inspirované
biologickymi neuronovymi systémy. Funguji na principu propojenych vypocetnich jed-
notek — tzv. neuronti, které spolupracuji pri zpracovani a transformaci dat. Cilem
neuronovych siti je predevsim schopnost modelovat slozité vztahy v datech, objevovat
skryté vzory a tesit ulohy, které jsou pro klasické algoritmy obtizné zvladnutelné.

Zaklady pro studium umélych neuronovych siti polozili Warren McCulloch a Walter
Pitts v roce 1943 ¢lankem A logical calculus of ideas immanent in nervous activity [15].
Vytvorili tu prvni matematicky model neuronu, ktery se choval jako jednoducha logicka
jednotka, a ukazali, jak lze jednoduché logické funkce realizovat siti propojenych neu-
rontl. Touto publikaci za¢ina prvni éra, kterou bychom mohli oznacit jako ,,Pocatky“
(viz kapitolu 2) a ktera bude trvat do konce Sedesdtych let dvacatého stoleti.

Frank Rosenblatt nasledné vyvinul perceptron [18], jednu z prvnich praktickych
implementaci neuronovych siti, které se dokazaly ucit na zakladé trénovacich dat.
Perceptron se stal milnikem ve vyvoji umélé inteligence a neuronovych siti, protoze
slo o prvni vypocetni model s praktickou implementaci, ktery byl schopen resit realné
tlohy. Rosenblatt demonstroval perceptron na tloze klasifikace jednoduchych vizual-
nich vzora. Na experimentédlni perceptron nazvany Mark I, postaveny na IBM 704, byl
pripojen opticky senzor, ktery prevadél obraz na binarni vstupy. Systém byl schopen
naucit se rozpoznavat jednoduché tvary, napiiklad ¢tverce nebo trojihelniky [13].

198 Pokroky matematiky, fyziky a astronomie, ro¢nik 69 (2024), ¢. 4



3.1. Princip fungovani perceptronu

Perceptron je jednoduchy vypocetni model, ktery prijima nékolik vstupnich hodnot
(21, 22, . . ., Tn), predstavujicich vlastnosti zpracovévanych dat (napiiklad intenzitu
pixeltlt u obrdzku) a jeden bindrn{ vystup. Kazdy vstup z; je spojen s odpovidajicim
vahovym faktorem w;. Tzv. vnitini potencidl neuronu je vysledkem linedrni kombinace
vstupi

z= Z w;x; + b, (1)
i=1

kde n je pocet vstupt perceptronu, b predstavuje posun, nebo prah perceptronu (bias),
z; a w; pak jednotlivé vstupy a jejich vahy.

Tato linearni kombinace z je vstupem do aktivacni funkce, kterd rozhoduje o vy-
sledku perceptronu. V pivodnim perceptronu byla pouzita jednoducha prahova funkce

1 pokud z = 0,
y=f(z) = . (2)
0 jinak.

Vystupem perceptronu je tedy bindrn{ hodnota (0 nebo 1), coz umoznuje klasifikaci
do dvou kategorii.

3.2. Omezeni perceptronu a prechod k vicevrstvym sitim

Prestoze perceptron znamenal vyznamny krok vpred, jeho schopnosti byly omezené.
Hlavnim problémem byla neschopnost fesit linedrné neseparabilni iilohy, jako je znamy
problém XOR. V roce 1969 tuto slabinu formalné dokazali Marvin Minsky a Seymour
Papert ve své knize Perceptrons [16]. Kritika perceptront vedla k titlumu z&jmu o neu-
ronové sité na vice nez deset let (tzv. prvn{ Al zima, viz kapitolu 2).

Obr. 2. Ilustrace perceptronu a obecné vicevrstvé dopredné neuronové sité se tfemi vystupy.
Takova sit je aplikovatelnd napt. v klasifikacnich ilohach, kdy se na zakladé n vstupnich
priznaku klasifikuje do 3 trid

Problém perceptronu spocival v jeho jednovrstvé struktute. Tento model dokaze
rozdélit vstupni prostor pouze pomoci piimky (v obecném piipadé nadroviny), coz
je dostateéné pouze pro linedrné separabilni tlohy. Aby bylo mozné resit slozitéjsi
nelinearni problémy, bylo nutné pridat dalsi vrstvu neuront, tzv. skrytou vrstvu.
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funkce OR funkce XOR

~

Obr. 3. Ilustrace rozdilu mezi linedrné a nelinedrné separabilni tilohou. Zatimco u funkce
OR je mozné oddélit dvé tiidy jednoduchou primkou, funkce XOR takovou separaci ne-
umoziiuje. Regeni téchto nelinedrné separabilnich problémi vyzaduje vicevrstvé neuronové
sité s nelinedrnimi aktivaé¢nimi funkcemi

3.3. Zavedeni nelinearnich aktivaénich funkci a vicevrstvych siti

Pfechod k vicevrstvym neuronovym sitim (MLP, Multi-Layer Perceptrons) a zave-
deni nelinearnich aktivac¢nich funkci predstavovaly klicovy prilom, ktery umoznil fe-
Seni linearné neseparabilnich tloh. Tento pokrok vsak nebyl mozny bez dalsich metod
a inovaci, které zajistily efektivni trénink hlubokych siti.

Jednim z klicovych momentt bylo zavedeni algoritmu zpétného siteni chyb (back-
propagation), ktery v roce 1986 zasadné rozpracovali Geoffrey Hinton, David Ru-
melhart a Ronald Williams [19]. Tento algoritmus umoznil trénovat vicevrstvé sité
s nelinearnimi aktivacnimi funkcemi tim, ze efektivné optimalizoval vahové parametry
pomoci gradientniho sestupu. Diky této metodé se neuronové sité staly praktickym
nastrojem pro modelovani komplexnich vztahu v datech, coz polozilo zaklady moder-
ntho hlubokého uceni. Hintontv prinos byl tedy zasadni pro prekonani bariér, které
drive limitovaly rozvoj neuronovych siti.

V rdmci vicevrstvych perceptront je vystup jednotlivych neuronti prvni (skryté)
vrstvy vstupem pro neurony dalsi vrstvy. Tato struktura umoznuje rozdéleni vstupniho
prostoru na komplexnéjsi rozhodovaci hranice. Aby vsak bylo mozné vyuzit této vy-
hody, musela byt jednoduché prahova funkce nahrazena spojitou nelinearni aktivac¢ni
funkci. Klicové priklady téchto funkci zahrnuji:

e Sigmoidalni funkce:
1

T 1te

o(z) (3)

Sigmoida mapuje vstupy do intervalu (0, 1) a umoziiuje plynulé prechody mezi
aktivnim a neaktivnim stavem.

e Hyperbolicky tangens (tanh):

ef—e ?
tanh(z) = o (4)

Tanh je podobny sigmoidalni funkci, ale jeho hodnoty se pohybuji v rozmezi
(—1, 1), coz usnadiiuje préci se zapornymi i kladnymi hodnotami.
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e ReLU (Rectified Linear Unit):

ReLU(z) = max(0, z). (5)

ReLU aktivuje pouze kladné hodnoty a diky své jednoduchosti umoznuje efektivni
trénink hlubokych siti.

Nelinearni aktivacni funkce umoznuji, aby vicevrstvé neuronové sité modelovaly slozité
vztahy ve vstupnich datech, coz byl zdsadni predpoklad pro dalsi rozvoj neuronovych
Siti.

3.4. Pokroky a nové vyzvy

Zatimco vicevrstvé sité prinesly moznost resit mnohem sirsi spektrum problémi, jejich
zavedeni otevrelo nové otazky, napriklad:

e Jak se vyhnout problémtim mizeni gradient pii trénovani hlubokych siti?
e Jak optimalizovat architektury siti pro specifické tlohy?

e Jak zajistit, aby vysledné modely byly robustni a dobre se generalizovaly na nova
data?

Tyto otazky se staly zakladem dalstho rozvoje neuronovych siti a vedly k objeviim
pokrocilych architektur, jako jsou konvoluéni neuronové sité (CNN), rekurentni neu-
ronové sité (RNN) a modely typu Transformer. Timto vyvojem pokracuje dynamickd
historie neuronovych siti az do souc¢asnosti.

4. Pokrocilejsi architektury neuronovych siti

Neuronové sité se od zdkladniho perceptronového modelu postupné rozvinuly do siroké
skaly pokrocilejsich architektur, které umoznuji feseni komplexnich tloh v riznych do-
ménach. Tyto architektury prinesly nové zptusoby zpracovani dat, optimalizace a ucenti,
¢imz zésadné rozsitily moznosti umélé inteligence.

4.1. Hopfieldovy sité: Prvni prukopnici auto-asociacnich paméti

John Hopfield v roce 1982 predstavil novou tiidu rekurentnich siti znamou jako Hop-
fieldovy sité. Tyto sité funguji jako auto-asociacni paméti, coz znamend, ze dokdzou
ulozit (zapamatovat) a pozdéji si ,vybavit“ vzory na zdkladé netplnych nebo Sumem
narusenych vstupi. Hopfieldovy sité polozily zaklady mnoha klicovych konceptii v ob-
lasti rekurentnich sit{ a teorie dynamickych systémi.

Fungovani Hopfieldovych siti: Hopfieldovy sité jsou plné propojené rekurentni
neuronové sité, kde kazdy neuron je spojen se vSemi ostatnimi (s vyjimkou sebe sama).
Tyto sité slouzi jako asociativni pamét, ktera uklada vzory a vraci stabilni stavy
odpovidajici témto vzorum. Zékladni princip jejich fungovani spociva v iterativni ak-
tualizaci stavil neuront, dokud sif nedosdhne stacionarniho stavu.
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Pocatecni stav Hopfieldovy sité je zadan jako bindrni vektor s = [sq, s2, . . ., sn],
kde kazdy neuron s; nabyva hodnot —1 nebo +1. Tento stav mize byt bud presny
vzor ulozeny béhem trénovani, nebo jeho narusena verze obsahujici Sum ¢i chyby.

Sit konverguje ke stabilnimu stavu, ktery odpovida lokalnimu minimu energetické
funkce (viz nize). Tento stabilni stav reprezentuje vzor, ktery je nejblizsi zadanému
vstupu podle schopnosti sité.

Proces iterativni aktualizace:

1. Inicializace: Pocatec¢ni stavy neuronu jsou nastaveny podle vstupniho vektoru s.
Sit je pripravena iterativné upravovat stavy jednotlivych neuronti na zakladeé jejich
propojeni a vstupni energie.

2. Vypocet aktivace neuronu: Pro kazdy neuron i se spocitd aktivace jako vazeny
soucet stavli vSech ostatnich neuront, na které je propojen,

a; = Z Wi585 — 91', (6)
J

kde w;; je vaha propojeni mezi neurony i a j (w;; = 0), 6; je prahova hodnota
neuronu ¢, s; je aktudlni stav neuronu j.

3. Aktualizace stavu neuronti: Stav neuronu i se aktualizuje podle pravidla

(7)

+1 pokud a; = 0,

S =
’ —1 jinak.

Tato aktualizace probihd opakované, pricemz se mohou pouzivat dvé strategie.

Synchronni aktualizace, kdy se stavy vSech neuronu aktualizuji soucasné, a asyn-

chronni (sekvenéni) aktualizace, kdy se stavy mén{ jeden po druhém, obvykle v na-

hodném poradi. Tento pristup je stabilngjsi a castéji pouzivany v praxi.

4. Tterace: Proces aktualizace se opakuje, dokud se vSechny stavy neuront nepte-
stanou ménit, tj. dokud sif nedosdhne stacionarniho stavu.

Dynamika Hopfieldovych siti je fizena minimalizaci energetické funkce definované
vztahem
1
F = _E Z W;jS;S; + Z 0;s;. (8)
1,7 7

Kazda aktualizace stavu neuronu s; vede ke snizeni hodnoty energetické funkce E.
Tento proces zarucuje, ze sit bude vzdy konvergovat do stabilniho stavu odpovidajicitho
lokdlnimu minimu energie. Stabilni stav muze byt ulozeny vzor nebo jedno z ,fales-
nych® minim, pokud je sit Spatné trénovand nebo vstupni vzor obsahuje prilis mnoho
Sumu.
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4.2. Rekurentni neuronové sité (RNN)

Rekurentni neuronové sité (RNN) predstavuji vyznamny milnik ve vyvoji umélych
neuronovych siti. Byly navrzeny tak, aby dokazaly efektivné modelovat sekvencni data,
jako jsou casové fady, fe¢, prirozeny jazyk nebo sekvence akci/udalosti. Na rozdil od
dopfednych neuronovych siti (Feedforward Neural Networks) maji RNN zpétné vazby,
coz jim umoznuje prendset informace mezi casovymi kroky a vytvaret tak interni
pamétovou strukturu.

Yo 1 Y2 Yt

(;L-Te_tjht —> nTet —> nTet —> nTet —> ... =P nTet
1 ) ) 1 )

Tt Zo 1 T2 Tt

Obr. 4. Rozvinuti obecné rekurentni sité v case. Obrazek zndzornuje obecnou strukturu,
kdy skryty stav h: je zaveden zpét do sité. Nékteré topologie misto skrytého stavu zavadéji
zpétnou vazbu mezi vystupem y; a vstupem x¢, coz sice ma vliv na funkcionalitu, ale nikoliv
na princip rozvinuti v Case, ktery se vyuzivd v nékterych ucicich algoritmech jako napf.
backpropagation through time

Kazdy neuron v RNN zpracovava vstupni data postupné, casovy krok za krokem,
pri¢emz vyuziva informace ze soucasného vstupu i z predchozich skrytych stavi. Pro
jeden casovy krok t 1ze vypocet RNN popsat nasledujicimi vztahy:

1. Aktualizace skrytého stavu

hy = f(Waze + Wrhe—1 + by), 9)
kde:

e 1, € R? je vstupni vektor v ¢ase t,

hi—1 € R™ je skryty stav z predchoziho ¢asového kroku,

W, € R™*4 a W, € R™*™ jsou vahové matice pro vstupy a zpétné vazby,

bn, € R™ je vektor posunu (bias),

f: R™ — R™ je nelinedrni aktivacéni funkce (napf. tanh nebo ReLU aplikovand
po slozkéch),

e d je dimenze vstupniho vektoru a m pfedstavuje dimenzi skrytého stavu (tj.
pocet skrytych neuroni).

2. Vypocet vystupu
yr = g(Wyhe +by), (10)
kde:
o W, € R™*™ je vahova matice propojujici skryty stav s vystupem,
e b, € R™ je vektor posunu pro vystupni vrstvu,

e ¢g: R™ — R™ je aktivacni funkce pro vystup.
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RNN tak vytvari sekvenci vystupt yi, ya, ..., yr na zakladé sekvence vstupt
L1, T2y ...,TT.

Pozn.: Vyse uvedeny popis se vztahuje k jedné konkrétni architekture RNN, kterd
vsak neni jedinou moznou variantou. Nékteré typy RNN vyuzivaji skryty stav a vy-
stupni vrstvu, coz znamend, ze dimenze vystupniho vektoru y; nemusi odpovidat di-
menzi skrytého stavu h;. Jiné architektury naopak pouzivaji skryty stav primo jako
vystup, a v takovém pripadé odpada potreba explicitni vystupni vrstvy aplikované na
skryty stav.

/)
-
a

Obr. 5. Obrazek ilustruje problém dlouhodobych zévislosti u rekurentnich neuronovych siti.
Zakladni RNN maji obtize pri uceni spojeni mezi vzdalenym kontextem a aktualni hodnotou,
¢imz ztraceji schopnost efektivné pracovat s dlouhodobymi zavislostmi

Vyhody RNN:
e Schopnost zpracovavat data libovolné délky.
e Udrzovani kontextu z predchozich ¢asovych krokua diky zpétnym vazbam.
e Moznost modelovat sekvence s dynamickymi a nelinedrnimi vztahy.

e Uspora parametri (poctu vah).

Problémy RNN:

e Mizeni gradientti: Pri trénovani RNN pomoci algoritmu zpétného siteni v case
(Backpropagation Through Time, BPTT) gradienty béhem aktualizace vahovych
parametrii exponencialné klesaji (nebo rostou). To zpusobuje problémy pii uceni
dlouhodobych zéavislosti. Plati

T

oL Ohy
~ 11
KR | a

kde L je ztratova funkce (viz nize). Pokud derivace 8(12?11 obsahuje hodnoty mensi

nez 1, gradient rychle mizi s rostoucim 7.

e Explodovani gradientti: Pokud derivace presahuje hodnotu 1, gradienty expo-
nencialné rostou, coz destabilizuje trénink.

Tyto problémy byly castecné vyTeseny zavedenim architektur, jako jsou Long Short-
-Term Memory (LSTM) a Gated Recurrent Unit (GRU).
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4.2.1. Priklad definice ztratové funkce

Ztratova funkce rekurentni neuronové sité

Rekurentni neuronova sit generuje sekvenci vystupia y = [y1, Y2, - . . , yr], kterd se
porovnéva s cilovou/oc¢ekdvanou sekvenci (trénovacimi daty) § = [§1, G2, - - . , U7
K vyjadreni rozdilu mezi predpovédmi sité a skute¢nymi cilovymi hodnotami se typicky
pouziva ztratova funkce pres vSechny casové kroky ¢t =1, 2, ..., T, napr.
1 n
L(y,Y):T;;ym .4)%, (12)

kde T je pocet casovych krokl v sekvenci, y;; a 9¢,; jsou jednotlivé slozky vektort y
ay.

Backpropagation Through Time

BPTT je algoritmus pro optimalizaci parametru (vah) rekurentnich neuronovych siti.
Rozklada vypocet gradientu ztratové funkce na jednotlivé casové kroky, aby bylo
mozné trénovat sit pomoci gradientniho sestupu. Proces lze shrnout takto:

1. Rozvinuti sité v Case: Rekurentni sit je ,rozvinuta® pres ¢asové kroky t, coz
vytvori sérii propojenych vrstev. Stav skrytych neuront h; na kazdém kroku je
definovan jako

hy = f(h;—1, x¢; W), (13)

kde h; je stav na kroku ¢, x; je vstup, W jsou vahové parametry a f je aktivacni
funkce.

2. Ztratova funkce: Celkova ztratova funkce je suma pres ¢asové kroky
T
L= Z ‘€ Yt, yt (14)
t=1

3. Vypocet gradientu: Gradient ztratové funkce vzhledem k parametrim W

v casovém kroku ¢ ovliviiuje nejen stav hy, ale i stavy z predchozich kroka hy_q,
hy o, ...,

0L 0Oh
Z t (15)
oh, OW’
kde g—th zahrnuje soucet zpétné sirenych gradientt pres vSechny nasledujici ¢asové
kroky.
4. Aktualizace parametrt: Parametry W jsou aktualizovany pomoci gradientniho

sestupu

Wvenaa—VLV, (16)

kde n je udici konstanta (learning rate).
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Klicové body BPTT

e Rozpad gradientu: V disledku opakovaného nésobeni gradientti pres mnoho
¢asovych kroku dochézi k problémim, jako je mizeni (vanishing gradients) nebo
explodovani gradientu.

e Truncated BPTT' Aby se sniiila vypocetni néroénost pouiivzi se éasto zkrécené

v

4.2.2. LSTM a GRU

LSTM: Long Short-Term Memory (LSTM) je rozsifeni RNN, které obsahuje spe-
cialni mechanismy nazyvané brdny, které umoznuji ridit tok informaci v siti.

hy

V' 3

Ct—1 /~ ’><\ D :Ct
ft 12
Ct Ot X

" (7] [tanh] [7] h
t—1 Ju

/ L

CL’tI

Obr. 6. Neuron sité LTSM (taktéz LSTM cell). Je zde vidét vstupni vektor, stav neuronu,
skryty stav a rovnéz vnitfni struktura v podobé bran (gates)

Vypocet bran v LSTM:

=o(Wyxy 4+ Uphi—1 + by) (zapominaci brana), (17)
=o(Wizy + Uihy—1 + b;) (vstupni bréna), (18)
=o(Wyoxy + Ushi—1 + o) (vystupni brana), (19)
= tanh(W,x; + Uchs_1 + be) (kandidatni stav), (20)
= ftOc1+1 O (aktualizace stavu), (21)
ht = ot ® tanh(c;) (skryty stav). (22)

e fi, it, 0 € R™ jsou aktivacéni vektory pro brany ridici tok informaci,
e ¢, € R™ je stav bunky uchovavajici dlouhodobé informace,

e (© predstavuje nasobeni vektoru po slozkach. Brany tak slouzi k selekci nebo mo-
dulaci informaci tim, ze vynuluji nebo vazi urcité prvky vektoru.
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Obr. 7. Ukéazka rozvinuti LSTM sité v case

v

A 4

i

GRU: Gated Recurrent Unit (GRU) je jednodussi varianta LSTM, kterd kombinuje
nékteré brany a snizuje pocet parametri:

zt = o(W.axe + Usheq + )s) (aktualiza¢ni bréna), (23)
ry = o(Weay + Uphi—1 + by) (resetovaci bréna), (24)
hy = tanh(Wy,zy + 74 © (Unhi—1) + bp) (kandidatn{ stav), (25)
hy=(1—2)Ohi_1+206h (skryty stav). (26)

Aplikace RNN, LSTM a GRU:

e Zpracovani prirozeného jazyka: automaticky preklad, jazykové modelovani,
generovani nebo sumarizace texti.

e Analyza cCasovych rad: predikce akciovych trhu, sledovani senzorickych dat,
klasifikace sekvencnich dat.

e Rozpoznavani reci: prevod reci na text.
e Generovani sekvenci: generovani textu, skladeb, fidicich signald, atd.

Rekurentni sité a jejich varianty, jako jsou LSTM a GRU, byly prikopnickymi
pristupy pro modelovani ¢asovych zavislosti a sekvenci. Diky témto architekturam se
staly jednim z klicovych nastroju v oblasti umélé inteligence a hlubokého uceni.

4.3. Radial Basis Function (RBF) sité

Radial Basis Function (RBF) [5] jsou neuronové sité zalozené na radidiné symetric-
kych aktivacnich funkcich, které reaguji na vzdalenost vstupu od urc¢itého centra. Jsou
obzvlasté vhodné pro ulohy klasifikace, interpolace, regrese a funkéni aproximace.

Zakladni struktura: RBF sité maji jednoduchou architekturu, ktera obvykle ob-
sahuje tTi vrstvy:
1. Vstupni vrstva:
e Kazdy neuron prijiméa jednu dimenzi vstupniho vektoru

X =[z1,T2,...,7,]".

e Tato vrstva pouze predava vstupy do dalsi vrstvy.
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2. Skryta vrstva:

e Kazdy neuron ve skryté vrstvé pouziva radidlni aktivacni funkci zavislou na
vzdalenosti vstupu x od centra c;.

e Vystup h; j-tého neuronu je dan vztahem
hj(x) = o(llx = ¢;l)), (27)

kde ||x — cj|| je eukleidovskd vzdalenost mezi vstupem x a centrem c;, ¢ je
radialni aktivac¢ni funkce, napriklad gaussovska

o) =0 (~ 7 ) (28)

kde o; je sitka (rozptyl) funkce.

3. Vystupni vrstva — linedrni kombinace vystupu ze skryté vrstvy
m
Yk = Z wgjhj(x), (29)
j=1

kde wy; jsou vahové parametry spojujici j-ty skryty neuron s k-tym vystupem,
m je pocet neuronu ve skryté vrstve.

Trénink RBF siti: Trénink RBF siti probiha ve dvou hlavnich krocich:
1. Urceni parametru skryté vrstvy:

e Centra c; jsou casto vybirdna bud ndhodné, nebo pomoci metod shlukovani
(napt. algoritmus k-means).

e Sitky o; mohou byt nastaveny na zakladé maximélni vzdalenosti mezi centry
nebo jako primérna vzdalenost mezi nejblizsimi centry.

2. Optimalizace vahovych parametri:

e Vahy wy; se uréuji pomoci linedrni regrese tak, aby minimalizovaly chybu mezi
skutecnymi vystupy y a predikovanymi vystupy y, tj.

min ||y — ¥/l (30)
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4.3.1. Klicové vlastnosti RBF

RBF sité stejné jako vicevrstvé perceptrony (MLP) pati{ mezi univerzalni aproxi-
métory [17], coz znamend, Ze jsou schopny aproximovat libovolnou spojitou funkci
s libovolnou presnosti, pokud maji dostateény pocet neuront ve skryté vrstvé. U RBF
siti tato schopnost vyplyva z jejich mechanismu modelovani lokalnich zavislosti pomoci
radialnich funkeci.

Radialni aktiva¢ni funkce maji lokalni charakter, coz znamena, ze kazdy neuron re-
aguje pouze na omezenou oblast vstupniho prostoru. Tato vlastnost zlepsuje schopnost
sité generalizovat.

Trénink RBF siti je rychlejsi nez u vicevrstvych perceptront, protoze vahy vystupni
vrstvy lze optimalizovat linearni regresi. RBF sité dokazi resit nelinedrné separabilni
ulohy diky pouziti nelinedrnich aktivac¢nich funkci.

Oproti MLP, které umoznuji libovolny pocet skrytych vrstev, maji RBF sité pevnou
strukturu (vstupni-skrytd—vystupni vrstva). RBF sité maji jednodussi a rychlejsi tré-
nink, protoze optimalizace vystupni vrstvy je linearni. Naproti tomu MLP vyzadujici

RBF sité jsou vyjimecéné uzitecné v aplikacich, kde je zapotrebi rychla funkéni
aproximace nebo robustni klasifikace s mensim poctem datovych bodt. Diky svym
vlastnostem a flexibilité zustavaji dulezitou architekturou neuronovych siti pro Sirokou
skalu loh.

4.4. Samoorganizujici se mapy (SOM)

Samoorganizujici se mapy [10], které navrhl Teuvo Kohonen v roce 1980, predstavuji
specificky typ neuronovych siti zaméfenych na ucent bez ucitele (unsupervised lear-
ning). Na rozdil od tradi¢nich vicevrstvych perceptroni ¢i konvoluénich neuronovych
siti, které vyzaduji trénink s cilovymi hodnotami (supervised learning), SOM fun-
guji samostatné na zakladé podobnosti mezi datovymi vzory. Jejich klicovou funkei
je schopnost redukovat dimenzionalitu dat a prevadét slozité, vysokodimenzionalni
datové prostory do snadno interpretovatelnych dvourozmérnych nebo trojrozmérnych
map. Tato vlastnost umoznuje vizualizaci a analyzu dat, kterd by jinak byla pro lidskou
intuici obtizné pochopitelna.

Kohonenovy mapy vznikly jako odpovéd na potrebu nalézt efektivni zptusob analyzy
a vizualizace datovych souboru s vysokou dimenzionalitou. Klasické neuronové site,
jako jsou MLP, se soustredi na explicitni klasifikaci nebo regresi, ale nejsou primo
navrzeny pro explorativni analyzu dat bez znamych cilovych hodnot. SOM fesi problém
zobrazeni datovych vztahli v niz$im rozméru, pricemz zachovavaji jejich topologickou
strukturu. To znamen4, ze podobna data jsou mapovana na blizké neurony v mfizce,
zatimco odlisné data jsou oddélena. Tento pristup je obzvlasté uzitecny pri identifikaci
skrytych vzora nebo shlukiu v datech.

4.4.1. Princip fungovani

SOM se skladaji z mrizky neuroni, kde kazdy neuron mé svij vahovy vektor, ktery
odpovida urcéitému bodu ve vstupnim datovém prostoru. Béhem tréninku se vahy neu-
ronu iterativné prizpusobuji tak, aby co nejlépe odpovidaly vstupnim dattim. Proces
zahrnuje nasledujici klicové kroky:
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1. Porovnani: Pro kazdy vstupni vektor se identifikuje neuron, jehoz vahovy vektor
je nejblizsi (tzv. vitézny neuron nebo BMU — Best Matching Unit).

2. Aktualizace: Vahy vitézného neuronu i jeho okolnich neuroni se priblizi ke vstup-
nimu vektoru. Tento krok je rizen funkci sousedstvi, ktera zajistuje, ze blizké neu-
rony se adaptuji spolecné.

3. Iterace: Proces se opakuje s ruznymi vstupnimi vzory, pricemz se postupné snizuji
parametry, jako je koeficient uceni a sitka sousedstvi.

Na rozdil od MLP, které se u¢i minimalizovat chybu pomoci gradientniho sestupu,
SOM neoptimalizuji specifickou ztratovou funkci. Namisto toho jsou trénovany tak,
aby organizovaly data do prirozenych struktur a odhalovaly vztahy mezi vzory. Tato
samoorganizace poskytuje vhled do datové struktury, aniz by bylo nutné definovat
konkrétni cilové vystupy.

4.4.2. Aplikace SOM

Diky své schopnosti analyzovat a vizualizovat slozita data nasly SOM siroké uplatnéni
v ruznych oblastech:

e Analyza genovych expresi a zkoumani genetickych podobnosti.
e Segmentace zdkaznikl a analyza trznich dat.
e Detekce anomalii, poruchova diagnostika, klasifikace pacientskych dat.

e Komprese obrazi a rozpoznavani vzoru.

Samoorganizujici se mapy inspirovaly dalsi pokrocilé metody vizualizace dat, jako
jsou t-SNE nebo UMAP, které vsak ¢asto neposkytuji explicitni interpretaci vztahtu
mezi daty. Kohonenovy mapy ztstavaji dilezitou soucasti historie neuronovych siti
a ukazuji, jak mohou biologické principy vést k inovativnim vypocetnim pristuptm.
Tento koncept byl primym prinosem pro aplikace, kde bylo klicové pochopit a zjedno-
dusit komplexni datové prostory.

4.5. Konvoluéni neuronové sité

Konvoluéni neuronové sité (CNN) jsou specifickou architekturou neuronovych siti na-
vrzenou pro efektivni zpracovani dat, ktera maji prostorovou strukturu, napriklad ob-
razu. CNN byly poprvé navrzeny Kunihiko Fukushimou v podobé neocognitronu v roce
1980, ale skute¢ny prilom pfinesl Yann LeCun v roce 1989, kdy pouzil CNN (model
LeNet) pro rozpoznavani rukopisnych ¢islic na postovnich smérovacich ¢islech [12].

CNN byly zavedeny jako Teseni omezeni plné propojenych siti pii zpracovani ob-
razovych dat. Plné propojené sité maji velké mnozstvi parametri, coz vede k vysoké
vypocetni naroc¢nosti a riziku preuceni, zejména u dat s prostorovou strukturou, jako
jsou obrazy. CNN vyuzivaji konvolu¢ni vrstvy, které aplikuji filtry na lokalni oblasti
vstupnich dat, ¢imz zachycuji prostorové rysy (napf. hrany a textury) s mensim po-
¢tem parametra. Diky sdileni vah a hierarchickému zpracovani ryst umoznuji CNN
efektivni extrakci informaci a skalovatelnost, coz z nich ¢ini idealni nastroj pro tlohy
pocitacového vidéni, jako je napr. rozpoznavani objekti.
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Obr. 8. Typicka architektura konvolu¢ni neuronové sité. Prvni cast typicky pracuje jako
tzv. feature extractor®, na ktery je nédsledné napojena doprednd (typicky plné propojend)
neuronova sit. Na obrazku je vidét jednoduchy priklad klasifikdtoru, ktery mé na vstupu
monochromaticky (jednokanédlovy) obraz a na vystupu tii t¥idy

4.5.1. Zakladni mechanismus a architektura
CNN se skladaji z nékolika vrstev, pricemz klicové jsou:
1. Konvolué¢ni vrstvy (Convolutional Layers):

e Hlavni funkci konvoluéni vrstvy je extrakce prostorovych rysi z dat pomoci
aplikace filtru (kernel).

e Konvoluce se vypocitava vztahem

Vi, j, k] =X« Wy +by= > X[i+m,j+n,c Wilm,n,c+b (31)

m,n,c

kde XT[i, j, ¢] jsou vstupni data na pozici (i, j) v kanédlu ¢, Wi[m, n, ] je filtr
pro kandl ¢ a vystupni kandl k, by je posun pro vystupni kandl k, Yi, j, k] je
vystupni hodnota na pozici (7, j) v kandlu k.

e Vysledkem je tzv. matice pfiznakt (feature map), kterd reprezentuje rysy de-
tekované filtrem.

2. Aktivac¢ni funkce (Activation Function): Po konvoluci se na kazdy vystup
aplikuje nelinearn{ aktiva¢ni funkce, napt. ReLU (Rectified Linear Unit)

f(z) = max(0, ). (32)

— ReLU prispiva k rychlé konvergenci béhem trénovani tim, ze eliminuje saturaci
gradienti.

3. Poolingové vrstvy (Pooling Layers):

e Tyto vrstvy redukuji dimenzionalitu dat a zachovavaji klicové informace.

e Nejcastéjsi operaci je maz-pooling, definovany jako

Y, j] = max X[i +m, j +n], (33)

kde m, n reprezentuji velikost poolingového okna.
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4. Plné propojené vrstvy (Fully Connected Layers):

e Vystupni feature mapy jsou prevedeny na jeden vektor a zpracovany tradicni
neuronovou siti.

4.5.2. Pokrocilé varianty CNN

Residual Networks (ResNet) je architektura neuronové sité, ktera byla navrzena
k Teseni problémt spojenych s trénovanim velmi hlubokych siti, jako je mizeni gra-
dientu a zhorseni presnosti pti pridavani dalsich vrstev. Klicovym inovativnim prvkem
ResNet je zavedeni rezidudlnich bloki [6], které umoznuji preskoky (skip connections)
pres jednu nebo vice vrstev. Tyto preskoky prendseji vstupni informace primo k poz-
déjsim vrstvam, obchézeji nékteré vypocty a umoznuji tak efektivnéjsi uceni.

Kazdy rezidudlni blok ma formu: y = f(x) + x, kde f(z) pfedstavuje transformaci
vstupu & pomoci vrstev sité (napiiklad konvolu¢nich a aktiva¢nich funkei) a 2 je prima
cesta (skip connection). Vysledny vystup y kombinuje transformovany signdl f(z)
s puvodnim vstupem z. Tento mechanismus usnadnuje uceni identického zobrazeni
(f(x) =0), pokud je to potieba, coz poméhd pii optimalizaci hlubokych siti.

ResNet umoziuje trénovani extrémné hlubokych modeli (sité s vice nez 100 nebo
1000 vrstvami) a zlepsuje jejich vykonnost diky stabilnéj$imu siFeni gradientt a lepsi
schopnosti generalizace. Tato architektura je Siroce vyuzivana v pocitacovém vidéni,
zejména v tlohach rozpoznavani objektl, detekce a segmentace obrazu.

Dense Convolutional Network (DenseNet) je architektura neuronové sité, kterd
zlepsuje efektivitu uceni a vyuziti parametru diky hustému propojeni vrstev. Na rozdil
od béznych architektur, kde je kazdd vrstva propojena pouze se sousednimi vrstvami,
v DenseNet je kazdé vrstva primo spojena se vSemi predchozimi vrstvami. To znamena,
ze vystup kazdé vrstvy slouzi jako vstup pro vsechny nasledujici vrstvy.

Kazda vrstva v DenseNet prijimé jako vstup

= Hi([xo, 1, . .., 1-1]),

kde x; je vystup I-té vrstvy, [zo, 21, . . . , ;1] predstavuje spojeni vSech predchozich
vystupt (tzv. concatenation), a H; je nelinedrni transformace, obvykle se skladajici
z konvoluc¢ni operace, aktiva¢ni funkce a normalizace.

DenseNet je znamy pro svou vybornou vykonnost v tlohich pocitacového vidéni,
jako je klasifikace obraziu a segmentace, a to pri nizsim poctu parametru nez srov-
natelné modely, jako je ResNet. Architektura je zvlasté vyhodnd v aplikacich, kde je
dtilezité maximalizovat efektivitu vypoctu a vyuziti paméti.

4.5.3. Generativni kontradiktorni sité (GANs)

GAN (Generative Adversarial Networks) jsou inovativni architekturou neuronovych
siti, kterou v roce 2014 predstavil Tan Goodfellow [4]. GAN sestévaji ze dvou siti:
generdtoru, ktery vytvari syntetickd data, a diskrimindtoru, ktery rozlisuje mezi real-
nymi a generovanymi daty. Obé sité se trénuji v procesu, ktery pripomina soutéz —
generator se snazi ,oklamat®“ diskriminator, zatimco diskrimindtor se snazi zlepsit
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své schopnosti rozpoznat ,podvod*“. Tento pristup umoznuje generatorim produko-
vat realistickd data, jako jsou obrazy, texty nebo zvukové stopy, a nasel Siroké vyuziti
v oblastech od pocitacového vidéni po generativni umeéni a syntézu dat.

4.5.4. Konvoluéni Long Short-Term Memory (ConvLSTM)

Architektura ConvLSTM spojuje vlastnosti CNN (konvoluéni vrstvy) a RNN (pamé-
tové bunky LSTM) [20]. Vyuziva konvoluéni operace pro prostorové zpracovani dat
v kombinaci s paméti pro sekvenéni zpracovani.

Misto tradi¢nich maticovych operaci ve vrstvach LSTM vyuzivd ConvLSTM kon-
voluce k zachyceni lokdlnich prostorovych rysu. Stav buiky (c;) i skryty stav (he)
v Case t maji tvar tenzoru, coz umoznuje modelu efektivnéji zachytit prostorovou i ¢a-
sovou dynamiku. ConvLSTM nachézi uplatnéni v tlohach, jako je predpoved pocasi,
analyza videil nebo detekce anomalii v casoprostorovych datech.

4.5.5. Aplikace CNN

e Pocitacové videéni: detekce objektl, rozpoznavani obliceju, analyza zdravotnic-
kych snimku (CT, MRI).

e Automatické rizeni: identifikace dopravnich znacek, detekce prekazek.
e Generativni modely GAN pro syntetickd data.

e Analyza videi identifikace aktivit, predikce pohybu.

CNN a jejich varianty, jako jsou ResNet, DenseNet a GANs, prinesly revoluci ve zpra-
covani dat diky své schopnosti efektivné extrahovat a modelovat komplexni prostorové
a ¢asové vzory.

4.6. Transformery

Transformery jsou kli¢ovou architekturou neuronovych siti, kterd zpusobila revoluci
v oblasti zpracovani sekvencnich dat, zejména prirozeného jazyka. Poprvé byly pred-
staveny v praci Attention is all you need [23] a jejich hlavni inovaci je mechanis-
mus self-attention, ktery umoznuje modelu priradit rtiznou vahu jednotlivym castem
vstupni sekvence v zavislosti na jejich relevanci pro aktudlni lohu. Na rozdil od re-
kurentnich neuronovych sit{ (RNN) zpracovavaji transformery vstupni data paralelnég,
coz vyrazneé zlepsuje efektivitu a umoziuje skalovani na velké datové soubory. Dulezi-
tou soucasti architektury je také pouziti pozi¢nich kédu, které zachovavaji informaci
o poradi tokenu v sekvenci.

Transformery tvori zaklad modernich jazykovych modelu, jako jsou BERT, GPT
nebo T5. Model BERT vyuzivé architekturu transformeru pro dvojstranné porozuméni
textu, coz jej ¢ini idedlnim pro tlohy jako klasifikace, odpovidani na otdzky nebo po-
jmenované entity. Na druhé strané modely GPT (napf. GPT-3) vyuZzivaji jednosmérné
generovani textu a exceluji v generativnich tlohéach, jako je tvorba prirozeného textu,
preklad nebo programovani.
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Transformery se staly standardem nejen ve zpracovani prirozeného jazyka (Na-
tural Language Processing — NLP), ale také v dalsich oblastech, jako je pocitacové
vidéni (Vision Transformers), bioinformatika nebo zpracovini hudby. Jejich flexibi-
lita a schopnost efektivné modelovat slozité vztahy v datech prinesly zasadni prilom
v umélé inteligenci a otevrely cestu k vyvoji stéle sofistikovangjsich jazykovych modelu
a generativnich systém.

5. Interdisciplinarni pristupy a komplexni systémy

5.1. Neuronové sité a evoluc¢ni algoritmy

Evolué¢ni algoritmy (EA) vznikly jako vypocetni technika inspirovand Darwinovou teo-
rif prirozeného vybéru. Jejich principy byly poprvé formalné popsany v 60. a 70. letech
20. stoleti. V roce 1964 John Holland definoval zakladni ramec genetickych algoritmu
(GA) [9], ktery se stal zdkladem pro mnoho dalsich evoluénich metod. Evoluéni algo-
ritmy se postupné rozsitily o varianty, jako jsou evoluéni strategie (Rechenberg, 1973),
evolucni programovani (Fogel, 1966) a genetické programovani (Cramer, 1985) [14].

5.1.1. Principy evoluc¢nich algoritmu

Evolu¢ni algoritmy napodobuji pfirozeny vybér a adaptaci v populaci jedinct, kde
kazdy jedinec predstavuje potencialni feSeni daného problému:

1. Populace jedinca — Kazdy jedinec je reprezentovan genomem, obvykle ve formé
binarniho, celo¢iselného nebo realného vektoru.

2. Hodnoceni (fitness) — Kazdy jedinec je ohodnocen podle schopnosti fesit problém
pomoci tzv. fitness funkce f(x).

3. Selekce — Jedinci s vyssi fitness maji vétsi Sanci predat své vlastnosti dalsi ge-
neraci. — Selek¢ni mechanismy zahrnuji turnajovou selekci, ruletovy vybér nebo
rankovani.

4. Krizeni (crossover) — Kombinace genetické informace dvou nebo vice jedincu pro
vytvoreni potomki.

5. Mutace — Ndhodnd zména nékterych gentu pro udrzeni genetické diverzity.

6. Evolucni iterace — Proces selekce, kiizeni a mutace se opakuje, dokud neni do-
sazeno optimalniho Teseni nebo nevyprsi stanoveny pocet iteraci.

5.1.2. Spojeni s neuronovymi sitémi (neuroevoluce)

Evolué¢ni algoritmy se ukédzaly jako efektivni metoda pro optimalizaci neuronovych siti
v nékolika smérech:

1. Optimalizace parametra

e Evoluéni algoritmy nahrazuji gradientni sestup pfi hleddni optiméalnich vah
site.
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e Vyhodou je schopnost vyhnout se lokdlnim extrémim ve slozitych optimalizac-
nich problémech

w* = arg max f(w), (34)
w
kde f(w) je fitness funkce? vyjadiujici vykonnost sité na validaéni sadé.
2. Navrh architektury siti

e Evoluéni algoritmy navrhuji optimalni topologie neuronovych siti, véetné poctu
vrstev, neuront a propojeni.

e Napiiklad NEAT (NeuroEvolution of Augmenting Topologies) [22] kombinuje
evoluci topologii a parametru.

3. Hyperparametrickd optimalizace

e Evolucni algoritmy hledaji optimalni hodnoty hyperparametri, jako je rychlost
uceni, velikost davky nebo typ aktivac¢nich funkeci.
5.2. Genetické programovani (GP)

Genetické programovani (GP) je varianta evolu¢nich algoritmu, kterd se zamétuje na
vyvoj programu, funkci nebo pravidel reprezentujicich optimalni reseni daného pro-
blému. Na rozdil od klasickych genetickych algoritmu, které pracuji s pevné defino-
vanymi vektory, GP vyuziva stromové struktury pro reprezentaci komplexnéjsich vy-
pocetnich procesti. Diky této flexibilité se GP stalo mocnym nastrojem pro navrh
adaptivnich neuronovych siti.

5.2.1. Zakladni principy genetického programovani
1. Reprezentace jedinca — Kazdy jedinec v populaci je reprezentovan stromem,
kde uzel predstavuje operaci nebo funkci (napf. +, =, *, /, sin, cos).

2. Evoluéni operatory

e Selekce — Vybér jedincii na zakladeé fitness funkce.
e Kiizeni — Kombinace ¢asti dvou stromil pro vytvoreni novych jedincu.
e Mutace — Nahodné zména uzli nebo vétvi stromu.
3. Fitness funkce — Hodnoti kvalitu jedince na zdkladé schopnosti Tesit dany pro-

blém, naptiklad minimalizaci chyby predpovédi nebo maximalizaci presnosti kla-
sifikace.

2Poznamka: oproti chybové funkci, kterou se snazime gradientnim sestupem minimalizovat, u fit-
ness funkce hleddme maximum. Nékdy lze v kontextu evolu¢nich algoritmu narazit na pojem ,cost
function®, ktera je obdobou chybové funkce, a takovou pak opét minimalizujeme.
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5.2.2. HyperGP: Evoluc¢ni design topologii neuronovych siti

HyperGP [1] je rozsitenim piistupu HyperNEAT [21], ktery kombinuje genetické pro-
gramovani s principy nepiimého kédovani (indirect encoding). Cilem HyperGP je ge-
nerovat efektivni topologie neuronovych siti, které dokazi resit slozité tlohy pomoci
evolu¢ni optimalizace.

1. Neprimé kédovani

e Namisto primého popisu kazdého spojeni mezi neurony se pouziva pravidel
nebo funkci k odvozeni celkové struktury sité.

e Kazdy jedinec v GP reprezentuje pravidlo, jak se maji propojit neurony, na-
priklad

kde w;; je vdha propojeni mezi neurony i a j, d je vzdalenost mezi nimi a f je
funkce reprezentovana stromem GP.

2. Vyuziti geometrie — HyperGP zahrnuje prostorové usporadani neuronti, coz
umoznuje navrhovat topologie s vyuzitim lokalnich i globalnich pravidel.

3. Optimalizace aktivaci a propojeni — HyperGP umozinuje navrh siti se specia-

lizovanymi funkcemi aktivace a propojeni, které se prizpusobuji konkrétni tiloze.

5.2.3. Konstrukce neuronovych siti pomoci GP a HyperGP

Genetické programovani je obzvlasté vhodné pro navrh architektur neuronovych siti,
které zahrnuji:

e Hluboké sité s adaptivni topologii — GP generuje vrstvy s riznym poctem
neuront a jejich propojeni.

e Vrstvy se specializovanymi aktivacemi — Stromy mohou obsahovat nelinearni
aktivacni funkce (napf. ReLU, tanh, sigmoid) nebo jejich kombinace.

e Vrstvy s dynamickymi parametry — Napriklad HyperGP muze navrhnout
dynamické zmény v propojeni béhem trénovani.

5.2.4. Vyhody HyperGP

e Efektivni design — Automatizace navrhu topologii Setri ¢as a eliminuje potiebu
manudlniho ladéni.

e Flexibilita - HyperGP muze generovat sité pro siroké spektrum aplikaci, od jed-
noduchych klasifikac¢nich tiloh po komplexni systémy rizeni.

e Robustnost — Evoluc¢né navrzené sité casto vykazuji vyssi odolnost vici Sumu
v datech.
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Genetické programovani, zejména v kombinaci s nepfimym kédovanim v HyperGP,
predstavuje pokrocily pristup k automatizovanému navrhu neuronovych siti. Tento
smér vyzkumu otevird nové moznosti pro efektivni reseni slozitych tloh v raznych
oblastech.

Spojeni neuronovych siti, evolucnich algoritmt a komplexnich systémi umoznuje
resit problémy, které byly drive povazovany za nereSitelné, a otevira nové moznosti
pro aplikace v prumyslu, védé i uméni.

V této kapitole jsme ukazali, jak se neuronové sité rozsitily od zakladnich per-
ceptronu az po pokrocilé architektury, jako jsou RNN, CNN nebo SOM. Kazda z téchto
siti prinesla unikétni pristupy k feseni problému, ¢imz prispéla k rozvoji umélé inteli-
gence a jeji aplikaci v riznych oborech. Laureati Nobelovy ceny Geoffrey Hinton a John
Hopfield hrali klicovou roli v prekonani technickych vyzev a polozili zaklady moderni
AT. Budoucnost tohoto oboru slibuje dalsi fascinujici objevy, které budou stavét na
téchto historickych milnicich.

6. Zaver

Pribéh umélych neuronovych siti, jejich vyvoje a prinosti pro soucasnou spole¢nost je
nerozlucné spjat s prinosy Johna Hopfielda a Geoffreyho Hintona, laureati Nobelovy
ceny za fyziku (2024). Oba védeci sehréli kli¢ovou roli v proméné neuronovych siti
z abstraktnich matematickych modelu v prakticky vyuzitelné technologie, které dnes
ovliviiuji mnoho oblasti naseho zivota.

John Hopfield svymi prukopnickymi pracemi na asocia¢nich pamétech a rekurent-
nich neuronovych sitich ukazal, jak mohou sité modelovat dynamiku a dosdhnout sta-
bilnich stavi, coz otevielo cestu k aplikacim v optimalizaci a biologicky inspirovanych
vypoctech. Jeho pristup zalozeny na propojeni fyziky, biologie a informatiky vytvoril
novy ramec pro chapani neuronovych siti jako komplexnich systémi. Hopfield také
zduraznil vyznam interdisciplinarity, coz napomohlo vytvoreni komunity vyzkumnikt
napric¢ obory.

Geoffrey Hinton, ¢asto oznacovany za ,kmotra hlubokého uceni, prispél zasad-
nim zpusobem k rozvoji vicevrstvych neuronovych siti, algoritmu zpétného siteni chyb
a hlubokého uceni. Diky jeho préaci se neuronové sité staly schopnymi modelovat slo-
zité vztahy v datech a Tesit tlohy, které byly dfive mimo dosah tradi¢nich pristupt.
Hintonovy obavy ohledné bezpecnosti a regulace Al dnes rezonuji védeckou komunitou
a upozornuji na nutnost odpovédného vyvoje a vyuzivani téchto technologii.

Budoucnost, kterou oba védci nastinili, nabizi nespocet prilezitosti, ale také vyzev.
Hopfieldova vize zdaraznuje dulezitost porozumeéni vztahu mezi strukturou a dynami-
kou komplexnich systémi, zatimco Hinton varuje pred riziky spojenymi s nekontrolova-
nym rozvojem umélé inteligence. Oba zaroven vyzdvihuji potiebu interdisciplinarniho
pristupu a spolupréace, kterd by mohla vést k vytvoreni obecné umélé inteligence (AGI)
a novych inovaci v oblastech, jako je kvantova fyzika, biologie nebo teorie komplexnich
systému.

Jejich préace nejen inspirovala celé generace védcu, ale také vyrazné zménila techno-
logicky a védecky svét. Rozpoznavani vzort, automaticky preklad, analyza obrazovych
dat, predikce casovych rad — to vSe a mnohem vice dnes stoji na zakladech, které po-
lozili tito laureati. Jak ale sami varuji, s velkou silou neuronovych siti prichazi i velka
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odpovédnost. Tato Nobelova cena neni jen oslavou dosazenych vysledkt, ale také vy-
zvou k tomu, abychom tyto technologie vyuzivali k dobru spolecnosti a budoucich
generaci.

Je vsak dilezité zduraznit, ze uspéchy Johna Hopfielda a Geoffreyho Hintona stoji
na Sirokych zakladech prace mnoha dalsich vyjimecénych védeti, bez nichz by se obor
neuronovych siti a umélé inteligence nemohl vyvinout do soucasné podoby. Warren
McCulloch a Walter Pitts polozili teoretické zaklady modelu neuronu, Donald Hebb
prispél svym pravidlem o uceni, Frank Rosenblatt vytvoril perceptron jako prvni prak-
tickou implementaci neuronové sité. Dalsi prilom prinesli Yann LeCun, jehoZ préce na
konvolué¢nich sitich umoznila revoluci v poc¢itacovém vidéni, Sepp Hochreiter a Jiirgen
Schmidhuber, ktefi navrhli LSTM a umoznili efektivni modelovani dlouhodobych za-
vislosti v datech, nebo Ian Goodfellow, jehoZ generativni kontradiktorni sité (GANS)
oteviely zcela nové moznosti v generovani dat. V neposledni radé je tfeba zminit také
védce jako Marvin Minsky, Seymour Papert nebo David Rumelhart, ktefi svymi pri-
nosy formovali teoretické a praktické sméry vyzkumu. Nobelova cena pro Hopfielda
a Hintona je tak nejen uznanim jejich individudlnich prinosti, ale také oslavou kolek-
tivniho usili celé védecké komunity, kterd se podilela na formovani tohoto fascinujictho
oboru.

S dalsim rozvojem technologii inspirovanych fungovanim mozku se klicovou vy-
zvou stava dosazeni hlubsiho porozumeéni, efektivni kontroly a etického vyuziti umeélé
inteligence — coz jsou hodnoty, které oba laureati zduraznuji a predavaji budoucim
generacim.
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